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Abstract

Alzheimer’s disease (AD) is the most common cause of dementia among elderly people and one of

the leading causes of death in developed countries, which is manifested by the loss of cognitive func-

tioning and behavioral abilities, caused by progressive neuronal degeneration. Although there is still

no practical diagnostic method available, a correct detection of the disease is crucial to slow down it’s

progression and cognitive decline. In recent years, Deep Learning methods gained popularity in AD de-

tection, especially in dealing with brain scan images. Despite the success of these methods, the volume

of medical images available is usually too small, which can easily lead to overfitting. At the same time,

multimodal neuroimaging approaches have shown good results in AD diagnosis. In this work, a cross-

modal Transfer Learning strategy was adopted using positron emission tomography (PET) and magnetic

resonance imaging (MRI) brain scans: Deep Learning models based on Convolutional Neural Networks

were pre-trained on one modality and fine-tuned using the other modality. The proposed approach ob-

tained 86.4% accuracy for the classification task of AD vs normal controls (NC), showing improvement

of around 2.5% of the classification system’s accuracy with Transfer Learning, reducing overfitting, while

taking advantage of the information provided by different neuroimaging modalities.

Keywords: Alzheimer’s Disease; Transfer Learning; Convolutional Neural Network; Deep Learn-

ing; Medical Imaging; Multi-modality
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Resumo

A doença de Alzheimer (AD) é a causa mais comum de demência entre idosos e uma das principais

causas de morte nos paı́ses desenvolvidos, que se manifesta pela perda do funcionamento cognitivo

e habilidades comportamentais, causadas pela progressiva degeneração neuronal. Embora ainda não

exista um método prático de diagnóstico disponı́vel, uma detecção correta da doença é fundamental

para retardar a sua progressão e o declı́nio cognitivo. Nos últimos anos, os métodos de Aprendizagem

Profunda ganharam popularidade na detecção de AD, especialmente através do uso de imagens cere-

brais. Apesar do sucesso desses métodos, o volume de imagens médicas disponı́veis é geralmente

muito pequeno, o que pode facilmente levar a sobreajuste. Ao mesmo tempo, as abordagens de neu-

roimagem multimodal têm mostrado bons resultados no diagnóstico de AD. Neste trabalho, foi adotada

uma estratégia de Aprendizagem de Transferência entre modalidades, usando tomografia por emissão

de protões (PET) e imagens de ressonância magnética: modelos de aprendizagem profunda baseados

em Redes Neurais Convolucionais foram pré-treinados numa das modalidades e ajustados usando a

outra modalidade. A abordagem proposta obteve 86,4% de exatidão para a classificação entre AD vs

sujeitos cognitivamente normais (NC), mostrando uma melhoria de cerca de 2.5% da exatidão do sis-

tema de classificação através da Aprendizagem de Transferência, reduzindo o sobreajuste, ao mesmo

tempo que aproveita as informações fornecidas por diferentes modalidades de neuroimagem.

Palavras-chave: Doença de Alzheimer; Aprendizagem de Transferência; Redes Neuronais

Convolucionais; Aprendizagem Profunda; Imagens Médicas; Multimodalidade
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1 Introduction

1.1 Motivation

Alzheimer’s Disease (AD) is the most common cause of dementia among people over the age of 65,

affecting more than 5 million Americans [1], as illustrated in figure 1.1. It is defined as the loss of

cognitive functioning and behavioral abilities, interfering with a person’s daily life and activities, such as

difficulty in communication, speaking or walking [6]. Changes in the brain may begin a decade or more

before memory and other cognitive problems appear. These changes are related to abnormal deposits

of amyloid plaques and tau tangles throughout the brain, killing neuron cells and cutting connections

with other neurons in an irreversible way, eventually leading to the person’s death.

Figure 1.1: Incidence of AD in people over 65 years in the United States of America (adapted from [1]).

There are 3 main stages regarding AD: mild AD, moderate AD and severe AD. Preceding those

stages, there is a phase called Mild Cognitive Impairment (MCI), in which people have more memory

problems than normal for their age, but their symptoms do not interfere with their everyday lives. Some

people with MCI may develop AD, but not all of them do. MCI patients that are likely to progress to

AD are called MCI converters (MCI-C), while MCI patients that will not convert to AD are called MCI

non-converters (MCI-NC). This rate of progression differs for each patient and each person may show

different symptoms at each stage, which makes AD a challenging task for diagnosis and prognosis.

As the world population ages, it’s estimated that by 2050, 1 in 85 persons will be living with AD [10].

Since current research in pharmacological intervention has not been able to reverse the disease course

so far, if interventions could delay both disease onset and progression by 1 year, there would be nearly

9.2 million fewer cases of the disease in 2050, thus showing the importance of the improvement of early

detection strategies for AD detection.
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With the growth of popularity of machine learning methods and application of such strategies to AD

diagnosis, it has been shown that those methods are able not only to achieve better performance in pre-

dicting AD than radiologists [37], but also, to increase the speed of the diagnosis without compromising

the accuracy, suggesting a general adoption of computer-assisted methods for dementia diagnosis.

Among the several machine learning methods used to tackle this task in the recent years, it has been

shown that Deep Learning methods obtain better results [47]. Deep learning is a specific sub field of

machine learning, which consists on learning successive layers of increasingly meaningful representa-

tions, involving tens or even hundreds of successive layers of representations, all learned automatically,

from exposure to training data, via neural networks [18].

The success of Deep Learning was boosted, recently, with the accessibility of affordable parallel com-

puting resources via graphics processing units (GPUs) for computational acceleration. Deep learning

architectures have been turned into advanced learning algorithms that extract high-level features directly

from the images, without the engagement of human experts (computer aided feature extraction). The

most popular deep learning model used for image analysis is the Convolutional Neural Network (CNN).

When CNNs are trained on images, the first layers tend to learn generic features, such as edges, col-

ors and textures, regardless of the cost function or dataset, as more deep layers tend to learn more

abstract features related to particular dataset and task (specific). One of the major benefits of the CNN

in comparison with other deep learning methods is that just as in a clinical context, where studies are

based on visual analysis, the CNN is also motivated by the visual perception of humans. Since CNNs

learn representations based on visual concepts, which can be interpreted by humans, they are able to

contradict the notion of the ’black box’ algorithm [11], that has grown in the biomedical field with the

solutions proposed by Deep Learning. These black box AI systems can classify features and often do it

with high accuracy, but without explaining the network’s decisions associated with such classification.

Transfer Learning methods focus on solving one problem in the base domain and transferring the

knowledge gained to a different but related problem, the target task. This process will tend to work if the

learned features are general in the base domain. Usually, in Deep Learning, the method is based on

training a base network and copying the first n layers to the first n layers of a target network. Some of the

layers of the previous base task can then be fine-tuned to the new task or left frozen [62]. Fine-tuning

works by unfreezing a few of the top layers of the frozen previously trained model and jointly training

these layers with the top layers of the target network, slightly adjusting the more abstract representations

of the model being reused to make them more relevant for the problem at hand. The use of a pre-trained

CNN with adequate fine-tuning can outperform a CNN trained from scratch, using less amount of training

data [56].

Most researchers believe that within the next 15 years, most of the medical diagnosis will be using

deep learning based applications. Despite the growth of this research area, penetration of deep learn-

ing in healthcare is still quite slow, due to challenges related with the available datasets, legal issues,

dedicated medical experts, non standard data, machine learning methods, etc [50]. One particular prob-
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lem is that the volume of medical images available is usually too small to train the entire deep learning

structure, which can easily lead to overfitting. This problem can be solved using Transfer Learning.

The combination of distinct biomarkers can even increase possibilities of a more in depth study of

Transfer Learning methods: the data from a single modality can be used to train a CNN, as the base

domain, and then transferring it to a target domain, containing images from a different modality. Transfer

Learning therefore is a way to bypass the problem of having a small sample size for a deep learning

architecture and to take full advantage of having several neuroimaging modalities at our disposal.

The identification of biomarkers for AD and it’s combination with deep learning techniques that are

able to identify patterns, features and hidden representations, contribute to the early detection of the dis-

ease and may accelerate the development of new therapies that can slow down the disease progression

and cognitive decline, which can have huge impacts in patient’s and caregivers’ life quality.

1.2 Objectives

The goal of this thesis is to investigate Transfer Learning methods within a Deep Learning context for AD

diagnosis, using neuroimaging data, with the aim to verify the several advantages of Transfer Learning

enumerated in section 1.1, when compared to building a network from scratch. By doing this we study

the effects of fine-tuning on initial and deep layers.

Additionally, the benefits of using multimodal data are explored through a cross-modal Transfer

Learning approach in which two modalities of data are combined to classify subjects with AD from

healthy NCs. This approach is compared to other more common approaches used to merge two types

of neuroimaging data.

This method is implemented using two types of deep convolutional networks and conclusions are

taken based on the performance metrics of the applied methods and the visual representations of the

features learned by the models developed, making possible to see into the ”black box” of a deep learning

model.

To date, from the information collected during this thesis, there are no studies that use cross-modal

Transfer Learning for AD detection using PET and MRI modalities or using the deep learning networks

that were implemented in this thesis, which means that this field hasn’t been highly explored, whereby

this work might lead to a better understanding in this area.

1.3 Thesis Outline

The rest of the paper is organized as follows. A literature review is presented in section 2. Section

3 shows the proposed methodology, while section 4 presents the obtained results for the proposed
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Transfer Learning methods and establishes a comparison with other known methods, followed by the

conclusions drawn from this approach in section 5.
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2 State of the Art

The aim of this section is to frame the work developed in this thesis among existing solutions that try to

apply neuroimaging to the problem of Alzheimer’s Disease diagnosis using particularly Transfer Learning

and multimodal machine learning approaches, accordingly to the objectives listed in section 1.2.

2.1 Scientific framework

This section discusses different aspects that machine learning methods that tackle AD classification

encompass.

2.1.1 Classification Task

Deep learning architectures can be dimensioned to distinguish between two or more stages of AD.

Researchers have considered multiple binary (usually normal controls (NC) vs pathological) or multiclass

classification problems in order to distinguish between AD stages.

2.1.2 Temporal follow-up of subjects

Longitudinal studies follow each subject during a certain period of time, while cross-sectional studies

evaluate each subject at a specific point in time. Usually longitudinal studies can obtain more accurate

results, since they are more sensitive to early changes in the brain [21, 22, 27].

2.1.3 Imaging Modalities

In AD and related dementias, the most widely used biomarkers measure changes in the size and function

of the brain and its parts, as well as levels of certain proteins seen on brain scans and in cerebrospinal

fluid (CSF) and blood, being magnetic resonance imaging (MRI), the most popular imaging method. Sev-

eral other methods have been used together with structural MRI, such as functional MRI (fMRI) [52], Dif-

fusion Tensor Imaging (DTI) [9], Positron Emission Tomography (PET) images [63, 13, 16, 22, 24, 48, 60]

and CSF [13, 14, 22, 41, 63].

In clinical practice it’s expensive and time consuming to collect several biomarkers from subjects,

and hence, the size of collected complete multimodal biomarker dataset is often small. This is why most

research only focuses on a single modality of neuroimaging, such as MRI. However, in section 2.2.2 it is

shown that the use of different biomarkers can provide complementary information for diagnosis of AD
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and MCI. In a systematic literature review of over 100 recent articles related to deep learning methods

applied to Alzheimer’s Disease from neuroimaging, [57] concluded that multi-modality studies generally

outperform single-modality, referring that combining different modalities will reflect different metabolic or

structural aspects of AD, presenting a more accurate model of the disease, which is helpful especially

for it’s early detection.

2.1.4 Pre-Processing of Brain Scans

Pre-processing of brain scans strongly impacts in the performance of an AD detection system. Different

machine learning methods have different pre-processing requirements, and in deep learning, some pre-

processing steps became less critical. Most frequent and essential pre-processing techniques applied

to raw images include intensity normalization and registration [21], but other techniques might be applied

such as tissue segmentation, skull stripping and motion correction.

2.1.5 Data augmentation

One other method that addresses this lack of data related to medical images and multimodal datasets

is data augmentation. This method expands the training dataset by adding modified copies of the data

already existing in the training set or creating new samples from existing data. When applied to AD, deep

learning methods usually perform data augmentation techniques, such as reflection, rotation, translation,

noise injection, blurring, cropping, scaling and gamma correction. Other techniques focus on adding

brain scans of subjects at different time points provided by longitudinal datasets, in a time-independent

way [43, 21].

2.1.6 Input data management

Depending on the type of extracted features and information available after the feature extraction step

in a computer aided classification system, studies can be grouped into voxel-based, slice-based, patch-

based or ROI-based studies.

Depending on the type of features extracted, machine learning structures can perform feature di-

mension reduction, by prioritizing the most relevant information for the classification problem at hand

and reduce high feature dimensionality.

2.1.7 Learning algorithm

A wide range of machine learning and deep learning methods have been used to classify AD and it’s

early stages. Earlier studies used machine learning methods like SVMs or semi-supervised SVMs,
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however needing to perform feature extraction and classification in separate steps.

Nowadays most research methods focus on supervised deep learning such as CNNs or DNNs.

Unsupervised deep learning algorithms such as Autoencoders can also be used as a good initialization

step for deep neural networks, or extract high-level features in an unsupervised way.

Many deep learning algorithms follow the logical step of letting computers learn the features that op-

timally represent the data for the problem at hand, which is the case of CNNs. 2D CNNs are widely used

for Transfer Learning purposes, since it is common to use well known architectures pre-trained on the

popular ImageNet dataset [51]. Among these architectures are LeNet [40], AlexNet [38], CaffeNet [59],

VGGNet [53], GoogLeNet [55], ResNet [28], Inception [54], and SqueezeNet [32]. This is possible due

to the fact that lower CNN layers are able to learn general features, which can benefit many classification

tasks.

One issue is that 2D CNNs are not able to capture volumetric information from the 3D imaging modal-

ities. This issue can be addressed with 3D CNNs or with the combination of 2D CNNs and Recurrent

Neural Networks (RNNs) in order to capture spatial information. Several methods used different ways to

combine 2D CNNs and RNNs to deal with this problem [20, 15].

The main competition at this time seems to be between 3D CNNs and 2D CNNs (with or without

RNNs) [21].

2.2 State of the art review

In this section, different applications of Transfer Learning for AD detection within the last 10 years are

summarized. In addition, several methods in which multimodal neuroimaging data has been combined

are described.

2.2.1 Transfer Learning methods for AD detection

Transfer Learning methods have been proven to be robust even for very dissimilar domains, such as

networks trained on a dataset containing natural images used with medical images [30, 61, 49, 27, 44,

45, 20], which is the most common application of TL in AD detection, but there are several other ways

to apply Transfer Learning to Alzheimer’s early detection problem, as detailed in this section. Generally,

the use of TL speeds up training and improves performance even when reusing a pre-trained network

from a distant task, such as a generic image-classification task.

In a deep learning architecture, the number of layers from the original model to be fine-tuned and

the number of top replaced layers depends from case to case. In the case of CNNs, it is usual to

replace the densely connected classifier and fine-tune some layers of the convolutional base [18], once
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the representations learned by the convolutional base are frequently more generic and therefore more

reusable. Despite the current trend in Transfer Learning, an in-depth study on the reusability of the

representations of each layer and on the number of fine-tuned layers that benefit performance appears

to be missing for AD detection.

Research reports very distinct methods: [13] uses a Support Vector Machine (SVM) for classification

of MCI-C vs MCI-NC patients, based on a related auxiliary domain, given by the task of classifying AD

vs NC patients. The same authors extend their TL approach to use multiple auxiliary domains - Multi-

Domain Transfer Learning [12, 14]. The classification was made by SVMs and obtained measures of

performance for several tasks. Each task used the others as auxiliary domains, for example, in [12] the

task of classifying MCI-C vs MCI-NC patients was based on the AD vs NC and MCI vs NC tasks, and

[14] the target task MCI-C vs MCI-NC used also AD vs MCI in the auxiliary domain.

Filipovych & Davatzikos [25] had already been using, in 2011, AD vs NC domain to target the MCI-

C vs MCI-NC classification, using a semi-supervised SVM to classify MCI subjects in the absence of

certain diagnostic information for some patients in the ADNI database. In their work, an analysis about

volumetric differences in gray matter (GM) structures classified for AD and NC was made.

Because these methods used SVMs, there was a necessity of performing feature extraction manually.

Regions of interest (ROIs) were labeled from each image and for each ROI the volume of GM tissue was

computed as a feature [12, 14, 25]. [13] also used average pixel intensity of each ROI for the PET

images as features and three CSF biomarkers: CSF Aβ42, CSF t-tau, CSF p-tau. [14] also used CSF

Aβ42, CSF t-tau, CSF p-tau as features.

Other methods used CNNs as learning algorithm, and therefore, no manual feature extraction was

needed, since CNNs can learn features from the training data on their own. [30] used MRI data from the

OASIS dataset [7], using VGG16 and Inception V4 architectures, with pre-trained weights from ImageNet

and fine-tuning. An accuracy of 96.25% was obtained for AD vs NC classification with the Inception

architecture, also showing that this type of Transfer Learning achieves better results than only training

the same model from scratch, when the training size is small, which can result in overfitting. Wu et al.

[61] also compared the performance of GoogleNet and CaffeNet architectures using Transfer Learning

from pre-trained ImageNet (and fine-tuning), obtaining accuracy measures of 87.78% for the three way

classification of NC vs MCI-C vs MCI-NC for the CaffeNet architecture and 83.23% for GoogleNet. In

their work, a novel data augmentation strategy was also used, which selected 3 slices from the 3D

volume MRI data with a certain interval to combine a RGB color image, used as input to the network.

Transfer Learning using pre-trained ResNet architectures and fMRI images from ADNI was used in [49]

which achieved an average accuracy of 97.92% in the multi-class classification of AD, NC, significant

memory concern (SMC) and three MCI stages, including early MCI (EMCI), MCI, and late MCI (LMCI).

The authors compared this architecture with the AlexNet architecture for Transfer Learning, concluding

that the use of residual learning (ResNet) and Transfer Learning both improved the performance. In [27],

a pre-trained ResNet model was fine-tuned from MRI slices, extracting slice-level features and a Long
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Short-Term Memory (LSTM) layer is then used to learn longitudinal-level features for each subject.

Lu et al. [44] also addressed this type of Transfer Learning for classification between individuals with

brain pathology (AD among them) and NC. Using the AlexNet architecture, pre-trained on ImageNet,

with fine-tuning, they achieved 100% accuracy for this task. [45] also fine-tuned a pre-trained AlexNet

architecture to classify segmented GM, WM and CSF images and unsegmented MRI images from the

OASIS dataset, in which the unsegmented images led to better results for the multi-class classification

of the multiple stages of AD (in this case, the classified stages were NC, very mild AD, mild AD and mod-

erate AD). Both of these studies modified the original AlexNet network for the target task, by replacing

the last three layers with new layers with randomly initialized weights to learn class specific features in

the target domain. Then, the weights of the remaining layers were adjusted during training jointly with

the replaced layers in the case of [44], or remained fixed in [45] and only the replaced top layers had

their weights updated.

Other studies analysed the current trend of using Transfer Learning from natural images to AD classi-

fication, specifically, using networks pre-trained on ImageNet, such as [20], which implemented several

well-known 2D CNNs to extract discriminative features from MRI slices and a LSTM to incorporate spa-

tial information across slices in the classification, showing better results when using the pre-trained

SqueezeNet model.

A different Transfer Learning method was used by Hosseini-Asl et al. [31], in which a 3D CNN

was built upon a stacked 3D convolutional autoencoder (CAE) network, which was pre-trained on CAD-

Dementia dataset [3] (base domain) in order to capture anatomical shape variations in structural MRI

scans. The 3D CNN’s layers were initialized by encoding the 3D-CAE weights and the upper layers were

then fine-tuned for the specific task using data from the ADNI dataset (target domain), achieving 100%

accuracy in AD vs MCI classification and more than 90% accuracy in the other evaluated tasks.

Similarly, Payan et al. [47] used a 3D CNN for AD diagnosis based on pre-training by a 3D sparse

autoencoder (SAE). This pre-training was performed by randomly selecting small 3D patches of MRI

scans. The trained weights of the SAE are then used for pre-training of convolutional filters of 3D CNN.

The fully connected layers of the 3D CNN are then fine-tuned. This method was improved by Vu et al.

[60], to combine MRI and fluorodeoxyglucose positron emission tomography (FDG-PET).

Focusing on the Hippocampal region and in two distinct imaging modalities: DTI. in particular Mean

Diffusivity (MD) density maps derived from DTI and sMRI, [9] proposed a cross-modal Transfer Learning

method for classification between AD, NC and MCI, in which a 2D CNN model is trained first on the sMRI

dataset and then fine-tuned on the target MD dataset, with a limited amount of data, for each projection

(Sagittal, Axial and Coronal). The results from each projection were fused using Majority Vote. This

cross-modal Transfer Learning method showed a reduction of overfitting and improvement of learning

performance, and encouraged a new perspective in Transfer Learning for Alzheimer’s disease detection,

in which each domain is represented by a different neuroimaging modality.
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2.2.2 Combination of neuroimaging modalities

There are several ways to fuse multimodal data, particularly neuroimaging data. Imaging data can be

also combined with other available information such as cognitive measures or demographic information,

and selecting the best modality combination and fusion method is a task that’s been studied in-depth.

Multimodal classification was compared with the case of using only one biomarker by [63]. They

combined MRI, PET and CSF biomarkers using a kernel combination method to train an SVM and

obtaining an accuracy of 93.2% for the classification of AD vs NC and 76.4% for MCI vs NC. These

results were better than using only one biomarker, emphasizing the benefits of having multimodal data.

Similar methods based on SVMs that were mentioned in the previous section, reported better results

when combining MRI and PET images and CSF biomarkers [13] and MRI and CSF biomarkers [14].

An early fusion method was used in [16], which combined two types of PET images, FDG-PET

and 18F-florbetapir (AV-45) PET, to train a 3D CNN for the AD vs NC task, exploring both glucose

metabolism and amyloid deposit in the patient’s brain at the same time. This network was then applied

to predict between MCI-C and MCI-NC subjects, showing better results when both modalities were used

simultaneously to train the model.

Although this method achieved good performance and can be easily implemented, combining modal-

ities in the inputs of the same deep learning model is unusual. Instead, it is more common to use a

different network to learn features from each modality and combine the networks at a later stage. In this

sense, to predict conversion of MCI to AD, [41] used a multimodal gated recurrent unit (GRU) network,

which integrated subject’s demographic information, longitudinal CSF biomarkers, longitudinal cognitive

performance and cross-sectional MRI images obtained from ADNI. This required two steps: the training

of a single GRU separately for each modality of data and merging the four networks into one. In the

first step, the GRU makes it possible to transform longitudinal data into a fixed-length vector, exploiting

temporal patterns in a data sequence, which is then integrated with the data from several modalities

through concatenation in the second step. With the incorporation of several modalities into one predic-

tion model, while using longitudinal data, the accuracy improved from 75% to 81% for the classification

between MCI-C and MCI-NC. [22] also combined time series neuroimaging data from MRI and PET and

subject’s cognitive scores from 15 time steps and static background knowledge from the patients’ first

visits, (such as age, gender, CSF, symptoms, etc.) to predict disease progression and four cognitive

scores at the time of progression in a multitask and multi-class deep learning framework which achieved

92.62% accuracy for the CN vs MCI-NC vs MCI-C vs AD task. Deep features extracted from each time

series modality and fed into a separate stacked CNN-Bidirectional Long-short term memory (BiLSTM)

pipeline and the learned representations are fused together with a set of dense layers. In a second

fusing step, the common features from these modalities are fused with the baseline background data

features and a final set of dense layers are used to learn task specific features.

Using a similar concatenation method, [48] designed a fusion model that obtained 92.34% accuracy
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for the AD vs NC classification problem using MRI and florbetapir PET images from ADNI. In this work,

the authors built a 3D CNN for each modality with three convolutional layers and three fully connected

layers. Then, to perform fusion, the output layer of both networks is replaced by a concatenation layer,

which fuses the information from both modalities before the final classification is made. The improve-

ments in performance due to fusion of both modalities indicates that the two modalities share comple-

mentary information useful in this task, although the authors revealed amyloid (AV-45) PET to be more

discriminative in comparison to MRI in the first study that fused and compared these two modalities.

A more common choice of modalities is MRI and FDG-PET which was fused in [60] and the authors

reported improvements in comparison to the classification of each modality separately for the AD vs NC

problem, reaching 91.14%. This approach fused the outputs of two 3D CNNs trained for each modality

through a 3-layer fully connected layer neural network. This boosting of the performance is not only

due to fusion, but also the pre-training of the CNN using a SAE trained on random 3D patches from

the scans, similarly to [47]. [43] achieved an accuracy of 82.93% for discrimination between MCI-NC

and MCI-NC subjects, by concatenating the representations learned from six Deep Neural Networks

(DNNs), which corresponded to three different patch scales from FDG-PET and GM and using another

DNN to fuse these representations.

Instead of using fully connected layers to share information between modalities, [24] achieved better

results using a Bidirectional-RNN, which took as inputs the features extracted from a 3D CNN trained on

PET images and GM density maps segmented from anatomical MRI images.

Transfer Learning was also used as a method to combine imaging modalities which showed promis-

ing results in [9], described in section 2.2.1.

Apart from combining modalities, different views from brain scans (Sagittal, Axial and Coronal) from

the same modality can be combined to achieved a global prediction score, which is done frequently

using Majority Vote, as in [20] and [9].

2.2.3 Summary

A summary of the Transfer Learning methods referred previously in section 2.2.1 is presented in table 2.1

regarding Transfer Learning and in table 2.2 for the combination of different neuroimaging modalities,

without Transfer Learning. In each table, performance information is provided in terms of accuracy,

sensitivity and specificity for each method, as well as the database from which the data was download

and number of participants, to highlight differences between each study that might it harder to compare

the different approaches.
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Table 2.1: Performance of different AD classification systems which combine different imaging modalities, apart from Transfer Learning. Results for different

tasks are in regard to: a - AD vs NC; b - MCI vs NC; c - AD vs MCI; d. MCI-C vs MCI-NC; e. MCI-C vs NC f. MCI-NC vs NC; g. NC vs MCI-C vs MCI-NC; h. NC

vs SMCI vs EMCI vs MCI vs LMCI vs AD; i. NC vs mild AD vs very mild AD vs moderate AD; j. AD vs MCI-NC vs MCI-C vs NC; Abbreviations: Accuracy (ACC);

Sensitivity (SENS); Specificity (SPEC).

Author(s) Year Biomarker(s)
Learning

Algorithm
Subjects Database Transfer Learning Type

ACC

(%)

SENS

(%)

SPEC

(%)

Cheng et al.

[13]
2015

MRI, FDG-PET,

CSF
SVM

51 AD, 43 MCI-C,

56 MCI-NC, 52 NC
ADNI

MCI-C vs MCI-NC based on AD

vs NC auxiliary domain
79.4d 84.5d 72.7d

Cheng et al.

[12]
2017 MRI SVM

186 AD, 395 MCI,

226 NC
ADNI

MCI-C vs MCI-NC based on

multiple auxiliary domains (a,b)

94.7a

73.8d

94.1a

69.0d

94.8a

77.4d

Cheng et al.

[14]
2019 MRI, CSF SVM

102 AD, 192 MCI,

112 NC
ADNI

MCI-C vs MCI-NC based on

multiple auxiliary domains (a,b,c)

95.2a

76.3d

95.2a

73.4d

95.3a

81.8d

Filipovych et al.

[25]
2011 MRI

Semi-supervised

SVM

54 AD, 68 MCI-C,

174 MCI-NC, 63 NC
ADNI

MCI-C vs MCI-NC based on AD

vs NC auxiliary domain
82.91a 79.63a 85.71a

Hon et al. [30] 2017 MRI 2D CNN 100 AD, 100 NC OASIS
Pre-trained Inception V4 network

and fine-tuning
96.25a - -

Wu et al. [61] 2018 MRI 2D CNN
150 MCI-NC,

157 MCI-C, 150 NC
ADNI

Pre-trained CaffeNet and

fine-tuning
87.78g - -

Ramzan et al.

[49]
2020 fMRI 2D CNN

25 NC, 25 SMC, 25

EMCI, 25 LMCI, 13

MCI, 25 AD

ADNI Pre-trained ResNet 97.92h 97.92h -

Gao et al. [27] 2018 MRI 2D CNN + LSTM
111 AD, 150 MCI, 154

NC
ADNI

Pre-trained ResNet and

fine-tuning

89.5a

81.7b
- -

Lu et al. [44] 2019 MRI 2D CNN
177 pathological,

38 NC

Harvard Medical

School Website

Pre-trained AlexNet and

fine-tuning
100a 100a 100a
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Table 2.1: Continued from previous page

Author(s) Year Biomarker(s)
Learning

Algorithm
Subjects Database Transfer Learning Type

ACC

(%)

SENS

(%)

SPEC

(%)

Maqsood et al.

[45]
2019 MRI 2D CNN

167 NC, 87 very mild

AD, 105 mild AD, 23

moderate AD

OASIS Pre-trained AlexNet
89.66a

92.85i

100a

92.85i

82.0a

74.27i

Ebrahimi-

Ghahnavieh et

al. [20]

2019 MRI 2D CNN + LSTM 132 AD, 132 NC ADNI Pre-trained SqueezeNet 90.62a - -

Hosseini-Asl et

al. [31]
2016 MRI 3D CNN 70 AD, 70 MCI, 70 NC ADNI

stacked 3D CAE network

pre-trained on CADDementia

dataset

99.3a

94.2b

100c

98.6a

100b

100c

97.2a

100b

98.6c

Payan et al.

[47]
2015 MRI 3D CNN

755 AD, 755 MCI,

755 NC
ADNI

SAE pre-trained with random 3D

patches from the scans

95.39a

92.11b

86.84c

- -

Vu et al. [60] 2017 MRI, FDG-PET 3D CNN 145 AD, 172 NC ADNI
SAE pre-trained with random

patches from the scans
91.14a - -

Aderghal et al.

[9]
2018 MRI, DTI 2D CNN

188 AD, 399 MCI, 228

NC
ADNI

Model trained on the MRI dataset

and fine-tuned on the DTI dataset

92.5a

80.0b

85.0c

94.7a

92.8b

93.7c

90.4a

73.0b

79.1c
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Table 2.2: Performance of different AD classification systems which combine different imaging modalities, apart from Transfer Learning. Results for different

tasks are in regard to: a - AD vs NC; b - MCI vs NC; c - AD vs MCI; d. MCI-C vs MCI-NC; e. MCI-C vs NC f. MCI-NC vs NC; g. NC vs MCI-C vs MCI-NC; h. NC

vs SMCI vs EMCI vs MCI vs LMCI vs AD; i. NC vs mild AD vs very mild AD vs moderate AD; j. AD vs MCI-NC vs MCI-C vs NC; Abbreviations: Accuracy (ACC);

Sensitivity (SENS); Specificity (SPEC).

Author(s) Year Biomarker(s)
Learning

Algorithm
Subjects Database Combination type

ACC

(%)

SENS

(%)

SPEC

(%)

Zhang et al.

[63]
2011 MRI, PET, CSF SVM

51 AD, 43 MCI-C, 56

MCI-NC, 52 NC
ADNI Kernel combination

93.2a

76.4b

93.0a

81.8b

93.3b

66.0b

Choi et al. [16] 2018
FDG-PET, AV-45

PET
3D CNN

139 AD, 171 MCI, 182

NC
ADNI

Joint training of both modalities in

the same network

96.0a

84.2d

93.5a

81.0d

97.8a

87.0d

Lee et al. [41] 2019

MRI, CSF,

demographic

information,

cognitive

performance

GRU
338 AD, 307 MCI-C,

558 MCI-NC, 415 NC
ADNI Concatenation-based 81.0d 84.0d 80.0d

EL-Sappagh et

al. [22]
2020

MRI, FDG-PET,

cognitive scores,

static background

knowledge

1D CNN + LSTM
339 AD, 473 MCI-NC,

305 MCI-C, 419 CN
ADNI Concatenation-based 92.62j - -

Punjabi et al.

[48]
2019 MRI, AV-45 PET 3D CNN 723 total ADNI Concatenation-based 92.34a - -

Lu et al. [43] 2018 MRI, FDG-PET DNN
409 MCI-NC, 217

MCI-C
ADNI Concatenation-based 82.93d 79.69d 83.84d

Feng et al. [24] 2018 MRI, FDG-PET 3D CNN + BiRNN
91 AD, 76 MCI-C, 128

MCI-NC, 100 NC
ADNI Concatenation-based

94.29a

84.66e

64.47f

96.59a

83.56e

70.43f

92.38a

89.63e

67.14f



3 Methods

This chapter explains the fundamental concepts related to the deep learning framework and Transfer

Learning methods explored and implemented during this thesis, in section 3.1. Section 3.2 details how

these concepts were implemented in practice for AD diagnosis.

3.1 Theoretical Background

3.1.1 Data

3.1.1.1 Neuroimaging modalities

For the problem of AD detection, two imaging modalities were used: MRI-based images and PET im-

ages. The MRI-based images used consist in the GM tissue component of the MRI volume, whereas the

PET images consist in the full brain image. Both of these modalities present a measure of neurodegen-

eration: the progressive loss of neurons or their connections and corresponding impairment in neuronal

function [34].

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures

of the anatomy of the brain or other body organs through the use of strong magnetic fields, magnetic

field gradients, and radio waves. MRI is based on the polarization of protons in a magnetic field. A pulse

of radiofrequency alters the energy state of protons, which emit a radiofrequency signal as they return

to their energy state when the pulse is turned off [35]. Different combinations of gradients and pulse

sequences can be designed to explore different tissue characteristics.

Structural imaging based on MRI is an integral part of the clinical diagnosis of patients with suspected

AD, since this disease is shown to be associated with the abnormal deposits of amyloid plaques and tau

tangles in the brain, which lead to progressive brain tissue damage in characteristically vulnerable brain

regions. Several studies show that structural MRI can estimate tissue damage or loss in these vulnerable

regions [26, 35] and therefore can estimate cognitive impairment. Brain atrophy is first manifest in

the medial temporal lobe, particularly in the entorhinal cortex, followed by other structures such as

the hippocampus, amygdala and parahippocampus, also affecting other structures within the limbic

lobe, such as the posterior cingulate. Attrophy is then spread to involve the temporal neocortex and

neocortical association areas. MRI brain scans can be segmented into the main types of brain tissue:

GM, CSF and white matter (WM). Segmentation is the method that identifies the set of voxels which

make up either the contour or the interior of a given object of interest, which allows the reduction of

search area in an image. Previous studies confirmed that GM is highly related to AD in comparison with

WM or CSF [24].
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Fluorodeoxyglucose positron emission tomography (FDG-PET) is another important modality of biomark-

ers for AD and MCI detection. This functional imaging technique is used to observe metabolic processes

in the body, through the intravenous injection of a short-lived radioactive tracer isotope into the subject.

This radiotracers are the aggregation of carrier molecules which are bonded to a radioactive isotope.

The carrier molecule FDG is an indicator of glucose consumption in the tissues and can be labeled with

the isotope Fluorine-18 (fluorodeoxyglucose F18 (FDG)). These radiotracers emit amounts of energy

reaching 511keV for F18, which are measured by a scanner, producing a 3D image of the distribution of

FDG in the body. Recent studies have reported the reduction of glucose metabolism in parietal, posterior

cingulated, and temporal brain regions for AD patients [19].

Challenges related with neuroimaging biomarkers, like the ones used, are related to the probable

co-occurrence of other brain related pathologies in one subject at the same time, particularly in el-

derly individuals in which AD is more frequent, such as cerebrovascular disease, syrucleinopathy and

hippocampal sclerosis. In this scenario, an individual can have two or more co-occurring pathophysi-

ological processes present, one of which being AD, or an individual can have a predominant non-AD

pathophysiological process [34].

3.1.1.2 Subject evaluation

The subjects are evaluated over time, in a longitudinal way. Longitudinal datasets provide several brain

scans per subject at different time points, and can be used to investigate disease progression or in a

time-independent way.

In this sense, it was taken advantage of the longitudinal dataset, which provides several brain scans

per subject, at each different time periods for each modality, in order to reduce overfitting when training

the model and generalizing to new data. However, it has to be taken into account that scanning sessions

from the same patient should not be used in both training and test sets, which would result in an ”in-

formation leak” and the algorithm would overfit to the patient’s identity rather than learning the disease

pattern, causing overoptimistic test results. The data partitioning procedure is further detailed in section

3.2.3.

3.1.1.3 Feature type

The features used for image classification for either one of the modalities consist in the raw voxel inten-

sities, which form 3D volumes, composed by slices of 2D images, that are going to be taken as input by

the deep learning model.
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3.1.2 Pre-processing

The pre-processing of brain scans accounts for the first stage in the deep learning pipeline and plays

a key role in the performance of an AD detection system [21]. A feature normalization method was

explored, apart from the methods that had been previously applied to the data, mentioned in section

3.2.4.

3.1.2.1 Feature Normalization

Feature normalization corresponds to the mapping of intensities of the volumes’ voxels to a reference

scale. Given the different range of intensities in both modalities, feature normalization is required, which

speeds up model training by avoiding extra iterations that are required when features’ values occupy

very different ranges.

The approach taken was the normalization of features to the range [-1, 1], which was calculated

applying the equation

x̂ik =
xik

max(|xk|)
, k = 1, 2, i = 1, 2, ..., Nk, (3.1)

where x̂ik corresponds to the normalized voxel value from modality k, Nk is the total number of features

corresponding to modality k and max(|xk|) is the maximum of the modulus from features corresponding

to modality k in the training set.

3.1.3 Supervised learning

The goal of supervised learning is to find a decision function f(x) that correctly predicts the output given

a pair of input-output:

ŷ = f(x), (3.2)

assuming there is a training set T = (xi, yi), i = 1, ..., n with xi ∈ Rp, where p corresponds to the

number of input features and yi to the class label and n is the total number of training patterns.

3.1.4 Neural Networks

An artificial neural network (ANN) is an interconnected group of artificial neurons inspired by biological

processes in the brain, in which the relationship between the neurons’ (nodes) inputs and outputs in a

given layer can be written as
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ok = g((xk)T · wk − bk), (3.3)

where ok ∈ Rn is the output vector of the kth layer of an ANN, xk ∈ Rn is the input vector, n is the total

number of nodes in layer k, wk ∈ Rmxn the weight matrix, which relates information from the previous

layer (with m nodes), and bk ∈ Rn a bias vector. The function g is called the activation function. In a fully

connected (FC) neural network, all the outputs from a given layer are connected to all the units of the

next layer, being the inputs of this layer represented by ok−1.

Activation functions add non-linearity to the network so that the network can learn complex patterns

that benefit from adding multiple layers. The ReLU function is the current recommended activation

function and softmax or sigmoid layers are common in final layer’s activation functions.

The training of a NN is done by estimating all the weights in an iterative way, given a set of training

patterns T defined in section 3.1.3. This can be achieved by obtaining predictions for each input training

pattern and minimizing the empirical risk, defined as

R =
1

n

n∑
i=1

L(yi, ŷi), (3.4)

where n is the number of classes in the classification problem and L corresponds to the loss function -

a measure of the mismatch between the prediction (ŷi) for a given input feature and the corresponding

target yi. The training loop is followed by the update of all the weights of the network, according to the

measures obtained from equation 3.4, reducing training loss in each set (batch) of inputs.

A common loss function is the categorical cross-entropy loss, which is given by the expression

L = −
M∑
i=1

yilog(pi(x)), (3.5)

where M is the number of classes in a given classification problem, yi the target corresponding to a

given class i and pi(x), the prediction probability of class i given an input x, achieved by the last layer

activation function. In the case of a binary classification problem, the categorical cross-entropy loss is

reduced to

L = −(ylog(p(x)) + (1− y)log(1− p(x))), (3.6)

where y is the class label (0 or 1) and p(x) the prediction probability for class 1 given an input x.

The minimization of R can be achieved by using the Backpropagation algorithm [18], in which the

NN’s weights are updated in order to minimize the loss function, which means finding the combination
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of weights values that yields the smallest possible loss function by computing the gradient of the loss

function with regard to the network’s parameters and moving the parameters in the opposite direction

from the gradient. This can be done given a training input at a time (online mode), all inputs at a time

(batch mode), or using a small group of training samples (mini-batch) at each time. The computation of

the gradients and update of parameters can be done by several optimization methods, such as stochastic

gradient descent (SGD), or Adaptive Momentum Estimator (Adam) [36].

3.1.5 Deep Learning models

Two supervised deep learning architectures based on CNNs were explored: CNN-LSTM and 3D CNN.

CNNs are the most successful deep model for image analysis. These models took as input GM and

PET volumes for the classification task of AD vs NC. The results and conclusions about the application

of these two models to the task are shown in section 4.

3.1.5.1 Convolutional Neural Networks

The 2D CNN was applied successfully in several imaging classification problems, such as handwritten

digit recognition [39]. Applications in AD classification are described in section 2. This type of networks

is composed of neurons having learnable weights and biases, forming the convolutional layer. This layer

computes the output of neurons that are connected to local regions in the input (feature maps). The

convolution operation extracts patches from its input feature map and applies the same transformation

to all of these patches, producing an output feature map by computing the dot product between the kernel

weight and the input feature map. The output depth is a parameter of the layer. Different channels in

that depth axis stand for different filters that encode specific aspects of the input data.

Mathematically, the convolution operation performed in a two-dimensional image can be denoted as

s(x, y) = (f ∗ g)[x, y] =
∞∑

n1=−∞

∞∑
n2=−∞

f(n1, n2) · g(x− n1, y − n2), (3.7)

where x and y represent the pixel positions for a given 2D data, s the output feature map resulting from

the convolution between the input image f and a convolution window (kernel) g, which slides through

the input image. Every location in the output feature map corresponds to the same location in the input

feature map.

The convolutional layer accepts volumes of size W ×H ×D and requires four hyperparameters: K,

the number of filters; F , size of the patches extracted, or receptive field; S, the size of the stride; P ,

the amount of zero padding. The convolutional layer then returns a volume of size W2 × H2 × D2, as
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described in equations 3.8a, 3.8b and 3.8c.

W2 = (W − F )/S + 1 (3.8a)

H2 = (H − F )/S + 1 (3.8b)

D2 = D (3.8c)

Zero padding consists on adding zeros on the border of the input feature map, in order to get an

output feature map with the same dimensions as the input. Stride is the distance between two successive

convolution windows. This parameter can be used for downsampling. For example, using stride 2 means

the width and height of the feature map are downsampled by a factor of 2.

The max-pooling layers, also take the role of downsampling feature maps and consist of extracting

windows from the input feature maps and outputting the max value of each channel. It is common to use

max-pooling layers which perform downsampling by a factor of two.

3.1.5.2 Long Short-Term Memory

LSTM (Long Short-Term Memory) [29] is an artificial recurrent neural network (RNN) architecture, which

can process sequences of data, such as video. In an RNN, sequences are processed by iterating

through the sequence elements and maintaining a state containing information relative to past computa-

tions. In practice, RNNs can’t learn properly information about inputs seen many timesteps before, due

to the vanishing gradient problem: the gradient’s value shrinks exponentially as it propagates through

each timestep, as explained in [29]. The LSTM attempts to solve this problem, adding a way to carry

information across many timesteps, which can be reinjected at a later time.

In figure 3.1 it’s described how the LSTM layer includes an additional data flow that carries informa-

tion across timesteps (ct). The update of ct is done by three gates that compose the LSTM cell, the

input gate, the output gate that provide information about the present and a forget gate, which is a way

to forget irrelevant information in the carry dataflow.

3.1.5.3 CNN-LSTM model

A combination of 2D CNNs and LSTM can be designed to include spatial relations among 2D slices

of neuroimaging volumes. Different combinations of these two types of layers were explored in the

literature review in section 2 for the problem of AD detection. Usually these methods divide each volume

into several groups of slices and for each group, a different CNN is trained and an RNN is used to group

the CNN’s outputs in an ordered way.
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Figure 3.1: Anatomy of an LSTM (adapted from [18]).

A combination of time-distributed CNNs and RNNs have been used in video classification, but still

hasn’t been applied to AD detection. This method uses the Keras TimeDistributed wrapper, which

allows the distribution of CNN layers across every slice of a 3D input. In this sense, 3D neuroimaging

volumes can be seen as classification of video sequences, where the third dimension is spatial, instead

of temporal.

This is illustrated in figure 3.2, where the TimeDistributed wrapper applies the same instance of the

convolution layer to every slice in the input volume, using the same set of weights for every convolution

and thus applying the same transformation for a list of input data, which is the main difference relatively

to other applied methods that combine CNNs and LSTM. The LSTM layer can then be used to process

images in a given order, detecting the relationship between slices, followed by a set of fully connected

layers to compute the final prediction.

Figure 3.2: Representation of the CNN-LSTM model with TimeDistributed CNN layers.
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3.1.5.4 3D CNN model

In 3D CNNs, convolutions are applied on 3D feature maps, as in figure 3.3. These convolutions are

performed by adding a third spatial dimension to equation 3.7. Instead of three dimensions in the case

of 2D CNNs, in this case there are four dimensions: two image dimensions, the time/height dimension

and the channels dimension. Since the filters move in three dimensions, 3D CNN layers are more

expensive in terms of computational resources.

3D convolutions have been applied in medical imaging in problems such as AD detection (section 2)

or lung anomaly detection [23] and have shown good results in modeling spatiotemporal features.

Figure 3.3: Comparison between (a) 2D convolution and (b) 3D convolution (adapted from [23]).
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3.1.6 Transfer Learning

A cross-modal Transfer Learning strategy was developed and investigated, taking advantage of the mul-

timodal data refered in section 3.1.1 using fine-tuning, ie, the Transfer Learning strategy was designed

from one modality to another.

Transfer Learning as introduced in section 1.1, aims to solve one problem in the base domain and

transferring the knowledge gained to a different but related task, in the target domain, being fine-tuning

it’s most common application in deep learning.

The deep Transfer Learning structure used in this work is exemplified schematically in figure 3.4.

Figure 3.4: Representation of the learning process of Transfer Learning in which the source data is

composed of brain scans from one modality and the target data is composed of brain scans from another

modality.

The transfer of knowledge between modalities is a method that attempts to explore complementary

information between modalities. The performance of this model increases if the base task and target

task are similar [62]. Thus, using cross-modal Transfer Learning is expected to yield good results, given

the similarity between tasks.

In terms of notation, according to [57] a domain can be represented by D = {χ, P (X)}, in which χ

represents the feature space and P (X) the marginal probability distribution where X = {x1, ..., xn} ∈ χ.

A task can be represented by T = {y, f(x)} in which y represents the labels and f(x) the prediction

function.

Transfer Learning can be defined as given a certain learning task Tt based on target domain Dt,

with the help from a source a domain Ds for the corresponding learning task Ts, with the objective to

improve the performance of predictive function fT (·) for learning task Tt by discover and transfer latent

knowledge from Ds and Ts, where Ds 6= Dt and/or Ts 6= Tt. In most of the cases, the size of Ds is much
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larger than the size of Dt, Ns � Nt.

Deep Transfer Learning (DTL) is then defined as a Transfer Learning task within a deep neural

network. Deep Transfer Learning can be classified into several categories [57], one of them being

Network-based DTL. Network-based DTL is the Transfer Learning category explored and described in

section 1.1 and refers to partially reuse a network pre-trained in the source domain, including its network

structure and weights, and transfer it to a deep neural network in the target domain. The transferred sub-

network can be updated using a fine-tuning strategy. This process is illustrated in figure 3.5.

Figure 3.5: Illustration of a network-based DTL process (adapted from [57]).

3.1.7 Multi-Task Learning

Besides Transfer Learning, two other common methods were explored to combine two neuroimaging

modalities. These two approaches are based on the subfield of multi-task learning (MTL) and try to

explore commonalities and differences between GM and PET data to improve learning performance

when compared to training the models separately, while dealing with lack of data, in the same way as

Transfer Learning, where the learning of one task can as well benefit from the learning of other tasks.

MTL [58] is a machine learning method that aims to solve multiple tasks at the same time, utilizing

correlated information among different tasks to improve the learning of each task.

Although MTL and TL can be related, in the sense that both aim to perform a new task by exploiting

knowledge acquired when solving previous tasks, in what is called the learning-to-learn problem, in TL

the generalization of the main task is improved with the extra information provided by the learning of an

auxiliary task, whereby in MTL, all tasks are treated equally.
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3.1.7.1 Joint training of both modalities in the same deep learning network

Using the GM and PET modalities, the feature space was composed by volumes of both modalities,

which were taken as input together for training a single model, thus concatenating modalities in an early

fusion mode. Classification of data from each modality is treated as a task, which means that the model

learns the tasks jointly and share information among different tasks, which can lead to improvements in

the learning performance.

In this case, as defined in [42] if the single model is represented by h then, the final prediction can

be written as

p = h([v1, ..., vm]), (3.9)

where p represents the model’s prediction probability vector and vm is a vector that represents the input

data related with modalities m = 1, 2, ...,M , which in the case of having two modalities will lead to

M = 2.

This method is one of the simplest methods to implement to combining modalities, involving only one

model, and allows the use of all available data for analysis. The downside of this approach is that both

modalities need to be similar to each other, well aligned and the model needs to be well suited for both

modalities.

3.1.7.2 Concatenation of two deep learning models trained on separate modalities

This approach was developed by using pre-trained models on separate modalities with the same number

of input volumes in each modality and combine the last layers in order to allow the sharing of information

between tasks and produce a single classification output.

If hi is the model used in modalities i = 1, ...,M, then the final prediction p, which represents the

model’s prediction probability vector, is given by

p = F (h1(v1), ..., hm(vm)), (3.10)

where F is the fusion mechanism (neural network) that aggregates the representations of the pre-trained

models and computes the final output.

This late fusion method allows the use of different models in different modalities, while enabling the

integration of distinct data types (e.g. images and cognitive scores) thus allowing more flexibility. On the

other hand, using this method, the number of input samples for each task must be the same. Besides,
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because this approach operates in inferences and not the raw inputs, it’s not effective at modeling

interactions between modalities at input-level.

3.1.8 Model selection and performance evaluation

Usually a model is trained using a training set and evaluated using a separate test set. If the hyper-

parameters were chosen based on the estimation of a model’s performance on the training set, this

estimate would be overoptimistic and the selected model would be too adjusted to the training set. Us-

ing another disjoint set as a validation set, it is possible to learn a model in the training set, evaluate the

performance of the model at a given time and select the best configuration using the validation set and

measure the performance of this selected model in a separate test set. The best model can be chosen

using early stopping: interrupting training when the validation loss is no longer improving and using this

model as the best one.

Cross-validation (CV) is an approach where all available data can be used for training and testing in

different splits, reducing the waste of data. Using CV, the data is split into k smaller folds, usually k = 5

or 10. A model is trained using k − 1 of the folds as training data and tested on the remaining fold, as

exemplified in figure 3.6. The final performance measure reported by the k-fold cross validation is the

average of the values computed in each iteration. The training set can be further split into training and

validation set, to chose the best model configuration through early stopping.

Figure 3.6: K-folds cross validation.

A model’s performance in a certain task can be evaluated through a set of metrics, which are usually

accuracy, sensitivity (also known as recall), specificity, precision and F1 score, which are expressed by

the equations

Accuracy =
TP + TN

TP + TN + FP + FN
(3.11)
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Sensitivity/Recall =
TP

TP + FN
(3.12)

Specificity =
TN

TN + FP
(3.13)

Precision =
TP

TP + FP
(3.14)

F1 score = 2× precision× recall
precision+ recall

(3.15)

where TP is the number of true positives, TN the number of true negatives, FP the number of false

positives and FN the number of false negatives.

These metrics were used to compare the performance between the different learning methods ex-

plored, mentioned in sections 3.1.5, 3.1.6, 3.1.7 in the binary classification problem AD vs NC. In this

sense, the true positives corresponds to a correctly diagnosed AD subject, a true negative corresponds

to a correctly diagnosed NC subject, a false positive means that a subject was misclassified as AD and

a false negative represents a subject misclassified as CN.

Accuracy can then be defined as the number of correct predictions made as a ratio of all predictions

made, independently of the class, while sensitivity (or recall) can be defined as the number of correct

positive results returned by the machine learning model, in this case, the number of subjects correctly

diagnosed with AD. Specificity is a measurement of the proportion of correct negative results, in this

case, the number of subjects correctly classified as NC and precision can be seen as the fraction of

relevant results among the positive results, which means the fraction of subjects correctly classified

with AD among the set of subjects that were classified with AD. F1 score, which is mathematically

represented in equation 3.15 displays the harmonic mean of precision and recall, so if F1 score is high,

both precision and recall of the classifier indicate good results. This allows for the comparison of the

performance of two classifiers using just one metric while making sure that the models are working

correctly.

All these metrics provide important information for the binary classification problem at hand and

were used to evaluate the model’s performance. Box plots are another important indicator that was

used, providing a visual context on the variability or dispersion of the data. The distribution of data

is displayed based on a five number summary, composed by a ”minimum”, first quartile (Q1), median,

third quartile (Q3) and a ”maximum”, which are illustrated in figure 3.7. The median (Q2) represents the

middle value of the dataset. The first quartile (Q1) is the median of the lower half of the dataset and the

third quartile (Q3), the median of the upper half of the dataset. The interquartile range is the distance
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between upper and lower quartiles IQR = Q3 − Q1. The ”maximum” and ”minimum” values define the

highest and lowest data points excluding the outliers. A data point p is an outlier if it follows the condition

p > Q3 + 1.5× IQR ∨ p < Q1 − 1.5× IQR. (3.16)

Figure 3.7: Elements of a box plot.

3.1.9 Visualization of heatmaps of intermediate activations

The representations learned by CNNs can be easily visualized, once they are representations of visual

concepts. A wide variety of techniques have recently been developed for visualizing and interpreting

these representations, one of them being visualizing intermediate activations. This technique consists

of displaying the feature maps that are output by the convolution and pooling layers in a network (activa-

tions), given a certain input. For 3D CNNs, this results in 4D feature maps, in which the fourth dimension

corresponds to the number of channels. This is useful specially for higher layers’ activations, which

encode more information about the class of the image.

This way, understanding which parts of an input volume led the CNN to the final classification de-

cision, can be done by computing the filter maps output by higher convolutional layers given an input

sample. In the 4D output, the filters across all dimensions can be averaged, generating an heatmap of

intermediate activations, in order to analyze which parts of the image are given more importance by the

convnet, and detect whether the network is correctly learning patterns.
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3.2 Experimental Setup

This section describes the experiments conducted as well as the hardware and images available to

perform such experiments.

3.2.1 Database

The data used in the experiments came from the ADNI database [2]. The Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) is a longitudinal multicenter study designed to develop clinical, imaging,

genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer’s disease. De-

termination of sensitive and specific markers of very early AD progression is intended to aid researchers

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen the time

and cost of clinical trials. ADNI is the result of efforts of many coinvestigators from a broad range of

academic institutions and private corporations, and subjects have been recruited from over 50 sites

across the U.S. and Canada, enabling the sharing of data between researchers around the world since

its launch in 2004.

A detailed description on how the MRI and PET datasets were acquired can be found in the public

ADNI website [2].

3.2.2 Subjects

In this study, 1.5T Magnetic Resonance images and FDG-PET images were acquired from subjects

evaluated during a 24 month period. Evaluations of their mental state and collection of brain scans

were performed at a baseline month, and 12 and 24 months after the first evaluation. The number of

subjects (n) as well as their gender, age, mini-mental state examination (MMSE) and clinical dementia

rating (CDR) are shown in table 3.1 for each evaluation time and for AD and NC subjects for each

neuroimaging modality.

It’s worth noting that there are subjects who don’t go through the complete 24 months of observations.

There are also subjects whose images are present in only one of the modalities at a given time. In total

there are 383 PET volumes from 133 subjects (58 AD and 75 NC) and 648 GM volumes from 316

subjects (144 AD and 172 NC) in the dataset. Considering that some subjects have PET and GM

volumes, the total number of subjects evaluated is 354 from which 152 are classified with AD and 202

are NC.

By comparing age and gender information on both modalities, it can be concluded that each subset

isn’t biased by age or gender of the patients. This is true also when comparing patients evaluated on

the same modality, but with different disease status, which ensures that differences in the classifier’s
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Table 3.1: Subject information for PET and GM modalities. The number of subjects is denoted by n.

MMSE and CDR correspond to mini-mental state examination and clinical dementia rating, respectively.

PET GM

Follow up period AD NC AD NC

0 months n = 58 n = 75 n = 107 n = 124

Gender (F/M) 24/34 26/49 52/55 65/59

Age (mean ± SD) 76.0 ± 6.6 76.0 ± 4.6 75.9 ± 7.6 76.3 ± 5.2

MMSE (mean ± SD) 23.5 ± 2.0 29.1 ± 1.0 23.3 ± 2.0 29.3 ± 0.9

CDR (mean ± SD) 0.8 ± 0.2 0.0 ± 0.0 0.8 ± 0.3 0.0 ± 0.0

12 months n = 54 n = 74 n = 98 n = 135

Gender (F/M) 23/31 26/48 50/48 73/62

Age (mean ± SD) 76.8 ± 6.6 77.1 ± 4.7 77.5 ± 7.2 77.2 ± 5.2

MMSE (mean ± SD) 21.0 ± 4.2 29.1 ± 1.2 21.3 ± 4.5 29.2 ± 1.2

CDR (mean ± SD) 1.0 ± 0.5 0.0 ± 0.2 0.9 ± 0.5 0.0 ± 0.2

24 months n = 53 n = 69 n = 69 n = 115

Gender (F/M) 24/29 25/44 36/33 61/54

Age (mean ± SD) 78.6 ± 6.6 77.8 ± 4.5 78.7 ± 6.6 78.2 ± 5.2

MMSE (mean ± SD) 19.9 ± 5.1 29.0 ± 1.1 19.5 ± 5.8 29.0 ± 1.2

CDR (mean ± SD) 1.2 ± 0.7 0.1 ± 0.2 1.2 ± 0.7 0.0 ± 0.2

outcome aren’t due to age differences, but due to different disease patterns. All the patients that were

diagnosed with AD in month 0 remain with that prognostic during the whole 24 months and the same

happens with NC subjects.

3.2.3 Data Division

The training and evaluation of the models was performed using 5 fold cross-validation, as described

in section 3.1.8. Furthermore, a validation set was used to perform early stopping. The data split is

performed according to each subject: In a dataset containing PET or GM images, 20% of the subjects

are used for test and from the remaining 80%, 20% are used for validation and 60% for the training

set, while assuring that different images from the same subjects are stored in the same partition. The

”information leak” mentioned in section 3.1.1.2 had to be avoided when assigning images from months

12 and 24 to an existing partition. This is done by first assigning the subjects’ images from the first

evaluation period, month 0, from each modality, to the corresponding training or test sets. Then, the

images corresponding to future scans of the same subjects will be assigned to the same partitions as

the corresponding first month images. This way, all the images from the same subject in each modality

are present in the same partition.

30



A very important safeguard was in assuring that there wouldn’t be any PET images from a patient

used in training in the base domain, that could be used in testing in the target domain in the Transfer

Learning approach, or vice-versa. This was done by using images from subjects that appear on both

modalities in the same partition in each fold. The other subjects that appear on only one modality could

be used on either set. This division of data was done in an early phase, in order to allow the use of

the same images in the same sets for the several experiments conducted, so that the results of each

method could be compared between each other.

3.2.4 Pre-Processing

PET and MR images had already been subject to a series of preprocessing steps performed by the

ADNI researchers. The MR images from ADNI were corrected for gradient non-linearity. The B1 non-

uniformity procedure is applied to correct non-uniformities in the image’s intensity and the N3 histogram

peak sharpening is applied to mitigate residual non-uniformities. The PET images were co-registered to

each other and averaged and aligned so that the anterior commissure (AC) and posterior commissure

(PC) were in the same axial plane (AC-PC alignment). Then the image is resampled using a 1.5 mm

grid and filtered so that it’s resolution is similar to the lowest resolution scanners used by ADNI.

Furthermore, the images retrieved from the ADNI database were warped into the MNI standard space

as described in [46]. In this process, to the MR images was performed skull stripping, segmentation

into GM and WM, producing gray and white-matter probability maps which were also smoothed with a

Gaussian filter. The resulting PET images were normalized using the Yakushev normalization procedure.

Examples of slices of GM and PET images in the horizontal plane are presented in figures 3.8 and

3.9. The presented slices correspond to the same individual in GM and PET modalities, for AD and NC

categories. Each slice in the dataset has 145x121 pixels and each volume is composed by 121 slices,

that is, each volume has 2 122 945 voxels.

(a) NC (b) AD

Figure 3.8: GM slices from the ADNI dataset for a NC and AD brain at baseline.
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(a) NC (b) AD

Figure 3.9: PET slices from the ADNI dataset for a NC and AD brain at baseline.

3.2.4.1 Crop

The images from the brain scans include the area surrounding the brain, as can be seen from figures

3.8 and 3.9, which doesn’t present any relevant information for the classification task. This area was

cropped, which resulted in a significant reduction in the size of the feature vectors.

Since the images were registered according to the MNI-152 template, with the same dimension as

the PET and GM volumes, only the area inside the brain was considered, which is represented by the

area in white in figure 3.10, where there are shown representations of the MNI brain mask in several

planes.

The volumes’ dimension after the cropping was 104x122x98, that is, each volume became composed

of 1 243 424 voxels for both PET and GM.

3.2.4.2 Feature Normalization

Besides the normalization process that had been previously applied, as described in [46], the voxel

intensities in each volume slice were mapped to the range [-1, 1], as described in section 3.1.2.1.

In each fold, the maximum of the modulus of the volumes from PET and GM in the training set was

computed. Then all the volumes in the of GM and PET training, validation and test set were divided by

this value, which was computed separately for each modality and after the images from months 12 and

24 were added to the training set.

3.2.5 Deep Learning Network

Tables 3.2 and 3.3 present the final CNN-LSTM and 3D CNN architectures used for the AD vs NC clas-

sification problem. Before these configurations were achieved, others were tested, where parameters
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(a) Sagittal plane (b) Axial plane

(c) Coronal Plane

Figure 3.10: Representations of the MNI brain mask in the sagittal, axial and coronal sections of the

brain.

such as the number of layers, number of units in each layer, filter’s shape, dropout or batch normalization

were tested.

Each network was trained using all the available PET and GM data, displayed in table 3.1, including

longitudinal data from the subjects, as described in section 3.1.1.2, which achieved better results than

using only data from the first follow up month, or only one image per subject.

3.2.5.1 CNN-LSTM network architecture

As seen in table 3.2, each Convolution Block is made by a 2D CNN and a max-pooling layer. The output

of the three convolution blocks is flattened, goes into the LSTM and then fed into a densely connected

classifier network, with softmax activation, corresponding the output to the binary classification of AD vs

NC.

The convolution layers use same padding, whereas max pooling layers use valid padding which in

practice means that no padding is used and the operation is only applied to valid windows. The ’same

padding’ technique applies padding to the input image so that the output image has the same shape as

the input. Strides of size 2x2 are used as the distance between two successive windows, meaning that
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the output of the first convolutional layer or the max pooling layers is downsampled by a factor of 2 in the

second and third dimensions.

The dropout regularization technique is used to reduce overfitting by randomly setting to zero a

number of output features of a layer during training. This was introduced in the network by a Dropout

layer and by the dropout parameter in the LSTM layer.

Table 3.2: Architecture of the CNN-LSTM network.

Layer Type Layer Parameters Filters/Units Output Size

TimeDistributed(Conv2D) Same Padding, Stride=(2,2), ReLU 3x3x32 104x61x49x32

TimeDistributed(MaxPooling2D) window size=2x2, Stride=(2,2) - 104x30x24x32

TimeDistributed(Conv2D) Same Padding, ReLU 5x5x64 104x30x24x64

TimeDistributed(MaxPooling2D) window size=2x2, Stride=(2,2) - 104x15x12x64

TimeDistributed(Conv2D) Same Padding, ReLU 5x5x128 104x15x12x128

TimeDistributed(MaxPooling2D) window size=2x2, Stride=(2,2) - 104x7x6x128

TimeDistributed(Flatten) - - 104x5376

Dropout 50% Dropout - 104x5376

LSTM Tanh, 50% Dropout 128 128x1

Dense Softmax 2 2x1

3.2.5.2 3D CNN network architecture

The 3D CNN model is also made of three convolution blocks, as shown in table 3.3: The first two

convolution blocks are made by a 3D CNN layer, a 3D max-pooling layer and two batch normalization

layers. The third convolution block only has a batch normalization layer. The output of the convolution

blocks is then flattened and fed into a fully connected classifier network, which results in the classification

of AD vs NC.

In the convolutional layers and max pooling layers used in the 3D CNN architecture, valid padding

is used. Strides of size 1x1x1 are used as the distance between two successive windows for the 3D

convolutional layers, whereas a stride of size 1x2x2 is used for the max pooling layers so that the output

feature maps are downsampled by a factor of 2 in the second and third dimensions.

Batch normalization [33] was used to standardize the layer’s inputs to have zero mean and unit

variance in each training mini-batch, accelerating training and providing better generalization.
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Table 3.3: Architecture of the 3D CNN network.

Layer Type Layer Parameters Filters/Units Output Size

Conv3D ReLU, Stride=(1,1,1) 3x3x3x8 102x120x96x8

BatchNormalization - - 102x120x96x8

MaxPooling3D window size=2x2x2, Strides=(1,2,2) - 101x60x48x8

BatchNormalization - - 101x60x48x8

Conv3D ReLU, Stride=(1,1,1) 3x3x3x16 99x58x46x16

BatchNormalization - - 99x58x46x16

MaxPooling3D window size=2x2x2, Strides=(1,2,2) - 98x29x23x16

BatchNormalization - - 98x29x23x16

Conv3D ReLU, Stride=(1,1,1) 3x3x3x32 96x27x21x32

BatchNormalization - - 96x27x21x32

MaxPooling3D window size=2x2x2, Strides=(1,2,2) - 95x13x10x32

Flatten - - 395200

Dense - 64 64x1

BatchNormalization - - 64x1

Dense - 64 64x1

BatchNormalization - - 64x1

Dense Softmax 2 2x1

3.2.6 Transfer Learning

Two methods were tested regarding Transfer Learning: Either pre-training a deep learning network with

GM data as the base domain and fine-tuning using the PET dataset as the target domain (TL GM-PET),

or instead pre-training a network with PET data and fine-tuning using the GM dataset (TL PET-GM).

Independently of using TL GM-PET or PET-GM, the number of fine-tuned layers and number of top

densely connected layers replaced was also tested. Several possibilities regarding the number of re-

placed layers for each network are illustrated in figure 3.11. For the CNN-LSTM, several configurations

were tested: replacing the top four layers (Flatten, Dropout, LSTM and Dense) with the same layers hav-

ing new randomly initialized weights, replacing the last Dense layer, or not replacing any layer. For the 3D

CNN, the last six layers were replaced (Flatten, Dense, BatchNormalization, Dense, BatchNormalization

and Dense), or the last Dense layer or no layer was replaced. Choosing one of these configurations,

any number of the remaining layers can then be fine-tuned.
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Figure 3.11: Transfer Learning configurations tested for both deep learning models in terms of number

of replaced layers with new randomly initialized layers. Any number of the remaining layers can then be

fine-tuned.

To perform these experiments, pre-trained models trained separately with PET and GM data were

used. Then the last layers of the pre-trained network were replaced by new layers with randomly ini-

tialized weights. Some number of the remaining layers were chosen to be fine-tuned and the others

remained frozen (their weights could not be adjusted) and the unfrozen layers were trained jointly with

the added part. The images used for training and testing were the same images used to train and test

each network from scratch.

The results of all the experiments performed are presented in appendix A and the best results from

all the experiments from TL GM-PET and TL PET-GM are presented in section 4.

3.2.7 Multi-Task Learning

3.2.7.1 Joint training of both modalities in the same deep learning network

The data used to apply this method on the AD vs NC classification problem is described in table 3.4 and

corresponds to the entirety of available data of PET and GM modalities joined in the training of a single

model.
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Table 3.4: Number of images (n) for different evaluation periods and both imaging modalities using

images from both modalities jointly in the same deep learning network and the corresponding number

of subjects.

PET GM

Follow up period AD NC AD NC

0 months n = 58 n = 75 n = 107 n = 124

12 months n = 54 n = 74 n = 98 n = 135

24 months n = 53 n = 69 n = 69 n = 115

Total n = 165 n = 218 n = 274 n = 313

Subjects 58 75 144 172

3.2.7.2 Concatenation of two deep learning models trained on separate modalities

To apply this method to the AD vs NC classification problem, it was necessary to use the same number

of input samples from each modality. From the complete set of images available, in each time window,

only subjects with both modalities available were used, so that each input pair could have GM and PET

volumes from the same subject and the information concatenated could belong to the same person. The

available number of images for each modality is shown in table 3.5. The data was split similarly to what

is described in section 3.2.3, but subjects that didn’t have volumes of both modalities were discarded.

Table 3.5: Number of images (n) for different evaluation periods and both imaging modalities using

concatenation of two models trained on separate modalities and the corresponding number of subjects.

PET GM

Follow up period AD NC AD NC

0 months n = 50 n = 45 n = 50 n = 45

12 months n = 43 n = 36 n = 43 n = 36

24 months n = 27 n = 20 n = 27 n = 20

Total n = 120 n= 101 n = 120 n = 101

Subjects 50 45 50 45

Several topologies were tested regarding the number of layers and units in each layer, from which the

final model was chosen (appendix B). For the concatenation of two CNN-LSTM networks, the resulting

network concatenates the outputs of the last layer of both CNN-LSTM networks and adds two Fully

Connected layers on top of the concatenation, to perform the final decision, as shown in table 3.6.
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Table 3.6: Architecture of the fusion network for concatenation of two CNN-LSTM networks trained on

separate modalities.

Layer Type Layer Parameters Filters/Units Output Size

Concatenate - - 4x1

Dense - 32 32x1

Dense Softmax 2 2x1

For the concatenation of two 3D CNN networks trained separately on the MRI and PET modalities,

the resulting network concatenates the feature representations of the penultimate layer of both 3D CNN

networks and adds three Fully Connected layers on top of the concatenation, to perform the final deci-

sion, as shown in table 3.7. For both types of deep learning architectures, only the added layers were

trained, while the weights from the pre-trained layers were not updated.

Table 3.7: Architecture of the fusion network for concatenation of two 3D CNN networks trained on

separate modalities.

Layer Type Layer Parameters Filters/Units Output Size

Concatenate - - 128x1

Dense - 32 32x1

Dense - 32 32x1

Dense Softmax 2 2x1

3.2.8 Implementation Details

The deep learning methods are implemented using Keras [17] with a TensorFlow [8] 2.3.0 backend.

Keras processes 3D convolutions as 4D tensors of shape (nr frames, image height, image width, im-

age channels). The first dimension corresponds to the number of slices in a volume of one modality. For

a black and white image, the number of image channels is 1, ie gray levels.

For the CNN-LSTM model, the Keras TimeDistributed was used, which allows to distribute layers

of a 2D CNN across an extra dimension. For the 3D CNN, the Keras Conv3D layer was used, which

performs spatial convolution over volumes.

All the experiments were performed in Google Colab [4], which is a colaborative platform that allows

the writing and execution of Python in the web browser, with free access to GPUs. Colab offers several

types of GPUs, namely Nvidia K80s, T4s, P4s and P100s, but the user can’t choose a type of GPU to

connect at a given time.
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When training the CNN-LSTM model, either using Transfer Learning or the multi-task learning ap-

proaches, the mini-batch sizes used were 64 for training and 32 for validation and test, since some folds

didn’t have 64 images in the validation or test set. This choice of mini-batch sizes was also used for the

concatenation of two 3D CNN networks, since only the weights from added layers were updated. For the

3D CNN models, except the concatenation model, it was used a mini-batch size of 16 for the training,

validation and test, once training these networks required more memory usage.

5 fold cross-validation was used, in which a portion of the training data was reserved as a validation

set to perform early stopping. This way, the model is trained until the loss in the validation set stops

improving.

Since the dataset suffers from class imbalance (in a given fold is more frequent to have images

corresponding to NC subjects than to AD subjects) a weighted training strategy was applied, in which

samples belonging to the class with the majority of data in the training set in a given fold are given a

weight equal to one and samples from the other class are given a weight equal to N
M > 1, where N is

the number of samples from the class with most data and N is the number of samples from the class

with less samples, penalizing the misclassification made by the minority class, which has a higher class

weight.

The networks were trained using the Adam optimizer [36] with a initial learning rate of 0.001, β1 = 0.9

and β2 = 0.999. The accuracy metric was evaluated during training and the chosen loss function was

binary cross-entropy, which computes the cross-entropy loss between true labels and the predicted

label.

The visualization of heatmaps of intermediate activations was implemented using Jupyter notebooks

[5], which allows for the use of the interactive mode in the matplotlib library, which was used to display

the outputs over the several slices of a volume interactively.

39



4 Results and Discussion

The results obtained through the experiments detailed in section 3.2 are presented in this section. The

performance of the models trained from scratch, Transfer Learning methods and multi-task methods

are evaluated for the AD vs NC classification problem. The cross-modal Transfer Learning approach

is compared with the other approaches, as well as with state of the art approaches. Finally, a visual

comparison is made between the heatmaps produced by the output filters of intermediate layers and

known biological changes in the brain of Alzheimer’s Disease patients.

4.1 Transfer Learning vs training from scratch

Tables 4.1 and 4.2 present the results obtained for both deep learning architectures developed and the

best Transfer Learning results obtained for the models pre-trained with GM data and fine-tuned with PET

data (TL GM-PET) and models pre-trained on the PET modality and fine-tuned on the GM modality (TL

PET-GM).

The complete results from the set of experiments performed regarding the number of fine-tuned

layers and number of replaced top layers in the Transfer Learning approach used are presented in

appendix A.

Table 4.1: CNN-LSTM results using GM and PET modalities individually and the best TL PET-GM and

TL GM-PET results obtained. Mean and SD of the 5 folds.

Modalities ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

GM 0.679 0.111 0.665 0.122 0.707 0.222 0.752 0.222 0.695 0.102

PET 0.829 0.034 0.727 0.058 0.915 0.053 0.862 0.053 0.784 0.023

TL PET-GM 0.816 0.060 0.752 0.086 0.888 0.056 0.893 0.056 0.815 0.065

TL GM-PET 0.861 0.033 0.806 0.087 0.916 0.046 0.872 0.046 0.831 0.025

Comparing the results relative to each model trained from scratch, from tables 4.1 and 4.2, it can

be concluded that the CNN-LSTM model outperforms the 3D CNN model for the PET modality and

the 3D CNN performs better than the CNN-LSTM model for GM data. These results can be explained

taking into account the number of training samples in each modality and the complexity and number

of parameters of each model. The CNN-LSTM model requires a total of 3,075,330 training parameters

(weights and biases), while the 3D CNN requires 8 times more parameters (25,315,538), which means

that the CNN-LSTM model needs less training data, but on the other hand, has less ability to capture

inter-slice information than the 3D CNN, since it performs convolutions on slices and only takes into
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Table 4.2: 3D CNN results using GM and PET modalities individually and the best TL PET-GM and TL

GM-PET results obtained. Mean and SD of the 5 folds.

Modalities ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

GM 0.839 0.031 0.824 0.035 0.857 0.061 0.877 0.061 0.849 0.034

PET 0.761 0.058 0.725 0.083 0.802 0.109 0.737 0.109 0.717 0.072

TL PET-GM 0.864 0.023 0.837 0.054 0.896 0.028 0.908 0.028 0.870 0.031

TL GM-PET 0.851 0.038 0.778 0.072 0.909 0.068 0.865 0.068 0.814 0.041

account the axial plane. Regarding the CNN-LSTM model, a notable performance is achieved when

the model is trained on the PET modality, even having less training data than GM, thus being PET the

most discriminative modality against AD changes in the brain. In the 3D CNN model, the best results

are obtained by training the model using GM data. Since there is more GM training data available, it

is easier for the model to learn characteristic patterns of AD from the inputs, given the high number of

trainable parameters.

Transfer Learning shows performance improvements compared with training each model from scratch

in all the metrics used for evaluation. Using the CNN-LSTM model, fine-tuning with PET data was more

effective than using GM data. These results were obtained by replacing the last layer (softmax) and

unfreezing all the remaining layers for GM-PET or unfreezing 7 of the remaining layers (corresponding

to the densely connected classifier and the second convolution block) for PET-GM. In this case, since

the number of parameters is small, using the PET modality as target domain (which has less images but

is more discriminative) has no risk of overfitting, hence the base features can be fine-tuned to the new

task to improve performance [62].

Regarding the 3D CNN model, the results show fine-tuning with GM data to be more effective. The

best results were obtained by replacing the whole densely connected classifier and unfreezing the last

convolution block for PET-GM, while for GM-PET there were only fine-tuned 9 layers (the densely con-

nected classifier and the top convolution block). In both cases, the best scenario had to do with fine-

tuning the last convolution block, which limits the final TL model’s performance. Although these methods

achieve better performance than training a network from scratch, the large number of training parame-

ters and lack of data in the target domain make this configuration optimal in terms of fine-tuning, instead

of fine-tuning the whole network.

From the results shown in appendix A it is generally evident that initializing the convolutional layers

with transferred weights improves classification just by itself, but the layers that constitute the densely

connected classifier must be fine-tuned to the target task.
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4.2 Transfer Learning vs joint training of both modalities in the same Deep

Learning network

The comparison between our Transfer Learning approach and the approach based on training both

modalities in the same deep learning network, as described in section 3.1.7.1, is reported in table 4.3

for the CNN-LSTM model and in table 4.4 for the 3D CNN model. The results relative to the early fusion

model are expressed according to the nature of the testing set: whether it contained only PET or GM

images or contained images from both modalities.

Table 4.3: Results for the model trained using both modalities jointly in the same CNN-LSTM network

and Transfer Learning methods. Mean and SD of the 5 folds.

Modalities ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

GM 0.778 0.042 0.669 0.092 0.906 0.041 0.901 0.401 0.764 0.060

PET 0.808 0.051 0.731 0.065 0.867 0.106 0.809 0.106 0.762 0.053

PET and GM 0.821 0.031 0.761 0.009 0.881 0.057 0.869 0.057 0.811 0.020

TL PET-GM 0.816 0.060 0.752 0.086 0.888 0.056 0.893 0.056 0.815 0.065

TL GM-PET 0.861 0.033 0.806 0.087 0.916 0.046 0.872 0.046 0.831 0.025

Table 4.4: Results for the model trained using both modalities jointly in the same 3D CNN network and

Transfer Learning methods. Mean and SD of the 5 folds.

Modalities ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

GM 0.840 0.028 0.768 0.079 0.924 0.033 0.928 0.033 0.838 0.042

PET 0.832 0.083 0.828 0.063 0.832 0.123 0.792 0.123 0.806 0.084

PET and GM 0.852 0.020 0.824 0.064 0.875 0.064 0.878 0.064 0.848 0.026

TL PET-GM 0.864 0.023 0.837 0.054 0.896 0.028 0.908 0.028 0.870 0.031

TL GM-PET 0.851 0.038 0.778 0.072 0.909 0.068 0.865 0.068 0.814 0.041

From the results shown in tables 4.3 and 4.4, it can be observed that the models obtained results

close to those of the Transfer Learning approaches. The fact that all the available data from both modali-

ties was used in the training of the models, reduces the need for Transfer Learning, by reducing overfitting

during training. With this increase in the number of training samples, there is a significant increase in

the average training time. In Transfer Learning, the training in the target domain doesn’t require as many

training samples and has less trainable parameters, which makes training faster.
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In TL, the weights are updated according to the modality in the target domain, while in this early fusion

approach, the same deep learning model needs to be well suited for both modalities. This flexibility of

the TL approach enables performance improvements, while reducing training speed and increasing

robustness, by exploiting knowledge acquired from the auxiliary task.

When comparing these results with the results from tables 4.1 and 4.2, it can be concluded that this

multi-task approach outperforms training each modality separately for the 3D CNN model. In this sense,

the network can take advantage of the shared information between modalities at input-level, given the

similarities between the input modalities.
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4.3 Transfer Learning vs model concatenation

The comparison between our Transfer Learning approach and the approach based on the concatenation

of two networks trained on separate modalities is reported in table 4.5 for the CNN-LSTM model and

table 4.6 for the 3D CNN model. The data used in the concatenated model is composed by a reduced

dataset which contains subjects that appear on both modalities at the same time instants, as described

in section 3.2.7.2.

For a better comparison, the CNN-LSTM and 3D CNN models trained on separate modalities were

tested using the same number of images from each modality as this concatenated model, meaning that

the GM images used in each fold in the testing set of the concatenation model were used for testing the

models trained in the GM modality separately and the PET images used in each fold in the concatenated

model were used for testing the models trained in the PET modality separately.

The complete results from the set of experiments performed regarding the number of layers and units

in each layer in the fusion network are presented in appendix B.

Table 4.5: Results for the concatenation of two CNN-LSTM networks trained on separate modalities and

Transfer Learning methods. Mean and SD of the 5 folds. (1) Results for the CNN-LSTM model evaluated

on the reduced dataset which contains only subjects that appear on both modalities at the same time

instants.

Modalities ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

PET and GM 0.762 0.075 0.556 0.105 0.925 0.093 0.856 0.093 0.670 0.120

TL PET-GM 0.816 0.060 0.752 0.086 0.888 0.056 0.893 0.056 0.815 0.065

TL GM-PET 0.861 0.033 0.806 0.087 0.916 0.046 0.872 0.046 0.831 0.025

GM (1) 0.610 0.128 0.458 0.194 0.726 0.303 0.612 0.303 0.496 0.162

PET (1) 0.730 0.075 0.518 0.087 0.910 0.092 0.821 0.092 0.631 0.106
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Table 4.6: Results for the concatenation of two 3D CNN networks trained on separate modalities and

Transfer Learning methods. Mean and SD of the 5 folds. (1) Results for the 3D CNN model evaluated

on the reduced dataset which contains only subjects that appear on both modalities at the same time

instants.

Modalities ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

PET and GM 0.755 0.049 0.599 0.109 0.885 0.447 0.803 0.045 0.681 0.088

TL PET-GM 0.864 0.023 0.837 0.054 0.896 0.028 0.908 0.028 0.870 0.031

TL GM-PET 0.851 0.038 0.778 0.072 0.909 0.068 0.865 0.068 0.814 0.041

GM (1) 0.716 0.051 0.586 0.100 0.817 0.096 0.733 0.096 0.644 0.092

PET (1) 0.729 0.163 0.670 0.140 0.781 0.187 0.732 0.187 0.695 0.180

From the analysis of tables 4.5 and 4.6, it can be concluded that the concatenation models achieve

a better performance than the models trained from scratch, when comparing with data from the same

subjects in the test set. A downside of this approach is that the model only accepts the same number of

images from both modalities, corresponding to the same number of subjects, discarding relevant data in

the datasets that can be used to improve the models. In Transfer Learning, this concern doesn’t exist,

which allowed the use of more GM data than PET data, since the images don’t need to belong to the

same subjects in both modalities. This aspect is not to be downplayed, once the number of available

training images is usually smaller when using data from several modalities, which is often an obstacle in

multimodal studies.

Contrarily to the early fusion method, this concatenation approach allows the use of two specific

deep learning models for each neuroimaging modality, but the information shared among modalities is

reduced. Furthermore, the concatenation of two deep learning models doesn’t solve the problem of lack

of training data: The pre-trained models in each concatenation network were trained from scratch with

data from the GM and PET modalities. Although the combination of learned features from both modal-

ities can improve classification by exploring commonalities and differences between both types of data,

the pre-trained networks can suffer from overfitting, which affects the performance of the concatenation

model.
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4.4 Visual comparison with biological changes in the brain

The output filters of the last convolutional layer of the CNN-LSTM model with TL GM-PET and the 3D

CNN model with TL PET-GM are displayed in figures 4.1 and 4.2 for two selected slices in the axial

plane. Samples of individuals in the test set, diagnosed with AD were taken as input by the network.

The heatmaps were compared to regions of interest (ROI) known to be relevant for the diagnosis of AD.

(a) (b)

Figure 4.1: Heatmaps of the of the last convolutional layer activations for TL GM-PET using the CNN-

LSTM model.

(a) (b)

Figure 4.2: Heatmaps of the last convolutional layer activations for TL PET-GM using the 3D CNN model.

In the heatmaps relative to the PET modality, high intensity values are located in the temporal region,

as shown in figure 4.1 (a). In figure 4.1 (b), high intensity values are located in the parietal and posterior

cingulate areas, which correspond to relevant ROIs. Regarding the GM images, high intensity values

are observed in the temporal region in figure 4.2 (a) and the superior anterior cingulate region in figure

4.2 (b).
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4.5 Comparison with state of the art methods

In table 4.7 the performance of our cross-modal TL methods which achieved better results using PET or

GM images in the target domain are compared with state of the art methods that use Transfer Learning

for AD vs NC classification, using data from the ADNI.

Table 4.7: Comparison between the proposed Transfer Learning methods and state of the art Transfer

Learning methods for the classification task of AD vs NC which use images from the ADNI database.

Authors Learning Biomarker(s) Subjects ACC (%) SENS (%) SPEC(%)

Algorithm (AD/NC)

[12] SVM MRI 186 / 226 94.7 94.1 94.8

[25] SVM MRI 54 / 63 82.91 79.63 85.71

[27] 2D CNN + LSTM MRI 111 / 154 89.5 - -

[20] 2D CNN + LSTM MRI 132 / 132 90.62 - -

[31] 3D CNN MRI 70 / 70 99.3 98.6 97.2

[47] 3D CNN MRI 755 / 755 95.39 - -

[60] 3D CNN MRI, FDG-PET 145 / 172 91.14 - -

[9] 2D CNN MRI/ DTI 188 / 228 92.5 94.7 90.4

TL PET-GM 3D CNN MRI, FDG-PET 152/202 86.4 83.7 89.6

TL GM-PET 2D CNN + LSTM MRI, FDG-PET 152/202 86.1 80.6 91.6

Although the developed cross-modal TL approach achieves lower accuracy than most state of the art

methods, the results obtained are satisfactory and can still be comparable. From the listed methods, the

best results are obtained using 3D CNN as the learning algorithm based on pre-trained 3D autoencoders

[47, 31]. The cross-modal Transfer Learning approach developed by Aderghal et al. [9], uses ROI-based

features of MRI and DTI, which have low feature dimensions and can be easily interpreted, contributing

to better performance. The 2D CNN + LSTM model used in [20] divides the volumes into groups of slices

and trains several 2D CNNs based on each group of slices. The final classification was achieved by the

combination of models trained on different views (Sagittal, Axial and Coronal). The fact that several brain

views were combined and several 2D CNNs were trained for each group of slices presents advantages

in comparison to our CNN-LSTM model, which uses a Time Distributed 2D CNN to apply the same 2D

convolution to every slice in the axial plane.
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4.6 Summary

To summarize the results obtained for the several methods used throughout this thesis, a visual analysis

of the dispersion of the accuracy and F1-score metrics obtained in the 5 folds for each method can be

made using the box plots in figures 4.3 and 4.4.

Figure 4.3: Box plots for the accuracy metric. The CNN-LSTM model is represented by the blue plots.

The green plots represent the 3D CNN model.

Regarding the accuracy box plots shown in figure 4.3, higher median values can be observed for

the Transfer Learning results, either using CNN-LSTM or 3D CNN, although training both modalities in

the same deep learning network (denoted as ”joint” in the image), also show high median values. The

interquartile range shows a higher dispersion of values specially for the GM modality in the CNN-LSTM

model. Transfer Learning values generally show a small dispersion, when compared to the models

trained from scratch, which shows a high consistency in the results. Transfer Learning accuracy shows

a higher consistency for the 3D CNN model, but the highest median value is obtained for the CNN-LSTM

model using TL GM-PET.

Outliers in the CNN-LSTM model using the PET modality, both modalities trained jointly in the same

network or the concatenation model show the high variability of the results. The fact that Transfer

Learning accuracy results don’t show outliers highlights the consistency of these methods.

The same conclusions can be taken regarding the F1-score box plots shown in figure 4.4. A higher

dispersion is found for the CNN-LSTM models in comparison to the 3D CNN models. Transfer Learning

results have the highest means and present higher consistency, given the short interquartile range and

absence of outliers. Since the F1-score metric places more importance in the false negatives and false

positives, which are important aspects to be taken into account in classification problems related with

medical images, it can be concluded that the use of cross-modal Transfer Learning can provide a more
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Figure 4.4: Box plots for the F1-score metric. The CNN-LSTM model is represented by the blue plots.

The green plots represent the 3D CNN model.

reliable diagnosis of Alzheimer’s disease.

Summarizing, both convolution based deep learning networks benefited from using cross-modal

Transfer Learning, which provides an alternative way to share complementary information among neu-

roimaging modalities and deal with the overfitting phenomena, which is a recurrent problem when train-

ing deep learning networks with small datasets. These networks could correctly learn patterns associ-

ated to AD related changes in the brain and achieved an accuracy of 86.4% for the TL PET-GM method

using a 3D CNN and 86.1% for the TL GM-PET method using the CNN-LSTM model for the classi-

fication of AD vs NC subjects. High sensitivity and specificity values were also obtained, achieving

83.7% sensitivity and 89.6% specificity for the best TL PET-GM model and 80.6% sensitivity and 91.6%

specificity for the best TL GM-PET model, in the set of the 5 folds. Considering that there was still no

cross-modal Transfer Learning study focusing on MRI and FDG-PET modalities, the results obtained

using this approach are considered satisfactory and open interesting perspectives. Despite some lim-

itations comparatively to the 3D CNN model, the CNN-LSTM network could also achieve satisfactory

results, given the fact that this particular model still hasn’t been used in AD detection, to the best of our

knowledge, which can also open up new paths for deep learning systems applied to AD.
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5 Conclusions

This thesis aimed at developing a Transfer Learning approach applied to a deep learning network for

classification between AD vs NC subjects from the ADNI database, while exploring the advantages of

using multimodal data. This was achieved by using cross-modal Transfer Learning, in which two deep

learning models were trained on GM or PET data and later fine-tuned using the opposite modality in

the target domain. In order to be able to draw conclusions on the Transfer Learning methods ability

to combine different neuroimaging modalities, two other multi-task learning approaches were explored:

Combining both modalities as inputs of the same deep learning network and concatenate two deep

learning models at decision level. The results of these approaches were compared in terms of accuracy,

sensitivity, specificity and F1-score. To verify the Transfer Learning models’ ability to learn disease

related patterns, heatmaps of intermediate activations were visualized and compared with relevant ROIs

in AD diagnosis.

5.1 Achievements

Regarding the achievements of this work, it can be considered that the main objectives were accom-

plished, since the proposed Transfer Learning method achieves classification accuracies of 86.4% using

a 3D CNN fine-tuned on GM data and 86.1% using a CNN-LSTM network fine-tuned on PET data, for

the classification between AD vs NC subjects, outperforming the other studied approaches. Transfer

Learning allows performance improvements regardless of the number of fine-tuned convolutional layers,

as long as all the densely connected classifier layers were fine-tuned to the target task. The combi-

nation of two modalities of data through Transfer Learning allowed the deep learning networks to learn

complementary information from both modalities and led to a better classification performance.

Considering the two deep learning architectures implemented, the 3D CNN architecture outper-

formed the CNN-LSTM network, achieving generally higher accuracy values and less dispersion among

the results. Nevertheless, the CNN-LSTM model could still achieve an accuracy of 86.1% with Transfer

Learning, which are satisfactory results considering the fact that this is the first approach that applies

this particular CNN-LSTM model in AD classification.

While the best results obtained with the Transfer Learning approach could not outperform current

state of the art methods, it is important to highlight that the deep learning networks and the Transfer

Learning methods studied during this thesis, as well as the data used in the training phase, can be

subject to substantive improvements, which can eventually lead to a better diagnosis of AD.
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5.2 Future Work

Despite the recent trend in Transfer Learning, most of the studies still focus in using pre-trained networks

from the ImageNet dataset. While these studies have shown great results, there are more possibilities

that can be used for Transfer Learning, which can even combined with other methods, such as:

• In an approach similar to the concatenation method developed, the convolutional layers of each

deep learning network could be fine-tuned when training the new classifier which concatenates the

two networks;

• Performing Transfer Learning using a pre-trained network with natural images and fine-tuning on

target domains with different neuroimaging modalities and concatenating the resulting networks;

• Performing cross-modal Transfer Learning, as developed in this thesis, but instead of using a

network trained from scratch, a network previously trained with natural images could be used, or

even trained in another dataset containing brain scans from different pathologies.

This cross-modal Transfer Learning approach could also be extended to the classification of the

several AD stages, or to the prediction of MCI conversion to AD. To do this, it would be interesting to

compare between other biomarkers, such as AV-45 PET, which can track earlier changes in the brain

[34]. Training a model on the AD vs NC classes and fine-tuning the weights to classify also between

MCI subjects can be an interesting way to apply Transfer Learning to the classification of several AD

stages. Furthermore, better results could be achieved using ROI-based features, instead of voxel based

features or slice-based features, since they have shown better results [18]. Specially in the case of

the CNN-LSTM model, improvements could be made using BiLSTM, and also exploring slices in the

sagittal and coronal views besides the axial view. These views could be combined in order to improve

performance by capturing complementary information.
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Appendices

A - Results from the Transfer Learning experiments

In this appendix, the results obtained from the experiments performed using our cross-modal Transfer

Learning approach, regarding the number of fine-tuned layers and number of replaced top layers are

presented.

Table A.1: Transfer Learning results for the CNN-LSTM model pre-trained with GM data and fine-tuned

on the PET modality (TL GM-PET), without replacing the last dense layer.

Fine-tuned layers ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

0 0.555 0.103 0.511 0.407 0.498 0.402 0.488 0.402 0.381 0.286

1 0.629 0.107 0.451 0.123 0.765 0.102 0.592 0.102 0.507 0.145

2 0.814 0.044 0.740 0.033 0.875 0.093 0.813 0.093 0.769 0.048

4 0.766 0.068 0.724 0.058 0.815 0.139 0.751 0.139 0.722 0.075

6 0.824 0.042 0.760 0.063 0.885 0.087 0.830 0.087 0.786 0.033

8 0.827 0.047 0.789 0.047 0.863 0.076 0.813 0.076 0.796 0.038

10 0.824 0.045 0.767 0.073 0.875 0.039 0.818 0.039 0.787 0.041

Table A.2: Transfer Learning results for the CNN-LSTM model pre-trained with GM data and fine-tuned

on the PET modality (TL GM-PET), replacing the last dense layer.

Fine-tuned layers ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

0 0.627 0.148 0.599 0.170 0.688 0.263 0.632 0.263 0.578 0.110

1 0.789 0.056 0.704 0.058 0.862 0.099 0.789 0.099 0.738 0.064

3 0.808 0.064 0.715 0.061 0.885 0.110 0.832 0.110 0.763 0.048

5 0.776 0.062 0.661 0.147 0.889 0.113 0.818 0.113 0.708 0.086

7 0.805 0.076 0.717 0.147 0.894 0.087 0.825 0.087 0.752 0.102

9 0.861 0.033 0.806 0.087 0.916 0.046 0.872 0.046 0.831 0.025
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Table A.3: Transfer Learning results for the CNN-LSTM model pre-trained with GM data and fine-tuned

on the PET modality (TL GM-PET), replacing the top 4 layers.

Fine-tuned layers ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

0 0.790 0.035 0.754 0.070 0.838 0.113 0.776 0.113 0.750 0.044

2 0.824 0.034 0.689 0.067 0.933 0.023 0.877 0.023 0.768 0.032

4 0.837 0.034 0.717 0.031 0.932 0.050 0.886 0.050 0.790 0.017

6 0.830 0.056 0.766 0.042 0.889 0.090 0.832 0.090 0.790 0.078

Table A.4: Transfer Learning results for the CNN-LSTM model pre-trained with PET data and fine-tuned

on the GM modality (TL PET-GM), without replacing the last dense layer.

Fine-tuned layers ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

0 0.461 0.025 0.022 0.016 1.0 0.0 0.8 0.0 0.043 0.030

1 0.724 0.059 0.542 0.105 0.877 0.068 0.772 0.068 0.632 0.099

2 0.667 0.078 0.531 0.086 0.780 0.080 0.661 0.080 0.587 0.111

4 0.698 0.047 0.510 0.083 0.841 0.066 0.727 0.066 0.598 0.090

6 0.801 0.050 0.741 0.099 0.872 0.023 0.875 0.023 0.800 0.065

8 0.802 0.038 0.719 0.079 0.900 0.020 0.898 0.020 0.797 0.051

10 0.808 0.042 0.740 0.096 0.885 0.029 0.889 0.029 0.805 0.059

Table A.5: Transfer Learning results for the CNN-LSTM model pre-trained with PET data and fine-tuned

on the GM modality (TL PET-GM), replacing the last dense layer.

Fine-tuned layers ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

0 0.570 0.035 0.594 0.191 0.534 0.264 0.630 0.264 0.591 0.068

1 0.736 0.113 0.810 0.082 0.628 0.320 0.774 0.320 0.779 0.064

3 0.808 0.042 0.796 0.064 0.822 0.066 0.846 0.066 0.818 0.049

5 0.810 0.041 0.802 0.060 0.816 0.041 0.842 0.041 0.821 0.047

7 0.816 0.060 0.752 0.086 0.888 0.056 0.893 0.056 0.815 0.065

9 0.758 0.147 0.782 0.052 0.743 0.347 0.836 0.347 0.792 0.087
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Table A.6: Transfer Learning results for the CNN-LSTM model pre-trained with PET data and fine-tuned

on the GM modality (TL PET-GM), replacing the top 4 layers.

Fine-tuned layers ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

0 0.736 0.096 0.690 0.132 0.786 0.083 0.797 0.083 0.736 0.103

2 0.767 0.076 0.690 0.166 0.854 0.046 0.855 0.046 0.753 0.103

4 0.772 0.055 0.695 0.111 0.861 0.036 0.858 0.036 0.765 0.077

6 0.769 0.034 0.709 0.107 0.837 0.089 0.852 0.090 0.767 0.053

Table A.7: Transfer Learning results for the 3D CNN model pre-trained with GM data and fine-tuned on

the PET modality (TL GM-PET), without replacing the last dense layer.

Fine-tuned layers ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

0 0.602 0.134 0.652 0.357 0.498 0.405 0.480 0.405 0.517 0.265

3 0.779 0.031 0.683 0.101 0.872 0.105 0.808 0.105 0.721 0.021

6 0.832 0.052 0.812 0.044 0.844 0.069 0.789 0.069 0.799 0.074

9 0.851 0.038 0.778 0.072 0.909 0.068 0.865 0.068 0.814 0.041

13 0.824 0.042 0.790 0.066 0.855 0.047 0.794 0.047 0.789 0.058

17 0.829 0.030 0.792 0.043 0.862 0.054 0.808 0.054 0.796 0.031

Table A.8: Transfer Learning results for the 3D CNN model pre-trained with GM data and fine-tuned on

the PET modality (TL GM-PET), replacing the last dense layer.

Fine-tuned layers ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

0 0.758 0.054 0.717 0.039 0.792 0.076 0.717 0.076 0.712 0.081

2 0.797 0.056 0.650 0.127 0.925 0.068 0.872 0.068 0.730 0.054

5 0.803 0.051 0.825 0.036 0.794 0.073 0.741 0.073 0.776 0.074

8 0.827 0.033 0.793 0.065 0.858 0.057 0.803 0.057 0.794 0.029

12 0.819 0.024 0.791 0.041 0.845 0.044 0.786 0.044 0.785 0.033

16 0.833 0.009 0.792 0.057 0.865 0.046 0.804 0.046 0.795 0.045
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Table A.9: Transfer Learning results for the 3D CNN model pre-trained with GM data and fine-tuned on

the PET modality (TL GM-PET), replacing the top 6 layers.

Fine-tuned layers ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

0 0.835 0.050 0.792 0.058 0.864 0.082 0.820 0.082 0.801 0.058

3 0.832 0.040 0.801 0.046 0.843 0.073 0.803 0.073 0.801 0.038

7 0.798 0.032 0.743 0.059 0.841 0.037 0.768 0.037 0.752 0.059

11 0.830 0.027 0.778 0.041 0.860 0.038 0.810 0.038 0.794 0.027

Table A.10: Transfer Learning results for the 3D CNN model pre-trained with PET data and fine-tuned

on the GM modality (TL PET-GM), without replacing the last dense layer.

Fine-tuned layers ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

0 0.587 0.114 0.675 0.358 0.483 0.361 0.511 0.361 0.569 0.289

3 0.804 0.036 0.775 0.060 0.839 0.052 0.854 0.052 0.811 0.045

6 0.863 0.024 0.813 0.076 0.919 0.042 0.931 0.042 0.865 0.033

9 0.838 0.034 0.825 0.061 0.850 0.078 0.877 0.078 0.847 0.037

13 0.860 0.025 0.813 0.068 0.912 0.035 0.922 0.035 0.862 0.035

17 0.853 0.026 0.826 0.035 0.886 0.035 0.898 0.035 0.860 0.031

Table A.11: Transfer Learning results for the 3D CNN model pre-trained with PET data and fine-tuned

on the GM modality (TL PET-GM), replacing the top dense layer.

Fine-tuned layers ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

0 0.722 0.041 0.693 0.078 0.758 0.056 0.779 0.056 0.730 0.048

2 0.792 0.066 0.799 0.063 0.785 0.075 0.816 0.075 0.807 0.069

5 0.834 0.055 0.789 0.061 0.895 0.118 0.907 0.118 0.839 0.052

8 0.857 0.015 0.824 0.033 0.895 0.052 0.910 0.052 0.864 0.017

12 0.855 0.026 0.796 0.069 0.922 0.069 0.935 0.068 0.856 0.033

16 0.841 0.041 0.818 0.043 0.870 0.063 0.883 0.063 0.848 0.044
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Table A.12: Transfer Learning results for the 3D CNN model pre-trained with PET data and fine-tuned

on the GM modality (TL PET-GM), replacing the last 6 layers.

Fine-tuned layers ACC SENS SPEC PREC F1 Score

Mean SD Mean SD Mean SD Mean SD Mean SD

0 0.846 0.030 0.808 0.058 0.889 0.032 0.899 0.032 0.850 0.040

3 0.864 0.023 0.837 0.054 0.896 0.028 0.908 0.028 0.870 0.031

7 0.864 0.028 0.822 0.062 0.912 0.036 0.922 0.036 0.868 0.036

11 0.857 0.018 0.838 0.052 0.878 0.033 0.896 0.033 0.864 0.023
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B - Results from the model concatenation experiments

In this appendix, the results obtained from the experiments performed using the concatenation approach

are detailed. These results are relative to the experiments were made regarding the number of layers

dense layers and units in each layer used after concatenating the features, in order to perform the final

decision. Experiments regarding the concatenation of the outputs of the last dense layer of each network

(denoted as ”with last” in the tables) were compared with concatenation of the outputs of the penultimate

layer of each network (denoted as ”last cut”).

Table B.1: Results for the concatenation of two CNN-LSTM networks.

# dense layers ACC SENS SPEC PREC F1 Score

and units Mean SD Mean SD Mean SD Mean SD Mean SD

128-32-2 (last cut) 0.737 0.073 0.535 0.092 0.906 0.103 0.836 0.103 0.645 0.100

64-32-2 (last cut) 0.736 0.058 0.548 0.093 0.892 0.083 0.798 0.083 0.645 0.099

32-32-2 (last cut) 0.758 0.073 0.56 0.101 9156 0.097 0.846 0.097 0.670 0.115

128-64-2 (last cut) 0.749 0.063 0.561 0.101 0.901 0.082 0.810 0.082 0.660 0.111

64-2 (last cut) 0.747 0.073 0.542 0.092 0.917 0.091 0.839 0.091 0.654 0.109

128-2 (last cut) 0.736 0.066 0.548 0.093 0.893 0.086 0.796 0.086 0.646 0.109

32-2 (last cut) 0.758 0.073 0.561 0.101 0.916 0.097 0.846 0.097 0.670 0.115

32-2 (with last) 0.762 0.075 0.556 0.105 0.925 0.093 0.856 0.093 0.670 0.120

64-2 (with last) 0.757 0.076 0.556 0.105 0.917 0.091 0.836 0.091 0.666 0.124

128-2 (with last) 0.753 0.078 0.556 0.105 0.913 0.092 0.821 0.092 0.662 0.128

2 (with last) 0.554 0.096 0.270 0.274 0.745 0.184 0.333 0.184 0.288 0.270

2 (last cut) 0.757 0.071 0.567 0.107 0.909 0.085 0.824 0.085 0.669 0.120

32-32-2 (with last) 0.748 0.072 0.556 0.105 0.902 0.085 0.806 0.085 0.657 0.123
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Table B.2: Results for the concatenation of two 3D CNN networks.

# dense layers ACC SENS SPEC PREC F1 Score

and units Mean SD Mean SD Mean SD Mean SD Mean SD

128-32-2 (last cut) 0.736 0.055 0.561 0.083 0.878 0.06 0.781 0.062 0.651 0.097

64-32-2 (last cut) 0.736 0.053 0.576 0.094 0.870 0.056 0.774 0.056 0.657 0.092

32-32-2 (last cut) 0.755 0.049 0.599 0.109 0.885 0.447 0.803 0.045 0.681 0.088

128-64-2 (last cut) 0.710 0.101 0.554 0.083 0.844 0.133 0.756 0.133 0.634 0.126

64-2 (last cut) 0.740 0.062 0.594 0.105 0.861 0.068 0.768 0.068 0.666 0.106

128-2 (last cut) 0.718 0.090 0.583 0.093 0.835 0.106 0.740 0.106 0.650 0.125

32-2 (last cut) 0.736 0.048 0.565 0.086 0.877 0.056 0.784 0.056 0.653 0.083

32-2 (with last) 0.695 0.138 0.586 0.100 0.799 0.185 0.724 0.185 0.639 0.146

64-2 (with last) 0.698 0.085 0.550 0.098 0.817 0.108 0.715 0.108 0.617 0.123

128-2 (with last) 0.676 0.108 0.577 0.118 0.763 0.143 0.675 0.143 0.614 0.135

2 (with last) 0.478 0.187 0.631 0.158 0.389 0.315 0.497 0.031 0.528 0.147

2 (last cut) 0.753 0.047 0.594 0.105 0.886 0.063 0.880 0.063 0.676 0.093

32-32-2 (with last) 0.703 0.119 0.605 0.150 0.789 0.171 0.735 0.171 0.644 0.144

64-32-2 (with last) 0.693 0.070 0.577 0.117 0.792 0.098 0.689 0.098 0.621 0.118

128-32-2 (with last) 0.694 0.097 0.588 0.128 0.787 0.125 0.693 0.125 0.628 0.136

64-64-2 (with last) 0.693 0.081 0.579 0.097 0.793 0.106 0.692 0.106 0.626 0.118

64-64-2 (last cut) 0.741 0.059 0.565 0.086 0.887 0.051 0.792 0.051 0.658 0.097
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