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Resumo

A afinação simples de portas de dois qubits é essencial para a calibração de processadores quân-

ticos. Neste trabalho, foram automatizadas duas rotinas de calibração imprescindíveis para essas

portas numa plataforma de transmon qubits de fluxo ajustável. Foram implementados algoritmos de

amostragem adaptável para acelerar as medições, juntamente com rotinas de análise para processar e

visualizar os resultados.

A variante súbita (SNZ) do esquema Net-Zero foi introduzida realizando portas de dois qubits do

tipo controlled-Z (CZ) através de pulsos de fluxo que controlam a frequência de transição de um trans-

mon. As portas SNZ operam no limite de velocidade do acoplamento transversal entre um estado

computacional e um estado não computacional, maximizando a fuga intermédia para o estado não

computacional. A principal vantagem das portas SNZ é a simplicidade de afinação, devido à estrutura

regular da fase condicional e da fuga para o estado não computacional em função de dois parâmetros

de afinação.

As portas SNZ foram realizadas num conjunto de quatro transmons, com resultados ao nível do

estado da arte no melhor par, em termos de fidelidade de 99.93% [99.54(27) % em média] e a fuga de

0.10% [0.18(4) % em média]. A porta SNZ é compatível com esquemas escaláveis para correção de

erros quânticos e adaptável a portas de fase condicional generalizadas (CPHASE) úteis em aplicações

de escala intermédia. Tirando partido da simplicidade de afinação, as portas SNZ já são empregues

num processador quântico disponível publicamente por meio da plataforma QuTech Quantum Inspire.

Palavras-chave:
processador quântico, transmon, porta CZ, automação, calibração, amostragem adaptável

vi



Abstract

Simple tuneup of two-qubit gates is essential for the scaling of quantum processors. In this work two key

two-qubit gate calibration routines for flux-tunable transmon qubits were automated. Custom adaptive

samplers were implemented to speed up measurements, along with analysis routines to process and

visualize results.

The sudden variant (SNZ) of the Net-Zero scheme was introduced realizing (two-qubit) controlled-Z

(CZ) gates by baseband flux control of transmon frequency. The SNZ CZ gates operate at the speed

limit of the transverse coupling between a computational and a non-computational state by maximizing

intermediate leakage to the latter. The key advantage of the SNZ is tuneup simplicity, owing to the

regular structure of conditional phase and leakage as a function of two control parameters.

SNZ CZ gates were realized in a four-transmon patch, matching the state of the art on the best

pair with fidelity of 99.93% [99.54(27) % average] and leakage of 0.10% [0.18(4) % average]. The SNZ is

compatible with scalable schemes for quantum error correction and adaptable to generalized conditional-

phase (CPHASE) gates useful in intermediate-scale applications. Taking advantage of the tuning sim-

plicity, SNZ CZ gates are already employed in a quantum processor publicly available via the QuTech

Quantum Inspire platform.

Keywords:
quantum processor, transmon, CZ gate, automation, calibration, adaptive sampling
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Chapter 1

Introduction

In recent years Quantum Computers made their way into the mass media with several private initiatives

announcing their latest progress and performances on the quest to master the art of building a device

with capabilities beyond the modern information technologies [1, 2]. In 2017, alone, quantum technology

firms, raised from private investors almost 300 millions US$, in total [3].

Even though quantum computers are not a panacea for all computational problems, they are the

best candidate, if not the only one, to tackle problems that are out of reach of digital computers. Re-

search in Quantum Computation aspires to build an information processing device by exploiting the laws

of physics governed by quantum mechanics. This turns the same effects that negatively affect the op-

eration of classical transistors on scales under 10 nm [4] into an asset. While we keep dreaming of a

Quantum Supremacy for a few decades (does a random number generator count? [1, 5, 6]), the pos-

sible future applications seem endless [7, 8]: Artificial Intelligence (AI) [9], Molecular Modeling [10],

Cryptography [11] and Particle Physics [12], to mention a few.

Although, the theory of Quantum Computation has evolved significantly in the last two decades, the

physical implementations are still struggling to match the pace. The number of qubits is approaching

three figures [5], isolated single qubit and two qubit operations are somewhat mature [13], however,

several fundamental issues persist. Qubits lifetime is significantly limited, quantum operations are im-

perfect and, as the recent Quantum Supremacy device [5] demonstrates, when trying to orchestrate

a few dozen of qubits the error rates rise to levels incompatible with long computations. The near-

term quantum chips are called Noisy Intermediate-Scale Quantum (NISQ) devices and have restricted

applications [14]. The holy grail to address those issues, at the end of the Fault-Tolerant Quantum Com-

putation (FTQC) [15, 16] roadmap is to perform useful computation with imperfect quantum hardware.

In an nutshell, it consists of using multiple imperfect qubits to encode redundantly a smaller amount of

logical qubits that can tolerate the faulty hardware [17]. The amazing milestone of a logical qubit with

longer lifetime than physical qubits has been achieved this year [18]. Yet, two essential checkpoints lie

on the road, operations on a single logical qubit followed by algorithms on multiple logical qubits.

During this fierce race, the work presented in this thesis aimed to take the automation of the charac-

terization and calibration of superconducting quantum processors as far as possible within the DiCarlo
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Lab, QuTech & Kavli Institute of Nanoscience. Given the state of the art in the laboratory, the focus

was on 7-qubit devices and, more specifically, two-qubit operations (gates) – an essential step towards

practical large scale quantum processors.

The automation toolbox developed was promptly used to calibrate two-qubit gates for a NISQ appli-

cations, a Quantum Approximate Optimization Algorithm (QAOA) [19]. Besides the work on the automa-

tion, the research carried throughout this work led to an important contribution on physics grounds. An

alternative approach to the implementation of the CZ1 two-qubit gate was proposed and experimentally

realized [Chapter 5 and Ref. 20], resulting in a significantly simplified calibration path, besides regis-

tering, to best of our knowledge, the highest CZ gate fidelity2 in a transmon-type quantum processor.

Owing to the calibration simplicity, these gates are already employed in a publicly available quantum

processor via the QuTech Quantum Inspire platform [21].

1.1 Motivation

It is still very relevant to research and work on improving the fundamentals of superconducting qubits.

Even though the FTQC roadmap takes into account imperfect qubits and operations, improving them as

much as possible means that less physical qubits would be required for redundant information encoding,

and thus we would achieve useful quantum computation sooner.

Unfortunately, the yield of functional devices from the clean rooms with parameters accurately match-

ing the desired design are fairly low [22]. Therefore, characterizing and testing new devices that explore

different designs, techniques, batches, etc. is a common and recurrent procedure, yet considerably com-

plex. It requires to precisely and accurately calibrate and orchestrate multiple instruments on nanosec-

ond time scales – a mundane task for a human but a perfect one for a (classical) machine that can

reliably perform the same tasks over and over again while, at the same time, managing staggering

levels of complexity.

Characterizing a device is not the only repetitive process involved. Once a promising chip has been

characterized, a series of other calibrations need to be carried out in order to bring the system to a

specification compatible with quantum computations. Moreover, over time, the system will inevitably drift

out of spec requiring recurrent re-calibrations to maintain its maximum performance.

We can discern at least three highly impacted resources when performing all these procedures man-

ually that can be spent much more efficient by putting efforts in automation routines.

Manpower As an example, the Google’s supremacy device require several hours for a qualified PhD

to manually perform a single calibration procedure (out of many such procedures required for tens of

qubits) [23]. The more we free up highly specialized and qualified researchers to tackle other issues, the

faster we can move forward the developments in the field. Furthermore, the complexity involved, which

can only increase when scaling up, surpasses the human capacity of monitoring the entire device.

1CZ stands for Conditional Z or Controlled Z quantum gate, a particular case of a Conditional Phase (CPHASE) gate.
2Extracted from a two-qubit interleaved randomized benchmarking (2QIRB) experiment.
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Time Automation allows for fast chip development and characterization cycles, as well as autonomous

maintenance of the calibration state of a processor. This is a often a one-time development effort that

pays off over and over again. Just recovering the state of the experimental setup from software or

hardware malfunctioning might take several hours with manual initialization which is inherently prone to

human errors.

Cost The two resources above are translatable in financial costs. However there are yet, more factors

to consider. Maintaining in the fridge the fresh vacuum, colder than outer space, costs on the order of

10,000 US$ (per month!). Wasting experiment time, is wasting money. In the long term there is a big

financial incentive to build a quantum computer and will likely require significant investments [24] which

would be recovered by providing computing time in a similar fashion it is currently done for supercom-

puters. Being a scarce resource, all the down time for calibration routines will have significant financial

impacts and therefore is of high value to automate such processes and make them as time efficient as

possible.

When considering these issues it becomes clear that automation routines are a must for quantum

devices, being far from a mere commodity.

1.2 Automation: state of the art

Experimental framework In the beginning of this work in the DiCarlo Lab, the automation was mature

at the level of individual experiments and calibrations preceding the two-qubit gates. Some work towards

higher level of automation was in progress. The experiments are performed using the PycQED3 software

framework [25] – a python based measurement environment developed in-house on top of the QCoDeS

data acquisition framework [26]. PycQED is an extensible, easy-to-use and automatable toolbox for

experimentalists to perform measurements and analyze results, however, it is not scalable on its own.

The (published) research targeting the automation problem on the scale a multi-qubit quantum chip has

been limited. Kelly et al. [27] proposed to solve the problem by organizing the calibration dependencies

on a directed acyclic graph4 (DAG) in an automatable and extensible manner. Inspired by this work, Rol

et al. [28] developed the AutoDepGraph [28, see also Fig. 1.1]. This tools has been used to automatically

characterize and calibrate 7-qubit quantum devices up to single qubit gates5. For more details and

discussion on the PycQED framework and graph-based calibrations we point the interested reader to

chapter 8 in Ref. 29.

Optimization algorithms Many calibrations involve finding optimal values for parameters that are cor-

related in nontrivial ways requiring optimization algorithms for efficient automation. In DiCarlo Lab, for

non-trivial calibrations and optimizations, it is common [30, 31] to employ algorithms such as Nelder-

Mead [32] or CMA-ES [33]. However, the former is know to not be noise resilient (a requirement for
3PycQED stands for Python circuit Quantum ElectroDynamics.
4A DAG is a mathematical structure used to model pairwise relations between objects, in this case calibrations. The graph is

acyclic because each relation is unilateral, i.e. one calibration depends on previous calibration(s).
5Unpublished work, initially developed by T. van Abswoude, and later by A. Brandwijk and H. Ali.
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Figure 1.1: Thesis context on a pseudo-dependency graph of a transmon quantum processor. The direc-
tion of an arrow indicates "depends directly on". Gray nodes at the top are long-term goals/applications
in the (universal) quantum computing field. The contributions to Ref. 19 (blue node) are presented in
Chapter 4. The orange nodes encapsulate the main contributions of this thesis. The CZ approach intro-
duced in Ref. 20 (Chapter 5) was conceived within this thesis. The first authorship is shared with H. Ali.
Calibration routines corresponding to the rest of the gray nodes were used for day-to-day operation of
the quantum processors. Figure generated with the AutoDepGraph [28].
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in-experiment optimization), while the latter needs a significant number of iteration for good results. Be-

sides that, an experimentalist is often interested in gaining a general understanding of the parameters

space which is usually not easy with these algorithms.

Two-qubit gate There are several implementation of two-qubit entangling gates reported in the litera-

ture [34–38]. In the DiCarlo Lab the quantum chip architecture employs the CZ gate [13]. Its implemen-

tation relied on the parametrization proposed by Martinis and Geller [34] with recent gate repeatability

and leakage6 suppression improvements by Rol et al. [39] based on a Net-Zero (NZ) integral flux-pulse.

However, at the beginning of this work, the experimental calibration was not automated, yet. Excluding

a preceding (one-time) pulse distortion correction procedure [31], the calibration of a single two-qubit

gate required from an experienced PhD under optimistic conditions: ∼ 1 h of configuring hardware (e.g.

timings between pulses) and preparing code; ∼ 1 h of sanity checks based on single parameter sweeps;

before starting an optimizer that took∼ 1 h per parameter, which translated into 2 h−3 h of extra unsuper-

vised optimization. This lengthy process is unsustainable even for a 7-qubit device, let alone hundreds

of qubits.

1.3 Objectives

The routines developed within this thesis target this gap and correspond to nodes intended to later be

integrated in a full-processor automatic calibration. Figure 1.1 illustrates this on a high level. Along

the chapters, the reader might find useful to revisit this figure. The main targets of the work developed

are listed below. As a starting point, it is assumed that the infrastructure for single qubit gates and

measurement readout calibrations are in place. All are to be implemented for and tested on 7-qubit

devices, even though most of the work is expected to be easily extensible to devices comprising higher

number of qubits.

• Systematize calibration routines required for the two-qubit CZ gate and evaluate the necessity/priority

of automation.

• Automate sampling/optimization and analysis of 2D calibration landscapes for two-qubit CZ gates

(compatible with experiment and simulations).

• Implement flexible routines usable by an experimentalist and ready to be embed in a dependency

graph of automatic calibrations (similar to Fig. 1.1). This process requires outlining the dependen-

cies of the previous steps and an understanding of the overall chip characterization and calibration.

• Explore non-adiabatic CZ gate pulse parameterizations in search of calibration simplification and

gate performance improvement. The adiabatic CZ gate is the one being used in the DiCarlo Lab.

An adiabatic two-qubit gate is implemented by changing slowly the two-qubit Hamiltonian such

that the system remains in the Hamiltonian’s instantaneous eigenstate at all times. This approach

6Leakage occurs when a two-qubit system ends up in a non-computational state (an inherent issue of the CZ).
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makes the gates longer and more prone to incoherent errors7. A non-adiabatic approach aims to

perform the gate as fast as possible to minimize such errors while preserving the computational

state of the two qubits.

An equilibrium between exploring alternative options and moving the developments forward was adopted

given the time constraints of the project. At a lower level the targets were achieved through the integra-

tion of multiple Python modules, development of specialized code and re-implementation of inefficient

or ineffective code. Both CZ simulation and experimental sampling/optimization within the parameters

space are time consuming. To alleviate this adaptive sampling techniques were used.

1.4 Thesis Outline

Chapter 2 introduces the reader to core concepts of quantum computation followed by a theoretical and

experimental background overview of superconducting transmon qubits with focus on the chip architec-

ture employed in this work. This chapter is intended to build an intuition on how the quantum devices

are operated, namely single-qubit gates, two-qubit gates, qubits readout and control synchronization.

In Chapter 3, we describe the automation of a key routine preceding the sampling of CZ calibration

landscapes ("flux bias offset" and "flux amp. at |11〉 − |02〉 interaction" nodes in Fig. 1.1), along with

the associated measurement analysis and the inner workings of the 1D adaptive sampling algorithm

developed to this end.

Next, in Chapter 4, we dive into the technicalities built into the analysis of the CZ 2D calibration

landscapes, followed by an overview of the N-dimensional adaptive sampler created through the gener-

alization of its 1D counterpart (Chapter 3).

Chapter 5 presents one of the most important contributions of this work. The SNZ flux pulses im-

plementing two-qubit CZ gates are introduced and contrasted with the previous state-of-art conventional

NZ pulses (CNZ). The experimental performance is evaluated among four SNZ CZ gates. We close the

chapter inspecting dominant error sources though numerical simulation for both SNZ and CNZ pulses.

Finally, in Chapter 6 we first summarize the conclusions of the work in the previous chapters. Based

on the achieved results and the accumulated hands-on experience we provide an outlook for next steps

in tackling the calibration problem

7Incoherent errors, as opposed to coherent errors, have stochastic nature and cannot be mitigated by gate design and calibra-
tion of non-ideal factors.
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Chapter 2

Background

The research field of Quantum Computing (QC) extends from the quantum information fundamentals and

pure quantum algorithms to the entire system stack of a specific physical implementation on a quantum

chip. This chapter is a brief introduction to key concepts required to understanding the context, problems

and solutions presented in this work. Despite my efforts, it is impossible to compress and include in

this chapter all the aspects of a field with accumulated knowledge over more than two decades. The

theoretical overview on quantum computation and information is much inspired from one of the bibles in

quantum computation and quantum information – the book by Nielsen and Chuang [40]. References 29,

41–44 are good introductions specific to the transmons world which guided the writing of this chapter.

Chapter outline First the reader is introduced to core concepts of quantum mechanics in the scope of

quantum information processing based on quantum circuits, followed by the physical requirements for a

quantum computer. Second, we overview the transmon theory from Cooper-pair box to the fundamen-

tals underlying the qubit readout, the single-qubit gates and the flux-based two-qubit gates. Third, we

highlight important aspects when the theory meets the physical world and what that means for a practi-

cal quantum computer of today and near future. Finally, as link to this work, we close the chapter with an

experimental overview of transmons, giving insight into the architecture of the physical chips of the lab

and how it looks like to operate such a device on the day-to-day basis regarding single-qubit gates, read-

out, two-qubit gates and synchronization of pulse-generating instruments. Some minor contributions to

the corresponding calibration routines and analyses are not detailed for the sake of brevity.

2.1 Quantum computation

2.1.1 Qubits

The term qubit was coined to designate the quantum analog of the bit – the classic digital information

unit, even though a qubit behaves and is operated in fundamentally different ways. While a bit can have

either of two discrete states 0 or 1, the state of a qubit lives in a continuous two-dimensional Hilbert

space spanned by two states that form the base of that space. The canonical base, represented in the
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ket notation introduced by Dirac, is {|0〉 , |1〉}. An arbitrary pure1 single qubit quantum state |ψ〉 takes

the form

|ψ〉 = β |0〉+ ε |1〉 =


β
ε


 , (2.1)

where the amplitudes β and ε are arbitrary complex numbers that must obey the normalization constraint

of unit probability |β|2 + |ε|2 = 1. The linear combination of the two base states in Eq. (2.1) is referred

to as superposition and is at the core of language abuses equivalent to "being in two states at the same

time". This notation extends naturally to multi qubit systems. For example, for a two-qubit system the

state would be represented by |ψ〉 = β |00〉+ε |01〉+γ |10〉+η |11〉, again constrained by the normalization

|β|2 + |ε|2 + |γ|2 + |η|2 = 1. In general, 2n complex numbers are required to represent a n-qubit state.

Note that a trivial state |ψ〉 = |01〉 can also be represented as two separate single qubit states |ψ〉A = |0〉

for qubit A and |ψ〉B = |1〉 for qubit B. However, that is not always possible. Such an example is the

state |Φ+〉 = 1√
2
|00〉 + 1√

2
|11〉. This is a Bell state and illustrates the entanglement concept, more

specifically this is a maximally entangled state. The curious behavior of such a state is that, if we

measure only one of the two qubits, say in the |0〉 state, than the second qubit will have unity probability

of being found in the same state2. For a single qubit state, or more generally for the superposition of two

orthogonal quantum states, an intuitive geometrical representation exists denominated the Bloch sphere.

|+〉 =
√

2

(
1
1

)

|−〉 =
√

2

(
1
−1

)

|+i〉 =
√

2

(
1
i

)
|−i〉 =

√
2

(
1
−i
)

|0〉 =

(
1
0

)

|1〉 =

(
0
1

)

Figure 2.1: Representation of quantum
states on the Bloch sphere. Orthogonal
states are presented by parallel vectors
pointing in opposite directions. Gener-
ated with [45].

Figure 2.1 shows this representation including the particular

states at the intersection of the axes with the unitary sphere.

Such representation arises from a parametrization that, be-

sides the normalization, takes into account that a global arbi-

trary quantum phase has no observable effects. Therefore,

the superposition of two orthogonal states has the equiva-

lent definition

|ψ〉 = cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉 (2.2)

in terms of two real parameters (angles), θ and ϕ, which

specify the direction of a unit vector ~r – the Bloch vec-

tor. It can also be defined in terms of Pauli matrices as

~r = 〈ψ|~σ |ψ〉, where we take the expectation value of the

Pauli vector given by ~σ = (X̂, Ŷ , Ẑ) = (σ̂x, σ̂y, σ̂z).

2.1.2 Operations

In order to perform computations using qubits we need to be able to act on their states. The states of

the qubits are modified by quantum operations. We can distinguish three types of operations (single

1Pure here is to distinguish from a mixed state that can only be represented through a more general formalism - the density
matrix formalism - that accounts for probabilistic states, e.g. a state that was prepared either in |1〉 with probability 99.9% or in |0〉
with probability 0.1% which is often the reality of the limitations of a physical implementation.

2Amazingly, the two qubits can be separated by an arbitrary distance, when measured.
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and multi-qubit): quantum gates, initial state preparation and measurements. All three have an analog

in the realm of classical digital circuits where the last two are taken for granted, not requiring any special

attention, which is not the case in the quantum realm.

Quantum gates

Ideally, quantum gates are reversible (there is always an inverse that allows to recover the previous

state), non-destructive (there is no loss of quantum information) and unitary operators that are applied

to qubits. Mathematically, in the notation introduced above, n-qubit quantum gates are represented by a

2n×2n matrix. Such operators are chained sequentially (matrix multiplication) to compose more complex

algorithms. The only requirement for a valid quantum gate is to be unitary. Moreover, any unitary is a

valid quantum gate and can be approximated to an arbitrary extent with a finite sequence of gates from

some particular non-unique set of gates, named a universal quantum gate set for quantum computation.

Nevertheless, such task is generically hard and many implementations support larger gate sets.

Measurement

After running a quantum algorithm we are interested in observing (measuring) the system and retrieving

some information about its outcome, however, the laws of quantum mechanics put physical limitations on

the information that can be obtained. Observation in quantum mechanics is an invasive procedure that

typically changes the state of the system. It is non-reversible3 and destructive in its nature4. Therefore,

the measurement is also a state preparation procedure in some implementations.

Formally, a general quantum measurement is postulated to be described by a collection {Mm} of

measurement operators. The index m stands for the possible results that a measurement may have in

experiment. Note that the collection of operators associated with a measurement does not predict the

outcome of a specific measurement, but allows to calculate the probability that result m occurs. For a

state |ψ〉 immediately before the measurement these probabilities are given by

P (m) = 〈ψ|M†mMm |ψ〉 (2.3)

and the post-measurement state is given by:

|ψ′〉 =
Mm |ψ〉√

〈ψ|M†mMm |ψ〉
. (2.4)

The probabilities of all possible outcomes sum to 1. An ubiquitous example of a measurement is the

measurement of a single qubit in the computational basis defined by the measurement operators M0 =

|0〉 〈0| and M1 = |1〉 〈1|. For a state |ψ〉 = α |0〉 + β |1〉, the probability of observing the measurement

outcome m = 0 is P (0) = 〈ψ|M†0M0 |0〉 = |α|2. A special case of the measurement formalism just

described is particularly relevant for this work, the projective measurements.
3We don’t have the necessary knowledge to reverse the operation, but there is a unitary corresponding to that operation.
4The upper bound on the amount of information accessible from a quantum state is know as the Holevo’s bound.
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This special class of measurements is also known as von Neumann measurements and is of primary

interest for many applications. A projective measurement is described by an observable, M - a Hermitian

operator on the state space of the system being observed. The spectral decomposition of the observable

is given by

M =
∑

m

mPm, (2.5)

where Pm is the projector onto the eigenspace of M with eigenvalue m. The eigenvalues, m, of the

observable are the possible outcomes of a measurement, with probability

P (m) = 〈ψ| Pm |ψ〉 (2.6)

of being measured. The state of the system immediately after the measurement is given by

|ψ′〉 =
Pm |ψ〉√
〈ψ| Pm |ψ〉

. (2.7)

One of the nice properties of the projective measurements is the ease to calculate average values for

projective measurements: 〈M〉 = 〈ψ|M |ψ〉, which is very handy considering that the average value is

usually the only information that can be retrieved in experiment.

There are two widely used nomenclatures for projective measurements. The first one is to simply

give the complete set of orthogonal projectors Pm, e.g. {|0〉 〈0| , |1〉 〈1|}, that satisfy
∑
m Pm = I and

PmPm′ = δmm′Pm. Here the implicit observable is M =
∑
mmPm. The second equivalent way of

referring to a projective measurement is to say "measure in a basis |m〉", where |m〉 form an orthog-

onal5 basis with the projectors being given by Pm = |m〉 〈m|. More generally, single-qubit projective

measurements can be described by the observable

M = ~n · ~σ = n1σ̂x + n2σ̂y + n3σ̂z, (2.8)

which is often referred to as "measurement of spin along the ~n axis" due to historical reasons associated

with spin measurements. When all axioms of quantum mechanics are taken into account, projective

measurements augmented by unitary operations are completely equivalent to general measurements.

Initial state preparation

One of the most important requirements to perform useful computation is to start with a known initial

state, even in classical digital circuits. Preparation of fiducial initial states falls more into the experiment

rather then theory of quantum computation, but it is essential to cover it as it is a core requirement.

Generally a quantum system will exist in the continuum of the corresponding Hilbert space in an

unknown state and it might be very difficult to bring the system into a desired state, depending on the

qubit physical realization, even though it is only necessary to (repeatedly) generate one specific state

with high fidelity (which can then be transformed to any other target state by a unitary). Beside being
5An orthogonal basis is a requirement in order to reliably distinguish quantum states.
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able to prepare a state with high fidelity it is important that the state being prepared is a useful one., i.e.

ideally, it should be a pure state with zero entropy, as it becomes impossible to extract the answer of a

computation with the rise of entropy.

2.1.3 Quantum phase

In the context of quantum mechanics "phase" can have several distinct meanings. Two important cases

are: global phase and relative phase. It is said that the states eiθ |ψ〉 and |ψ〉 are equal "up to a global

phase factor" eiθ, where θ is a real number. There is no experiment that can distinguish between the two

states based on the statistics of the measurement outcomes when performing the same measurement

on the same initial states. Therefore, global phases are irrelevant to observations. Taking as an example

the states |ψ〉 = (|0〉 + i |1〉)/
√

2 and |ϕ〉 = (|0〉 − i |1〉)/
√

2, we say that the amplitudes of the state |1〉

"differ by a relative phase" because there is a real number θ such that −i = eiθi. Note, that the relative

phase concept is basis-dependent, unlike global phase. As a result, measuring in a different basis

makes the states |ψ〉 and |ϕ〉 (that differ only by a relative phase) give rise to measurable differences.

2.1.4 Quantum circuit model and quantum circuits

Figure 2.2: Representation of an
exemplary quantum circuit: X-type
stabilizer circuit for a surface code.
Colored circles on the left repre-
sent the qubits. H represents the
Hadamard single-qubit gate, verti-
cal lines connecting two qubits rep-
resent CZ (Controlled-Z) two-qubit
gates. Adapted from [17].

The most common Quantum Computing Model is called Quan-

tum Circuit or Quantum Gate model. The quantum computation

is seen as a sequence of quantum gates applied to a qubit regis-

ter – a composite quantum memory element. The computations

usually end with measurements that allow information to be re-

trieved. Quantum algorithms are described as quantum circuits

and are generally hardware-agnostic.

Figure 2.2 shows an exemplary quantum circuit. On the left,

the colored circles disposed on the vertical axis represent the

qubit register. The horizontal lines connected to each qubit de-

note the qubit at each point in time, with the time flowing from

left to right. Symbols overlaying these lines represent operations

applied to qubits at the respective (relative) moment in time cor-

responding to the position of the symbol on the horizontal axis.

The time axis is usually omitted for convenience in the context of the quantum circuit model, but timing

is of utmost importance from the technical perspective of the physical implementation. For instance,

the freedom of arbitrary parallel operations performed on distinct qubits might not be possible due to

hardware limitations. The vertical line symbol connecting two qubits represents a two-qubit gate, in this

case a CZ, which stands for Controlled-Z gate – whose calibration is the main focus of this work. The

measurements are commonly represented by a meter. For the particular circuit in this figure (only a

small portion of the computation is shown) the mid-computation measurement is intended for quantum

error detection for the qubits represented in red. Generally, at the end of a quantum algorithm all qubits
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will be measured.

In quantum circuits we are physically prohibited to copy a quantum state from one qubit to another,

this is know as the no cloning theorem. As a result, a quantum state will live most of the time in the same

physical system. We are allowed to swap quantum states between qubits, but not duplicate arbitrary

quantum states. Nevertheless, quantum circuits have the remarkable advantages over classical digital

circuits: superposition and entanglement. The former is at the core of the exponential speed-ups of

certain algorithms, e.g. factoring prime numbers, and the later having promising applications in quantum

communication, for instance secure communication channels guaranteed by the laws of physics.

2.1.5 Decoherence

Decoherence is the term often used to refer to two distinct effects, energy relaxation and dephasing.

Energy relaxation describes the decay of the qubit into the ground state, while the dephasing describes

the loss of quantum coherence, i.e. the loss of the definite phase relation between different states. The

two processes follow exponential decays with a time constant frequently referred to as T1, for energy

relaxation, and T2, for dephasing. Both limit the total time available to perform quantum computations

before the decoherence effect becomes significant and retrieving useful information is no longer possi-

ble. Qubit coherence times can range from nanoseconds to few minutes [17, 46]. Characterizing and

minimizing the contributions to decoherence remains an active field of research with novel techniques

still being developed [47].

2.1.6 Physical implementation requirements

Regarding qubits and quantum gates as mathematical objects is convenient as it maintains the theory

general and independent of a specific implementation allowing for a consensus of the research com-

munity to communicate on these common topics. Yet, a useful quantum computer must be physical.

A famous statement of the requirements an experimental setup must satisfy to successfully implement

quantum algorithms is the DiVincenzo criteria6 [48]:

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state such as |000...〉

3. Long relevant decoherence times, much longer than the gate operation time

4. A "universal" set of quantum gates

5. A qubit-specific measurement capability

Most criteria are self-explanatory, but building a device that matches those requirements well has proven

to be a taught challenge. Several implementations for a quantum computer are being researched:

superconducting [49], trapped ions [50] and nitrogen-vacancy centers [51], to name a few, with distinct

underlying technologies, even though each comes in many more flavors. All approaches meet those
6The rest of the list, number 6 and 7, concern quantum communication.
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(a) CPB (b) Voltage biased CPB (c) Flux biased CPB/Transmon

Figure 2.3: Cooper-pair box models. Adapted from [44].

requirements with varying degrees of success. The most mature technology so far are superconducting

qubits, with semiconductor qubits catching up. Discrepancies between device design and fabrication,

scalability, cross-talks and decoherence are still big concerns in most technologies.

2.2 Transmon theory

The transmon is one the most promising technologies for building a quantum computer. The term was

coined in 2007 in the paper "Charge-insensitive qubit design derived from the Cooper-pair box" [41].

This type of qubit is the focus of this work, in particular two-qubit interactions of such qubits.

2.2.1 From Cooper-pair box to Transmon

The work reported in that publication builds upon the "Cooper-pair box" (CPB). The CPB can be modeled

as a parallel combination of a capacitor and a Josephson junction, as depicted in Fig. 2.3(a). Fundamen-

tally, the transmon is a CPB with a clever choice of the capacitor and the Josephson junction parameters.

The quantum Hamiltonian can be written, in terms of the charge across the capacitance, Qt, and the

flux across the tunnel junction, Φt, as [41, 44, 52, 53]:

Ĥ =
Q̂t
2Ct
− EJ cos

(
2π

Φ̂t
Φ0

)
; Commutation relation: [Φ̂t, Q̂t] = i~ (2.9)

where EJ is the Josephson coupling energy and Φ0 is the superconducting flux quantum. If we couple

a voltage source, as shown in Fig. 2.3(b), the Hamiltonian becomes:

Ĥ =

(
Q̂t + CbVg

)2

2 (Ct + Cb)
− EJ cos

(
2π

Φ̂t
Φ0

)
(2.10)

Changing variables to ϕ̂t ≡ 2π Φ̂t
Φ0

(phase operator), N̂t ≡ − Q̂t2e (Cooper-pair number operator), Ng ≡
CbVg

2e (number offset) and EC ≡ e2

2(Ct+Cb)
(charging energy), we can express the Hamiltonian as:

Ĥ = 4EC

(
N̂t −Ng

)2

− EJ cos(ϕ̂t); Commutation relation: [ϕ̂t, N̂t] = −i. (2.11)
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Figure 2.4: First three eigenenergies of the CPB [Eq. (2.12)] as a function of the offset charge for different
values of EJ with fixed EC = 0.3GHz. The zero point of energy in each case is chosen as the minimum
of the ground state.

Writing both operators in the charge basis (a base of quantum states corresponding to integer Cooper-

pair charges, N , on the Josephson junction island), the Hamiltonian takes the shape:

Ĥ =

∞∑

N=−∞
4EC (N −Ng)2 |N〉 〈N | − EJ

2
(|N〉 〈N + 1|+ |N + 1〉 〈N |) (2.12)

where Ng quantifies a charge offset. The value of EJ defines two distinct regimes: the CPB regime

and the Transmon regime. In the CPB regime [Fig. 2.4(b)], EC ∼ EJ , Ng could be a knob to implement

a single-qubit gate [54], but at the same time it makes the CPB sensitive to the environmental charge

noise. The CPB transitions into the transmon regime for EJ/EC � 1, experimentally & 30 is already

enough [44]. In this regime [Fig. 2.4(c)], the system becomes insensitive to the charge offset, i.e. the

dependence of the energy levels on Ng is negligible in practice, which is a desired property for a physical

qubit. The transition energies between the first three energy levels are depicted in Fig. 2.5 as a function

of EJ . In the transmon regime, they are given approximately by

E0→1 '
√

8EJEC − EC E1→2 '
√

8EJEC − 2EC , (2.13)

This gives rise to a weak anharmonicity, α ≡ E1→2−E0→1 ∼ −EC , which is enough to be able to address

independently only the first transition of the qubit for the implementation of single-qubit gates [42]. This

is essential in order to be able to use the transmon as a two level system in quantum computations.

Furthermore, it is remarkable that the energy-level spectrum is mainly defined by the parameters of

circuit elements, and therefore, with enough control over fabrication, they are configurable through chip

design.

2.2.2 The flux degree of freedom

If we add one more Josephson junction in parallel and apply a magnetic field (by applying a current

through a nearby wire) such that there will be an external magnetic flux Φext in the closed loop formed

by the two junctions (called SQUID loop) as shown in Fig. 2.3(c), we obtain a flux dependent Josephson

energy, EJ(Φext). Assuming symmetric junctions, i.e. EJ1 = EJ2, the dependence on the external flux
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is given by EJ(Φext) = (EJ1 + EJ2) cos(πΦext/Φ0) (Fig. 2.6, dark curve) [41].

This provides a knob to lower (tune down) the qubit transition frequency. For small flux, the depen-

dence is quadratic which, in first order, provides resilience to flux noise at the maximum qubit transition

frequency (known as sweetspot – maximum frequency point in Fig. 2.6). In practice, achieving sym-

metric junctions is hard if not impossible. The consequences can be accounted for as a function of the

asymmetry d ≡ |EJ1 − EJ2| /(EJ1 + EJ2) [41]:

EJ(Φext) = (EJ1 + EJ2)

∣∣∣∣cos

(
π

Φext

Φ0

)∣∣∣∣

√
1 + d2 tan2

(
π

Φext

Φ0

)
(2.14)

Replacing EJ in the expression for the approximate transition energy [Eq. (2.13)] we obtain the depen-

dence on external flux and junctions asymmetry as depicted in Fig. 2.6. On one hand, it shows that the

asymmetry reduces the maximum frequency detuning possible. On the other hand, it creates a second

sweetspot at points of minimum frequency. The transition frequency tuneability mechanism can be used

in transmons to implement two-qubit gates, such as the CZ gate [13].

2.2.3 Transmon measurement: qubit readout

Similarly to the case of the CPB, the transmon can have an associated transmission line resonator that

establishes mechanisms for coherent control and readout of the qubit state. This scenario is known as

circuit Quantum Electrodynamics (cQED) and it is analogous to an atom in an optical cavity as depicted

in Fig. 2.7. The circuit quantization of this scenario adds new terms to the Hamiltonian in Eq. (2.11) [41]:

Ĥ = 4EC(N̂t −Ng)2 − EJ cos(ϕ̂t) + ~ωrâ†â+ 2βeV 0
rmsN̂t(â+ â†), (2.15)

with â (â†), the annihilation (creation) operator for photons in the transmission line, ωr = 1/
√
LrCr,

the resonator frequency, β =
Cg
CΣ

set by the geometry of the capacitances, and V 0
rms =

√
~ωr/2Cr the

voltage of the local oscillator. Changing the basis to the uncoupled transmon states |i〉 we obtain the
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generalized Jaynes-Cummings Hamiltonian:

Ĥ =
∑

j

~ωj |j〉 〈j|+ ~ωrâ†â+
∑

i,j

gij |i〉 〈j| (â+ â†), (2.16)

with coupling energies gij~ = 2βeV 0
rms 〈i| N̂t |j〉. Next several approximations and simplification are

employed (for details see [41]) that include evaluating the asymptotic behavior of the coupling energies

with a perturbative approach in the limit of largeEJ/EC followed by a rotating wave approximation (RWA)

and the dispersive limit approximation. In the dispersive limit, defining the detuning ∆i = ωi→i+1 − ωr,

we assume g01/|∆0| � 1 and g01/|∆0 + α| � 1. In the end, an interesting effective Hamiltonian is

obtained:

Ĥeff =
1

2
~ω′0→1σ̂z + ~ω′râ†â+ ~χσ̂zâ†â, (2.17)

where ω′0→1 = ω0→1 + χ01, ω′r = ωr − (χ12/2) and χ = χ01 − (χ12/2) is the effective dispersive shift,

with χij ≡ g2
ij/(ωi→j − ωr). In fact, the above equation has a form, known before the transmon, as

the Stark-shift Hamiltonian for a CPB coupled to a transmission line. The important result is that the

resonator-qubit interaction leads to a resonator whose frequency depends on the qubit state (and a shift

of the qubit frequency depending on the number of photons in the resonator). In practice this makes

possible to probe the transmission line at a fixed frequency and based on the transmission/reflection

(phase and amplitude) infer the qubit state.

Remarkably, even though the charge dispersion in the transmon regime decreases exponentially, the

coupling with the resonator cavity increases. This is essential in order to achieve a transmon-based

qubit! Furthermore, because of the familiarity of the scientific community with Eq. (2.17), it was possible

to transfer almost directly the readout and control methods developed for the CPB qubits. On the control

side (i.e. single-qubit gates and more detailed coupling to other qubits), Ref. 42 is an excellent theory

and engineering introduction.

2.2.4 Transmon single-qubit gates

There are two practical ways of implementing single-qubit gates. In case of flux-tunable transmons, the

detuning from the maximum-frequency flux allows the implementation of ẑ-axis single qubit rotations

(besides several types of two-qubit gates). However, that does not provide a universal quantum gate set

and a second mechanism for transmon single-qubit gates is required: capacitively coupling a microwave

drive line as depicted in Fig. 2.8. This approach provides the ability to perform single qubit rotations

around axes on the x̂ŷ-plane. This subsection highlights the steps that lead to this conclusion following

references 42 and 44.

We start with the relatively simple model of the transmon [Fig. 2.8] for which the quantum Hamiltonian

is given by [44]:

Ĥ(t) = −EJ cos

(
2π

Φ̂t
Φ0

)
+

(
Q̂t + CcVac(t)

)2

2 (Ct + Cc)
, (2.18)
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Figure 2.7: Analogy between Cavity Quantum Electrody-
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plays the role of cavity. Reproduced with permission from
Ref. 43.

Figure 2.8: Microwave drive line – a time-
dependent voltage source, Vac(t) – ca-
pacitively coupled to a generic transmon.
Adapted from Ref. 44.

which can be split in two terms:

Ĥ(t) = Ĥtransmon +
Cc

Ct + Cc
Vac(t)Q̂t

= Ĥtransmon + ~ε(t)
Q̂t
2e

; ε(t) ≡ 2e

~
Cc

Ct + Cc
Vac(t) (2.19)

where we have written the driving term more conveniently. We now consider a drive that takes the form

ε(t) = εI(t) cos(ωdt) + εQ(t) sin(ωdt). (2.20)

As the equation suggests we are composing a driving signal that is composed of two sinusoids in phase

quadrature each shaped by an envelope, εI and εQ. I stands for in-phase and Q stands for in-quadrature.

In order to understand more easily the effect of this signal on the transmon, it is common procedure

in the literature to work in a frame that rotates at the frequency ωd (denoted rotating frame or interaction

frame):

|ψ̃(t)〉 ≡ U(t) |ψ(t)〉 ; U(t) ≡ eiHdt/~; Hd ≡ ~ωd
∞∑

kt=0

kt |kt〉 〈kt| , (2.21)

where |kt〉 are the eigenstates of the transmon (i.e. |0〉 , |1〉 , etc.). Invoking the time-dependent Schrödinger

equation, d
dt |ψ̃〉 = 1

i~
ˆ̃H |ψ̃(t)〉, after a bit of math we derive the Hamiltonian in the rotating frame:

ˆ̃H = Ĥtransmon − Ĥd︸ ︷︷ ︸
free-evolution

+
~ε(t)

2e
U(t)Q̂tU

†(t)
︸ ︷︷ ︸

drive term

; Ĥtransmon − Ĥd =
∑

kt

Ekt |kt〉 〈kt| −
∑

kt

~ωdkt |kt〉 〈kt| .

(2.22)

Introducing the dipole moment between transmon levels 7 kt and lt, Dkl = 〈kt| Q̂t |lt〉 = −2e 〈kt| N̂t |lt〉,
7〈kt| Q̂t |lt〉 = 0 for kt and lt differing by even integer and 〈kt| Q̂t |lt〉 6= 0 for kt and lt differing by odd integer [41].
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the driving term becomes:

~ε(t)
2e

U(t)Q̂tU
†(t) =

~ε(t)
2e

∑

kt,lt

U(t)Dkl |kt〉 〈lt|U†(t) =
~ε(t)

2e

∑

kt,lt

ei(kt−lt)ωdtDkl |kt〉 〈lt| (2.23)

Adopting the notation σ̂+
kl = |kt〉 〈lt| and σ̂−kl = |lt〉 〈kt| we can write:

~ε(t)
2e

U(t)Q̂tU
†(t) =

~ε(t)
2e

∑

kt>lt

ei(kt−lt)ωdtDklσ̂
+
kl + e−i(kt−lt)ωdtD∗klσ̂

−
kl (2.24)

=
~
2e

(
εI(t)

eiωdt + e−iωdt

2
+ εQ(t)

eiωdt − e−iωdt

2i

) ∑

kt>lt

ei(kt−lt)ωdtDklσ̂
+
kl + e−i(kt−lt)ωdtD∗klσ̂

−
kl (2.25)

=
~
4e

(
εI(t)

∑

kt=lt+1

(
Dklσ̂

+
kl +D∗klσ̂

−
kl

)
+ iεQ(t)

∑

kt=lt+1

(
Dklσ̂

+
kl −D

∗
klσ̂
−
kl

)
)

+ fast osc. terms. (2.26)

The terms omitted above oscillate at frequencies ±ωd,±2ωd,±3ωd, ... which allows to discard them in

what is know as the rotating wave approximation (RWA). Moreover, the dipole moments for the transmon

levels as we have defined them are real. Hence, we arrive at more intuitive form of the driving term:

~ε(t)
2e

U(t)Q̂tU
†(t) ≈ ~

4e


D10

(
εI(t)X̂10 + εQ(t)Ŷ10

)

︸ ︷︷ ︸
first transition driving

+D21

(
εI(t)X̂21 + εQ(t)Ŷ21

)

︸ ︷︷ ︸
undesired second transition driving

+...


 (2.27)

where X̂kl ≡ σ̂+
kl + σ̂−kl and Ŷkl ≡ iσ̂+

kl − iσ̂
−
kl. As the equation above shows, the shape of the envelopes

I and Q represent knobs to implement single qubit rotations. The relative amplitude between the two

envelopes defines the rotation axis on the x̂ŷ-plane (on the Bloch sphere) and the absolute amplitudes

and the duration of the pulse will determine the angle of the rotation. A simple case is to have εI(t) 6= 0

and εQ(t) = 0 which implements a rotation around the x̂-axis.

Unfortunately, in the second term in Eq. (2.27), the same envelops are also associated with operators

that transfer (rotate in the corresponding subspace) state population between |1〉 and |2〉. This is an

undesired effect for a transmon-based qubit, commonly denoted as leaking out of the computational

subspace. Remarkably, practical solutions to overcome this inconvenience have been already developed

easily yielding gate error rates below 10−2 [42]. This procedure and corresponding envelopes shaping

is outlined later in Section 2.4.2. Going back to the considered signal, its driving frequency ωd needs to

be in resonance with the targeted transition (e.g. ωd = ω0→1 for X̂10/Ŷ10 rotations) 8. When this is not

the case it is not possible to achieve a complete population transfer between |0〉 and |1〉 [44].

2.2.5 Coupled transmons

In order to entangle two qubits, it is necessary to engineer an interaction Hamiltonian that connects

their degrees of freedom. Several physical coupling mechanisms have been studied in the context

of superconducting transmons [42], for example direct capacitive and/or inductive coupling, and even

8Note that it is possible to implement a "gate" that transfers population between |1〉 and |2〉 for ωd = ω1→2 which is useful for
leakage characterization.
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couplings via a dedicated coupler, which is a dedicated quantum system (in some cases similar to the

qubit itself) that mediates the interaction and in some designs the coupling is tunable. The transmons

used in this work are coupled capacitively through a resonator cavity (which can be regarded as a

harmonic oscillator), sometime referred to as transmission line resonator or quantum bus9.

The transmon-resonator-transmon system can be modeled through the Tavis-Cummings Hamiltonian

generalized to multi-level transmons [13]. It consists of three terms describing the individual systems

and two terms expressing the interaction between each transmon (QH and QL) and the resonator [29]:

Ĥ =

QL︷ ︸︸ ︷∑

i

~ω(QL)
0→i |i〉QL

〈i|QL
+

QH︷ ︸︸ ︷∑

j

~ω(QH)
0→j |j〉QH

〈j|QH
+

Resonator︷ ︸︸ ︷
~ωrâ†râr

+
∑

i

g
(QL)
i,i+1

(
â†r|i〉QL

〈i+ 1|QL
+ âr|i+ 1〉QL

〈i|QL

)

+
∑

j

g
(QH)
j,j+1

(
â†r|j〉QH

〈j + 1|QH
+ âr|j + 1〉QH

〈j|QH

)
, (2.28)

where ωr is the bare resonator frequency, ωQ
0→i = ω0i(E

Q
C , E

Q
J ) the transmon flux-dependent transi-

tion frequencies, and g
(Q)
i,i+1 the level-dependent coupling strengths of the transmons to the resonator.

Applying the dispersive approximation, g(Q)
i,i+1 � ∆

(Q)
i,i+1 = ~ωi→i+1 − ~ωr, truncating at the second ex-

cited state of the transmons, and assuming no photons in the resonator, the desired Hamiltonian of two

directly coupled transmons emerges10:

Ĥ ≈

QL︷ ︸︸ ︷∑

i

~ω̃(QL)
0→i |i〉QL

〈i|QL
+

QH︷ ︸︸ ︷∑

j

~ω̃(QH)
0→j |j〉QH

〈j|QH

+

Resonator-mediated transmon-transmon coupling︷ ︸︸ ︷∑

i,j

Jij

(
|i〉QL

〈i+ 1|QL
⊗ |j + 1〉QH

〈j|QH
+ |i+ 1〉QL

〈i|QL
⊗ |j〉QH

〈j + 1|QH

)
, (2.29)

where we have used the tensor product (⊗) to represent two-transmon states, and effective couplings

being given by

Jij =
g

(QL)
i,i+1g

(QH)
j,j+1

(
∆

(QL)
i,i+1 + ∆

(QH)
j,j+1

)

2∆
(QL)
i,i+1∆

(QH)
j,j+1

. (2.30)

2.2.6 Transmon two-qubit gate

There are three classes of two-qubit gates in transmons: flux-pulsing based, all-microwave based and

flux-pulse modulated. All of them have been shown to achieve fidelities of ∼ 99% [29]. Nevertheless,

each class has its own drawbacks. In this subsection we focus on the flux-pulsing scheme explaining

how the unitary operator of the CPHASE gate appears naturally when considering two capacitively

coupled flux-tunable transmons.
9The physical chip in Fig. 2.12 shows eight such buses.

10See section 2.2.1 of Ref. 29 for an intermediate step.
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The CPHASE unitary can be expressed in the computational space {|00〉 , |01〉 , |10〉 , |11〉} as:

UCPHASE(φ2Q) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiφ2Q



, (2.31)

which has the effect of applying a relative quantum phase when both qubits are in the excited state |11〉,

hence the name controlled-phase gate. Of central interest for this work is the particular case φ2Q = π

commonly denoted as CZ standing for Controlled-Z gate:

φ2Q = π ⇒ UCPHASE(φ2Q) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



≡ UCZ. (2.32)

To elucidate the operating principle behind the CPHASE implementation, on which the CZ is base on,

it is enlightening to observe the spectrum of energy levels of two coupled transmons with typical pa-

rameters. The Hamiltonian describing this spectrum, including the second excited state, written in the

{|00〉 , |01〉 , |10〉 , |11〉 , |02〉 , |02〉 , |20〉}-basis, is approximately given by [42]:

Ĥ2-transmons = ~




ω00 0 0 0 0 0

0 ω01 J1 0 0 0

0 J1 ω10 0 0 0

0 0 0 ω11 J2 J
′

2

0 0 0 J2 ω02 0

0 0 0 J
′

2 0 ω20




, (2.33)

where ωij = ωQL

i (ΦQL
) + ωQH

j (ΦQH
) and ωi(ΦQ) is the i-th flux-dependent energy level of each trans-

mon. To a good approximation the coupling strengths are related by a scaling factor J2 ' J
′

2 '
√

2J1.

Usually chips are carefully designed such that there is a significant difference between ωQH

1 (0) and

ωQL

1 (0), hence, we name the higher- (lower-) frequency qubit QH (QL). Henceforth, we will denote a two-

transmons state with the |QLQH〉 convention. Plotting the eigenenergies of Eq. (2.33) 2πfij = ωij − ω00

as function of the local magnetic flux of QH (Fig. 2.9) reveals a rich physics. First, besides the expected

quadratic dependence (in first order) (Fig. 2.6), we note that, as we increase the flux, the non com-

putational state |02〉 decreases in energy much more than |01〉 as expected. As a consequence, it is

expected to "cross" the |11〉. Furthermore, due to the negative anharmonicity of this type of transmon,

the |02〉 crosses |11〉 before the crossing of the computational states |01〉 and |10〉.

When zooming in at the point where |11〉 and |02〉 would become degenerate [Fig. 2.9(b)] we instead

find what is know as an avoided crossing – the manifestation of the off-diagonal couplings in Eq. (2.33).
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respect to the sweetspot. Single qubit excitations |10〉 and |01〉 implement an iSWAP gate at ΦiSWAP
(inset on the right). Interactions of |11〉 with non-computational levels |20〉 and |02〉 give rise to CPHASE-
type avoided crossings (inset on the left). Black path between red diamond (initial point) and black dot
(final point) indicates typical CPHASE trajectory [L(t)]. The zero point of energy is chosen to be f00.
(b) Zoom-in at the avoided crossing between |11〉 and |02〉 at ΦCPHASE employed for CZ gating. The
"repulsion" of f11 from the bare f11 = f10 + f01 is denoted by ζ. The splitting at the center of the avoided
crossing corresponds to 2J2.

The insets of Fig. 2.9(a) depict 3 such avoided crossings11 (on each sides of the sweetspot): two of

the CPHASE-type and one of the iSWAP-type. The physics involved is the same in all of them, only

the interacting levels are distinct. In theory, any can be exploited for the implementation of a quantum

gate. However, in practice, only the first avoided crossing is suitable [Fig. 2.9(a), left inset, arrow in

black]. One of the main reasons being the increased sensitivity to flux noise at higher flux amplitudes.

For completeness, a SWAP gate has the single effect of swapping amplitudes of |10〉 and |01〉, while the

iSWAP additionally applies an i phase to these states.

To show the accrual of a relative phase we consider exciting both qubits into |11〉 [Fig. 2.9(a), red

diamond] and applying a flux trajectory L(Φ, t) towards the avoided crossing with |02〉 at ΦCPHASE for

a total time τ in a slow enough manner compared to the timescale set by J2 and then returning back

following the same excursion [Fig. 2.9(a), black trajectory]. Ideally, this ensures that the moving state is

always an eigenstate of the system and |02〉 is never populated. It is common to label such trajectory as

being adiabatic.

As a consequence of the dynamic change of the eigenspace along the trajectory, the moving states

will experience a time-evolution at different rates compared with the sweetspot time-frame. In the com-

putational space the overall effect is captured by the following unitary:

UL =




1 0 0 0

0 eiφ10(L) 0 0

0 0 eiφ01(L) 0

0 0 0 eiφ11(L)



. (2.34)

11There is also an avoided crossing between each qubit and the coupling resonator but the by design the interaction with the
resonator requires much higher flux. See Ref. 13 for a spectroscopy of an avoided crossing with the resonator.
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where

φij [L(t)] =

∫ τ

0

ωij [Φ = 0]− ωij [L(t)] dt (2.35)

is the phase acquired by the state |ij〉 during the trajectory. Because of the repulsion of |11〉 due to the

|02〉 near the avoided crossing, the |11〉 state acquires a phase difference relative to the single excitation

states defined as

ζ(t) = ω11(t)− [ω10(t) + ω01(t)] (2.36)

Now, if we design a trajectory so that

∫ τ

0

ζ[L(t)]dt = φ2Q = φ11(Lπ)− [φ10(Lπ) + φ01(Lπ)] = π, (2.37)

where we call φ2Q the conditional phase. With this, UL becomes

UL =




1 0 0 0

0 eiφ10(Lπ) 0 0

0 0 eiφ01(Lπ) 0

0 0 0 ei[π+φ10(Lπ)+φ01(Lπ)]



. (2.38)

Additionally, φ10(Lπ) and φ01(Lπ) can be nulled with further trajectory design, or by applying weak flux

pulses to both qubits; or even by using a virtual-Z gate [55], where virtual means that no physical pulse

is applied but the effect is carried over into modifying subsequent single-qubit gates [42]. Finally, we

arrive at the CZ unitary:

UL =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiπ




=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




= CZ = exp
[
−iπ

4
(Ẑ ⊗ Ẑ − Ẑ ⊗ Î − Î ⊗ Ẑ)

]
(2.39)

where we emphasize that the avoided crossing with the non-computational state gives rise to an effec-

tive ZZ-coupling within the computational state. Of course, the same recipe holds for implementing a

CPHASE gate with arbitrary conditional phase φ2Q. The first CZ gate employing the |11〉-|02〉 interaction

was experimentally demonstrated a decade ago by DiCarlo et al. [13].

Note that, if the transmons are too close in frequency, the avoided crossing would be much closer to

the sweetspot with a non-negligible always-on residual ZZ-coupling that gives rise to detrimental phase

accrual [see Appendix A.3 for characterization and impact examples]. Same applies for too strong

couplings which motivated reductions from ∼ 100MHz to ∼ 10MHz over the last decade.

Contrasting with the adiabatic approach just presented, we inspect now the ideal extreme of a sudden

pulse. After preparing the transmons in |11〉, we suddenly move the flux amplitude to a point in the vicinity

of ΦCPHASE, letting the system evolve for a time τ , then return to the sweetspot in the same sudden

manner. In fact, even though real pulses have finite rising time, this is a common experiment used

to identify precisely the flux-pulse amplitude (A) of the interaction point. When jumping suddenly into
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Figure 2.10: Simulation of ideal chevron experiment at the CPHASE avoided crossing. (a) Zoom-in at
the avoided crossing at the corresponding flux amplitudes. (b) Experiment waveforms: an X gate is
applied to both qubits to prepare |11〉 followed by a flux pulse of varying amplitude A and duration τ . (c)
Chevron pattern: |02〉 population after the sudden excursion. Complete population swaps occur along
the center of the interaction (vertical dashed line) as indicated in the inset. (d) Corresponding conditional
phase. Contours of full |11〉 population recovery from (c) are indicated with black dashed curves. Optimal
parameters for a CZ gate are indicated by the star at the center of the chevron crossing the first contour.

the avoided crossing the system performs a Larmor-type rotation [42] – a precession-like phenomenon.

Figure 2.10 contains the simulation results of this experiment, namely we plot the probability of finding

the system in the |02〉 state [Fig. 2.10(c)] and the corresponding conditional phase [Fig. 2.10(c)]. The

|02〉 exhibits a typical chevron pattern [56, 57]. At the center of the interaction (vertical dashed line) the

states swap population at a 2J2/2π rate as shown in the inset outlined in white. A CPHASE with arbitrary

conditional phase can be implemented along the valleys of full |11〉 population recovery [black dashed

contours extracted from Fig. 2.10(c) and overlapped on Fig. 2.10(d)]. The J2 rate establishes the fastest

CPHASE gates possible, in particular a tlim = 2π/2J2 = π/J2 for the CZ (indicated by the star).

One disadvantage in interacting with states outside the computational space is that, for small offsets

from the optimal parameters, the system ends up in superposition with those states being very detri-

mental in a two-level-based quantum computation model [58]. We name this phenomenon, leakage L1

which represents the rate or probability (per gate) of any computational state leaving the computational

space. By extension the inverse process is called seepage L2, e.g. the energy decay of a leaked or

spuriously excited |02〉 state. We follow the definitions in Ref. 59 for leakage, seepage and average gate

fidelity (F ).

Being aware of the potential leakage out of the computational state one might consider to employ

the iSWAP interaction that only involves computational states and can be faster through its half-duration
√
iSWAP variant, however, experimentally there is always a small probability of interaction when tres-

passing the CPHASE avoided crossing due to finite rise time, which defeats the initial purpose.

Historically, on one side, linear-dynamical distortion in flux-control lines and limited time resolution

in arbitrary waveform generators (AWGs) bottlenecked the performance of unipolar square pulses [56].

On the other side, real qubits with limited life-time and a long adiabatic trajectory, as introduced in

the beginning of the subsection, is clearly a poor practical combination, and simply speeding up the

trajectory translates into leakage. Many efforts went into designing adiabatic trajectories compatible

with the quantum error correction threshold (∼ 1%). Eventually softened (unipolar) pulses [60, 61]
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with fidelities above 99% superseded the square counterparts, culminating in a promising fast-adiabatic

theory targeted to transmons [34] and only slightly longer than tlim. The research continued in the pursue

of higher performance and practical calibrations [62]. However, unipolar pulses have been shown to

suffer from long timescale distortions hindering the gate repeatability – essential for quantum circuits

of greater depth. As a solution, the Net-Zero (NZ) bipolar pulses based on the fast-adiabatic theory

were introduced [39], being the state of the art at the beginning of this work. A further overview of this

approach is presented in Section 2.4.4.

2.3 Experimental aspects of quantum computation

2.3.1 Implementations of quantum operations

The physical implementation of quantum operations depends on the type of qubits and chip architec-

ture adopted. In this subsection we briefly look at initial state preparation that is common to most

implementations. In Section 2.4 we present an overview of the implementations of quantum gates and

measurements (read-out), where we focus on Transmons and the specific chips that were used.

Initial state preparation

Experimentally, some of the difficulties with initial state preparation arise from the thermalization with the

environment due to the closeness of the transition energy between the states |0〉 and |1〉 and the thermal

energy, kBT , typical to many physical implementations.

Two examples of initializing a qubit into a known state are: initialization by measurement and ground

state preparation by energy decay. In the first case, we rely on a high fidelity projective measurement

that is able to reliably measure the qubit and also project the qubit into the corresponding state of the

measurement outcome. Note that, even though the measurement statistics for a specific state may

represent the measured state reliably, it is not guaranteed that the post-measurement state is the same,

depending on how the measurement is performed. The second example is a common practice that

relies on the relaxation of the qubit’s energy into the environment. If we just wait enough time the qubit

will decay into the ground state, typically represented by |0〉. In practice, for sub-Kelvin energy scales

enough time is on the order of hundreds of microseconds (a few qubit life-times). In the devices used in

this work the initialization is based on the energy relaxation.

2.3.2 Faulty physical qubits and quantum gates

In practice, the physical gates applied to the qubits deviate from the theoretical ones. The best error rates

achieved in quantum operations, are commonly on the order of 10−4, i.e. one error in 104 operations,

for single-qubit gates, and 10−3 for two-qubit gates [63], while, for comparison, in modern digital circuits

gate errors are below 10−7 [64].
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2.3.3 Qubit connectivity

In order to perform multi-qubit gates, the relevant qubits need to be connected in such a way that it

is possible for them to interact. This is achieved in different ways, depending on the implementation.

Unlike the quantum circuit abstraction, quantum chips usually do not have all-to-all connectivity between

qubits. That is, the qubit connectivity graph is not a complete graph, since such a feature poses great

engineering challenges. Furthermore, complete graph connectivity may not even be desirable, since

crosstalk12 is an experimental issue [65]: all-to-all connectivity would facilitate crosstalk, deteriorating the

device performance. From a feasibility point of view, the most promising connectivity graph topologies,

are the 2D lattices and variants thereof. In such a topology, qubits are connected with the nearest 4

(sometimes 5) qubits. This type of connectivity constraint is called "nearest neighbor" connectivity.

2.3.4 The system stack for a quantum computer

Quantum computers are not entirely quantum, they heavily rely on their classical counterparts plus

a lot of specialized, custom made digital and analog electronics. This applies to the current era of

Noisy-Intermediate Scale Quantum (NISQ) device and beyond. They will act as an accelerator for

the classical processors splitting algorithms optimally between both. An entire technological stack is

required for a fully functional general-purpose quantum computer. It might be early to judge if a particular

design of the stack is appropriate for a device yet to fully be explored by users, but promising and

elaborated designs have already been proposed, such as the one in Ref. 66 developed at TU Delft.

It organizes and delineates several interconnected layers of abstraction. In simplified terms, it can be

described as follows. A quantum algorithm is implemented by a quantum program which is interpreted

by a (quantum13) compiler, which outputs instructions of a hardware-aware microarchitecture executable

by the quantum-classical electronics interface to the quantum chip.

2.3.5 Quantum computing long-term prospects

The reader might be wondering how can a useful quantum computer still be built and operated with

all the apparent never ending adversities in all the aspects discussed so far. But there is hope! The

research has shown that it is possible to achieve useful computations with faulty physical quantum

processors [15, 17, 67]. The short and mid term applications [14] might steer the developments into

new directions, nevertheless, so far, the long-term goal is to achieve a universal Fault-Tolerant Quantum

Computer. Without going deep into the details, the roadmap comprises running a logical quantum circuit

encoded redundantly by physical qubits in an architecture such as the Surface Code [17, 67] or variants

thereof [68], allowing for Quantum Error Detection and Quantum Error Correction (QEC).

The Surface Code is a quantum error correcting code with attractive properties [42]. It has a fault-

tolerance threshold14 of ∼ 1% that has already been achieved in experiments for both single and two-

12Crosstalk is loosely used to generally refer to different types of undesired interaction and effects. Ref. [65] is a recent attempt
to formalize and systematize the topic.

13In the sense that a classical computer is e.g. simplifying and optimally re-arranging the quantum circuit.
14Lower bound on the quality of qubit operations that allows for effective quantum error correction.
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Figure 2.11: Overview of a typical experimental setup employed for transmon research. The quantum
chip (a) is placed in a dilution refrigerator (b) maintained in vacuum at mK temperatures (c). By timely
outputting electrical pulses and processing output signals, the room-temperature electronics (d) interface
with the chip through coaxial cables and implement quantum circuits (e). Credits optical image (a):
fabrication team DiCarlo Lab, QuTech. Pictures (b), (c) and (d) were taken in DiCarlo Lab, QuTech.
Figure (e) adapted from Ref. 17.

qubit gates, which, in principle, allows the overall error-rate of the logical quantum circuit to be reduced

by adding more qubits to the circuit. Combined with the need for only nearest-neighbor coupling, it is one

of the most promising quantum error correction codes for medium-to-large scale quantum computing in

solid state systems. We are on the corner of the single logical qubit milestone, and many challenges are

to be overcome in the field. The work developed for this thesis are aligned with the developments of a

Quantum Circuit and Control for a Superconducting Surface Code as described in Ref. 17.

2.4 Transmon experimental overview

An overview of a typical experimental setup used for transmon research is depicted in Fig. 2.11. The

superconducting transmon chip is placed inside a dilution refrigerator that maintains it under vacuum

at the coldest stage of a few mK. The terminals of the chip are routed up to the room-temperature

electronics using coaxial cables (appropriate for each stage of the dilution refrigerator). The electronics

are responsible for generating the electrical control pulses and analyzing the output signals. Commonly

used instruments include high precision sinusoidal signal generators in the microwave range (in many

context referred to as local oscillator, LO), high definition arbitrary waveform generators (HDAWG) with

nanosecond resolution and sophisticated analog to digital converters (in our case a Zurich Instrument

UHFQA). The instruments responsible for generating the waveforms are orchestrated by a central con-

troller (CC) that is instructed by the classical computer of the experimentalist. The central controller is a

critical component that ensures the pulses are timely played according to the intended quantum circuit.

It is important to note that between the room-temperature electronics and the chip there are several

other elements (at room-temperature and inside the fridge) that are intended to maximize the signal to

noise ratio (SNR) in both directions and isolate the chip environment from the outside noise (and heat).

Such components include attenuators, amplifiers and circulators, along with signal splitters, mixer, etc..
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Physical property D1 D2 Z1 X1 Z2 D3 D4

Sweetspot frequency 6.433 6.252 5.771 5.887 5.785 4.534 4.560
f0→1,max (GHz)

Anharmonicity, α (MHz) -273.0 -305.0 -318.0 -318.0 -318.0 -317.0 -318.0
T1 (µs) 39 – 38 53 – 66 –
T ∗2 (µs) 55 – 62 93 – 105 –
T2 (µs) 49 – 58 61 – 40 –

|11〉-|02〉 coupling strength D1 D2 Z1 X1 Z2
J2 (MHz)

Z1 17.34
X1 17.48 16.66
Z2 16.74
D3 13.94 14.57
D4 13.90 14.59

Table 2.1: Physical properties of transmons on device C. Some anharmonicities are rough estimates
(extrapolated from qubits on the device with same range of frequencies). T ∗2 and T2 are two metrics
for the dephasing time. The coherence metrics for D2, Z2 and D4 are omitted due to lack of recent
measurements.

2.4.1 The physical chip

During the work developed for this project I had the opportunity to work on two experimental setups, each

enclosing in its cryogenic fridge a superconducting device (thin film chip fabricated on silicon wafers),

corresponding to two iteration of the same Lateral Surface-7 (S7) design. This document refers to them

as device C and device S. They were usually operated in an environment at about 10 − 15 mK (mixing

chamber temperature).

The optical image of the device S is shown in Fig. 2.12 and the corresponding schematic in Fig. 2.14.

The chip has 7 qubits designed in a configuration representing a sub-patch of the Surface Code architec-

ture as described in [17]. Qubits color indicate their relative frequencies: purple for high-frequency (tar-

geted at 6.7GHz), green and blue for mid-frequency (6.0GHz target) and red for low-frequency (4.9GHz).

For the Surface Code all qubits have connectivity to 4 nearest qubits. In this small patch (Surface 7)

only qubit X1 is coupled to other 4 qubits, the rest are coupled only to two other qubits. The inter-qubit

bus-resonators are targeted in the 24− 29GHz frequency range.

All qubits have individual dedicated drive lines (input terminals annotated with brown in Fig. 2.12) that

are coupled to microwave sources and used to implement single-qubit gates; and individual flux lines

(yellow input terminals in Fig. 2.12) used to implement two-qubit gates between qubits with adjacent

frequencies (and also avoid undesired interactions with the non-participating qubits during the two-qubit

gates).

Readout is performed through two feedlines (terminals marked with violet in Fig. 2.12) shared be-

tween several qubits. Each feedline has an associated resonator (coupled capacitively). Each qubit is

coupled to a feedline through a Purcell filter15 [see Fig. 2.13(b) for a zoom-in on a section of a Purcell

filter]. In some cases, if the coupling of the drive lines to the qubits is too weak (or damaged) it is possible

to drive the qubits through the feedline instead, which was the case for qubits X1 and D3 on device C.

15See Ref. 41 for details on Purcell effect.
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Physical property D2 X1

Sweetspot frequency, f0→1,max (GHz) 7.111 6.259
Anharmonicity, α (MHz) -258.1 -289.1

T1 (µs) ∼8-18 ∼7-18
T ∗2 (µs) ∼8-30 ∼7-25
T2 (µs) ∼10-30 ∼6-30

|11〉-|02〉 coupling strength, J2 (MHz) 18.18

Table 2.2: Physical properties of transmons on device S. Some anharmonicities are rough estimates
(extrapolated from qubits on the device with same range of frequencies).

Figure 2.13 presents a few zoom-ins on the device in Fig. 2.12. From the initial discovery of the

transmon the superconducting device have evolved significantly and grown in complexity. Figure 2.13(a)

depicts an exemplary transmon qubit. It is composed of two main islands connected by the SQUID loop

[Fig. 2.13(c)]. The geometry of the islands define a parallel-plates capacitor and at the same time couple

the qubit capacitively with other qubits (orange terminals), the drive line (brown terminal) and the Purcell

filter that connects to the feedline (violet terminal). Figure 2.13(c) show the SQUID loop in detail, the

Josephson junctions and the flux line loop that generates the magnetic flux in the SQUID loop. In order

to guarantee a uniform electrical ground plane on the device, airbridges are used to connect ground

plane islands that are separated by waveguides [Fig. 2.13(b)]. As the number of qubits and control

lines on a chip increase, ingenious connectivity is required. A first step on alleviating this is the use of

the airbridges to crossover waveguides as shown in Fig. 2.13(d). As a next step vertical input/output

connections are being investigated.

Tables 2.1 and 2.2 contain the relevant physical properties for the qubits on device C and device S,

respectively. In case of device S we list only two qubits as the rest were not usable in the context of

two-qubit gates due to fabrication and technical issues. From these tables it is clear that most qubits

deviate significantly from the target (maximum) frequencies, which is still one of the main challenges in

the field. Despite being possible to operate qubits below their maximum frequency, in this work all qubits

were calibrated and operated at the sweetspot (maximum frequency) to minimize flux-noise impact.

2.4.2 Single-qubit gates

The working principle of a typical setup used to implement the single-qubit gates as described in Sec-

tion 2.2.4 is depicted in Fig. 2.15. The sinusoidal signal from a local oscillator (LO) at a frequency equal

to or close to the qubit frequency (f0→1) is shaped by the Gaussian I and Q envelopes using a mixer

whose output controls the qubit state through the drive line capacitively coupled to the qubit. The pulse

duration used in our setups and targeted for the Surface Code is 20 ns long. It is often the case that

the LO is shared between qubits with distinct frequencies for a more compact setup. Figure 2.15 cov-

ers such a case: the I and Q incorporate a modulation frequency such that the driving frequency (ωd)

matches the qubit frequency16.

In order to farther understand the transmon state evolution subject to a driving pulse, it is necessary

16Note that even the most advanced AWGs will not be able to generate frequencies above ∼ 1GHz, therefore a dedicated
high-frequency source (LO) is essential.
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Figure 2.12: Annotated optical image (top view) of device S employing the Lateral S7 design. Small
colored circles on the borders indicate all input/outputs of the chip: flux lines (yellow), drive lines (brown)
and feedlines (violet). Corresponding schematics of the chip illustrated in Fig. 2.14. See Fig. 2.13(a) for
a zoom-in on an individual qubit. Main text contains further details. Credits original image: fabrication
team, DiCarlo Lab, QuTech.
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Figure 2.13: Zoom-ins on selected regions of Fig. 2.12. (a) Structure of D3 representative of all qubits.
Orange terminals couple to other qubits (only two in this case). Flux line (yellow terminal) is shorted
to the ground plane conducting the current that implements the magnetic flux through the SQUID loop.
(b) Detailed view of the airbridges and the capacitive couplings of the Purcell filter. (c) Zoom-in on the
SQUID loop. (d) Zoom-in on one of the crossovers. Airbridges are used to route a waveguide over
another one. Credits original images: fabrication team, DiCarlo Lab, QuTech.
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qubit connectivity and their (compass) direction indicates which qubit has its frequency tuned down when
performing a two-qubit gate. The two violet diagonal stripes represent the feedlines.
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for each gate (colors indicate the corresponding gate). For simplicity only the envelops of the pulses are
depicted.
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to introduce an intuitive single-qubit gate notation. Throughout this document we write everything in the

computational basis {|0〉 , |1〉} (eigenstates of σ̂z = Ẑ) with the corresponding {+1,−1} eigenvalues. As

the Bloch sphere representation suggests, a single-qubit gate can be seen as a rotation of an angle θ

around an axis intersecting the center of the sphere, e.g. rotations around the ŷ-axis are written as:

Yθ = RY(θ) = e−i
θ
2 σ̂y = cos(θ/2)− i sin(θ/2)σ̂y. (2.40)

The shorthand X = Xπ (and similarly for Y and Z) is commonly used and sometimes referred to as a

"π-pulse", and similarly "−π/2-pulse" for θ = −π/2.

We can now examine Fig. 2.16 that depicts, for 3 cases, a simple single qubit quantum circuit com-

posed of two single-qubit gates (Yπ and X−π/2) applied sequentially in time. Along with it we plot the

corresponding exemplary I and Q envelop waveforms. In the same figure, the evolution of the qubit (in

the computational basis) is sampled in time and depicted on the Bloch sphere. Fig. 2.16(a) paints the

ideal qubit scenario that has only two energy levels and the gates implementation is straightforward with

perfect arcs on the Bloch sphere. However, the reality is closer to Fig. 2.16(b), where a transmon with

3 levels is considered, showing how the simple Gaussian envelops are not enough to easily accomplish

the desired operations in the computational subspace and without leaving it. The standard technique

used to overcome these issues introduced by Motzoi et al. [69] is known as Derivative Reduction by

Adiabatic Gate, DRAG for short. It involves modifying the envelops such that one of the envelops is the

derivative of the other one up to a factor, λ, to be calibrated:

εDRAG(t) =




ε(t) for I

λ ε̇(t)α for Q.
(2.41)

Single-qubit gates calibration

The calibration of the derivative amplitude, λ, on its own, presents a trade-off between minimizing leak-

age out of the computations space and avoiding accumulation of relative phase error between |0〉 and

|1〉. An extension to the DRAG scheme, that involves changing slightly the driving frequency has been

shown to solve both issues [70, 71]. To summarize, the calibration requires a simultaneous optimal

choice of the parameters {Gaussian envelop amplitude, λ, ωd}. Note that it is enough to calibrate this

parameters for a π-pulse and solve the required parameters for any other rotation. On a daily base,

an experimentalist can access qualitatively the calibration state of the single-qubit gates with a simple

experiment called AllXY that applies two consecutive single-qubit gates with all the combinations from

the {I,Xπ,Xπ/2,Yπ,Yπ/2} set. An example is shown in Fig. 2.17. Common patterns of the deviations

from the ideal in this figure help troubleshooting for common issues. Each data point on such a plot

corresponds to repeating and measuring the same quantum circuit over and over again on the order of

1000-10000 times17 in order to evaluate the probability of the outcome with low enough statistical error.

Besides that there are measurement deviations that only manifest themselves on larger times scales, for

17This particular experiment will take a under a minute of wall clock.
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Figure 2.18: Example of an assessment of single-
qubit gates using randomized benchmarking with
leakage modifications. M0 is the survival prob-
ability of recovering |0〉. χ1 is the population in
the computation subspace. Horizontal axis cor-
responds to the length of the random sequences.
The RB fit takes into account the leakage but it is
low enough to have negligible effect in this case.
Dataset generated with routines from Ref. 25.

this reason, in the particular experiment of Fig. 2.17, each data point is evaluated twice (two consecutive

blue points) as a mean for qualitatively evaluating the noise (the gates might be well calibrated but the

measurement can still be noisy).

For a quantitative assessment the standard technique in our lab is the randomized benchmarking

(RB) [72] with modifications for leakage evaluation [73, 74] (and variants thereof). Figure 2.18 presents

the analysis of a randomized benchmarking experiment for a good calibration: low error rate ε ∼ 10−3

(per gate) and low leakage rate L1 . 10−3 (per gate). The main plot presents the exponential decay of

the probability of recovering the ground state (|0〉) after applying consecutively longer random sequences

of Clifford gates18 (achieved by appending the single Clifford gate inverting the action of the random

sequence). The second plot presents the population of the computation space, χ1, i.e. the probability

of not leaking. L2 stands for the rate of seepage back into the computational subspace from a leaked or

sporadically higher excited state19.

2.4.3 Qubits readout

As with much of this background overview, there is a lot to be said on the topic of qubits readout (RO)

in the context superconducting transmons. This subsection provides a superficial summary based on

the more detailed introduction from Ref. 42 and highlights key aspects focused on the implementation

in our lab. The quantum measurement is described as entangling a qubit with a variable (observable) of

a probe (in our case the superconducting resonator coupling the qubit to a feedline) and performing a

classical measurement of the probe – measuring the resonator reaction to a microwave pulse sent into

18The Clifford group for single-qubit gates is composed of 24 gates. More than one physical operation per Clifford may be
necessary. An extra π0→1-pulse needs to be applied at the end of the sequence for L1 measurement (it has no effect on |2〉).

19L1 and L2 are independent rates per gate. L2 can be higher than L1 depending on the coherence of computational and
non-computational states (here assumed to correspond only to the |2〉 state).
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Figure 2.19: Dispersive frequency shift of
the readout resonator observed through spec-
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S. Credits datasets: J. F. Marques.
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Figure 2.20: Read-out histograms for a transmon,
prepared in |0〉 , |1〉 and |2〉, represented on the
(I, Q)-plane. For the |2〉 state the transmon is ex-
cited with a driving pulse calibrated for the |1〉 → |2〉
transition after preparing |1〉. Dataset generated with
routines from Ref. 25.

the feedline. The dispersive (frequency) shift presented earlier allows to map the qubit state onto the

response of the resonator. This is clearly seen in Fig. 2.19 where the spectroscopy of the feedline reveals

two distinct resonant frequencies depending on the qubit state. There is no energy exchange between

the RO resonator and the qubit, instead they affect each other’s energy levels. The optimization and

calibration of the read-out consists of achieving the best signal-to-noise ration (SNR) of the microwave

signal that probes the resonator.

The interaction term, χσ̂zâ†â, in Eq. (2.17) commutes with the qubit observable (as an approximation)

resulting in a quantum non-demolition (QND) measurement. We aim at QND measurements in our

architecture and it is important for running cycles of the Surface Code. Unfortunately, the dispersive

regime approximation breaks down for a critical photon number in the resonator which imposes an upper

bound on the RO pulse power for a QND measurement. The RO circuit can be implemented sampling

the feedline reflection or the transmission. In our architecture transmission is used: each feedline has

an input and an output (see Fig. 2.12). Even though Fig. 2.19 might suggest that it would be enough

to probe the resonator at the frequency of one of the deeps, it has been shown that the optimal state

discrimination happens when probing at the frequency exactly in between the deeps in which case most

of the qubit state information is contained in the phase of the demodulated signal. The output RO signal,

s(t), can be represented as a static phasor at the known frequency, ωRO, as follows:

s(t) =ARO cos(ωROt+ θRO) = Re{ARO exp (iθRO)︸ ︷︷ ︸
phasor

exp (iωROt)} (2.42)

ARO exp (iθRO) =ARO cos(θRO) + iARO sin(θRO) ≡ I + iQ (2.43)

where ARO and θRO are the amplitude and the phase of the feedline output, and the exact same infor-

mation is encoded in an I (in phase) and Q (in quadrature) notation, often referred to as the (I, Q)-plane.

Figure 2.20 exemplifies this concept for the (demodulated) read-out voltages of the first 3 levels of an

exemplary transmon. The position of the centroids of the histograms can vary significantly even between

34



similar transmons, namely, with the |2〉 state at different locations relative two the other two states. The

best qubit state discrimination is achieved maximizing the separation between the computational states

on the (I, Q)-plane – an optimization that starts at the chip-design level with optimal choice of qubit-

resonator frequency detuning.

Conceptually, in order to measure the I and Q components the experimental setup required cor-

responds (putting it in very simple terms) to the inverse of the one employed for single-qubit gates

(Fig. 2.15), i.e. the feedline output is demodulated and the I and Q signals are sampled with a DAC (dig-

ital to analog converter). In a single qubit world the most simple setup that could be used, in principle,

is known an as homodyne measurement that involves an LO at frequency ωRO and simply averaging

the digitized signals for the I and Q components. Beside several technical disadvantages, this scheme

does not support FDM (frequency division multiplexing), i.e. it does not allow to have a combination of

signals with distinct frequencies, each frequency probing a specific qubit resonator simultaneously. The

solution scheme is called heterodyne measurement that involves a two-step demodulation through an

intermediate frequency, ωIF . In a first step, an analog demodulation to unique IF frequencies is used,

followed by an extra digital demodulation step that extracts the desired I and Q voltages (or equivalently

the amplitude and phase, ARO and θRO). Reasonable spacing between the frequencies is necessary to

avoid interference during the demodulation process. We use heterodyne demodulation in our setups. A

feedline is shared between several qubits allowing for more compact hardware and improved scalability.
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Figure 2.21: Single Shot Read-Out (SSRO) his-
togram. Gaussian on the left (right) corresponds
to the counts when preparing the |0〉 (|1〉) state and
projecting onto the line crossing the two state his-
tograms in Fig. 2.20. Generated with routines from
Ref. 25.

The RO calibration comprises the optimization of

3 parameters of the feedline input RO signal:

pulse amplitude, duration and frequency. Choos-

ing the frequency does not comprise a big chal-

lenge. However, the pulse amplitude and duration

are interdependent. Their calibration is time con-

suming. A calibrated RO involves the integration20

of the demodulated I(t) and Q(t) signals (usually

over about 400 ns) which are weighted by a time

series, w(t) ∈ C, called optimal weights, that is

obtained from the difference between the feedline

response when probing the transmon in the |0〉 and |1〉 states. For each combination of RO amplitude

and duration that is tested, it is necessary to determine the optimal weights from new measurements

which make the RO optimization take on the order of 0.5 − 1 h per transmon. In principle, it could be

parallelized to calibrate the multiplexed RO of all qubits sharing the same feedline.

After calibrating the optimal weights, we can rotate the (I, Q)-plane, based on the experiment of

Fig. 2.20, in such a way that the states |0〉 and |1〉 end up, for example, on the I axis. This is done

directly in the physical instrument responsible for the RO (UHFQA) with the advantage that a single

20Discrete integration at the sampling rate of the DAC.
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quadrature contains the information of the qubit state. Such a RO mode (see Fig. 2.21) is known as

Single Shot Read-Out (SSRO) due to the possibility to determine, ideally, the qubit state from a single

RO pulse. Furthermore, as indicated by the vertical line in the same figure, an optimal threshold can

be used (configured in the UHFQA) to discriminate both states for each individual measurement with a

binary output, i.e. a digitized RO mode. This mode is essential for future applications, namely classical

feedback, essential for quantum error correction, that requires the ability to apply quantum gates condi-

tional on the output of previous measurements, in real time, within tens of nanoseconds (fraction of qubit

lifetime).

2.4.4 Two-qubit gate: Net-Zero

The CZ implementation makes it inherently vulnerable to flux-noise due to increased sensitivity away

from the sweetspot, and to leakage of information from the computational subspace due to the inter-

action with the |02〉 state. The latter issue was significantly alleviated by the fast-adiabatic pulse shap-

ing [34]. However, unipolar pulses (adiabatic or not), if uncompensated, suffer from distortions in the

flux-control lines originating from limited waveform-generator bandwidth, high-pass bias tees21, low-pass

filters, impedance mismatches, on-chip response, etc., which may result in a history-depend flux pulse

impacting the gate repeatability. For experiments with quantum operations predetermined before exe-

cution, calculating predistortions has been the common practice, unfortunately, as we move towards a

programmable quantum computer supporting classical control flow and feedback, this becomes unfea-

sible at run-time [39].

Figure 2.22: (a) Schematic comparison between
an unipolar adiabatic pulse and the Net-Zero bipo-
lar pulse implementing CZ gates. (b) Correspond-
ing transmon energy levels, |11〉 and |02〉, as a
function of the flux (linearly dependent on pulse
amplitude). Adapted from Ref. 39.

At the beginning of this work, the Net-Zero

(NZ) bipolar flux pulse for the implementation of

the CZ gate was the state of the art after its

recent discovery in the same laboratory by Rol

et al. [39] and quickly adopted in several experi-

ments [18, 75, 76]. It solves the repeatability prob-

lem with great performance, both in terms of fidelity

(> 99%) and leakage (> 0.1%). This is achieved

with a zero-average bipolar flux-pulse [Fig. 2.22(a)]

made possible by the transmon flux-symmetry [Fig. 2.22(b)] that allows to use the |11〉-|02〉 avoided

crossing twice (one time on each side of the sweetspot). The resulting gate is as fast as the unipolar

counterpart. Additionally, when interacting with |02〉 for the second time, an interference effect con-

tributes to reducing leakage (partial analogy to a Mach-Zehnder interferometer). Most importantly, the

zero-average property of the NZ provides resilience against long-timescales distortions (remaining in the

flux lines after pre-compensation with real-time filters), hence the dependence on the flux-line history

is diminished and the CZ becomes repeatable [29, 77]. Following the main NZ pulse, due to current

hardware limitations, the single-qubit phases, φ01 and φ10 (see Section 2.2.6), are calibrated to zero

21In general, a transmon requires a static magnetic flux to compensate sweetspot offsets. A bias tee can be used to combine a
DC current and the output of an AWG for flux pulsing. Repeated unipolar pulsing may result in a drifting bias tee.
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through two simultaneous weaker and shorter bipolar flux pulses on each qubit [inset in Fig. 2.24(a)].

Cryoscope technique overview

Tapping into the high performance NZ-based gates requires a good characterization and compensation

of the distortions in the flux lines that prevent a target waveform A(t) generated by an AWG to retain

its shape when reaching the transmons. Modeling the flux line as a linear time-invariant system, the

issue is solved by first characterizing its impulse response h(t) and reverting it with a filter h̃−1 [29].

The Cryoscope technique has been developed to achieve this [31]. As a brief overview, the Cryoscope

essence consists of an experiment in which we move the Bloch vector of the qubit to the equator, by

applying e.g. an Xπ/2 gate, followed by a square flux pulse Aτ of fixed amplitude. When the qubit is

moved away from its operating point (sweetspot) its Bloch vector will experience a precession on the

equator plane (when measured in the sweetspot frame). The accumulated quantum phase of the qubit,

at the end of the pulse, corresponds to an integration of its frequency detuning due to the (distorted)

flux trajectory that it experiences. In subsequent experiments, we increase the pulse duration τ in

steps at the maximum resolution allowed by the AWG. To an excellent extent, the accumulated phase

as a function of τ can be discretely derived to recover the frequency trajectory, and therefore also the

flux experienced by the transmon at each τ , hence h(t) is determined. Most of the time, h̃−1 is well

approximated by a combination of one finite impulse response (FIR) and 3 or 4 infinite impulse response

(IIR/exponential) filters, both of which are readily available at hardware level in the Zurich Instruments

HDAWG waveform generator with the predistortions calculated in real-time.

NZ calibration landscapes

After we are confident that the flux-line response has been precompensated, the calibration of the NZ

waveform begins. Usually, the total pulse duration is fixed above the minimum imposed by the coupling

strength (J2). Two main parameters θf and λ2 determine the shape of a half-pulse through a non-

linear parameterization inspired from Ref. 34. Loosely speaking, θf defines the overall amplitude of

the pulse with the center of the avoided crossing at θf = π/2, and λ2 the sharpness of the pulse

rise/fall. Figure 2.23 displays an example of the measured landscapes of the conditional phase φ2Q

and corresponding leakage estimate L̃1 in this parameter space for the transmon-pair used by Rol et al.

[39]. Along with it, the authors have demonstrated well matching simulations when modeling the system

realistically based on experimental characterization of the device [Figs. 2.23(c) and 2.23(d)]. It is easy

to see that an optimal region where the 180◦ conditional phase contour coincides with the low leakage

fringe at θf ≈ 63◦ is available for a CZ calibration.

With further optimization it was possible to push the performance of this gate above 99% as charac-

terized by the fidelity (F ) to the CZ unitary extracted from the standard interleaved two-qubit randomized

benchmarking (2QIRB) with modifications to account for leakage [Fig. 2.24]. Unfortunately, part of the

optimization is somewhat laborious because, besides feeding the simulations with accurate character-

ization of the device, it requires to first heuristically optimization the pulse duration in simulation. This
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Figure 2.23: Conventional NZ calibration land-
scapes example and matching simulation. For
rough intuition, θf controls (non-linearly) the over-
all pulse amplitude and λ2 the sharpness of the
rise and fall of the pulse. (a, b) Experimental land-
scapes of the leakage estimate L̃1 and correspond-
ing conditional phase. Optimal calibration condi-
tions were met at the overlap of the 180 ◦ contour
with the low-leakage fringe. (c, d) Closely matching
simulations. Adapted from Ref. 39.

Figure 2.24: NZ CZ performance assessment
characterized by two-qubit interleaved randomized
benchmarking (2QIRB) with leakage modification.
Horizontal axis corresponds to the number of two-
qubit cliffords in the randomized sequence in the
reference curve. The interleaved curve corre-
sponds to interleaving the two-qubit cliffords of the
reference curve with the CZ gates for the same
randomized sequence. (a) |00〉 survival probabil-
ity, M0. (b) Computation subspace population, χ1.
Adapted from Ref. 39.

scales up the complexity of the problem even in simulation. Note that in experiment it is almost un-

feasible owing to the ∼ 30 s necessary to evaluate a single point on the landscape shown in Fig. 2.24.

Furthermore, despite its current adoption, the complex structure and interdependence of the calibration

landscapes limits the use of the NZ as quantum processors grow in qubit number. It is worth empha-

sizing that the qualitative features of the landscapes of Figure 2.23 vary significantly between pulse

durations and among transmon-pairs as testified during this work. The overlap of the lowest leakage

with φ2Q = 180◦ contour is a condition rather rare and hard to meet. This remaining challenge is suc-

cessfully addressed in Chapter 5 superseding the conventional NZ discussed so far. For this reason,

some aspects specific to the NZ only will not be explored thoroughly.

Conditional oscillation experiment: CZ calibration

We shall now elaborate on how the conditional phase (φ2Q), the leakage (L1) and the single-qubit phases

(φ10 and φ01) are estimated experimentally and how these experiments are used to calibrate a CZ gate

(or an arbitrary CPHASE gate). To this end, several iteration of the conditional oscillation experiment [29]

are carried out. The procedure is illustrated in Fig. 2.25 and was extensively used throughout this work.

The left-side plots correspond always to the high-frequency qubit. Due to potential drift of the system

parameters during the optimization process, RO calibration points for all 4 computational states are

measured and used as normalization reference (purple triangles). The uncertainty of the quantities of

interest measured is omitted for figure clarity.

Each Ramsey-like experiment consists of two variants of the same quantum circuit. In the first variant,

the control qubit (Qcontr.) is prepared in |0〉 and considered to be off [Fig. 2.25(a)]. In the on variant, it is
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prepared in |1〉 with an Xπ gate [Fig. 2.25(b)]. The two variants allow to estimate φ2Q, L1 and the single-

qubit phase of the qubit taking the role of the target (Qtarg.). In both cases, Qtarg. is prepared in a maximal

superposition by moving its Bloch vector to the equator through an Xπ/2 gate. Next, follows the flux pulse

intended to implement the CZ. At the end, a ϕπ/2 operation is applied to Qtarg. that corresponds to a

single-qubit rotation of π/2 around an axis on the equator that makes an angle ϕ with the x̂ axis. In

parallel, in the on sequence a second Xπ pulse is applied to Qcontr.. The blue solid (silver dashed) curves

indicate the experimental results from the on (off ) variant. Each data-point on a curve is obtained by

averaging (typically in hardware) over 1000 repetitions of the quantum circuit for each ϕ.

Qtarg. |0〉 Xπ/2 ϕπ/2

Qcontr. |0〉

(a)Qcontrl. off
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Qcontr. |0〉 Xπ Xπ

(b)Qcontrl. on

0.0

0.5

1.0

φ2Q'−55.1◦

φ01'22.4◦

(c)

QH , Population |1〉

m=2L̃1'0.26
(d)

QL , Population |1〉
Qcontr. on fit
Qcontr. off fit
RO Calibr. states

0.0

0.5

1.0 φ2Q'180.2◦
φ01'239.7◦

(e)
m'0.005

(f)

0.0

0.5

1.0

(g)
φ2Q'180.2◦
φ10'−3.2◦ (h)

0.0

0.5

1.0

φ2Q'180.5◦
φ01'−0.4◦ (i)

m'0.010

(j)

0

6
0

1
2
0

1
8
0

2
4
0

3
0
0

0
0

0
1

1
0

1
1

Qtarg. rotation axis, ϕ (◦)

0.0

0.5

1.0

(k)

0

6
0

1
2
0

1
8
0

2
4
0

3
0
0

0
0

0
1

1
0

1
1

Qtarg. rotation axis, ϕ (◦)

φ2Q'179.6◦
φ10'0.2◦ (l)

Figure 2.25: CZ calibration steps via conditional oscillation ex-
periments. See main text for details. Datasets generated with
routines from Ref. 25.

The single-qubit phase is measured

directly from Qtarg. oscillation when

Qcontr. is off [see Fig. 2.25(c)]. The

other single-qubit phase requires a

measurement of the off sequence in

which the qubits swap the control and

target roles [Figs. 2.25(h) and 2.25(l),

the thick frame indicates the qubit as-

suming Qcontr. role]. The conditional

phase is calculated as the difference

between the phase acquired by the

Qtarg. in the on and off sequences:

φ2Q = φ(Qtarg.)
off − φ(Qtarg.)

on. When

the role of the qubits is swapped we

might find some small discrepancies in

its value due to systematic coherent er-

rors (e.g. RO crosstalk, residual ZZ-

coupling).

To understand how leakage is esti-

mated, consider the case when QL =

Qcontr. and the system is left in the |02〉

state after the flux pulse. The second

X gate on Qcontr. will produce an exci-

tation (|02〉 → |12〉), instead of remov-

ing it as it would be with no leakage

(|11〉 → |01〉). Under no noise and

no leakage to other levels, defining the

missing fraction m = P|1〉(Qcontr.)
on −

P|1〉(Qcontr.)
off we would have L1 =

m/2. Realistic simulations have shown that this holds well enough [39], and therefore we estimate

leakage as L̃1 = m/2. Even though the transmons suffers from energy relaxation which makes L̃1

39



overestimate L1 slightly, for calibration purposes the locations of the lowest leakage will be accurately

determined. Note that it is not possible to estimate leakage with this procedure when QH = Qcontr.. As an

alternative the |2〉 population could be measured directly (see Fig. 2.20) at the cost of added complexity

to the RO scheme, data processing, etc. and crucially time overhead. Similar considerations discard the

randomized benchmarking for practical calibrations of this two-qubit gate.

With rough knowledge of the flux-pulse parameters that bring |11〉 and |02〉 close to interaction a non-

zero conditional phase will be observed likely with significant leakage [Figs. 2.25(c) and 2.25(d)]. This is

an uncalibrated gate (denoted by the red frames). The calibration is composed of two sequential stages

(the final state of each is denoted by the orange and green frames). In the first stage, the parameter

space of the main flux pulse is explored in order to find the target φ2Q (180◦ for CZ) and minimize L̃1. In

general, these quantities are tightly interdependent in non-trivial ways in the NZ case, hence the search

space is at least two-dimensional. This stage is the most challenging and time-consuming.

Upon success [Figs. 2.25(e) to 2.25(h)] we move to the next stage: single-qubit phases calibration.

After the main CZ pulse, the fluxed transmon will acquire an arbitrary single-qubit phase determined

by the excursion it was subject to, while the static transmon will typically acquire a very small phase,

yet both must be compensated. This is done through a weak flux pulse on each qubit. Virtual-Z gates

would be preferred instead, if precise real-time control of the phase of the microwave sources for single-

qubit gates was available 22. For weak enough pulses the effect on leakage and conditional phase is

negligible, hence they can be calibrated independently (and ideally also independently from the other

weak pulse). Figures 2.25(e) and 2.25(h) quantify the single-qubit phases to be canceled. From the

known dependence of the qubit frequency on the flux, the amplitude of a (bipolar) flux pulse with fixed

duration (∼ 10 ns) can be estimated for each qubit such that φ10 and φ01 are nulled. A few (∼ 5 − 10)

repetitions of the conditional oscillation measurement, for each transmon, as a function of that amplitude,

followed by a fit complete the CZ calibration.

Two final conditional oscillation experiments confirm a well calibrated gate (green panels, Figs. 2.25(i)

to 2.25(l)) with phases targeted under 1◦ and L̃1 below 1%. The more robust metrics are used afterwards

for a final performance assessment, e.g. 2QIRB [Fig. 2.24].

Two-qutrit flux-pulsing simulations

The developments of the NZ CZ gate was extensively backed by simulations [29, 39]. The core code-

base of these simulations (available in [25]) has been used throughout this work to emulate the physical

system. This allowed for faster testing and development of analysis and calibrations tools. First, it

removes the need for a live connection to the experimental setup, which is an expensive and shared

resource in the lab. And second, it is a one order of magnitude faster to simulate a data point (no noise)

than to measure a conditional oscillation experiment (∼ 3 s vs ∼ 30 s). In this subsection we give a brief

overview on these simulations (see supplementary materials in Ref. 39 for thorough details).

Among other quantities, the simulations allow to evaluate the conditional phase (φ2Q), leakage (L1)

22For experiments with no classical logic involved, the single-qubit phases could also be absorbed by modifying the microwave
waveforms following a CPHASE gate. However, this capability is poorly supported in the codeword-based architecture of the lab
in which a limited number of waveforms can be triggered during the execution of the quantum circuit.
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and fidelity F to a target unitary for a single application of an arbitrarily shaped flux pulse. These

can be obtained for configurable system parameters and noise models. The noise model can include

relaxation and dephasing effects, as well as (remaining) flux line distortions. Including noise demands

more computational resources, however, the location of optimal points is not affected significantly (except

for flux-line distortions). Therefore, in this work, the noise modeling was employed only for exploring

performance boundaries based on experimental characterization of the system.

The flux pulse is modeled as a trajectory in a two-qutrit23 Hamiltonian. Internally, only the fluxing of

the higher-frequency transmon is considered. For each waveform the solution to the Lindblad equation

gives the propagator or time-evolution superoperator from which the quantities of interest are extracted.

The time evolution is performed in short steps (∼ 0.1 ns) in which the pulse amplitude is considered

constant. That amplitude is determined by linear interpolation of the pulse waveform sampled at the

AWG sampling rate (2.4 ns−1). The resonator coupling the two transmons is excluded from simulation

by assuming that it is never physically excited. The coupling strengths J1 and J2 take into account the

weak flux dependence.

2.4.5 Timings calibration

A critical aspect in the field of modern multi-qubit quantum experiments (and sometimes overlooked)

are the demanding requirements on the synchronicity between the different analog channels, distributed

among several room-temperature instruments. These requirements become more strict as the number

of channels grows along the qubit count. The issue is that we want the signals to arrive in sync at the

ports of the qubits at the chip level, however the delays intrinsic to the instruments and the latency of the

lines, amplification stages, etc. are generally not known to high precision.

For simple experiments the practice has been to separate the operation with generous time windows

such that potential mismatches are accounted for [13]. Of course this strategy has a detrimental effect

on the depth of the quantum circuits that can be executed within a qubit lifetime.

For precise synchronization two challenges must be addressed. First, the instruments must support

sub-nanosecond configurable delays per individual channel. Modern instruments, like the HDAWG used

for flux control, usually have good support for this feature. Second, in order to make use of that feature,

it is crucial that the relative latencies between all channels are well characterized. Often, this is far from

trivial, given that in general there is no direct access to the signal in fridge. In fact, most of the signal

lines are unidirectional and designed to minimize crosstalk.

In the architecture of the central controller the triggering of instruments obeys a 20 ns timing grid, i.e.

an instrument can only be triggered to play a waveform every 20 ns and pulses that do not match the

grid exactly will be penalized with extra idling time. This timing grid also provides a coarse mechanism

for controlling the relative delays between instruments. It can be used for a coarse timings calibration

for single-qubit control as illustrated in Fig. 2.26. The latency (with respect to the measurement) of

instruments responsible for generating the microwave and flux pulses are varied in the steps of the

timing grid for an experiment that, when calibrated, corresponds to a square flux-pulse sandwiched
23Qutrits: each transmons is considered to have 3 energy levels: |0〉 , |1〉 and |2〉
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Figure 2.26: Exemplary coarse timing diagram for single-qubit control and measurement. The relative
latency of the microwave and flux lines are varied with respect to the measurement in coarse steps of
20 ns. The star indicates a possible optimal choice. (a) Probability of measuring the qubit in the excited
state indicating an overlap in time between pulses. Dataset generated with routines from Ref. 25. (b)
Illustrative waveform time-lines as experienced by the qubit for cases of special interest.

between two equal microwave gates, followed by a final measurement of the qubit. In this example,

we make use of a microwave X gate with a full π rotation such that it prepares |1〉 and the second

microwave gate (ideally) resets it to |0〉. The result is a timing diagram [Fig. 2.26(a)] with useful features

as a consequence of two key cases.

If the flux pulse overlaps either microwave pulse, the transmon will be away from the sweetspot and

therefore the microwave frequency will not be resonant with the transmon transition anymore. This leads

to measuring the qubit in the |1〉 state. The two bright diagonals each spanning 40 ns on the horizontal

axis (determined by the flux pulse duration) correspond to the overlap with each microwave pulse. The

second important case corresponds to the microwave pulse running into the measurement [first panel

in Fig. 2.26(b)]. Though not very easy to know what are the resulting dynamics of the system when

overlapping the measurement, in most cases the contrast in the timing diagram will change [the first row

of Fig. 2.26(a)]. From the several latencies that lead to sandwiched combinations with non-overlapping

pulses, we pick the one (indicated by the yellow star) that plays the flux right after the microwave and

simultaneously reserves a conservative window before the measurement. Finer relative delays between

the microwave and the flux line can be achieved with the sub-nanosecond delay of the HDAWG.

However, it is worth stressing that in multi-qubits experiments all ports of all qubits must be syn-

chronized with a global reference imposed by the synchronicity-constraints in two-qubit operations. Be-

cause the timing diagram presented does not allow to accurately characterize the latency between mi-

crowave/flux and the RO pulse, it remains a challenge to design a procedure that would synchronize all

channels with respect to a global reference. This is already a potential issue for qubits across different

feedlines pulsed by separate instruments (two UHFQA for a S7 chip). Finally, we must note that using

Xπ/2 pulses can be advantageous because the quantum phase of a Bloch vector on the equator is more

sensitive to disturbances, nonetheless it might be harder to discern the relevant features on the diagram,

hence, it was not used for this illustration.
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Chapter 3

Automatic flux bias offset calibration

and analysis

After determining the coupling strength between two (connected) transmons through a Chevron-type

scans (Fig. 2.10), along with the rough flux-pulse amplitude of the |11〉 − |02〉 interaction, and before

we can proceed to sampling the CZ calibration landscapes, the essential step is to ensure the higher-

frequency transmon is sweetspot-centered to high precision through the static flux-bias. This corre-

sponds to a flux bias offset calibration, which in the lab is also known as the chevron(s) alignment

because we employ a chevron-like experiment to this end.

In this chapter we present how this calibration was automated achieving a six-fold speedup of this

procedure from ∼30min to ∼5min. The necessary steps were systematized within an adaptive mea-

surement routine followed by a specialized analysis. The measurement routine focuses on yielding a

high-quality dataset within the least amount of time. The data acquisition is managed by an algorithm

(Learner1D_Minimizer) developed to optimally sample a 1D domain, nevertheless providing capabil-

ities beyond its initial purpose and serving as template for a generalization to multi-dimensional domains

(LearnerND_Minimizer, Section 4.3). Moreover, due to peculiar technical details and requirements

of the flux bias offset calibration the capabilities of the measurement control of PycQED (experimental

framework of the lab [25]) was extended, to support multiple adaptive sampler instances per dimension

(flux pulse amplitude) with outer loops along other dimensions (flux bias current).

Chapter outline The chapter begins by outlining the problem while at the same time presenting the

chosen approaches to tackle the sub-problems. It describes the required steps and the developed

calibration routine together with the illustration of the associated analysis. The second part of the chapter

elaborates on the inner workings of the developed adaptive sampling algorithm responsible for the major

speed up. First, we gain some intuition about the framework used to build the custom sampler. Second,

we dive into the technical description of the sampling strategy used in the calibration routine. Finally, we

overview other interesting sampling modes and features.
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3.1 The problem and solution

We discuss the problem while presenting the developed solution at the same time, as this makes it

easier to illustrate the former. The deeper technical details of the solution follow in the next sections.
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Figure 3.1: Flux bias offset calibration concept and
exemplary experimental results analysis. Bright-
ness of data points in (c), (d), (f) and (g) indicates
dynamically-determined measurement order, from
first (dark) to last (bright). Sampling each 1D cut
(fixed bias) takes ∼1.5min. In (e) only the white dots
are measured points, the rest is interpolated to aid
the visualization. See main text for details.

So far we have illustrated the flux dependence

of the transmon energy levels always with the

sweetspot aligned at zero flux, or, equivalently,

pulse amplitude [see e.g. Fig. 2.9]. However, ex-

perimentally this is never the case. When cooling

down a device the sweetspot of the transmons will

be found at a non-zero amplitude [see schematic

in Fig. 3.1(b)]. Even though a transmon can be

operated away from the sweetspot, this is highly

undesired due to the increased sensitivity to the

flux noise that impacts the qubit coherence. The

offset can be compensated with a DC current in-

jected into the flux line through a bias tee1. For the

higher frequency transmons2, the bias amplitude

that nulls the offset has to be very well calibrated

in order to efficiently implement high-fidelity CZ

gates of the NZ type which are based on sym-

metric bipolar flux pulses.

One of the most accurate and precise ways

to evaluate if this condition is met is to perform

a Chevron-type experiment [see Fig. 2.10]. The

pulsing sequence3 is shown in Fig. 3.1(a) (mea-

surement implied at the end of the sequence). We

fix the flux pulse duration and vary the amplitudes

in the range of the |11〉− |02〉 interaction. A series

of such experiments is performed for negative am-

plitudes [Fig. 3.1(c)] and another set for positive

amplitudes [Fig. 3.1(d)]. The pulse duration can

be chosen roughly such that a peak correspond-

ing to the maximum leakage of the high frequency

transmon shows up (and an inverted peak on the

lower frequency transmon, not shown here). As

these figures suggest, if the absolute amplitudes

1The other port of the bias tee is AC-coupled to the AWG responsible for dynamic flux control, namely two-qubit gating.
2The offset calibration for the lowest frequency transmons is less demanding as they are never fluxed close to an avoided

crossing. For these transmons more coarse calibrations can be used.
3The final Xπ gate allows to confirm the measurement of the |2〉 state, on which the X gates have no effect.
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at the center of the peaks do not match, we conclude that the flux arc has an offset to be compensated

for (i.e. the transmon is not exactly at the sweetspot). When changing the DC flux bias both peaks will

move by an amount (in units of the AC flux pulse) not known a priori and not straightforward to determine

without keeping track of several details regarding the flux line properties. It is worth noting that when

running these probing experiments the changes to the flux bias should be as small as possible. This is

mainly because the frequency of the previously calibrated single-qubit gates must be very close to the

transmon frequency in order to excite it and perform the chevron sequence. In fact, for the same reason,

after calibrating the flux bias offset, it is often necessary to re-calibrate the single-qubit gates to recover

their high fidelities.

Prior to this work, the bias offset calibration was performed heuristically by a human operator taking

on the order of 30min to complete. It involved: manually running 1D cuts of the chevron experiment

(with evenly spaced points), one for each side of the sweetspot; taking note of the approximate center;

manually change the flux bias; repeat the two experiments and determine the centers; iterate a few

times until the centers on both sides matched "well enough".

A six-fold speedup was achieved with an automated measurement routine and analysis reducing the

procedure to 3− 5min. The entire procedure is contained within a single calibration routine generating a

single dataset. The calibration experiment and its results are summarized in Fig. 3.1(e). For illustration

purposes, the data corresponds to a transmon that was already aligned at the sweetspot using this

procedure. The measurement routine takes the flux pulse amplitude boundaries as input (beside other

optional configurations with sensible defaults). The boundaries should span a wide enough range such

that the peaks are still within the sampling range on both sides when the DC bias is shifted.

Several chevron 1D cuts with the same fixed flux pulse duration are measured sequentially for at least

two distinct DC flux bias values. Here we have measured 5 values to validate the procedure, however in

practice 3 values are more than enough: the current bias and shifting the current bias by ±(30−100µA).

In order to identify the centers of the peaks, for each DC bias, a custom adaptive sampling strategy

was developed that finds the peak and optimally samples it. This approach has two main advantages.

First, it greatly reduces the measurement time by sampling mostly the regions of interest (the peak).

This is specially beneficial considering that a wide enough range of pulse amplitudes is to be sampled

when changing the bias that would results in a large amount data for a evenly-spaced grid. Second, by

increasing the amount of samples on the peak itself, it facilitates the peak identification in the analysis.

This sampler is launched twice, once on each side of the sweetspot. The same is performed for the

other bias values. Figures 3.1(c), 3.1(d), 3.1(f) and 3.1(g) show the excellent performance of the sampler

despite the noisy measurement.

To integrate these procedures in the experimental framework of the lab (PycQED [25]) while confin-

ing all the information within a single dataset, the measurement control4 was substantial extended to

accommodate for the peculiar requirements of this measurement routine. Namely, the generalization to

support mixing adaptive sampling (in this case along the dimension of the flux pulse amplitude) with a

grid of predetermined data points (here in the DC flux bias dimension). Previously the measurement

4See Ref. 29 for more details on the measurement control concept within PycQED.
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control supported only one of these modes, either a grid of points or an adaptive sampler in charge of all

dimensions. Furthermore, support for running several adaptive samplers within a dimensions was built

in to allow sampling the peaks on both sides.

As a final note on the calibration procedure, due to potential static flux cross talk on more crowded

chips that lead to flux interdependence among transmons, when targeting high performance it might be

necessary to perform chip-level iterations among several transmons in order to converge on DC flux bias

values that are optimal for all transmons.

Once the experiment is concluded, the dataset is processed with a specialized analysis developed for

this end. The processing involves two steps. First, we fit the analytical model of the chevron (assuming

only two coupled levels), simultaneously for both sides for each measured DC bias values. The results

of the fit yield the center of each peak very accurately. Second, we take the average of the centers for

each bias [denoted by orange circles in Fig. 3.1(e)], and evaluate a simple linear fit (dotted red line)

from which the desired alignment bias is determined (dashed red line). For convenience, the flux pulse

amplitude at the center of the interaction is also estimated (yellow diamonds) such that it can be used to

normalize the pulse amplitude for the SNZ CZ gate.

3.2 Overview of the adaptive package

To elucidate how the optimal sampling of the peaks in Fig. 3.1 was achieved we first overview the

adaptive Python package [78] from which the custom sampler was derived. Quoting the package

homepage, With adaptive you just supply a function with its bounds, and it will be evaluated at the "best"

points in parameter space. This is the feature that we are most interested in as it can reduce experi-

ments duration while enhancing the quality of the sampled data. The package provides the Learner1D,

Learner2D and LearnerND algorithms for sampling 1D, 2D and ND functions, respectively, among

other algorithms. For the calibration presented in Section 3.1 we build upon the Learner1D.

Figure 3.2 showcases the advantage of the Learner1D over an homogeneous sampling (evenly

spaced grid) under the same budget of sampling points. From Figs. 3.2(a) and 3.2(d) it is easy to see

the advantage: the adaptive sampler distributes the points in real-time in such a way that it maximizes the

resolution in the regions with interesting features, namely the peak, while in the homogeneous case we

got only 4 points on the peak and would require another pass at lower resolution to achieve comparable

results.

In Fig. 3.2 we have used the default strategy of the Learner1D to determine what are the next "best"

segments to sample. Internally, the algorithm assigns a score to each segment which then determines

the sampling priority of these segments. The segments with highest score are sampled next. Figure 3.3

illustrates this process. The score is calculated through a function (called loss function) that takes as

inputs the coordinates of the segment and the corresponding values (of the function being sampled).

The package provides an interface for user-defined loss functions. The default one returns the area of

the trapezium defined by the extremities of a segment. In most cases, this simple scoring strategy leads

to very good results when we are interested in discriminating the features of our target function with the
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Figure 3.2: Comparison between a homogeneous gridded sampling (a) and the default strategy of the
Learner1D from the adaptive Python package [78] (d) for an equal budget of sampling points. The
same chevron model (with constant pulse duration and no noise) is used in both cases. The lightness of
the data points indicates the sampling order (sample index). In the simple case of an evenly spaced grid
(a), points are predetermined beforehand (c) resulting in a non-optimal resolution. The adaptive strategy
(d) determines the next point to be sampled (f) dynamically at run-time based on the accumulated
knowledge of the sampled function (e) resulting in an optimized resolution adequate for each part of the
domain.
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Figure 3.3: Working principle of an adaptive sampler (default strategy of Learner1D). The lightness of
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new data. The default scoring function uses the area of the trapezium defined by the data points of
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continues until a defined goal is achieved, e.g. maximum number of points.
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Figure 3.4: Learner1D_Minimizer evolution during a flux bias offset calibration. The algorithm has
the goal of finding and optimally sampling a peak higher than the threshold. The lightness of the data
points indicates the sampling order. (a) In the beginning the sampling priority is mostly guided by the
segments size. (b) A local search begins when a new sampled point exhibits a value beyond the range
of values known up to that moment. (c) If a value beyond the threshold is detected, the peak will be
optimally sampled on both sides (above the threshold) which later leads to accurate estimation of the
peak in the analysis. The final result along with all the iterations are shown in Fig. 3.5.

least amount of evaluations.

3.3 Learner1D_Minimizer: custom 1D adaptive sampler/optimizer

With a basic understanding of the default sampler, we now describe in more detail how the optimal

sampling for the flux bias offset calibration was achieved. Even thought the default strategy gives

fairly good results, it is not agile enough to address the needs of our calibration. Hence, the custom

Learner1D_Minimizer5 algorithm was developed along with a dedicated scoring (loss function)

toolbox6.

The Learner1D_Minimizer inherits and preserves the core functionalities of the Learner1D.

One of the main differences is that Learner1D_Minimizer recomputes the score of each segment as

soon as a data point with a value outside the previously known range of the sampling function is found.

The default Learner1D has a latency in this mechanism which is adequate for mathematical functions

but not for measurements where function evaluations are significantly more expensive, compared to the

overhead of re-evaluating all the scores. The second difference consists of additional logic to support

more complex internal states and the control flow of these states beyond the simple scoring function. In

particular, we expose the full learner knowledge in the loss function (a not only the local information as

in the original Learner1D).

In the context of the DC bias offset calibration, we can distinguish three states of the algorithm: global

search, local search and sampling beyond a threshold. The key difference is how segments are scored.

Global search This is the initial and main state of the learner. The search starts after the boundary

points of the domain are sampled. Next, segments are sampled according to their sampling priority
5As the name indicates, the resulting algorithm can also be used as an optimizer in the typical case of e.g. minimizing a

function. See Section 3.3.1 for other modes of operation.
6The resulting code library is available in pycqed.utilities.learner1D_minimizer.py.
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determined by evaluating a custom scoring function (loss function). This stage is depicted in Fig. 3.4(a).

Apart from normalizations and some technical details, in simplified terms, the score assigned to each

segment is the product of (A) the length of the segment in the domain of the sampling function (x axis

here); and (B) the absolute difference (on the y axis) of the corresponding measured values (at the

segment extremities) with respect to the most extreme value known7. In very loose terms: we combine

"how large is a segment is" and "how optimal are the measured values of that segment". The contribution

of these two terms to the priority score, is controlled by a parameter, interval_weight, specified at

the beginning of the sampling. The interval_weight takes a value in the [0; 1000] range, where

0 means "always sample the global optimal segment" (known so far), 500 means roughly "the biggest

segments have similar priority to the global optimal segment", and 1000 translates into uniform sampling.

Using such a definition makes it intuitive for the users and keeps this tool general enough for other tasks

beyond this calibration. A glance at the 2D generalization of this mode in Figs. 4.7 and 4.8 might bring

further insight.

Local search Every time the learner samples a point whose value lies outside the previously known

boundaries (on the y axis), it enters a local search [Fig. 3.4(b)]. During the local search maximum priority

is given to the segments that share that new point. The expectation it that it is likely to find even a better

point locally. Therefore, this scoring strategy is maintained for a few (configurable) maximum iterations

even if new best points are not found. However, the counter keeping track of this state is reset again

(allowing for more local sampling) if new best optimal points are encountered. The counter itself is the

mechanism that allows to escape from the local optima back into the global search.

Optimal sampling beyond a threshold This is the desired final state of the learner for the offset bias

calibration [Fig. 3.4(c)]. When launching the sampling, a threshold parameter is specified (dashed

line in Fig. 3.4), which is an educated guess between the noise background and the expected peak

maximum. This state is activated a soon as a data point falls beyond the threshold. We assume this point

is part of the peak. The challenge now is to sample both sides such that we acquire enough information

for a fit. There many technical nuances in defining a global loss function that locally achieves this

"bilateral alternating sampling" that we shall skip. In short, we add a new term to the score that is the

product between the segment size and the "distance" (on the y axis) from the threshold. Effectively,

in loose terms, it translates into "sample all the segments beyond the threshold with a priority for the

segments closer to the maximum of the peak". Finally, the sampling stops after a certain amount of

points beyond the threshold is accumulated (10 points in out case.). Figure 3.1 summarizes all the

iterations from the beginning till this target is met.
7This part might sound confusing, and it is! The idea is to translate having a value close to the optimal in a high score. Note,

also, that internally the algorithm is always looking for a minimum as its name indicates, to maximize we simply take the negative
of the sampled values.
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Figure 3.5: Sampling strategy developed for the chevron alignment calibration illustrated with a simulated
noisy chevron model (a). The lightness of the data points indicates the sampling order. The domain is
sampled with a bias towards high population values. The peak is detected when a value above a pre-
determined threshold is found. After that, only domain segments with at least one value above the
threshold will be sampled [(b, c), sample index > 9]. From this moment onwards, the scoring strategy
ensures both sides of the peak are sampled, until a target number of points beyond the threshold is
reached (10 points).

3.3.1 Other features and modes of operation

In the previous section we have covered the main use case of the developed algorithm. Nevertheless,

as a byproduct of the many development attempts and iterations several other useful features are now

part of the algorithm which we briefly overview here8. The following operation modes and combinations

thereof are possible:

• Limit the maximum resolution allowed. This is useful to enforce physical constraints into the algo-

rithm, e.g. resolution of an instrument output.

• Global optimization of arbitrary continuous potentially noisy functions. The algorithm is robust

under moderate noise.

• Converge in a local optimal. This is useful when we already know we are in a local optimal (e.g.

from previous measurements) and just want to to converge to the best point.

• Converge into a local optimal beyond a threshold. This is similar to the previous section with the

distinction that we just want to converge into the peak/deep.

• Adaptive sampling with a priority bias for optimal regions. This corresponds to always staying in

the global search. The reason this type of scan is useful is because, as an experimentalist, even

though we are usually searching for optimal parameters it is important to understand the landscape

at the same time. In general, typical black-box optimizers do not provide this flexibility.

• Launching multiple samplers (sequentially) within a single experiment. This was a necessary

feature for the calibration of the bias offset, but is general enough to run any number of adaptive

samplers, each with its own configuration. An exotic example could be running a minimizer and a

maximizer within the same domain.
8The interested readers can find a detailed Jupyter notebook tutorial under /examples/MeasurementControl-

adaptivesamplingusecases.ipynb within PycQED [25].
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• Sampling a predefined set of points before engaging a sampling strategy. This is specially useful

when the location of the optimal regions can be roughly guessed beforehand which helps the

learner build the knowledge of the sampling function more quickly.
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Chapter 4

Analysis and sampling of CZ

calibration landscapes

A crucial element towards the automation of CZ gates calibration is the sampling and analysis of the

calibration landscapes (such as the ones of Fig. 2.23). Even thought the experimental code-base of

the lab (PycQED framework [25]) provides a bare-bone analysis for 2D landscapes, at the beginning of

this work, a dedicated analysis for CZ landscapes was missing. Furthermore, most experiments were

sampled as evenly-spaced grids of predetermined data points scaling poorly for a 2D landscape. This

chapter showcases the capabilities of the analysis and the adaptive sampler that were developed to

bridge these gaps.

Following the structure in PycQED, the analysis is a Python class that inherits from the a base anal-

ysis class which provides common interfaces for extracting data, fitting and saving the generated results

including figures. The class goes under the name Conditional_Oscillation_Heatmap_Analysis1.

As its the name indicates, each measured data point corresponds to a conditional oscillation experiment

(Fig. 2.25) from which several quantities are estimated, among others the conditional phase φ2Q and

the missing fraction m (serving as leakage estimate). The analysis was build with very few assumptions

due to the lack of structure in the NZ calibration landscapes, as opposed to the SNZ discovered later

(Chapter 5). Along the chapter the many functionalities are illustrated by running the analysis on exem-

plary datasets (for both NZ and SNZ). The figures presented closely match the version produced by the

analysis as part of PycQED. The plotting is based on matplotlib [79], while the real-time plotting that

was improved as well is based on pyqtgraph [80] (for performance reasons) through QCoDeS [26].

During the measurements, adaptive sampling (LearnerND_Minimizer2) is employed to optimally

discriminate the features of the landscapes or to optimize the CZ parameters. For this, an empirically

defined cost function is fed into the sampling algorithm and is also saved in the dataset as a "mea-

sured quantity". The adaptive sampler has evolved throughout this work targeting the CZ calibration

landscapes, nonetheless, the final algorithm is not limited in anyway to this particular case. It provides

1The source code is located in pycqed.analysis_v2.fluxing_analysis.py.
2The source code library is available in pycqed.utilities.learnerND_minimizer.py.
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similar functionality to the Learner1D_Minimizer (Section 3.3) with multiple modes of operation gen-

eralized to multi-dimensional domains.

Chapter outline The chapter starts by presenting the goals and requirements for the analysis followed

by technical descriptions and illustrations of the implemented capabilities and features: flexibility, inter-

polation, colormaps, contours, real-time plotting support and extraction of optimal points. The chapter

ends with an overview of the LearnerND_Minimizer adaptive sampler and its inner workings for the

most relevant operating mode.

4.1 Main goals and requirements

We now briefly discuss and list the key goals and requirements of the analysis. Despite not being very

obvious in the beginning, from the experience in the lab it became clear that having flexible tools was

very important to an experimentalist. Very rigid tools are cumbersome or useless when dealing with

unexpected results and needs that were not predicted when defining initial requirements. A second

driver for flexibility was the unclear calibration path yet to be established. This analysis was developed

taking those facts into account and proved to be of great value many times. Beside flexibility, the following

requirements were targeted:

• Integrated in PycQED such that later it could be part of a calibration routine;

• Automated as much as possible with little to no input from the user in most cases;

• Support for both experimental and simulated datasets;

• Intuitive and easy to understand visualization of post-measurement results (and real-time plotting);

• Extract and save quantities of interest;

• Detection and extraction of multiple local optima per landscape.

4.2 Analysis capabilities and features

Flexibility

Several features were introduced in the design of the analysis in order to match the flexibility require-

ments. Because the NZ calibration is not straightforward, initially the calibration process was intended

to tightly integrate simulations with the experiment in order to fasten the process, at the cost of the

additional complexity. Consequently, the developed routine accommodates for the analysis of both ex-

perimental and simulated datasets (Figs. 4.1 and 4.3 respectively). Additionally, under the consideration

that an experimentalist might be interested to monitor any other parameter(s) of the system (which gen-

erate additional landscapes in the dataset), the analysis ensures that these are processed and plots are

generated.
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(a) Cost function
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(b) Single-qubit phase
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(c) Conditional phase, φ2Q
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Figure 4.1: Analysis example of experimental NZ CZ calibration landscapes for a qubit pair on device
C. Each data point corresponds to a conditional oscillation experiment [see Fig. 2.25]. In total, 420 (21
x 20) points were grid-sampled over ∼ 3.5 h [∼ 30 s per point]. The white dots indicate the location of
the sampling points. The rest of the landscape is linearly interpolated. The cost function is an arbitrarily
weighted sum of the missing fraction and the conditional phase deviation from a target phase (in this
case 180◦ for the CZ gate). The single-qubit phase is usually calibrated later through an independent
knob, hence not included in the cost function. Dashed contours are extracted from the conditional phase
landscape, while the solid contours are extracted from the missing fraction landscape.

54



50 75 100 125 150
cz_theta_f_SE (deg)

0.4

0.2

0.0

0.2

cz
_la

m
bd

a_
2_

SE 90.0

90.0 180.0

180.010
.0

10
.0

10.0

0
45
90
135
180
225
270
315
360

Q0
 p

ha
se

 (d
eg

)

Figure 4.2: Non-interpolated single-qubit phase landscape corresponding to Fig. 4.1(b). Generated with
the same analysis when setting the interpolation off.

As further described, the analysis is able to generate/extract many quantities of interest. Care was

taken to ensure these were automatically saved in a persistent manner along with the dataset and made

accessible (under the Analysis/quantities_of_interest group inside the dataset). Beside that,

the analysis is robust to being re-executed against the same dataset with distinct settings. This might

seem obvious and expected, nevertheless, needs to be proactively designed to avoid side-effects (e.g.

inconsistent overriding of the quantities of interest).

Using color to map the third dimension of these landscapes is the natural approach in order to easily

generate a static human-interpretable format. However, it is often the case that after a dataset was

generated we are interested only in a specific range of values for a particular measured quantity. For

example, we are only interested in the minima of the cost function. To accommodate for this, the analysis

settings (configurable at each execution) permit to specify the limits of the third dimension for each

measured quantity. This effectively translates into a "saturated" color scale on one or both extremities,

as exemplified in Fig. 4.1 where we have opted to focus on regions of the cost function below 200 units

(note the arrow of the color bar).

Interpolation

As the reader might have noticed, the landscapes in Fig. 4.1 are presented with an overlaid grid of white

dots. These denote the exact coordinates of the measured experimental data points, i.e. these are the

pixels of our detector in this particular experiment. The rest of the landscape, for each measured value,

is interpolated linearly to aid the visualization.

It might be deemed redundant to do so, considering that there is no new physical information ob-

tained. The relevance of this feature is better understood observing the the landscape of the single-qubit

phase [Fig. 4.1(b)]. If we would not interpolate and instead show only single-colored pixels with the size

of the step in each dimension [Fig. 4.2], then it is arguably more difficult to discern the monotonicity

of the single qubit phase along the diagonal. Of course, this is a double-edge sward and it is up to

the human operator to decide if interpolation is appropriate or farther sampling instead is necessary to

discriminate the relevant features. This would be the case of the bottom left corner of this landscape (if

we were interested in that region).

Nonetheless, the primary use-case for interpolation are non-gridded datasets originated, for exam-
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(a) Conditional phase, φ2Q
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Figure 4.3: Analysis example of simulated NZ CZ calibration landscapes for the same qubits pair as in
Fig. 4.1. In total, 200 points were sampled adaptively on a non-regular grid. The white dots indicate
the location of the sampling points. The rest of the landscape is linearly interpolated. Dashed contours
are extracted from the conditional phase landscape, while the solid ones are extracted from the leakage
landscape.

ple, from an adaptive sampler or an optimizer. In such a case linear interpolation is one of the simplest

procedures that allows to visualize the underlying data within our framework. As an example, the anal-

ysis of a roughly uniform but not gridded dataset is depicted in Fig. 4.3 from a simulation (matching

qualitatively the landscapes of Fig. 4.1). These figures were generated with the same settings as in

Fig. 4.1.

A special attention is needed when interpolating the conditional and single-qubit phases. Due to

the circular nature of these quantities, a direct interpolation would result in non-physical artifacts at the

0◦ ↔ 360◦ wraparound. This issue is solved by first taking the sine and cosine of the phase, and then

interpolating each separately, after which we recover the angle from the complex landscape defined by

these components.

Custom circular colormap

Given the importance of phases as the main parameters of the native gate-set of our transmons, it

became important for the daily operation to be able to quickly evaluate if experiments were yielding

the targeted phases. Which is usually monitored through real-time plotting of the measured quantities.

Driven by this, a custom circular colormap was developed [see e.g. the color bar of Fig. 4.3(a)].

The goal of this color mapping is to always associate a specific color with each multiple of 45◦ as

these are often of higher interest in certain quantum circuits. Additionally, smooth transitions between

these colors are desired to map to the continuum of measured values. As there are not enough "rainbow

colors" as need, the colormap adds white-pink in the middle and black for the wraparound point.

Implementation-wise, the color mapping was built using the HLS color model (Hue, Saturation, Light-

ness), an alternative of the RGB model. The colors for each 45◦-multiple was hand picked following

linear interpolation along each dimension of the HLS model to fill the rest of the color space. Unfortu-

nately, given the initial intent, the resulting colormap cannot be perceptually uniform3, i.e. it does not

result in a monotonic grayscale when converted, namely by the eye of color-blind people. If needed the

3See the phase landscapes in Chapter 5 for perceptually uniform colormaps.
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Figure 4.4: An instantaneous view of the real-time plotting monitor of simulated ideal SNZ CZ landscapes
(adaptively sampled). The x and y axes of each landscape correspond to the A and tφ SNZ parameters
(see Fig. 5.1). The circular custom colormap for the conditional phase matches the one used in analysis
[Figs. 4.1 and 4.3] and it is selected and mapped automatically. The cost function colormap, is also
selected automatically, highlighting in green the optimal regions. The white dots denote the coordinates
of the points sampled so far. The rest of the landscape is interpolated linearly. The red point corresponds
to the last sampled point and the white lines connect a few of the points sampled immediately before,
which allows to follow the behavior of the sampling algorithm.

colormap can be easily changed according to the purpose.

Contours overlay

A very important feature of the analysis is the extraction and plotting of the conditional phase and leakage

contours on the the landscapes of the rest of the measured quantities. This guides the eyes to easily

evaluate if the desired phase crosses the valley(s) of minimum leakage. Some technical details had to

be accounted for to achieve this because, for a circular quantity as the phase, the contours-estimation

routines suffer from the same artifacts as the interpolation at the wraparound boundary.

By juxtaposing both contour types on the cost function [Fig. 4.1(a)] we are able to better understand

how each is contributing to the deviation from our target gate. For both quantities contour levels can be

specified by the user. Here we have chosen to plot the 90◦ and 180◦ levels of conditional phase and

the 5% leakage estimate (roughly half of the missing fraction). In addition, a set of conditional phase

contours can be specified to be saved as a quantity of interest. These can later be used, for example, to

sample the landscape along the contour [see Fig. 5.6].

Real-time plotting monitor improvements

Though not strictly part of the (post-experiment) analysis, an essential tool for the operation of the

experimental setup is the real-time plotting monitor of the measurement control module in PycQED [25].

While the measurement points are being acquired, it allows to monitor an experiment in real-time through

interactive plots [Fig. 4.4]. Thus, an experimentalist can quickly judge weather the experiment is running

as expected or not, and take decisions instantly.

Since the beginning of this work, the functionality of the plotting monitor was extended in order to

greatly improve the support of the CZ calibrations driven by the recurrence of such measurements.

By default the 2D plotting monitor used the same colormap for all measured quantities. Besides that,

the range of measured values, know at each moment in time during the experiment, was mapped to
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the color spectrum dynamically with the incoming data. This is indeed the desired effect in most cases.

However, for a circular domain, e.g. the conditional phase, it is required to have a fixed mapping to [0◦;

360◦]. In the absence of such a functionality, for each experiment, the user had to manually define the

colors and change the boundaries of the colormap.

That frustration was solved by implementing a programmatically controlled interface that allows to

specify a colormap as well as the boundaries of the mapping at the begging of each experiment (retained

until explicitly changed or reset). For convenience, this process was automated based on the units and

the label of each measured quantity, while allowing the user (or other calibration routines) to override

these settings. In Fig. 4.4 (middle) the conditional phase uses the same colormap as in the analysis

(Fig. 4.1) and its boundaries are automatically clipped to the [0◦; 360◦] range. Additionally to meeting

the requirements of circular domains, a colormap with highlighted (gree) optimal extreme is assigned to

cost functions (Fig. 4.4, right).

Similarly to the analysis, the coordinates of the measured points are marked in white to aid the inter-

pretation of the interpolated landscapes. Motivated by the development of adaptive sampling algorithms

within this work, the real-time behavior of the sampling algorithm is denoted by a red dot marking the

last point connected by white lines to the points sampled immediately before. This work has inspired

some of the features of Quantify [81] – the recent successor of PycQED.

Extraction of optimal points

After sampling a calibration landscape, we usually proceed to extract the point (or region) that is ex-

pected to yield the best CZ gate and configure the necessary parameters and instruments. Following

which, either a narrower region is sampled or we evaluate the gate performance through more elabo-

rated metrics (e.g. randomized benchmarking).

These steps are relatively straight forward when the calibration landscape contains only a single and

well defined global optimum (minimum in our case). Unfortunately, or rather fortunately, sometimes4

the CZ calibration landscapes for NZ pulses contained more than one optimal region, i.e. a contour of

the desired conditional phase crossing a valley of low leakage. Furthermore, with the new NZ variant

as proposed in Chapter 5, multiple optima per landscape became expected (Fig. 4.4 already illustrates

this). A need for a more advanced analysis becomes clear when combined with the fact that a sampled

point rarely falls on the contour of the desired conditional phase within high precision. For example, one

local optimum might correspond to a lower leakage but its cost function might not reflect that because

the sampled point fell further from the desired phase contour.

Figure 4.5 depicts the additional capabilities of the analysis that solve these issues. First, it provides

flexible settings with sensible defaults that allow to split apart the local minima. Second, a visualization

toolbox provides easy interpretation of the results.

First we discard all points that have too high leakage and are too far from the target phase, with

thresholds that can be configured by the user if needed. After this step we are left with (potentially)

4Depending on transmon pair and pulse duration. However, it is not straightforward to predict or to design beforehand for
(multiple) optima in the NZ case.
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(a) Cost function and optimal points summary
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(b) Conditional phase, φ2Q
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Figure 4.5: Analysis of SNZ CZ calibration landscapes containing multiple optima. (a, b, c) Dashed
curves corresponds to φ2Q = 180◦ contours, while solid thick curves correspond to missing fraction.
Blue convex hulls denote local optimal regions for CZ calibration. Numbered white circles correspond to
the estimated points yielding best CZ gates inside each hull based on a strategy that takes into account
the local average leakage (missing fraction). (d, e, f) Auxiliary plots that aid the inspection of the leakage
along the contours. (d) Contours and optimal hulls are colored and annotated as a reference for figures
(e) and (f). (e) Missing fraction along the entire contours. (f) Missing fraction along the portion of the
contours inside the corresponding hull. Colored dots are only indicative of the hull [in (d)] to which the
curve belongs to.
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Figure 4.6: Analysis of SNZ CZ landscapes sampled only inside an optimal region previously obtained
from the analysis of a larger landscapes. The landscape is interpolated, however, the location of the
measured points is omitted for clarity. A narrow region like this can be used to recalibrate a gate when
its performance deteriorates.

several "groups" of points that would be classified by a human as being disjoint. In our analysis, this

classification was achieved by using a distance-based clustering algorithm from the scipy Python mod-

ule. As sometimes the number of measured points might be very limited, by default, the clustering uses

the interpolated landscape to obtain more reliable results without the intervention of the user.

The resulting clusters are denoted in Figs. 4.5(a) to 4.5(c) by blue convex hulls that delimit the bound-

aries of each identified cluster. For clarity and reference, these hulls are plotted again in Fig. 4.5(d), now

with distinct colors to aid their association with the corresponding conditional phase contours. In ad-

dition, the points defining the convex hulls are saved along with the quantities of interest and can be

retrieved later in order to perform calibrations (or re-calibrations) only within the optimal region – a func-

tionality provided by the Python adaptive module. The analysis of such a measurement is presented

in Fig. 4.6.

Next, we identify the best point within each cluster [annotated with numbered circles in Figs. 4.5(a)

to 4.5(c)]. As a last step, when several local minima are present, these best points can be score either

based on the cost function value, or the average surrounding leakage (missing fraction). Higher scoring

points are assigned the lowest indices, here #0. For ease of inspection and future reference, a summary

of each optima is printed together with the cost function landscape [Fig. 4.5(a)].

Finally, it is often of interest to inspect how each measured quantity varies along conditional phase

contours, with special interest in the missing fraction. The analysis automatically creates such plots,

both for the full extension of the contours [Fig. 4.5(e)] and for the contours within the corresponding hull

[Fig. 4.5(f)]. The later confirms the lower leakage and correct scoring of the optima.

Future improvements of the analysis

Here we discuss a few potential improvements of the analysis. The extraction of the optimal point(s)

could benefit from recalculating the cost function in the analysis based on the interpolated landscapes of

the measured quantities. This has the potential to better estimate the best optima because interpolating

the cost function linearly (based on the measured points) cannot yield a lower minimum than its value at

the best measured point, while re-evaluating the cost function at each interpolated point might pinpoint

the optima more accurately. A similar strategy could be extended to an optimizer that is aware of the
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contributions that are usually lumped together in the cost function.

4.3 Optimal sampling of landscapes: LearnerND_Minimizer

Most of the adaptively sampled landscapes presented in this work have been acquired using an algo-

rithm, LearnerND_Minimizer, developed for this purpose to speed up the calibration experiments as

well as simulations. It corresponds to the multidimensional generalization of the Learner1D_Minimizer

presented in Section 3.3 while the core is inherited form the LearnerND of the adaptive package [78].

The LearnerND_Minimizer provides all the functionalities of the Learner1D_Minimizer with

some minor differences. We focus here on the differences and point the reader to Section 3.3 for an

extensive description of the sampling strategies and modes of operation.

Because the domain is now multidimensional, instead of segments we have simplexes which in 2D

corresponds to triangles. Naturally, the key parameter interval_weight (Learner1D_Minimizer)

now becomes volume_weight (LearnerND_Minimizer). Furthermore, as there are more data

points per simplex, instead of just the extremities of a segment in the 1D case, the learner takes ad-

vantage of this to incorporate resilience to noise and outliers, namely we discard the worst value in a

simplex5 when calculating its sampling priority.

The main use of the LearnerND_Minimizer within this work has been to sample CZ calibration

landscapes both for NZ gates (calibrated in the scope of a variational quantum algorithm [19]) and SNZ

gates (Chapter 5). As opposed to other algorithms it allowed to acquire an overall understanding of the

landscape while finding the local optima, all within the same experiment. For this we use the global

search mode (see Section 3.3). We exemplify such a case in Fig. 4.7 where the internal state of the

learner gives a better understanding of its operation. By the end of the sampling the non-optimal, high-

cost, regions are barely sampled as intended, while the sampling resolution is greater in the regions of

interest (low-cost values). Usually, for a practical calibration, much less points are enough (∼ 50 − 60).

Further insight into the capabilities of the algorithm can be drawn from Fig. 4.8. There we showcase

how the volume_weight parameter can be used to balance the sampling between optimal regions and

high-volume simplexes (large triangles in this 2D case).

Combining the sampling algorithm and the landscape analysis toolbox with the simple calibration

landscapes of the gate introduced in Chapter 5 CZ calibrations and re-calibrations were streamlined.

Routine calibrations, required roughly on a biweekly basis, take now on the order of 30min, while cal-

ibrations from "scratch" can be performed overnight. In either case, further speedups are plausible at

chip-level calibration with simultaneous landscapes for distinct qubits pairs being measured within the

same pulse sequence, which will minimizes overheads in communication with hardware, qubit initializa-

tion and measurement time.

5We still take into account the volume of the simplex as defined by the vertices. We "ignore" the value of "worst" data point to
avoid unlucky noisy samples or outliers (not so rare for the CZ calibration landscapes).
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Figure 4.7: LearnerND_Minimizer sampling evolution example applied to the cost function of a sim-
ulated ideal SNZ calibration landscape (the cost function components shape are plotted in Fig. 5.1).
The algorithm settings target an overall understanding of the landscape with focus on areas of low cost.
The volume_weight was configured to 1/1000 implying a significant bias towards areas with low cost
function. The three columns correspond to the interpolated cost function landscapes (top row) and the
corresponding internal state of the algorithm (bottom row) in terms of the sampling priority, at three mo-
ments in time during a continuous run. Sampled points are annotated with small circles. In the bottom
row, these are colored according to their cost value from the top row. The darkest simplexes (triangles)
indicate the next areas to be sampled. The biggest triangles with highest-cost vertices are assigned the
lowest sampling priority (white-colored).
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Figure 4.8: Effect of the volume_weight configuration parameter for a fixed budget of sampling points.
When increasing its value from (a, c) to (b, d), the volume (area) of a triangle has a bigger weight in the
calculation of its sampling priority score relative to how low is the cost value at its vertices. This results
in a more uniform grid (second column) while losing resolution in the areas of the lowest cost function.
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Chapter 5

High-fidelity CZ gate with maximal

intermediate leakage operating at the

speed limit

Simple tuneup of two-qubit gates is essential for the scaling of quantum processors. In this chapter, we

introduce the sudden variant (SNZ) of the Net-Zero scheme realizing controlled-Z (CZ) gates by base-

band flux control of the transmon frequency. The SNZ CZ gates operate at the speed limit of transverse

coupling (J2) between computational and non-computational states by maximizing intermediate leakage.

The key advantage of the SNZ is tuneup simplicity, owing to the regular structure of conditional phase

and leakage as a function of two control parameters. We realize SNZ CZ gates in a four-transmon patch,

achieving 99.93% [99.54(27) % average] fidelity and 0.10% [0.18(4) % average] leakage on the best pair.

The SNZ is compatible with scalable schemes for quantum error correction and adaptable to generalized

conditional-phase (CPHASE) gates useful in intermediate-scale applications.

Chapter outline The work presented in this chapter is an extended version of the preprint Ref. 20.

The chapter starts with an introduction that includes an overview of the field of two-qubit gates, previous

approaches for flux-tunable qubits and their limitations, and a summary of the obtained results with our

new approach. Next we introduce the SNZ concept starting with an idealized scenario and an analogy to

a Mach-Zehnder interferometer. For completeness, we contrast the SNZ pulses with the previous state-

of-art conventional NZ pulses (CNZ). Next, we proceed to experimental realization of the gate, where we

first present the device and the employed qubits, followed by the calibration procedure and examination

of hardware limitations and their impact. In the following subsection, the experimental performance of

four SNZ CZ gates is evaluated and discussed. Finally, dominant gate error sources are estimated

resorting to numerical simulations and compared between CNZ and SNZ pulses.
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5.1 Introduction

Superconducting quantum processors have recently reached important milestones for quantum com-

puting [82], notably the demonstration of quantum supremacy on a 53-transmon processor [5]. On

the path to quantum error correction (QEC) and fault tolerance [67], recent experiments have used

repetitive parity measurements to stabilize two-qubit entanglement [75, 83] and to perform surface-code

quantum error detection in a 7-transmon processor [18]. These developments have relied on two-qubit

controlled-phase (CPHASE) gates realized by dynamical flux control of transmon frequency, harnessing

the transverse coupling J2 between a computational state |11〉 and a non-computational state such as

|02〉 [13, 84]. Compared to other implementations, e.g., cross-resonance using microwave-frequency

pulses [85] and parametric radio-frequency pulsing [86], baseband flux pulses achieve the fastest

controlled-Z (CZ) gates (a special case of the CPHASE), operating near the speed limit tlim = π/J2 [87].

Over the last decade, baseband flux pulsing for two-qubit gating has evolved in a continuous effort

to increase gate fidelity and to reduce leakage and residual ZZ coupling. In particular, leakage has

become a main focus for its negative impact on QEC, adding complexity to error-decoder design [58]

and requiring hardware and operational overhead to seep back into the computation space [88–92].

To reduce leakage from linear-dynamical distortion in flux-control lines and limited time resolution in

arbitrary waveform generators (AWGs), unipolar square pulses [13, 56] have been superseded by soft-

ened unipolar pulses [60, 61] based on fast-adiabatic theory [34]. In parallel, coupling strengths have

reduced roughly fourfold (to J2/2π ∼ 10−20 MHz) in the effort to reduce residual ZZ coupling, which

affects single-qubit gates and idling at bias points, and produces crosstalk from spectator qubits [93].

Many groups are actively developing tunable coupling schemes to suppress residual coupling without

incurring the slowdown of the gates [94–98].

A main limitation to the fidelity of flux-based CPHASE gates is dephasing from flux noise, as one

qubit is displaced 0.5 − 1 GHz below its flux-symmetry point (i.e., sweetspot [99]) to reach the |11〉 −

|02〉 resonance. To address this limitation, Ref. 39 recently introduced a bipolar variant [termed Net

Zero (NZ)] of the fast-adiabatic scheme, which provides a built-in echo reducing the impact of low-

frequency flux noise. The double use of the transverse interaction also reduces leakage by destructive

interference, as understood by analogy with a Mach-Zehnder interferometer (MZI). Finally, the zero-

average characteristic avoids the buildup of long-timescale distortions remaining in flux-control lines

after compensation, significantly improving gate repeatability. NZ pulsing has been successfully used in

several recent experiments [18, 75, 76], elevating the state of the art for CZ gate fidelity in a transmon

processor to 99.72(35) % [82]. However, NZ suffers from complicated tuneup, owing to the complex

dependence of conditional phase and leakage on fast-adiabatic pulse parameters. This complication

limits the use of NZ for two-qubit gating as quantum processors grow in qubit count.

In this chapter, we introduce the sudden variant (SNZ) of the Net Zero scheme implementing CZ

gates using baseband flux pulsing. SNZ offers two key advantages while preserving the built-in echo,

destructive leakage interference, and repeatability characteristic of conventional Net Zero (CNZ). First,

SNZ operates at the speed limit of transverse coupling by maximizing intermediate leakage to the non-
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computational state. The second and main advantage is greatly simplified tuneup: the landscapes of

conditional phase and leakage as a function of two pulse parameters have very regular structure and

interrelation, easily understood by exact analogy to the MZI. We realize SNZ CZ gates among four pairs

of nearest neighbors in a seven-transmon processor and characterize their performance using two-qubit

interleaved randomized benchmarking (2QIRB) with modifications to quantify leakage [39, 59, 100]. The

highest performance achieved has 99.93±0.24% fidelity with 0.10±0.02% corresponding leakage. Using

numerical simulation with experimental input parameters, we dissect an error budget finding SNZ to

slightly outperform CNZ. SNZ CZ gates are fully compatible with scalable approaches to QEC [17]. The

generalization of SNZ to arbitrary CPHASE gates is straightforward and useful for optimization [101],

quantum simulation [102], and other noisy intermediate-scale quantum (NISQ) applications [14].

5.2 SNZ concept
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Figure 5.1: Numerical simulation of an SNZ pulse with in-
finite time resolution for the pair QL-QM2, with ∆max

02 /2π =
1.063 GHz (at bias point) and tlim = 35.40 ns for the |11〉-
|02〉 interaction. (a) Schematic of the SNZ flux pulse, with
tp = tlim and variable A and tφ. Amplitude A is nor-
malized to the |11〉-|02〉 resonance. (b, c) Landscapes of
conditional phase φ2Q (b) and leakage L1 (c) as a func-
tion of A and tφ. Dashed white curves are contours of
φ2Q = 180◦. In (c), the vertical valley at A = 1 is due
to LC3: each half pulse fully transmits |11〉 to |02〉, and
vice versa. The other two vertical valleys are due to LC1:
each half pulse implements a complete (off-resonant) os-
cillation and thus perfectly reflects. The diagonal val-
leys are due to LC2. Note the simultaneous overlap of
φ2Q = 180◦ contours with the crossing of LC3 and LC2
valleys. These crossing points occur at A = 1 and tφ
satisfying ∆max

02 tφ = 0 (mod 2π).

A flux pulse harnessing the |11〉-|02〉 interac-

tion implements the unitary

UCPHASE =



1 0 0 0 0

0 eiφ01 0 0 0

0 0 eiφ10 0 0

0 0 0
√

1− 4L1e
iφ11

√
4L1e

iφ02,11

0 0 0
√

4L1e
iφ11,02

√
1− 4L1e

iφ02




in the {|00〉 , |01〉 , |10〉 , |11〉 , |02〉} subspace,

neglecting decoherence and residual inter-

action between far off-resonant levels. Here,

φ01 and φ10 are the single-qubit phases, and

φ11 = φ01 +φ10 +φ2Q, where φ2Q is the con-

ditional phase. Finally, L1 is the leakage pa-

rameter1.

In a rotating frame that absorbs the

single-qubit phases, the Hamiltonian is

H = ∆02(t) |02〉〈02|+J2 (|02〉〈11|+ |11〉〈02|) ,

where ∆02(t) is the dynamical detuning be-

tween |02〉 and |11〉. Each half of the bipolar

1Even though we follow the leakage definition where it accounts for any computational state to leak into any other non-
computation state [59], for this illustration we simplify and attribute all leakage to the |11〉 → |02〉 channel, hence a 4 factor.
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NZ pulse implements the unitary

UA = U−A =


γe

iφa βeiφb

βeiφc γeiφd


 ,

in the {|11〉 , |02〉} subspace, where γ, β ∈ [0, 1] satisfy γ2 + β2 = 1 and φa + φd = φb + φc + π (mod 2π).

In the MZI analogy, this unitary is the action of each beamsplitter, ideally identical BS1 = BS2.

In SNZ [Fig. 5.1(a)], each half pulse is a square pulse with amplitude ±A and duration tp/2 = tlim/2.

SNZ intentionally adds an idling period tφ between the half pulses to perfect the analogy to the MZI

(Fig. 5.1 inset), allowing accrual of relative phase φ in between the beamsplitters BS1 and BS2. The

unitary action of this idling is

Uφ =


1 0

0 eiφ


 .

An ideal CZ gate, our target here, achieves φ01 = φ10 = 0 (mod 2π), φ2Q = π (mod 2π) (phase

condition PC), and L1 = 0 (leakage condition LC), with arbitrary φ02. Accomplishing both conditions

with U−AUφUA requires

γ2ei2φa + β2ei(φb+φc+φ) = −1 (PC)

simultaneously with either one of three conditions:

β = 0 [LC1]; φa − φd − φ = π (mod 2π) [LC2]; or γ = 0 [LC3].

LC1 corresponds to perfect reflection at each beamsplitter, while LC3 results in perfect transmission.

LC2 corresponds to destructive interference at the second beamsplitter of the |02〉 leakage produced by

the first.

The key advantage of SNZ over CNZ is the very straightforward procedure to simultaneously meet

the PC and low leakage. To appreciate this, consider first the ideal scenario where the pulses can have

infinite time resolution. For, tp = tlim, tφ = 0 (φ = 0), and A = 1 (the |∆02| minimum) each half pulse

implements an iSWAP gate between |11〉 and |02〉. Thus, γ = 0 (meeting LC3) and φb = φc = −π/2

(meeting PC). In the MZI analogy, the first beamsplitter fully transmits |11〉 to −i|02〉 (producing maximal

intermediate leakage), and the second fully transmits −i|02〉 to −|11〉.

Consider now the effect of non-zero tφ. The idealized two-qutrit2 numerical simulation with infinite

time resolution and no decoherence shows that the landscapes of φ2Q and L1 as a function of A and tφ

[Figs. 5.1(b) and 5.1(c)] have a clear structure and link to each other. Evidently, U−AUφUA is 2π-periodic

in φ, so both landscapes are vertically periodic. The L1(A, tφ) landscape shows a vertical leakage valley

at A = 1 where LC3 is met. LC2 gives rise to additional, diagonally running valleys. Juxtaposing the

contour of φ2Q = 180◦ shows that PC is met at the crossing points between these valleys. This regular

leakage landscape provides on its own useful crosshairs for simultaneously meeting PC. We note that

along the LC3 vertical valley, φ2Q changes monotonically as a function of tφ, allowing the realization of

2A qutrit is the extension of a qubit to three energy levels: |0〉, |1〉 and |2〉.
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CPHASE gates with any desired φ2Q. We leave this useful generalization for future work, focusing here

on CZ gates.

While in this idealized scenario the idling period is not needed, there are practical reasons to include

tφ in experiment: any flux-pulse distortion remaining from the first half pulse during the second (e.g., due

to finite pulse rise time) will break the symmetry U−A =UA. Due to the fixed time resolution ts of the AWG

used for flux control, φ can only increment in steps of −∆max
02 ts, where ∆max

02 is the detuning at the bias

point. As typically ∆max
02 /2π = 0.5 − 1 GHz and ts ∼ 1 ns, one may only use the number of intermediate

sampling points in tφ for very coarse control. For fine control, we propose the (simultaneous) tunning of

the amplitude ±B of two sampling points: the first and last sampling points during tφ [see Fig. 5.2(b)].

5.2.1 Comparison between CNZ and SNZ pulses

The conventional NZ (CNZ) strong pulse [Fig. 5.2(a)] consists of two back-to-back half pulses of duration

tp/2 each, applied on the higher-frequency transmon. Typically, tp/tlim ∼ 1.1−1.6. The strong half

pulses are formally parametrized as in [34]. For the purposes of illustration, here we can loosely lump this

parametrization as affecting the amplitude (±A) and curvature (A′) of the strong half pulses. Immediately

following the strong pulse, weak bipolar pulses of duration t1Q are applied on both the higher- and lower-

frequency transmons with amplitudes ±C and ±D, respectively, in order to null the single-qubit phases

acquired by each. Typically, t1Q = 10 ns. In conventional NZ there is no intermediate idling period

between the strong half pulses, so the analogy to the MZI is not exact [Fig. 5.2(c)]. During tuneup, one

searches the (A,A′) space to achieve U−AUA = UCPHASE(φ2Q = π) by only affecting the unitary action

of the two beamsplitters. Because for typical tp conventional NZ produces significant leakage at the

first strong pulse, achieving minimal leakage relies on meeting LC2. The structure of the φ2Q(A,A′)

and L1(A,A′) landscapes and especially their interrelation are not straightforward, so the search for an

(A,A′) setting satisfying both PC and LC2 is not easily guided [see Fig. 2.23 and Ref. 39].

The SNZ pulses introduced here [Fig. 5.2(b)] differ in two key ways. First, the strong half pulses are

replaced by square half pulses each with duration tp/2 as close as possible to tlim/2 (as allowed by

the AWG sampling period) but not shorter. Second, an intermediate idling period tφ is added to accrue

relative phase φ between |02〉 and |11〉, perfecting the analogy to the MZI [Fig. 5.2(d)]. We use the

amplitude ±B of the first and last sampling points in tφ and the number of intermediate zero-amplitude

points to achieve fine and coarse control of φ, respectively. As in CNZ, we use weak bipolar pulses on

both transmons (also with t1Q = 10 ns) to null the single-qubit phases. During tuneup, we search the

(A,B) space to achieve U−AUφUA = UCPHASE(φ2Q = π). In Section 5.3.2 we will show that the SNZ

pulse design gives a very simple structure to the φ2Q(A,B) and L1(A,B) landscapes. Crucially, the

crossing point of leakage valleys satisfying LC2 and LC3 matches φ2Q = 180◦. This simplicity of tuneup

is the key advantage of the SNZ over the conventional NZ.

Another advantage of SNZ over conventional CZ is the reduced total time ttotal = tp + tφ + t1Q

required for a CZ gate. However, due to the 20 ns timing grid of the control electronics and the transverse

coupling strengths in this device, this speedup is insufficient to reduce the total time allocated per CZ
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(a)

(b)

(c)

(d)

Conventional NZ

SNZ

Figure 5.2: Comparison of conventional NZ and SNZ pulses for CZ gates. (a) Conventional NZ CZ
pulses consist of two back-to-back strong half pulses of duration tp/2 each, followed by two weak back-
to-back half pulses of duration t1Q/2 each on the higher-frequency qubit. The amplitude (±A) and
curvature (A′) of the strong pulses are jointly tuned to set the conditional phase φ2Q at minimal leakage
L1, while the amplitude ±C of the weak pulses is used to null the single-qubit phase on the higher-
frequency transmon. Weak pulses (amplitude ±D) on the lower-frequency qubit (not shown here) are
also used to null its single-qubit phase. (b) In SNZ, the strong pulses are replaced by square pulses with
tp as close as possible to tlim but not shorter. Also, an intermediate idling period tφ is added to accrue
relative phase φ between |02〉 and |11〉. The amplitude ±B of the first and last sampling points in tφ and
the number of intermediate zero-amplitude points provide fine and coarse control of this relative phase,
respectively. SNZ CZ gates also use weak bipolar pulses (now square) of total duration t1Q to null single-
qubit phases. (c) The MZI analogy for CNZ pulses is incomplete. Each strong half pulse implements
a beamsplitter (ideally identical) with scattering parameters affected by A and A′. However, there is no
possibility to independently control the relative phase in the two arms between the beamsplitters. (d)
The MZI analogy is exact for SNZ pulse. The scattering at the beamsplitters is controlled by A and the
relative phase φ is controlled finely using B and coarsely using tφ. Credits: L. DiCarlo.
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Figure 5.3: Schematic comparison between realistic trajectories for CNZ and SNZ pulses when applied
to the double-excited state |11〉. The (lower) single-qubit energy levels are depicted in Fig. 2.9. The tra-
jectory for single-qubit phase corrections are omitted. Note that in both cases, the most of the trajectory
is spent close to (CNZ) or at the center (SNZ) of the interaction point. (a) Trajectory for a CNZ pulse.
The system remains in the |11〉 state during the full trajectory for a sufficiently long pulse such that the
adiabatic condition holds. Imperfections and/or too short pulses can lead to part of the population leak-
ing into (or seeping back from) the |02〉 state. (b) Trajectory for an SNZ pulse. Ideally, maximal leakage
is produced during the first half-pulse and the full population of the |11〉 state is recovered during the
second half-pulse.

gate from 60 to 40 ns. Nonetheless, in SNZ, the fluxed transmon spends more time at its sweetspot,

which reduces the dephasing due to flux noise.

Additionally, in Fig. 5.3 we compare schematically the trajectories implemented by the strong CNZ

and SNZ pulses on a system initialized in the |11〉 state. A CNZ pulse attempts to adiabatically approach

twice the interaction point while remaining in the |11〉 state [Fig. 5.3(a)]. Because it is hard to meet

such condition, during the positive branch of the pulse, some population is lost through the residual

path of |02〉. Imperfect destructive interference of the |02〉 state during the negative branch of the pulse

leads to leakage at the end of the gate. In case of an SNZ pulse [Fig. 5.3(b)], after suddenly moving

into the avoided crossing, during the first half-pulse, we maximize the transfer of population to the |02〉

state by fixing the amplitude A = 1 for a duration of tp/2 ∼ tlim/2. As we switch to the second half-

pulse approaching the avoided crossing for the second time, the single-sample amplitudes ±B, together

with tφ, provide robust tunning knobs to maximize the recovery of the |11〉 population with the desired

conditional phase.

5.3 Experimental realization of SNZ CZ gates

5.3.1 Device and transmon parameters

With these considerations, we turn to the experimental realization of SNZ CZ gates between the nearest-

neighbor pairs among four transmons (Fig. 5.4) in the 7-transmon processor (device C, similar design to

Fig. 2.12). High- and low-frequency transmons (QH and QL, respectively) connect to two mid-frequency

transmons (QM1 and QM2) using bus resonators dedicated to each pair. Each transmon has a flux-

control line for two-qubit gating, a microwave-drive line for single-qubit gating, and a dispersively coupled
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Figure 5.4: False colored optical image of the device, zoomed in to the four transmons used in this
study. Transmons QH (red) and QL (pink) each connect to QM1 (green) and QM2 (cyan) using dedicated
coupling bus resonators(light orange). Each transmon has a flux-control line (yellow), a microwave-drive
line (dark orange), and dispersively-coupled resonator with Purcell filter for readout (purple) [75, 103].
The readout-resonator/Purcell-filter pair for QM2 is visible at the center. The vertically running com-
mon feedline (blue) connects to all Purcell filters, enabling simultaneous readout of the four transmons
(frequency multiplexing). Credits optical image: fabrication team, DiCarlo Lab, QuTech. Credits false
coloring: A. Bruno, DiCarlo Lab, QuTech.

resonator with Purcell filter for readout [75, 103]. All transmons can be measured simultaneously by fre-

quency multiplexing using a common feedline. Table 5.1 provides a summary of measured parameters

for the four transmons. See Appendix A.1 for single-qubit gates details and performance. Each trans-

mon is biased at its sweetspot using static flux bias to counter residual offsets. Flux pulsing is performed

using a Zurich Instruments HDAWG-8 (ts = 1/2.4 ns). Following prior work [31, 39], the linear-dynamical

distortions in the flux-control lines are measured using the Cryoscope technique and corrected using

real-time filters built into the AWG.

5.3.2 Calibration procedure

We exemplify the tuneup of SNZ pulses using pair QL-QM2 (Fig. 5.5). We first identify tlim for the

|11〉-|02〉 interaction and the amplitude A bringing the two levels on resonance. The rightmost index

indicates the excitation level of the fluxed transmon, here QM2. These parameters are extracted from

the characteristic chevron pattern of |2〉-population in QM2 as a function of the amplitude and duration

of a unipolar square flux pulse acting on |11〉 [Fig. 5.5(a)]. The chevron symmetry axis corresponds

to A = 1 and the oscillation period along this axis gives tlim. We set tp = t+lim ≡ 2nts, where n is the

smallest integer satisfying 2nts ≥ tlim. Next, we measure the landscapes of φ2Q and leakage estimate L̃1

in the range A ∈ [0.9, 1.1], B ∈ [0, A]. These quantities are extracted from the conditional-oscillation

experiments described in [39]. As expected, the landscape of L̃1 [Fig. 5.5(c)] reveals a vertical valley
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QH QM1 QM2 QL

Sweetspot transition frequency, f0→1 (GHz) 6.4329 5.7707 5.8864 4.5338
Transmon anharmonicity, α (MHz) −280 −290 −285 −320
Readout frequency, ωr/2π (GHz) 7.4925 7.2248 7.0584 6.9132
Relaxation time, T1 (µs) 37(1) 40(1) 47(1) 66(1)
Ramsey dephasing time, T ∗2 (µs) 38(1) 49(1) 47(1) 64(1)
Echo dephasing time, T2 (µs) 54(2) 68(1) 77(1) 94(2)
Residual qubit excitation, (%) 1.4 1.2 4.3 1.7
Best readout fidelity, FRO (%) 99.1 98.5 99.4 97.8

Table 5.1: Summary of frequency, coherence, residual excitation, and readout parameters of the four
transmons. The statistics of coherence times for each transmon are obtained from 30 repetitions of
standard time-domain measurements [42] taken over ∼ 4 h. The residual excitation is extracted from
double-Gaussian fits of single-shot readout histograms with the qubit nominally prepared in |0〉. The
readout fidelity quoted is the average assignment fidelity [104], extracted from single-shot readout his-
tograms (Fig. 2.21) after mitigating residual excitation by post-selection on a pre-measurement. Credits
data collection and analysis: H. Ali, DiCarlo Lab, QuTech.
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Figure 5.5: Calibration of the SNZ pulse for pair QL-QM2 and comparison to simulation. (a) |2〉-state
population of QM2 as a function of the amplitude and duration of a unipolar square pulse making |11〉
interact with |02〉. The characteristic chevron pattern is used to identify tlim and the amplitude bringing
|11〉 and |02〉 on resonance. (b,c) Landscapes of conditional phase φ2Q and leakage estimate L̃1 as a
function of SNZ pulse amplitudes A and B, with tp = t+lim and tφ = 1.67 ns. The juxtaposed φ2Q = 180◦

contour runs along the opposite diagonal compared to Figs. 5.1(b) and 5.1(c) because, contrasting with
tφ, increasing B (which decreases ∆02) changes φ in the opposite direction. Data points marked with
dots are measured with extra averaging for detailed examination in Fig. 5.6. (d) Numerical simulation of
leakage L1 landscape and φ2Q = 180◦ contour. The simulation uses pulse and transmon parameters
from experiment, and includes the measured flux-pulse distortion. All landscapes are sampled using the
adaptive algorithm developed in this work (LearnerND_minimizer, Section 4.3) based on [78].
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Figure 5.6: Landscapes of the leakage estimate L̃1 for (a) intentionally short (tp = t+lim − 6ts) and (b)
intentionally long (tp = t+lim +6ts) flux pulses on QM2. These landscapes are sampled using the adaptive
algorithm developed in this work (LearnerND_minimizer, Section 4.3) based on [78]. (c) Extracted
L̃1 along the φ2Q = 180◦ contours from (a), (b), and Fig. 5.5(c). For tp < tlim, a single minimum is
observed, but at a higher value than the minimum for tp = t+lim. For tp > tlim, two leakage minima are
found, matching the single minimum for tp = t+lim.

at A = 1 and a diagonal valley. Juxtaposing the φ2Q = 180◦ contour extracted from the φ2Q landscape

[Fig. 5.5(b)], we observe the matching of PC at the crossing of these valleys. These experimental

observations are in excellent agreement with a numerical two-qutrit simulation [Fig. 5.5(d)].

SNZ robustness to hardware limitations

Experimentally, it is nearly impossible to precisely match tp = tlim due to the discreteness of ts. To

understand the consequences of tp mismatch, we examine the φ2Q and L̃1 landscapes for SNZ pulses

with intentionally set tp = t+lim ± 6ts (Fig. 5.6). We find that the PC contour remains roughly unchanged

in both cases. However, there are significant effects on L̃1. In both cases, we observe that L̃1 lifts

at the prior crossing of LC2 and LC3 valleys where φ2Q = 180◦. For too-short pulses [Fig. 5.6(a)],

there remain two valleys of minimal L̃1, but these are now curved and do not cross the φ2Q = 180◦

contour. For too-long pulses [Fig. 5.6(b)], there are also two curved valleys. Crucially, these cross the

φ2Q = 180◦ contour, and it remains possible to achieve PC and minimize leakage at two (A,B) settings.

Extracting L̃1 along the φ2Q = 180◦ contours [Fig. 5.6(c)] confirms that the minimal leakage obtainable

for tp = t+lim + 6ts matches that for tp = t+lim. The observed impossibility to achieve minimal leakage at

φ2Q = 180◦ for tp < tlim is a clear manifestation of the speed limit set by J2. In turn, the demonstrated

possibility to do so for tp > tlim (even when overshooting the duration significantly) is an important proof

of the viability of the SNZ pulse in practice.

5.3.3 Experimental performance of SNZ CZ gates

With these insights, we follow similar procedures to tune SNZ CZ gates for the four transmon pairs.

Namely, we use final weak bipolar pulses of total duration t1Q = 10 ns to null the single-qubit phases in

the frame of microwave drives. Also, since the codeword-based control electronics has a 20 ns timing

grid, and 40 ns < ttotal = tp + tφ+ t1Q < 60 ns for all pairs, we allocate 60 ns to every CZ gate. Some pair-

specific details must be noted. Owing to the overlap of qubit frequencies between mid-frequency qubits,

implementing CZ between QH and QM1 (QM2) requires parking of QM2 (QM1) during the SNZ pulse on
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Figure 5.7: Time-domain characterization of the |11〉-|02〉 and (c,d) |11〉-|20〉 interactions for pair QL-
QM1. (a,b) Landscapes of (a) ground-state population P|0〉 of QL and (b) total excited-state population
1− P|0〉 of QM1 as a function of the amplitude and duration of a unipolar square pulse near the |11〉-|02〉
resonance. The absence of the expected chevron pattern in these landscapes reflects a flickering TLS
resonant with the qubit transition of QM1 at this pulse amplitude. Horizontally shifting fringes in (a) and
(b) are due to flickering of the TLS on the scale of a few minutes. These observations preclude the use
of the |11〉-|02〉 interaction to realize the CZ gate. In contrast, the landscapes of (c) two-state population
P|2〉 of QL and (d) P|0〉 of QM1 and as a function of unipolar square pulse parameters near the |11〉-|20〉
resonance reveal a standard, stable chevron pattern. All landscapes are sampled using the adaptive
algorithm developed in this work (LearnerND_minimizer, Section 4.3) based on [78].

QH [17, 18]. The parking flux pulse is also bipolar, with each half a square pulse lasting (tp + tφ)/2. Its

amplitude is chosen to downshift the parked qubit by ∼ 300 MHz, and fine tuned to null its single-qubit

phase.

For most pairs, we employ the |11〉-|02〉 interaction, which requires the smallest flux amplitude (re-

ducing the impact of dephasing from flux noise) and does not require crossing any other interaction on

the way to and from it. However, for pair QL-QM1, we cannot reliably use this interaction as there is a

two-level system (TLS) interacting intermittently with QM1 at the flux amplitude placing |11〉 and |02〉 on

resonance. Figures 5.7(a) and 5.7(b) show the negative impact of this TLS when attempting to char-

acterize the |11〉-|02〉 interaction by the standard time-domain chevron measurement. While experience

shows that it is probable that such a TLS could be displaced or eliminated by thermal cycling at least

above the critical temperature of aluminum, we chose instead to use the more flux distant |11〉-|20〉 inter-

action to realize the SNZ CZ gate for this pair. For this interaction, a standard, stable chevron pattern is

observed [Figs. 5.7(c) and 5.7(d)]. Using square pulses is a side benefit of SNZ in this case: it minimizes

exchange between |01〉 and the TLS, |11〉 and |20〉, and |01〉 and |10〉 as their resonances are crossed

as suddenly as possible.

Table 5.2 summarizes the timing parameters and performance attained for the four SNZ CZ gates.

The CZ gate fidelity F and leakage L1 are extracted using a 2QIRB protocol modified to quantify leak-

age [39, 59]. For each pair, we report the best, average and standard deviation of both values based

on at least 10 repetitions of the protocol spanning more than 8 h [see Appendix A.2 for details]. Several

observations can be drawn. First, CZ gates involving QH perform better on average than those involv-

ing QL. This is likely due to the shorter tlim and correspondingly longer time 60 ns − tp spent near the

sweetspot. Another possible reason is that the frequency downshifting required of QH to interact with

QM1 and QM2 is roughly half that required of the latter to interact with QL. This reduces the impact

of dephasing from flux noise during the pulse. Not surprisingly, performance is worst for the pair QL-

QM1. Here, the pulse must downshift QM1 the most to reach the distant |11〉-|20〉 interaction, increasing
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Parameter QM1 −QH QM2 −QH QL −QM1 QL −QM2

tp [tlim] (ns) 32.50 [32.20] 29.10 [29.00] 40.83 [40.60] 35.83 [35.40]
tφ (ns) 2.92 3.75 1.25 1.67
(tp + tφ)/tlim 1.10 1.13 1.04 1.06
ttotal (ns) 45.42 42.91 52.08 47.50
Interaction |11〉 − |02〉 |11〉 − |02〉 |11〉 − |20〉 |11〉 − |02〉
Parked qubit QM2 QM1 – –

Avg. F (%) 98.89(35) 99.54(27) 93.72(210) 97.14(72)
Max. F (%) 99.77(23) 99.93(24) 99.15(120) 98.56(70)
Avg. L1 (%) 0.13(2) 0.18(4) 0.78(32) 0.63(11)
Min. L1 (%) 0.07(4) 0.10(2) 0.04(8) 0.41(10)

Table 5.2: Summary of SNZ CZ pulse parameters and achieved performance for the four transmon
pairs. All SNZ CZ gates null single-qubit phases with weak bipolar square pulse of duration t1Q = 10 ns
immediately following the strong pulse. We allocate 60 ns to every CZ gate to conform to the 20 ns timing
grid of the control electronics. Gate fidelities and leakage are obtained from 2QIRB keeping the other
two qubits in |0〉. Statistics (average and standard deviation) are taken from repeated 2QIRB runs [for
details see Appendix A.2]. The maximum F and minimum L1 quoted are not necessarily from the same
run.

dephasing from flux noise. Also, there may be residual exchange with the identified TLS and as the

|11〉-|02〉 and |01〉-|10〉 resonances are crossed. Overall, there is significant temporal variation in the per-

formance as gleaned by repeated 2QIRB characterizations. This is likely the reflection of the underlying

variability of qubit relaxation and dephasing times, which, however, were not tracked simultaneously.

In addition to having the best average performance, pair QM2-QH also displays the hero performance

based on a single 2QIRB run (Fig. 5.8). Peaking at F = 99.93%, to the best of our knowledge, is the

highest CZ fidelity extracted from 2QIRB characterization in a transmon processor.

5.3.4 Error sources: SNZ vs CNZ

In an effort to identify the dominant sources of infidelity ε = 1 − F and leakage for SNZ CZ gates,

we perform a two-qutrit numerical simulation for pair QM2-QH with an error model taking parameters

from experiment [Fig. 5.9]. As in the previous work on CNZ [39], the simulation cumulatively adds:

(A) no noise; (B) energy relaxation; (C) Markovian dephasing; (D) dephasing from low-frequency flux

noise; and (E) the remaining measured flux-pulse distortion. The experimental inputs for models B, C

and D combine measured qubit relaxation time T1 at the bias point, and measured echo and Ramsey

dephasing times (T2 and T ∗2 ) as a function of qubit frequency. The input to E consists of a final Cryoscope

measurement of the flux step response using all real-time filters.

The simulations suggest that the main source of ε is Markovian dephasing (as in [39]), while the

dominant contribution to L1 is low-frequency flux noise. The latter contrasts with Ref. 39, where simula-

tion identified flux-pulse distortion as the dominant leakage source. We identify two possible reasons for

this difference: in the current experiment, the 1/f low-frequency flux noise is ∼ 4 times larger (in units

of Φ0/
√
Hz) and the achieved flux step response is noticeably sharper. Finally, we use the simulation

to compare performance of SNZ to CNZ CZ. For the latter, we fix tφ = 0, t1Q = 60 ns − tp, and use

the fast-adiabatic pulse shape and tp = 45.83 ns optimized by simulation. Overall, the error sources
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Figure 5.9: Error budgets for infidelity ε (a) and
leakage L1 (b) obtained by a numerical simulation
(as in [39]) of the QM2-QH SNZ CZ gate with pa-
rameters in Fig. 5.8 and for a CNZ gate with opti-
mized parameters (see text for details). The sim-
ulation incrementally adds errors using experimen-
tal input parameters for this pair: (A) no noise; (B)
relaxation; (C) Markovian dephasing; (D) dephas-
ing from quasistatic flux noise; and (E) flux-pulse
distortion. Credits simulations and analysis: F. Bat-
tistel, Terhal group, QuTech.

contribute very similarly to the error budget for both cases. The marginally higher overall performance

found for SNZ is likely due to the increased time spent at the sweetspot during the 60 ns allocated for

each CZ.
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Chapter 6

Conclusions and outlook

This chapter provides a summary of the work developed within this thesis reflecting back on important

conclusions from the hands-on experience of operating a transmons quantum processor in the quest to

automatic and efficient calibration of two-qubit gates. In addition we outlook the next steps towards a

fully automated calibration of an entire quantum chip and some implication for large scale devices.

6.1 Conclusions

In Chapter 2 we gained some intuition for the physical principles behind the transmons qubits and

glanced over the experimental interaction with a superconducting transmon quantum processor.

The automatic flux bias offset calibration and analysis in Chapter 3 solved the key challenge of pre-

cisely flux-biasing a transmon to its maximum-frequency sweetspot, as required for high-fidelity two-qubit

CZ gates. A six-fold speedup over a human operator was achieved based on a tailor-made 1D adap-

tive sampling algorithm (Learner1D_Minimizer) yielding robust and easy to analyze measurement

datasets. Furthermore, the algorithm was noted to be suitable for other sampling and/or optimization

problems owing to its configurable mode of operation and served as a template for an N-dimensional

generalization. In addition, as a result of the peculiarities of this calibration, the control of data acquisition

within PycQED has been extended to support more exotic acquisition procedures.

In the subsequent Chapter 4 we detailed the technicalities of the multi-featured sampling and anal-

ysis developed for the CZ 2D calibration landscapes. These tools found immediate application when

calibrating CZ gates in the context of a Quantum Approximate Optimization Algorithm (QAOA) NISQ ap-

plication [19]. Though harder to quantify quantitatively, the provided features of the analysis significantly

simplify the work required from an experimentalist to troubleshoot and calibrate a CZ. It provides user-

friendly visualization of results, high flexibility and, crucially, automatic identification and extraction of

(multiple) optimal points, besides other quantities of interest ready to be leveraged for re-calibrations. At

end of the chapter, in Section 4.3, we introduce the generic LearnerND_Minimizer which has been

routinely employed, both within experiments and simulations, to optimally discriminate the features of

those landscapes with a configurable bias towards regions of interest or to optimize the CZ parameters.
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In Chapter 5, the sudden variant (SNZ) of the NZ scheme [39] realizing flux-based CZ gates by

exploiting transverse coupling between computational and non-computation states was proposed and

implemented. SNZ operates at the speed limit of the transverse coupling by maximizing intermediate

leakage to the non-computational state. The key advantage of SNZ over CNZ is ease of tuneup, owing to

the simple structure of error landscapes as a function of pulse parameters. High-fidelity CZ gates were

demonstrated between four transmon pairs in a patch of a transmon processor. Control architectures

without a timing grid will further benefit from the increased speed of SNZ over the conventional NZ

by reducing the total gate time and thus the impact of decoherence. Taking advantage of the tuning

simplicity, SNZ CZ gates are already employed in the Starmon-5 quantum processor publicly available

via the QuTech Quantum Inspire platform [21]. Moving forwards, the full compatibility of SNZ with the

previously proposed [17] scalable scheme for surface coding makes SNZ the two-qubit gating choice for

quantum error correction. Finally, the noted straightforward extension of SNZ to arbitrary conditional-

phase gates can find immediate use in NISQ applications.

From personal experience in operating and troubleshooting the experimental setup during this project,

it is worth sharing a few practical learnings. It became clear to me how valuable it is for an experimen-

talist to have a flexible (software) toolbox that can be reused and adapted to unexpected results without

developing new tools from scratch. Considering that currently that toolbox is developed by the same

experimentalist, it often not easy to balance the research deadlines of yesterday with the investment in

flexible and reusable software. Nonetheless, it is usually a compounding interest that pays off in the

future. If you need a script twice, it is likely it will be needed a hundred times, make a generic routine

(without over-engineering it), you and your peers will thank you later. Solve a problem well the first time,

shortcuts are a highway to compounding technical debt.

6.2 Outlook

It is not clear at this point which quantum chip architecture and two-qubit gating choice will yield the

holy grail of a useful quantum supremacy. Hence, it is worthwhile to further research and develop the

different technologies with such potential.

For our platform, automation already brings significant benefits on a 7-transmon device and it will

become imperative as we advance towards tens and hundreds of qubits. Therefore, it is essential to

continue laying down strong foundations on this front. The next steps comprise the full automation of

all the dependencies of the CZ calibrations and the integration of all nodes together in an autonomous

chip-level calibration and state maintenance. Given that there are several well-defined nodes, these

routines can be developed in parallel through multiple project like this one.

When scaling up in qubit count, the need for massive parallelization should be equated on the mea-

surement and software level, if the calibration of a quantum chip as whole is to be finished on a practical

time-scale, before its individual constituents drift away. Fortunately, it is plausible to perform many cal-

ibrations and optimization in parallel (e.g. Multiplexed readout, Cryoscope, appropriate Chevron/CZ

combinations). With the increasing complexity of the calibration and data processing software, one must
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also shift towards parallel computation inside the classical processor. Even though the benefits might

be a few years ahead, I cannot stress enough how critical it is to take these considerations into account

today!

Farther into the future, mastering kilo-qubit devices are expected to require fundamental changes

on how the calibration problem is approached as there is only so many cables one can route into a

fridge. This will likely require bringing the classical computation as closes as possible to the quantum

chip itself and reducing to the minimum the communications overhead (between the user computer and

the controlling hardware).
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Besse, A. Potočnik, A. Wallraff, and C. Eichler. Rapid high-fidelity multiplexed readout of supercon-

ducting qubits. Phys. Rev. Appl., 10:034040, Sep 2018. doi: 10.1103/PhysRevApplied.10.034040.

URL https://link.aps.org/doi/10.1103/PhysRevApplied.10.034040.

88

https://link.aps.org/doi/10.1103/PhysRevLett.113.220502
https://link.aps.org/doi/10.1103/PhysRevLett.113.220502
https://link.aps.org/doi/10.1103/PhysRevApplied.10.054062
https://link.aps.org/doi/10.1103/PhysRevApplied.10.054062
https://link.aps.org/doi/10.1103/PhysRevApplied.12.054023
https://link.aps.org/doi/10.1103/PhysRevApplied.12.054023
https://arxiv.org/abs/2005.08863
https://arxiv.org/pdf/2006.11860
https://link.aps.org/doi/10.1103/PhysRevB.77.180502
https://arxiv.org/abs/2005.05275
http://www.nature.com/articles/ncomms8654
https://link.aps.org/doi/10.1103/PhysRevApplied.10.034040


[104] C. C. Bultink, B. Tarasinski, N. Haandbaek, S. Poletto, N. Haider, D. J. Michalak, A. Bruno, and

L. DiCarlo. General method for extracting the quantum efficiency of dispersive qubit readout in

circuit qed. Appl. Phys. Lett., 112:092601, 2018. URL https://doi.org/10.1063/1.5015954.

89

https://doi.org/10.1063/1.5015954


Appendix A

Supplementary material

A.1 Single-qubit gates performance (four-transmon patch)

All single-qubit gates are implemented as DRAG-type [69, 70] microwave pulses with a total duration

of 4σ = 20 ns, where σ is the Gaussian width of the main-quadrature Gaussian pulse envelope. Two

sets of experiments are performed to jointly quantify the infidelity ε and leakage L1 of these gates. First,

individual performances are evaluated with single-qubit randomized benchmarking (1QRB) keeping the

other three qubits in |0〉. Second, the simultaneous single-qubit randomized benchmarking (S1QRB) on

pairs of qubits is evaluated, keeping the other two qubits in |0〉. The results obtained from both types of

experiment are reported as diagonal and off-diagonal elements in the matrices presented in Fig. A.1.

A.2 Technical details on 2QIRB

Table A.1 details technical aspects of the characterization of CZ gates by repeated 2QIRB runs.

Parameter QM1 −QH QM2 −QH QL −QM1 QL −QM2

Number of 2QIRB runs 39 10 88 35
Number of randomization seeds 100 300 100 100
Same randomization seeds No No Yes No
Avg. time per 2QIRB run (min) 17 50 9 17
Total wall-clock time (h) 28.8 16.9 16.7 14.8

Table A.1: Technical details of the characterization of CZ gates by repeated 2QIRB. The average time
per 2QIRB run is the time required to perform back-to-back measurements of the reference and the CZ-
interleaved curves. The total wall-clock time includes the overhead from compilation of RB sequences
and other measurements performed in between the CZ 2QIRB runs, e.g., idling 2QIRB (Fig. A.3).

A.3 Residual ZZ coupling at bias point

Coupling between nearest-neighbor transmons in the device used for SNZ realization (Chapter 5) is

achieved using dedicated coupling bus resonators. The non-tuneability of said couplers leads to residual
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Figure A.1: Characterization of single-qubit gate infidelity ε (a) and leakage L1 (b) using randomized
benchmarking (100 randomization seeds). Diagonal elements are extracted from individual single-qubit
randomized benchmarking keeping the other 3 qubits in |0〉. Off-diagonal elements are extracted from
simultaneous one-qubit randomized benchmarking on pairs of qubits, keeping the other two qubits in
|0〉. Credits: H. Ali, DiCarlo Lab, QuTech.

ZZ coupling between the transmons at the bias point. We quantify the residual ZZ coupling between

every pair of qubits as the shift in frequency of one qubit when the state of the other changes from |0〉

to |1〉. We extract this frequency shift using a simple time-domain measurement [42]: we perform a

standard echo experiment on one qubit (the echo qubit), but add a π pulse on the other qubit (control

qubit) halfway through the free-evolution period simultaneous with the refocusing π pulse on the echo

qubit. The results are presented as a matrix in Fig. A.2. We observe that the residual ZZ coupling is

highest between QH and the mid-frequency qubits QM1 and QM2. This is consistent with the higher

(lower) absolute detuning between QH (QL) and the mid-frequency transmons, and the higher (lower)

transverse coupling J2 = π/tlim for the upper (lower) pairs.

An alternative way to evidence this residual ZZ coupling is to extract the fidelity of idling using 2QIRB

and to compare this fidelity to that of CZ. To this end, we perform 2QIRB of idling (for 60 ns) on pairs

QM2-QH and QL-QM2. The results (Fig. A.3), show striking differences for the two pairs. For QM2-QH,

the pair with strongest residual coupling, the idling fidelity is significantly lower than the CZ fidelity. This

is because the residual ZZ coupling is a source of error during idling but is absorbed into the tuneup

of SNZ. For QL-QM2, for which the residual coupling is one order of magnitude lower, this trend is not

observed.
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Figure A.2: Extracted residual ZZ coupling between all pairs of qubits at their bias points. We report the
frequency shift in one qubit (named echo qubit) when the computational state of another qubit (named
control qubit) is shifted from |0〉 to |1〉. Credits: H. Ali, DiCarlo Lab, QuTech.
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Figure A.3: Comparison by 2QIRB of the fidelity and leakage of SNZ CZ versus idling (for an equivalent
60 ns) for pairs QM2-QH and QL-QM2. SNZ gate parameters are provided in Table 5.2 of the main text.
(a,c) Return probability to |00〉 as a function of the number N2Q of two-qubit Clifford operations in the
reference curve. For QM2-QH, the extracted idling fidelity is significantly lower than the SNZ CZ fidelity.
This is due to the high residual ZZ coupling between these two qubits as reported in Fig. A.2, which is
not refocused during idling but absorbed into the tuneup of the SNZ CZ gate. For QL-QM2, idling fidelity
exceeds SNZ CZ fidelity as the residual coupling is one order of magnitude weaker. (b,d) Population
in the computational subspace as a function of N2Q. Leakage as a function of N2Q is weakest when
interleaving idling steps, leading to negative L1,Idle. This is due to seepage (during idling) of the leakage
produced by the reference two-qubit Cliffords. Credits: H. Ali, DiCarlo Lab, QuTech.
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