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Simple tuneup of two-qubit gates is essential for the scaling of quantum processors. We introduce
the sudden variant (SNZ) of the Net Zero scheme realizing controlled-Z (CZ) two-qubit gates by
baseband flux control of transmon frequency. SNZ CZ gates operate at the speed limit of transverse
coupling between computational and non-computational states by maximizing intermediate leakage
to the latter. The key advantage of SNZ is tuneup simplicity, owing to the regular structure of
conditional phase and leakage as a function of two control parameters. We realize SNZ CZ gates in
a transmon processor, achieving 99.93 % [99.54(27) % average] fidelity and 0.10 % [0.18(4) % average]
leakage on the best pair. SNZ is compatible with scalable schemes for quantum error correction and
adaptable to generalized conditional-phase gates useful in intermediate-scale applications.
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I. INTRODUCTION

Transmons – a type of superconducting charge qubit
– are one of the most promising physical implemen-
tations for quantum computing that have witnessed
fierce research efforts since its introduction more than
a decade ago [2]. Superconducting quantum proces-
sors have recently reached important milestones [3], no-
tably the demonstration of quantum supremacy on a 53-
transmon processor [4]. Toward quantum error correc-
tion (QEC) and fault tolerance [5], recent experiments
have used repetitive parity measurements to stabilize
two-qubit entanglement [6, 7] and to perform surface-
code quantum error detection in a 7-transmon proces-
sor [8]. These developments have relied on two-qubit
controlled-phase (CPHASE) gates realized by dynamical
flux control of transmon frequency, harnessing the trans-
verse coupling J2 between a computational state |11〉 and
a non-computational state such as |02〉 [9, 10]. Com-
pared to other implementations, e.g., cross-resonance
using microwave-frequency pulses [11] and paramet-
ric radio-frequency pulsing [12], baseband flux pulses
achieve the fastest controlled-Z (CZ) gates (a special
case of CPHASE), operating near the speed limit tlim =
π/J2 [13].

Over the last decade, baseband flux pulsing for two-
qubit gating has evolved in an effort to increase gate fi-
delity and to reduce leakage and residual ZZ coupling.
In particular, leakage into non-computational states be-
came a main focus for its negative impact on QEC,
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adding complexity to error-decoder design [14] and re-
quiring hardware and operational overhead to seep back
into the computation space [15–19]. To reduce leakage
from linear-dynamical distortion in flux-control lines and
limited time resolution in arbitrary waveform generators
(AWGs), unipolar square pulses [10, 20] have been su-
perseded by softened counterparts [21, 22] based on fast-
adiabatic theory [23]. In parallel, coupling strengths have
reduced to J2/2π ∼ 10−20 MHz in the effort to reduce
residual ZZ coupling, which affects single-qubit gates and
idling at bias points, and produces crosstalk from spec-
tator qubits [24]. Many groups are actively developing
tunable coupling schemes to suppress residual coupling
without incurring the slowdown of the gates [25–29].

A main limitation to the fidelity of flux-based
CPHASE gates is dephasing from flux noise, as one qubit
is displaced 0.5−1 GHz below its flux-symmetry point
(i.e., sweetspot [30]) to reach the |11〉-|02〉 resonance. To
address this limitation, Ref. 31 introduced a bipolar vari-
ant [termed Net Zero (NZ)] of the fast-adiabatic scheme,
which provides a built-in echo reducing the impact of low-
frequency flux noise. The double use of the transverse in-
teraction also reduces leakage by destructive interference,
as understood by analogy with a Mach-Zehnder inter-
ferometer (MZI). Finally, the zero-average characteristic
avoids the buildup of long-timescale distortions in the
flux-control lines, significantly improving gate repeata-
bility. NZ pulsing was successfully used in several recent
experiments [6, 8, 32], elevating the state of the art for
CZ gate fidelity to 99.72±0.35% [3]. However, NZ suffers
from complicated tuneup, owing to the complex depen-
dence of conditional phase and leakage on fast-adiabatic
pulse parameters. This limits the use of NZ for two-qubit
gating as quantum processors grow in qubit count.

In this article, we introduce the sudden variant (SNZ)
of the NZ scheme implementing CZ gates using baseband
flux pulsing. SNZ offers two advantages while preserving
the built-in echo, destructive leakage interference, and
repeatability characteristic of conventional NZ (CNZ).
First, SNZ operates at the speed limit of transverse cou-
pling by maximizing intermediate leakage to the non-
computational state. The second and main advantage is
greatly simplified tuneup: the landscapes of conditional
phase and leakage as a function of two pulse parame-
ters have very regular structure and interrelation, eas-
ily understood by exact analogy to the MZI. We realize
SNZ CZ gates among four pairs of nearest neighbors in
a seven-transmon processor and characterize their per-
formance using two-qubit interleaved randomized bench-
marking (2QIRB) with modifications to quantify leak-
age [31, 33, 34]. The highest performance achieved has
99.93 ± 0.24% fidelity with 0.10 ± 0.02% corresponding
leakage. SNZ CZ gates are fully compatible with scal-
able approaches to QEC [35]. The generalization of SNZ
to arbitrary CPHASE gates is straightforward and use-
ful for optimization [36], quantum simulation [37], and
other noisy intermediate-scale quantum (NISQ) applica-
tions [38].
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Figure 1. (a) Energy potential of the Quantum Harmonic
Oscillator (QHO) and (b) the Transmon. The QHO has a
parabolic potential, resulting in equally spaced energy levels
with spacing ~ωr. By replacing the inductor with a Joseph-
son junction a nonlinearity is introduced in the Hamiltonian
affecting the spacing of the levels which now can be addressed
individually by a microwave pulse. The EC energy is easily
set by the capacitor geometry while EJ is very sensible to the
fabrication process of the Josephson junction. Adapted from
Ref. 39.

II. TRANSMON AND DEVICE OVERVIEW

This section is a brief overview of the quantum chip,
its transmons, single-qubit operations (gates), quantum
state readout and the flux-based two-qubit gates.

Despite micrometer scales, simple electrical circuits
made of superconducting metals exhibit quantization ef-
fects at very low temperatures (∼ 10 mK). For example,
an LC circuit [Fig. 1(a), inset] behaves as a Quantum
Harmonic Oscillator (QHO) with equally spaced energy
levels. Although the first two levels resemble a qubit,
in practice, the equally spaced ladder does not allow to
target specific transitions. However, if the inductor is
replaced by a Josephson junction – a nonlinear element
– the transitions become anharmonic [Fig. 1(b)]. This
enables the individual transitions to be addressed with
microwave pulses implementing single-qubit operations
(gates) for a practical qubit – the transmon.

If we add one more Josephson junction in parallel and
apply a magnetic field (by applying a current through a
nearby wire) such that there will be an external magnetic
flux Φ in the closed loop formed by the two junctions
(called SQUID loop) as shown in Fig. 2(c), we obtain
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Figure 2. Thin film device and transmon details. (a) False-
colored optical image of the device, zoomed in to the four
transmons used in this study. Transmons QH (red) and QL

(pink) each connect to QM1 (green) and QM2 (cyan) using
dedicated coupling bus resonators for each pair (light orange).
Each transmon has a flux-control line for two-qubit gating
(yellow), a microwave-drive line for single-qubit gating (dark
orange), and dispersively-coupled resonator with Purcell filter
for readout (purple) [6, 40]. The readout-resonator/Purcell-
filter pair for QM2 is visible at the center of this image. The
vertically running common feedline (blue) connects to all Pur-
cell filters, enabling simultaneous readout of the four trans-
mons by frequency multiplexing. Air-bridge crossovers enable
the routing of all input and output lines to the edges of the
chip, where they connect to a printed circuit board through
aluminum wirebonds. (b) Zoom-in at QL, all transmons on
the chip follow a similar design. (c) Transmon circuit diagram
with a capacitor representing the two (large) superconducting
islands at the center of (b) and the SQUID loop formed by
two Josephson junctions. Coupling to the drive-line, to the
readout resonator and to other qubits is omitted. The current
in the flux-line produces the magnetic flux Φ in the loop which
controls the transmon transition frequency. (d) Zoom-in at
the SQUID loop that integrates the two Josephson junctions.
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Figure 3. Exemplary read-out histograms for a transmon,
prepared in |0〉 , |1〉 and |2〉 states, represented on the (I, Q)-
plane. For the |2〉 state the transmon is excited with a driving
pulse calibrated for the |1〉 → |2〉 transition after preparing
|1〉. Dataset generated with routines from Ref. 41. The rela-
tive positions of the centroids can vary between transmons.

flux-dependent energy levels – a key mechanism exploited
in this work. We return to it after introducing the phys-
ical device and its architecture.

In this work we employ a transmon device designed to
execute quantum circuits with the long-term goal of a
universal Fault-Tolerant Quantum Computer. The holy
grail, in overcoming the inherent errors of the physi-
cal qubits, are logical qubits encoded redundantly by
physical qubits in an architecture such as the Surface
Code [5, 35], allowing for Quantum Error Detection and
Quantum Error Correction. The 7-transmons chip used
is designed in a configuration representing a sub-patch
of the Surface Code [35]. For more detailed chip design
considerations and transmons background we point the
reader to chapter 2 of Ref. 42 and Ref. 39.

The superconducting transmon chip is placed inside a
dilution refrigerator that maintains it under vacuum at
the coldest stage (∼ 10 mK, mixing chamber tempera-
ture). The terminals of the chip are routed up to the
room-temperature control electronics through the atten-
uation/amplification chain using coaxial cables.

In this study we make use of four transmons. A zoomed
in optical image of the device is shown in Fig. 2. In
Figs. 2(b) and 2(c) we detail the structure of one of these
transmon while in Fig. 2(d) we present the SQUID loop.
High- and low-frequency transmons (QH and QL, respec-
tively) connect to two mid-frequency transmons (QM1

and QM2) using bus resonators dedicated to each pair.
Every transmon has a dedicated microwave-drive line for
single-qubit gating, a flux-control line used for two-qubit
gating, and a dispersively-coupled readout resonator with
dedicated Purcell filter [6, 40] for quantum state readout.
Qubits initialization is based on the energy relaxation to
the ground state |0〉 (a few hundred microseconds).

The drive-live implements arbitrary single qubit rota-
tions around axes on the x̂ŷ-plane (of the Bloch sphere).
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Figure 4. (a) Approximate eigenenergies spectrum of two coupled transmons with typical parameters as a function of the
(local) magnetic flux in the SQUID loop of the high-frequency transmon, normalized to the flux quantum Φ0. Only the first
five excited levels are included. All branches are symmetrical with respect to the sweetspot. Single qubit excitations |10〉 and
|01〉 implement an iSWAP gate at ΦiSWAP (inset on the right). Interactions of |11〉 with non-computational levels |20〉 and |02〉
give rise to CPHASE-type avoided crossings (inset on the left). Black path between red diamond (initial point) and black dot
(final point) indicates typical (unipolar) CPHASE adiabatic trajectory [L(t)]. The zero point of energy is chosen to be f00. (b)
Zoom-in at the avoided crossing between |11〉 and |02〉 at ΦCPHASE employed for CZ gating.

The driving signal is composed of two sinusoids reso-
nant with the qubit frequency, one in phase (I) and one
in quadrature (Q), shaped by Gaussian and Gaussian-
derivative envelopes according to the DRAG scheme [43].
An IQ up-converting mixer is employed for this modula-
tion. The DRAG scheme is essential to avoid (residually)
driving the |1〉 → |2〉 transition which otherwise results
in leakage (L1) into states outside the computation space
– a severe gate error.

Readout is performed by frequency multiplexed mea-
surement of a common feedline capacitively connected
to all four transmons through their respective readout
resonator and Purcell filters. The scenario of a trans-
mon coupled to a resonator (effectively a QHO) is known
as circuit Quantum Electrodynamics (cQED) and it is
analogous to an atom in an optical cavity. The impor-
tant here is that the resonator-qubit interaction leads to
a resonator whose frequency depends on the qubit state.
In practice this makes possible to probe the transmis-
sion line at a fixed frequency and based on the trans-
mission/reflection infer the qubit state. An IQ modula-
tion/demodulation chain is employed for this task [44].
To build some intuition, in Fig. 3 we illustrate an ex-
emplary histogram of the (demodulated and averaged)
read-out voltages for a transmon prepared in each of its
first 3 levels and measured immediately after.

Despite being possible to operate transmon at other
frequencies, due to flux-noise impact each transmon is
statically flux-biased at its sweetspot (maximum tran-
sition frequency point) countering residual offsets (this
procedure is detailed in chapter 3 of Ref. 42). Flux puls-
ing is performed using a Zurich Instruments HDAWG-8
(ts = 1/2.4 ns). Following prior work [31, 45], linear-
dynamical distortions in the flux-control lines are cor-
rected using real-time filters.

When considering a resonator coupling capacitively

two transmons, and assuming no photons in the res-
onator, it is possible to show [39, 42] that this sys-
tem can be regarded as two directly coupled transmons.
Combined with the frequency tuneability of the higher-
frequency qubit, the pair can be used to implement two-
qubit gates, such as the CPHASE-type gates and the CZ
in articular [10].

The CPHASE unitary can be expressed in the compu-
tational space {|00〉 , |01〉 , |10〉 , |11〉} as:

UCPHASE(φ2Q) =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ2Q

 ,

which has the effect of applying a relative quantum phase
conditional on both qubits being in the excited state |11〉,
hence the name controlled-phase gate. A CZ gate is
achieved when

φ2Q = π ⇒ UCPHASE(φ2Q) =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ≡ UCZ.

To elucidate the implementation principle behind the
CPHASE, it is useful to inspect the energy spectrum of
two coupled flux-tunable transmons with typical param-
eters. In Fig. 4 we plot the (approximate) eigenenergies
of the two-transmon system as a function of the magnetic
flux in the SQUID loop of the high-frequency qubit. We
note that, as we increase the absolute flux (linearly de-
pendent on the flux-line current), the non computational
state |02〉 decreases in energy much more than |01〉. As a
consequence, it "crosses" the |11〉. Furthermore, due to
the negative anharmonicity of this type of transmon, the
|02〉 crosses |11〉 before the crossing of the computational
states |01〉 and |10〉.
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When zooming in at the point where |11〉 and |02〉
would become degenerate [Fig. 4(b)] we instead find an
avoided crossing. The insets of Fig. 4(a) depict 3 such
avoided crossings (on each sides of the sweetspot): two
of the CPHASE-type and one of the iSWAP-type, same
physics, only distinct interacting levels. In practice, due
to the increased sensitivity to flux noise at higher flux,
only the first avoided crossing is suitable for high fidelity
gates [Fig. 4(a), left inset, arrow in black].

The accrual of a relative conditional phase happens
when we excite both qubits into |11〉 [Fig. 4(a), red di-
amond] and apply a flux trajectory L(t) towards the
avoided crossing with |02〉 at ΦCPHASE for a total time
τ in a slow enough manner compared to the timescale
set by J2 and then returning back following the same ex-
cursion [Fig. 4(a), black trajectory]. Ideally, this would
ensure following an instantaneous eigenstate of the sys-
tem and never populating the |02〉. It is common to la-
bel such trajectory as being adiabatic. Effectively, the
avoided crossing with the non-computational state gives
rise to an effective ZZ-coupling within the computational
state yielding a CPHASE.

However, if the transmons are too close in frequency,
the avoided crossing would be much closer to the
sweetspot with a non-negligible always-on residual ZZ-
coupling that gives rise to detrimental phase accrual [46].
Same applies for too strong couplings which motivated
their reductions over the last decade.

Contrasting with the adiabatic approach, the ideal ex-
treme of a sudden pulse into the avoided crossing, could
also implement a CZ gate. When jumping suddenly to
ΦCPHASE, after preparing the transmons in |11〉, and
letting the system evolve for a time τ , the system per-
forms a Larmor-type rotation [44] – a precession-like phe-
nomenon – acquiring the relative conditional phase. The
J2 rate establishes the fastest CPHASE gates possible,
in particular a tlim = 2π/2J2 for the CZ.

The disadvantage of interacting with states outside the
computational space is that, for small offsets from the
optimal parameters, the system ends up in superposition
with those states (leakage) being very detrimental in a
two-level-based quantum computation model [14]. Many
efforts went into designing adiabatic trajectories compat-
ible with the quantum error correction threshold (∼ 1 %),
culminating recently in the Net-Zero scheme [31].

Unfortunately, its calibration is laborious because, be-
sides feeding the simulations with an accurate charac-
terization of the device, it requires to first heuristically
optimize the pulse duration in simulation. This increases
the complexity of the problem even in simulation. Note
that in experiment it is almost unfeasible owing to the
∼ 30 s necessary to evaluate a single point on the 2D
calibration landscape. Furthermore, despite its current
adoption, the complex structure and interdependence of
the calibration landscapes (see chapter 4 in Ref. 42 or
Ref. 31 for some examples) limits the use of the NZ as
quantum processors grow in qubit number. It is worth
emphasizing that the qualitative features of these cali-

bration landscapes vary significantly between pulse du-
rations and among transmon-pairs.

Motivated by these practical limitations we introduce
the SNZ variant described in the next section.

III. THE SNZ CONCEPT

A flux pulse harnessing the |11〉-|02〉 interaction imple-
ments the unitary

UCPHASE =


1 0 0 0 0
0 eiφ01 0 0 0
0 0 eiφ10 0 0
0 0 0

√
1− 4L1e

iφ11
√

4L1e
iφ02,11

0 0 0
√

4L1e
iφ11,02

√
1− 4L1e

iφ02


in the {|00〉 , |01〉 , |10〉 , |11〉 , |02〉} subspace, neglecting
decoherence and residual interaction between far off-
resonant levels. Here, φ01 and φ10 are the single-qubit
phases, and φ11 = φ01 + φ10 + φ2Q, where φ2Q is the
conditional phase. Finally, L1 is the leakage parameter.
Even though we follow the leakage definition where it ac-
counts for any computational state to leak into any other
non-computation state [34], for this illustration we sim-
plify and attribute all leakage to the main |11〉 → |02〉
channel, hence a factor of 4 under the square roots.

In a rotating frame which absorbs the single-qubit
phases, the system Hamiltonian is

H =∆02(t) |02〉〈02|+ J2 (|02〉〈11|+ |11〉〈02|) ,

where ∆02(t) is the dynamical detuning between |02〉 and
|11〉. Each half of the bipolar NZ pulse implements the
unitary

UA = U−A =

(
γeiφa βeiφb

βeiφc γeiφd

)
,

in the {|11〉 , |02〉} subspace, where γ, β ∈ [0, 1] satisfy
γ2 + β2 = 1 and φa + φd = φb + φc + π (mod 2π).
In the MZI analogy, this unitary is the action of each
beamsplitter, ideally identical BS1 = BS2.

In SNZ [Fig. 5(a)], each half pulse is a square pulse
with amplitude ±A and duration tp/2 = tlim/2. SNZ
intentionally adds an idling period tφ between the half
pulses to perfect the analogy to the MZI [Fig. 10(a) in-
set], allowing accrual of relative phase φ in between the
beamsplitters BS1 and BS2. The unitary action of this
idling is

Uφ =

(
1 0
0 eiφ

)
.

An ideal CZ gate, our target here, achieves φ01 = φ10 =
0 (mod 2π), φ2Q = π (mod 2π) (phase condition PC),
and L1 = 0 (leakage condition LC), with arbitrary φ02.
Accomplishing both conditions with U−AUφUA requires

γ2ei2φa + β2ei(φb+φc+φ) = −1 (PC)
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Figure 5. Numerical simulation of a SNZ pulse with infinite
time resolution for QL-QM2, with ∆02/2π = 1.063 GHz (at
bias point) and tlim = 35.40 ns for the |11〉-|02〉 interaction.
(a) Schematic of the SNZ flux pulse, with tp = tlim and vari-
able A and tφ. Amplitude A is normalized to the |11〉-|02〉
resonance. (b, c) Landscapes of conditional phase φ2Q (b)
and leakage L1 (c) as a function of A and tφ.

simultaneously with either one of three conditions: (LC1)
β = 0; (LC2) φa − φd − φ = π (mod 2π); or (LC3)
γ = 0. LC1 (LC3) corresponds to perfect reflection
(transmission) at each beamsplitter. LC2 corresponds to
destructive interference of the leakage produced by the
first beamsplitter.

The key advantage of SNZ over CNZ is the very
straightforward procedure to simultaneously meet PC
and low leakage. To appreciate this, consider first the
ideal scenario where the pulses has infinite time resolu-
tion. For, tp = tlim, tφ = 0 (φ = 0), and A = 1 (the |∆02|
minimum) each half pulse implements an iSWAP gate
between |11〉 and |02〉. Thus, γ = 0 (meeting LC3) and
φb = φc = −π/2 (meeting PC). In the MZI analogy, the
first beamsplitter fully transmits |11〉 to −i|02〉 (produc-
ing maximal intermediate leakage), and the second fully
transmits −i|02〉 to −|11〉.

Consider now the effect of tφ. The two-qutrit numer-
ical simulation, i.e. including three energy levels (|0〉,
|1〉 and |2〉), with infinite time resolution in Figs. 5(b)
and 5(c) show that the landscapes of φ2Q and L1 as
a function of A and tφ have a clear structure and link
to each other. Evidently, U−AUφUA is 2π-periodic in
φ, so both landscapes are vertically periodic. The L1

landscape shows a vertical leakage valley at A = 1, due
to LC3, and two other vertical valleys due to LC1 [see
Fig. 5(c)]. LC2 gives rise to additional diagonal valleys.

Crucially, juxtaposing the φ2Q = 180◦ contour shows
that PC is met at the crossing of LC3 and LC2 valleys.
This regular leakage landscape therefore provides on its
own useful crosshairs for simultaneously achieving PC
and low leakage. We note that along the LC3 valley,
φ2Q(tφ) changes monotonically, allowing for CPHASE
gates with arbitrary φ2Q. We leave this generalization
for future work, focusing here on CZ gates.

There are practical reasons to include tφ in experiment:
any flux-pulse distortion remaining from the first half
pulse during the second (e.g., due to finite pulse rise time)
will break the symmetry U−A =UA. Due to the fixed time
resolution ts of the AWG used for flux control, φ can only
increment in steps of −∆02ts, where ∆02 is the detuning
at the bias point. As typically ∆02/2π = 0.5−1 GHz and
ts ∼ 1 ns, one may only use the number of intermediate
sampling points in tφ for coarse control. For fine control,
we propose the (simultaneous) tunning of the amplitude
±B of two sampling points: the first and last sampling
points during tφ [see Fig. 6(b)].

A. Comparison between CNZ and SNZ pulses

The conventional NZ (CNZ) strong pulse [Fig. 6(a)]
consists of two back-to-back half pulses of duration tp/2
each, applied on the higher-frequency transmon. Typi-
cally, tp/tlim ∼ 1.1−1.6. The strong half pulses are for-
mally parametrized as in Ref. 23. For the purposes of
illustration, here we can loosely lump this parametriza-
tion as affecting the amplitude (±A) and curvature (A′)
of the strong half pulses. Immediately following the
strong pulse, weak bipolar pulses of duration t1Q are ap-
plied on both the higher- and lower-frequency transmons
with amplitudes ±C and ±D, respectively, in order to
null the single-qubit phases acquired by each. Typically,
t1Q = 10 ns. In conventional NZ there is no interme-
diate idling period between the strong half pulses, so
the analogy to the MZI is not exact [Fig. 6(c)]. Dur-
ing tuneup, one searches the (A,A′) space to achieve
U−AUA = UCPHASE(φ2Q = π) by only affecting the uni-
tary action of the two beamsplitters. Because for typ-
ical tp conventional NZ produces significant leakage at
the first strong pulse, achieving minimal leakage relies
on meeting LC2. The structure of the φ2Q(A,A′) and
L1(A,A′) landscapes and especially their interrelation
are not straightforward, so the search for an (A,A′) set-
ting satisfying both PC and LC2 is not easily guided [see
figures in Ref. 31].

The SNZ pulses introduced here [Fig. 6(b)] differ in two
key ways. First, the strong half pulses are replaced by
square half pulses each with duration tp/2 as close as pos-
sible to tlim/2 (as allowed by the AWG sampling period)
but not shorter. Second, an intermediate idling period tφ
is added to accrue relative phase φ between |02〉 and |11〉,
perfecting the analogy to the MZI [Fig. 6(d)]. We use the
amplitude ±B of the first and last sampling points in tφ
and the number of intermediate zero-amplitude points
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(a)

(b)

(c)

(d)

Conventional NZ

SNZ

Figure 6. Comparison of conventional NZ (CNZ) and SNZ pulses for CZ gates. (a) Conventional NZ CZ pulses consist of
two back-to-back strong half pulses of duration tp/2 each, followed by two weak back-to-back half pulses of duration t1Q/2
each on the higher-frequency qubit. The amplitude (±A) and curvature (A′) of the strong pulses are jointly tuned to set the
conditional phase φ2Q at minimal leakage L1, while the amplitude ±C of the weak pulses is used to null the single-qubit phase
on the higher-frequency transmon. Weak pulses (amplitude ±D) on the lower-frequency qubit (not shown here) are also used
to null its single-qubit phase. (b) In SNZ, the strong pulses are replaced by square pulses with tp as close as possible to tlim but
not shorter. Also, an intermediate idling period tφ is added to accrue relative phase φ between |02〉 and |11〉. The amplitude
±B of the first and last sampling points in tφ and the number of intermediate zero-amplitude points provide fine and coarse
control of this relative phase, respectively. SNZ CZ gates also use weak bipolar pulses (now square) of total duration t1Q to
null single-qubit phases. (c) The MZI analogy for CNZ pulses is incomplete. Each strong half pulse implements a beamsplitter
(ideally identical) with scattering parameters affected by A and A′. However, there is no possibility to independently control
the relative phase in the two arms between the beamsplitters. (d) The MZI analogy is exact for SNZ pulse. The scattering at
the beamsplitters is controlled by A and the relative phase φ is controlled finely using B and coarsely using tφ.

to achieve fine and coarse control of φ, respectively. As
in CNZ, we use weak bipolar pulses on both transmons
(also with t1Q = 10 ns) to null the single-qubit phases.
During tuneup, we search the (A,B) space to achieve
U−AUφUA = UCPHASE(φ2Q = π). In Section IVA we
will show that the SNZ pulse design gives a very sim-
ple structure to the φ2Q(A,B) and L1(A,B) landscapes.
Crucially, the crossing point of leakage valleys satisfying
LC2 and LC3 matches φ2Q = 180◦. This simplicity of
tuneup is the key advantage of the SNZ over the conven-
tional NZ.

Another advantage of SNZ over conventional CZ is the
reduced total time ttotal = tp + tφ+ t1Q required for a CZ

gate. However, due to the 20 ns timing grid of the control
electronics and the transverse coupling strengths in this
device, this speedup is insufficient to reduce the total
time allocated per CZ gate from 60 to 40 ns. Nonetheless,
in SNZ, the fluxed transmon spends more time at its
sweetspot, which reduces the dephasing due to flux noise.

Additionally, in Fig. 7 we compare schematically the
trajectories implemented by the strong CNZ and SNZ
pulses on a system initialized in the |11〉 state. A CNZ
pulse attempts to adiabatically approach twice the inter-
action point while remaining in the |11〉 state [Fig. 7(a)].
Because it is hard to meet such condition, during the pos-
itive branch of the pulse, some population is lost through
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Figure 7. Schematic comparison between realistic trajectories for CNZ and SNZ pulses when applied to the double-excited
state |11〉. The trajectory for single-qubit phase corrections are omitted. Note that in both cases, the most of the trajectory
is spent close to (CNZ) or at the center (SNZ) of the interaction point. (a) Trajectory for a CNZ pulse. The system remains
in the |11〉 state during the full trajectory for a sufficiently long pulse such that the adiabatic condition holds. Imperfections
and/or too short pulses can lead to part of the population leaking into (or seeping back from) the |02〉 state. (b) Trajectory
for an SNZ pulse. Ideally, maximal leakage is produced during the first half-pulse and the full population of the |11〉 state is
recovered during the second half-pulse.

the residual path of |02〉. Imperfect destructive interfer-
ence of the |02〉 state during the negative branch of the
pulse leads to leakage at the end of the gate. In case
of an SNZ pulse [Fig. 7(b)], after suddenly moving into
the avoided crossing, during the first half-pulse, we maxi-
mize the transfer of population to the |02〉 state by fixing
the amplitude A = 1 for a duration of tp/2 ∼ tlim/2.
As we switch to the second half-pulse approaching the
avoided crossing for the second time, the single-sample
amplitudes ±B, together with tφ, provide robust tunning
knobs to maximize the recovery of the |11〉 population
with the desired conditional phase.

IV. EXPERIMENTAL REALIZATION OF SNZ
CZ GATES

A. Calibration procedure

We now turn to the experimental realization of SNZ
CZ gates between the nearest-neighbor pairs among four
transmons. We exemplify the tuneup of SNZ using pair
QL-QM2 (Fig. 8). We first identify tlim for the |11〉-|02〉
interaction and amplitude A bringing the two levels on
resonance. Both are extracted from the characteristic
chevron pattern of |2〉-population in QM2 as a function
of the amplitude and duration of a unipolar square flux
pulse acting on |11〉 [Fig. 8(a)]. The symmetry axis cor-
responds to A = 1 and the oscillation period along this
axis gives tlim. We set tp = t+lim ≡ 2nts, where n is the
smallest integer satisfying 2nts ≥ tlim. Next, we mea-
sure the landscapes of φ2Q and leakage estimate L̃1 in
the range A ∈ [0.9, 1.1], B ∈ [0, A], using conditional-
oscillation experiments [31]. As expected, the landscape
of L̃1 [Fig. 8(c)] reveals a vertical valley at A = 1 and
a diagonal valley. Juxtaposing the φ2Q = 180◦ contour
from Fig. 8(b), we observe the matching of PC at the
crossing of these valleys. These observations are in ex-
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Figure 8. Calibration of the SNZ pulse for pair QL-QM2 and
comparison to simulation. (a) |2〉-state population of QM2

as a function of the amplitude and duration of a unipolar
square pulse making |11〉 interact with |02〉. (b, c) Land-
scapes of conditional phase φ2Q and leakage estimate L̃1 as
a function of SNZ pulse amplitudes A and B, with tp = t+lim
and tφ = 1.67 ns. The juxtaposed φ2Q = 180◦ contour runs
along the opposite diagonal compared to Figs. 5(b) and 5(c)
because, contrasting with tφ, increasing B (which decreases
∆02) changes φ in the opposite direction from tφ. Data points
marked with dots are measured with extra averaging for ex-
amination in Fig. 9. (d) Numerical simulation of leakage L1

landscape and φ2Q = 180◦ contour with parameters and flux-
pulse distortions from experiment. All landscapes (also in
Fig. 9) are sampled using an adaptive algorithm based on
Ref. 47.
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intentionally short and long (tp = t+lim ± 6ts) flux pulses on
QM2. (c) Extracted L̃1 along the φ2Q = 180◦ contours from
(a), (b), and Fig. 8(c).

cellent agreement with a numerical two-qutrit simulation
[Fig. 8(d)].

1. SNZ robustness to hardware limitations

Experimentally, it is nearly impossible to precisely
match tp = tlim due to the discreteness of ts. To under-
stand the consequences, we examine the φ2Q and L̃1 land-
scapes for SNZ pulses with intentionally set tp = t+lim±6ts
(Fig. 9). We find that the PC contour remains roughly
unchanged in both cases. However, there are signifi-
cant effects on L̃1. In both cases, we observe that L̃1

lifts at the prior crossing of LC2 and LC3 valleys where
φ2Q = 180◦. For too-short pulses [Fig. 9(a)], there
remain two valleys of minimal L̃1, but these are now
curved and do not cross φ2Q = 180◦. For too-long pulses
[Fig. 9(b)], there are also two curved valleys. Crucially,
these cross the φ2Q = 180◦ contour, and it remains pos-
sible to achieve PC and minimize leakage at two (A,B)

settings. Extracting L̃1 along the φ2Q = 180◦ contours
[Fig. 9(c)] confirms that the minimal leakage obtainable
for tp = t+lim + 6ts matches that for tp = t+lim. The im-
possibility to achieve minimal leakage at φ2Q = 180◦ for
tp < tlim is a clear manifestation of the speed limit set
by J2. In turn, the demonstrated possibility to do so for
tp > tlim (even when overshooting the duration signifi-
cantly) is an important proof of the viability of the SNZ
pulse in practice.

Parameter QM1-QH QM2-QH QL-QM1 QL-QM2

tlim (ns) 32.20 29.00 40.60 35.40
tp, tφ (ns) 32.50, 2.92 29.10, 3.75 40.83, 1.25 35.83, 1.67
ttotal (ns) 45.42 42.91 52.08 47.50
Interaction |11〉-|02〉 |11〉-|02〉 |11〉-|20〉 |11〉-|02〉
Parked qubit QM2 QM1 – –
Avg. F (%) 98.89± 0.35 99.54± 0.27 93.72± 2.10 97.14± 0.72
Avg. L1 (%) 0.13± 0.02 0.18± 0.04 0.78± 0.32 0.63± 0.11
Max. F (%) 99.77± 0.23 99.93± 0.24 99.15± 1.20 98.56± 0.70
Min. L1 (%) 0.07± 0.04 0.10± 0.02 0.04± 0.08 0.41± 0.10

Table 1. Summary of SNZ CZ pulse parameters and achieved
performance for the four transmon pairs. Single-qubit phase
corrections are included in ttotal. Gate fidelities and leakage
are obtained from 2QIRB keeping the other two qubits in |0〉.
Statistics (average and standard deviation) are taken from
repeated 2QIRB runs [see Ref. 46]. The maximum F and
minimum L1 quoted are not necessarily from the same run.

B. Experimental performance of SNZ CZ gates

With these insights, we proceed to tuning the four
SNZ CZ gates, following similar procedures. We use final
weak bipolar pulses of total duration t1Q = 10 ns to null
the single-qubit phases in the frame of microwave drives.
Since our codeword-based control electronics has a 20 ns
timing grid, and 40 ns < ttotal = tp + tφ+ t1Q < 60 ns for
all pairs, we allocate 60 ns to every CZ gate. Some pair-
specific details must be noted (see inset in Fig. 10 for in-
tuition on qubits connectivity and the detuning involved
during the CZ gates). Owing to the transitions overlap
of mid-frequency qubits, implementing CZ between QH

and QM1 (QM2) requires a parking (bipolar) flux pulse
on QM2 (QM1) during the SNZ pulse on QH [8, 35]. The
parking flux pulse on the other mid-frequency transmon
(the one not participating in the CZ) downshifts its fre-
quency (during the CZ gate) in order to avoid the un-
desired interaction with this transmon. For most pairs,
we employ the |11〉-|02〉 interaction, which requires the
smallest flux amplitude (reducing the impact of dephas-
ing from flux noise) and does not require crossing any
other interaction. However, for QL-QM1, we cannot reli-
ably use this interaction as there is a flickering two-level
system (TLS) overlapping QM1 transition [46]. For this
pair, we therefore employ the |11〉-|20〉 interaction. Here,
the SNZ brigs a side benefit: it minimizes exchange be-
tween |01〉 and the TLS, |11〉 and |20〉, and |01〉 and |10〉
as their resonances are crossed as suddenly as possible.

Table 1 summarizes the timing parameters and perfor-
mance attained for the four SNZ CZ gates. The CZ gate
fidelity F and leakage L1 are extracted using a 2QIRB
protocol [31, 34]. For each pair, we report the best, aver-
age and standard deviation of both based on at least 10
repetitions of the protocol spanning more than 8 h [46].
Several observations can be drawn. First, CZ gates in-
volving QH perform better on average than those in-
volving QL. This is likely due to the shorter tlim and
correspondingly longer time 60 ns − tp spent near the
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Figure 10. Best SNZ CZ gate performance achieved from a
single run of 2QIRB. (a) Reference and CZ-interleaved return
probability M0 to |00〉 and (b) population in the computa-
tional space χ1 as a function of the number of two-qubit Clif-
fords in the reference curve. Errors bars in F and L1 are
obtained from the uncertainty of exponential-decay fits.

sweetspot. Additionally, the frequency downshifting re-
quired of QH to interact with QM1 and QM2 is roughly
half that required of the latter to interact with QL. This
reduces the impact of dephasing from flux noise dur-
ing the pulse. Not surprisingly, performance is worst
for QL-QM1. Here, the pulse must downshift QM1 the
most to reach the distant |11〉-|20〉 interaction, increas-
ing dephasing from flux noise. Also, there may be resid-
ual exchange with the TLS and the crossed resonances.
Overall, there is significant temporal variation in perfor-
mance as gleaned by repeated 2QIRB characterizations.
We believe this reflects the underlying variability of qubit
relaxation and dephasing times, which however were not
tracked simultaneously. In addition to having the best
average performance, pair QM2-QH displays the maxi-
mum F of 99.93 ± 0.24% (Fig. 10). To the best of our
knowledge, this is the highest CZ fidelity extracted from
2QIRB characterization in a transmon processor.

To understand the dominant sources of infidelity ε =
1 − F and leakage, we run numerical simulations [31],
for both SNZ and CNZ, with input parameters from ex-
periment for pair QM2-QH. We dissect an error budget
versus various models finding similar contributions for

both gates (see Ref. 46 for details). Nevertheless, the re-
sults suggest that SNZ slightly outperforms CNZ, likely
due to the shorter time spent away from the sweetspot.

V. CONCLUSION

In summary, we have proposed and implemented the
sudden variant of the NZ pulsing scheme [31]. SNZ op-
erates at the speed limit of transverse coupling by max-
imizing intermediate leakage to the non-computational
state. The key advantage of SNZ over CNZ is ease of
tuneup, owing to the simple structure of error landscapes
as a function of pulse parameters. We have demonstrated
high-fidelity CZ gates between four transmon pairs in a
patch of a 7-transmon processor. Control architectures
without a timing grid will further benefit from the in-
creased speed of SNZ over CNZ by reducing the total gate
time and thus the impact of decoherence. Harnessing
the tuning simplicity, we already employ SNZ CZ gates
in the Starmon-5 processor publicly available via the
QuTech Quantum Inspire platform [48]. Moving forward,
the compatibility of SNZ with our proposed [35] scalable
scheme for surface coding makes SNZ our choice for CZ
gates for quantum error correction. Finally, the straight-
forward extension of SNZ to arbitrary conditional-phase
gates can find immediate use in NISQ applications.
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SUPPLEMENTAL MATERIAL

This supplement provides additional information in support of statements and claims made in the main text.
Appendix A provides further details on the measured transmon parameters. Appendix B presents the characterization
of single-qubit gate performance. Appendix C provides evidence for the two-level system affecting the realization of
SNZ CZ gates in pair QL-QM1 using the |11〉-|02〉 interaction. Appendix D presents a characterization of the residual
ZZ coupling between qubits at the bias point. Appendix E summarizes the technical details of the CZ characterization
by repeated 2QIRB. Appendix F presents the numerical simulation of the error budget for SNZ and CNZ CZ gates
on pair QM2-QH.

Appendix A: Transmon parameters

Our experimental study focuses on four transmons in a patch of our 7-qubit processor. Table S1 provides a summary
of measured parameters for the four transmons.

Appendix B: Single-qubit gate performance

All single-qubit gates are implemented as DRAG-type [43, 50] microwave pulses with a total duration of 4σ = 20 ns,
where σ is the Gaussian width of the main-quadrature Gaussian pulse envelope. We perform two sets of experiments
to jointly quantify the infidelity ε and leakage L1 of these gates. First, we perform individual single-qubit randomized
benchmarking (1QRB) keeping the other three qubits in |0〉. Second, we perform simultaneous single-qubit randomized
benchmarking (S1QRB) on pairs of qubits, keeping the other two qubits in |0〉. The results obtained from both types
of experiment are reported as diagonal and off-diagonal elements in the matrices presented in Fig. S1.

Appendix C: Flickering two-level system

As mentioned in the main text, we were unable to realize the SNZ CZ gate between pair QL-QM1 using the |11〉-|02〉
interaction due to the presence of a two-level system (TLS) interacting intermittently with QM1 at the flux amplitude
placing |11〉 and |02〉 on resonance. Figures S2(a) and S2(b) show the negative impact of this TLS when attempting
to characterize the |11〉-|02〉 interaction by the standard time-domain chevron measurement. While experience shows
that it is probable that such a TLS could be displaced or eliminated by thermal cycling at least above the critical
temperature of aluminum, we chose instead to use the more flux distant |11〉-|20〉 interaction to realize the SNZ CZ
gate for this pair. For this interaction, a standard, stable chevron pattern is observed [Figs. S2(c) and S2(d)].

QH QM1 QM2 QL

Qubit transition frequency at sweetspot, ωQ/2π (GHz) 6.4329 5.7707 5.8864 4.5338
Transmon anharmonicity, α/2π (MHz) -280 -290 -285 -320
Readout frequency, ωRO/2π (GHz) 7.4925 7.2248 7.0584 6.9132
Relaxation time, T1 (µs) 37± 1 40± 1 47± 1 66± 1

Ramsey dephasing time, T ∗2 (µs) 38± 1 49± 1 47± 1 64± 1

Echo dephasing time, T2 (µs) 54± 2 68± 1 77± 1 94± 2

Residual qubit excitation, (%) 1.4 1.2 4.3 1.7
Best readout fidelity, FRO (%) 99.1 98.5 99.4 97.8

Table S1. Summary of frequency, coherence, residual excitation, and readout parameters of the four transmons. The statistics
of coherence times for each transmon are obtained from 30 repetitions of standard time-domain measurements [44] taken
over ∼ 4 h. The residual excitation is extracted from double-Gaussian fits of single-shot readout histograms with the qubit
nominally prepared in |0〉. The readout fidelity quoted is the average assignment fidelity [49], extracted from single-shot readout
histograms after mitigating residual excitation by post-selection on a pre-measurement.
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Figure S1. Characterization of single-qubit gate infidelity ε (a) and leakage L1 (b) using randomized benchmarking (100
randomization seeds). Diagonal elements are extracted from individual single-qubit randomized benchmarking keeping the
other 3 qubits in |0〉. Off-diagonal elements are extracted from simultaneous one-qubit randomized benchmarking on pairs of
qubits, keeping the other two qubits in |0〉.

420 440 460
Pulse amp. QM1 (V)

20

40

P
u

ls
e

d
u

ra
ti

o
n

(n
s) QL, P|0〉 |11〉 − |02〉

(a)

420 440 460
Pulse amp. QM1 (V)

QM1,
1 - P|0〉

|11〉 − |02〉

(b)

560 580
Pulse amp. QM1 (mV)

QL, P|2〉 |11〉 − |20〉

(c)

tlim = 40.6 ns

560 580
Pulse amp. QM1 (mV)

QM1, P|0〉 |11〉 − |20〉

(d)

tlim = 40.6 ns

0.0

0.2

0.4

0.6

0.8

1.0

P
o
p

u
la

ti
o
n

Figure S2. Time-domain characterization of the |11〉-|02〉 and (c, d) |11〉-|20〉 interactions for pair QL-QM1. (a, b) Landscapes
of (a) ground-state population P|0〉 of QL and (b) total excited-state population 1−P|0〉 of QM1 as a function of the amplitude
and duration of a unipolar square pulse near the |11〉-|02〉 resonance. The absence of the expected chevron pattern in these
landscapes reflects a flickering TLS resonant with the qubit transition of QM1 at this pulse amplitude. Horizontally shifting
fringes in (a) and (b) are due to flickering of the TLS on the scale of a few minutes. These observations preclude the use of
the |11〉-|02〉 interaction to realize the CZ gate. In contrast, the landscapes of (c) two-state population P|2〉 of QL and (d) P|0〉
of QM1 and as a function of unipolar square pulse parameters near the |11〉-|20〉 resonance reveal a standard, stable chevron
pattern. All landscapes were sampled using an adaptive algorithm based on Ref. 47.

Appendix D: Residual ZZ coupling at bias point

Coupling between nearest-neighbor transmons in our device is realized using dedicated coupling bus resonators.
The non-tunability of said couplers leads to residual ZZ coupling between the transmons at the bias point. We
quantify the residual ZZ coupling between every pair of qubits as the shift in frequency of one qubit when the state
of the other changes from |0〉 to |1〉. We extract this frequency shift using a simple time-domain measurement: we
perform a standard echo experiment on one qubit (the echo qubit), but add a π pulse on the other qubit (control
qubit) halfway through the free-evolution period simultaneous with the refocusing π pulse on the echo qubit. The
results are presented as a matrix in Fig. S3. We observe that the residual ZZ coupling is highest between QH and the
mid-frequency qubits QM1 and QM2. This is consistent with the higher (lower) absolute detuning between QH (QL)
and the mid-frequency transmons, and the higher (lower) transverse coupling J2 = π/tlim for the upper (lower) pairs.

An alternative way to evidence this residual ZZ coupling is to extract the fidelity of idling using 2QIRB and to
compare this fidelity to that of CZ. To this end, we perform 2QIRB of idling (for 60 ns) on pairs QM2-QH and QL-QM2.
The results, shown in Fig. S4, show striking differences for the two pairs. For QM2-QH, the pair with strongest residual
coupling, the idling fidelity is significantly lower than the CZ fidelity. This is because the residual ZZ coupling is a
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Figure S3. Extracted residual ZZ coupling between all pairs of qubits at their bias points. We report the frequency shift in one
qubit (named echo qubit) when the computational state of another qubit (named control qubit) is shifted from |0〉 to |1〉.
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Figure S4. Comparison by 2QIRB of the fidelity and leakage of SNZ CZ versus idling (for an equivalent 60 ns) for pairs QM2-QH

and QL-QM2. SNZ gate parameters are provided in Table 1 of the main text. (a, c) Return probability to |00〉 as a function of
the number N2Q of two-qubit Clifford operations in the reference curve. For QM2-QH, the extracted idling fidelity is significantly
lower than the SNZ CZ fidelity. This is due to the high residual ZZ coupling between these two qubits as reported in Fig. S3,
which is not refocused during idling but absorbed into the tuneup of the SNZ CZ gate. For QL-QM2, idling fidelity exceeds
SNZ CZ fidelity as the residual coupling is one order of magnitude weaker. (b, d) Population in the computational subspace as
a function of N2Q. Leakage as a function of N2Q is weakest when interleaving idling steps, leading to negative L1,Idle. This is
due to seepage back into the computational space (during idling) of the leakage produced by the reference two-qubit Cliffords.

source of error during idling but is absorbed into the tuneup of SNZ. For QL-QM2, for which the residual coupling is
one order of magnitude lower, this trend is not observed.

Appendix E: Technical details on 2QIRB

Table S2 details technical aspects of the characterization of CZ gates by repeated 2QIRB runs.



16

Parameter QM1-QH QM2-QH QL-QM1 QL-QM2

Number of 2QIRB runs 39 10 88 35
Number of randomization seeds 100 300 100 100
Same randomization seeds No No Yes No
Avg. time per 2QIRB run (min) 17 50 9 17
Total wall-clock time (h) 28.8 16.9 16.7 14.8

Table S2. Technical details of the characterization of CZ gates by repeated 2QIRB. The average time per 2QIRB run is the
time required to perform back-to-back measurements of the reference and the CZ-interleaved curves. The total wall-clock time
includes the overhead from compilation of RB sequences and other measurements performed in between the CZ 2QIRB runs,
e.g., idling 2QIRB (Fig. S4).
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Figure S5. Error budgets for infidelity ε (a) and leakage L1 (b) obtained by a numerical simulation (as in Ref. 31) of the
QM2−QH SNZ CZ gate with parameters in Fig. 10 and for a conventional NZ gate with optimized parameters (see text
for details). The simulation incrementally adds errors using experimental input parameters for this pair: (A) no noise; (B)
relaxation; (C) Markovian dephasing; (D) dephasing from quasistatic flux noise; and (E) flux-pulse distortion.

Appendix F: Simulation results for SNZ and conventional NZ CZ gates versus different error models

To identify the dominant sources of infidelity ε = 1 − F and leakage for SNZ CZ gates, we perform a two-qutrit
numerical simulation for pair QM2-QH with incremental addition of measured error sources (Fig. S5), as in our previous
work on conventional NZ [31]. The simulation cumulatively adds: (A) no noise; (B) relaxation; (C) Markovian
dephasing; (D) dephasing from quasistatic flux noise; and (E) the remaining measured flux-pulse distortion. The
experimental inputs for models B, C and D combine measured qubit relaxation time T1 at the bias point, and
measured echo and Ramsey dephasing times (T2 and T ∗2 ) as a function of qubit frequency. The input to E consists
of a final Cryoscope measurement of the flux step response using all real-time filters. The simulation suggests that
the main source of ε is Markovian dephasing (as in Ref. 31), while the dominant contribution to L1 is low-frequency
flux noise. The latter contrasts with Ref. 31, where simulation identified flux-pulse distortion as the dominant leakage
source. We identify two possible reasons for this difference: in the current experiment, the 1/f low-frequency flux noise
is ∼4 times larger (in units of Φ0/

√
Hz) and the achieved flux step response is noticeably sharper. Finally, we use the

simulation to compare performance of SNZ to conventional NZ CZ. For the latter, we fix tφ = 0, t1Q = 60 ns− tp, and
use the fast-adiabatic pulse shape and tp = 45.83 ns optimized by simulation. Overall, the error sources contribute
very similarly to the error budget for both cases. The marginally higher overall performance found for SNZ is likely
due to the increased time spent at the sweetspot during the gate time.
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