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Resumo

Este trabalho propõe o algoritmo IRT (Iterative Ray-Tracing) como metodologia de georreferenciação de frentes

de incêndio a partir de imagens captadas por um veı́culo aéreo. O IRT requer que o veı́culo esteja equipado com

um dispositivo GPS (Global Positioning System), IMU (Inertial Measurement Unit) e um DEM (Digital Elevation

Map). Além disto, são necessários os IP (Intrinsic Parameters) da câmara a utilizar assim como os pixeis a

georreferenciar. Tendo em conta que o equipamento está sujeito a erros, propõe-se ainda a utilização da UT

(Unscented Transform), permitindo assim a caracterização da incerteza associada ao IRT. Por último, desenvolveu-

se um novo modelo de filtragem denominado Bearings-Range, que permite melhorar a estimativa da posição e

incerteza a partir de várias observações do mesmo alvo.

Os algoritmos de georreferenciação e filtragem foram validados por duas simulações em terreno acidentado

e plano. Comparou-se a performance do EKF (Extended Kalman Filter) com o CKF (Cubature Kalman Filter)

utilizando os modelos Bearings-Range e Bearings-Only. Foram alcançados resultados idênticos, com o primeiro a

destacar-se pelo menor tempo de processamento, pelo que é o filtro mais adequado para processamento em tempo

real.

Tendo o sistema validado em simulação, realizaram-se três experiências com dados reais. Utilizou-se um

telemóvel para adquirir imagens de um alvo e telemetria ao longo do percurso pedestre elevado. Além disto, dois

vı́deos gravados por UAVs (Unmanned Aerial Vehicles) foram utilizados para testar o algoritmo. Os resultados

obtidos demonstram a aplicabilidade da metodologia proposta para georreferenciar frentes de incêndio.

Palavras-chave
incêndio florestal, veı́culo aéreo, georreferenciação, GPS, IMU, DEM
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Abstract

This work proposes the Iterative Ray-Tracing (IRT) as a forest fire georeferencing algorithm using images captured

by an aerial vehicle. The IRT requires that the vehicle is equipped with a Global Positioning System (GPS) device,

an Inertial Measurement Unit (IMU) and a Digital Elevation Map (DEM). In addition, the camera’s Intrinsic

Parameters (IP) and the pixels to georeference must be known. Considering errors in the equipment, the Unscented

Transform (UT) is proposed to characterize the uncertainty of the IRT. Furthermore, a novel Bearings-Range filter

measurement model is put forward, to improve the target position and reduce its uncertainty.

The georeferencing and filtering algorithms were validated with two simulations on rough and flat terrains. A

performance comparison was done between the Extended (EKF) and Cubature Kalman Filters (CKF) using the

Bearings-Range and Bearings-Only measurement models. Identical results were achieved, with the EKF perform-

ing faster, making it more adequate for real-time processing.

Having validated the system in simulations, three experiments were conducted using real data. A mobile

phone was used to acquire imagery of a target and telemetry along an elevated pedestrian path. Furthermore, the

algorithm was tested on two videos recorded with an Unmanned Aerial Vehicle (UAV). The results demonstrate

the applicability of the proposed methodology to georeference forest fires.

Keywords
forest fire, aerial vehicle, georeferencing, GPS, IMU, DEM
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In recent years, remote sensing has seen an increased interest in the scientific community. The development

and widespread use of Unmanned Aerial Vehicles (UAVs) as a cheaper solution when compared to manned aerial

vehicles enabled the development of target geolocalization applications. This includes precision agriculture [26],

natural disaster management [39] and fire detection and monitoring [24]. This work addresses the latter.

The most commonly used sensors regarding target geolocalization are digital cameras, Global Positioning

Systems (GPSs) and Inertial Measurement Units (IMUs). This became known as Direct Georeferencing, since

direct sensor orientation is computed by processing the information provided by the onboard sensors [23], i.e., the

camera’s Extrinsic Parameters (EP) are directly calculated.

Depending on the accuracy requirements, sensors with different specifications can be used. However, the higher

the desired accuracy, the higher the cost and/or size of the hardware. Due to payload constraints, UAVs typically

use smaller and error-prone IMUs, especially in yaw measurements [13], such as MicroElectroMechanical Systems

(MEMS). This lack of quality lead to the development of computer vision algorithms such as Structure from Motion

(SfM) that extract and match features between sequential images. The integration of these algorithms with the pose

provided by the IMU and GPS greatly increases the accuracy of the georeferencing process.

Alternatively, Indirect Georeferencing can be used for systems that lack navigation equipment. This requires,

however, the placement of Ground Control Points (GCP) to determine the camera’s EP, which can be time-

consuming and costly [20]. Furthermore, in a natural disaster scenario or in rough and inaccessible terrains, it

is impracticable to place GCP.

1.1 Motivation

Portugal suffers annually from forest fires. In the last 10 years [01-01-2009, 15-10-2019] Portugal has summed a

total of 1 451 692 ha (14 516.92 km2) of burnt area [25], approximately 15.76% of the country’s total area (not

taking into account that the same area can burn more than once). Furthermore, in 2017, poor preparation, planning

and coordination for such catastrophes resulted in the loss of human lives. For these reasons, forest fires have

become a major issue in modern-day Portuguese society, which in turn has led to increasing investment in fire

suppression equipment [11], mainly airborne. Moreover, there is ongoing investigation on how to approach forest

fires more efficiently and effectively [1, 2].

Fire propagation has been under investigation for many decades. The effect of environment variables such as

wind [30] and terrain [29] has been studied and models for the fire propagation have been developed. However, the

absence of a method capable of georeferencing the fire front limits the usefulness of said models. Therefore, the

aim of this thesis is to fill in this gap and develop an algorithm capable of performing forest fire geolocalization,

enabling the use of fire propagation models to improve firefighting strategies.
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1.2 Objectives

This work addresses three main objectives. Firstly, as was stated previously, it aims at developing a forest fire

georeferencing algorithm using an aerial vehicle equipped with a digital camera, GPS, IMU and gimbal. The

aerial imagery is assumed to be preprocessed, with the target pixels segmented from the background.

The data provided by the navigation equipment and gimbal will be affected by errors. The GPS accuracy

depends on the topography and satellite coverage, the IMU depends on the quality of the accelerometer, gyroscope

and magnetometer and, lastly, the gimbal depends on the precision of its actuators. These errors will be propagated

and lead to an uncertain target position. For this reason, the second main objective of this work is to characterize

the uncertainty of the target position. This characterization is crucial for the firefighting teams since it functions as

a confidence metric of the georeferencing algorithm.

Finally, considering that the aerial vehicle will be flying at considerable heights to avoid disturbing the theatre

of operations, the errors will be amplified by the increased distance to the fire. Hence, the third and final objective

is the development of a methodology that takes into account the equipment errors and optimizes the estimated

target position and uncertainty.

1.3 Thesis Outline

This document is structured in the following manner:

• Chapter 2 reviews the state of the art methodologies for the georeferencing problem and the background

knowledge necessary to understand the proposed methodology. The limitations of related works and the

proposed approach is also presented in this chapter.

• Chapter 3 explains with detail the proposed geolocalization and optimization algorithms.

• Chapter 4 validates the proposed methodology with simulations on a rough and a flat terrain.

• Chapter 5 details three experiments using a mobile phone and two UAV videos. The respective results are

also presented in this chapter.

• Chapter 6 concludes with the achievements of this work and suggestions for future work.
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This chapter is divided in three parts: Section 2.1 provides the theoretical background necessary to understand

the georeferencing problem, Section 2.2 reviews the current state of the art approaches to solve it and finally

Section 2.3 highlights the limitations of the state of the art and the main contributions of the proposed approach.

2.1 Background

2.1.1 Pinhole Camera Model

The pinhole camera model is used to map a tri-dimensional point to a two-dimensional point in the image plane

using perspective transformation, and its geometry is represented in Figure 2.1. In order to use matrix notation,

points are represented in homogeneous coordinates, so a 3D point is defined as M = [X Y Z 1]T and a 2D point

as m = [x y 1]T .

Figure 2.1: Pinhole camera model geometry

The model is described as

sm = Kint[R|t]M, (2.1)
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or

s


x

y

1

 =


fx 0 cx

0 fy cy

0 0 1



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3



X

Y

Z

1

 , (2.2)

where:

• s - scale factor

• m - image coordinates [x y]T of projected point

• Kint - matrix of intrinsic parameters (IP)

• (fx, fy) - focal length

• (cx cy) - principal point

• [R|t] - matrix of extrinsic parameters (EP), which combines the rotation matrix and the translation vector

• M - 3D point coordinates [X Y Z 1]T in world coordinate space W .

The IP of a camera can be estimated with a calibration procedure and are crucial to extract metrics information

from the image. The EP, represented by the joint rotation-translation matrix, establish the relationship between the

camera and the world coordinate frame.

2.1.2 Lens Distortion

Real cameras introduce some amount of geometric distortions that must be taken into account if the camera mea-

surements are to be accurate. The most common are tangential and radial distortions and are caused by the curva-

ture and misalignment with the sensor plate, respectively.

Models have been developed [21] to compensate these distortions:u
v


u

= dt + dr ·

u
v


d

, (2.3)

where [u, v]Tu is the undistorted pixel, [u, v]Td is the distorted pixel, and

dt =

2p1uv + p2(r2 + 2u2)

2p2uv + p1(r2 + 2v2)

 , (2.4)

dr = 1 + k1r
2 + k2r

4 + k3r
6, (2.5)
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r2 = u2 + v2, (2.6)

where k1, k2, k3, p1 and p2 the model parameters and r the distance to the image center,

2.1.3 Coordinate Frame Transformation

We intend to map points of interest in images to geodetic coordinates (latitude, longitude, elevation), so it is relevant

to review coordinate frame transformations. These are composed of two operations, translation and rotation. A

translation t = [t1 t2 t3]T is a 3-by-1 vector that points from one coordinate frame origin to another. A rotation

can be described as the multiplication of three separate rotations matrices about each Cartesian axis, OX , OY and

OZ,

Rx(γ) =


1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 Ry(β) =


cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 Rz(α) =


cosα − sinα 0

sinα cosα 0

0 0 0

 .

These angles of rotation are commonly known as the Euler angles (γ,β,α) and are used to describe the orientation

of a rigid body with respect to a known coordinate frame. Using homogeneous coordinates, the matrices become

as follows:

T ba =


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1

 , (2.7)

where T ba stands for transformation from coordinate frame a to coordinate frame b, and rij are the elements of the

rotation matrix. Matrices in the form of (2.7) enable the use of a single multiplication to perform a translation and a

rotation. These are multiplied according to the order of the transformations one intends to perform on a coordinate

frame.

2.1.4 Uncertainty Propagation

As was stated, one of the main objectives is to characterize the uncertainty of the estimated position. If the flat earth

simplification was considered, it would be possible to linearize the projection as a function of the surface. Defining

the projection from pixels to world coordinates as f(x), the error propagation is calculated by first computing the

Taylor expansion of f ,

f(x)|x=x0
≈ f(x0) + Jx0, (2.8)
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where x0 is state variable with the IP, EP and target pixels, and J is the Jacobian matrix of f(x). Given the input

error covariance matrix Σx, the output covariance matrix Σf can be computed as

Σf = JΣxJT . (2.9)

This procedure is represented in Figure 2.2, where xs is the camera pose and Cs is the covariance matrix which

contains information about position and orientation errors. These are propagated to the world coordinate frame,

where xm is the target position and Cm is the estimated covariance. Target detection uncertainty, Co, can also be

taken into account.

Figure 2.2: Uncertainty propagation (adapted from [31])

However, the flat earth simplification cannot be used for rough terrains. In this case, the error propagation

becomes non-linear and needs to be calculated using the UT. A set of so-called sigma points is computed, whose

mean and covariance are the same as the input signal, i.e., the EPs. These points approximate a Gaussian density

distribution. By applying the non-linear transformation f to the sigma points, the projected points on the DEM

capture the mean and covariance of the new density. Figure 2.3 exemplifies the methodology of the UT. The UT

(a) Input density and
sigma points

(b) Non-linear transformation applied to
the sigma points

(c) Input and resulting output densities

Figure 2.3: Unscented Transform (adapted from [8])

can also be applied to linear functions and the result is the same as the one obtained with the Taylor expansion. In

fact, it is better since it does not compute the Jacobian matrix and is, therefore, less computationally demanding.
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The UT can be summarized as follows [8]:

1. Sigma point and weight selection

χ[0] = µ

χ[i] = µ+ (
√

(n+ λ)Σ) for i = 1, . . . , n

χ[i] = µ− (
√

(n+ λ)Σ) for i = n+ 1, . . . , 2n

w[0]
m =

λ

n+ λ
, w[0]

c = w[0]
m + (1− α2 + β)

w[i]
m = w[i]

c =
1

2(n+ λ)
for i = 1, . . . , 2n

λ = α2(n+ κ)− n

(2.10)

where µ is the is mean, Σ is the covariance matrix, n is the dimension variable, α and κ are tunable variables

that influence how far the sigma points are from the mean, β is a tunable variable to incorporate higher order

information in the Taylor Series expansion of the covariance (for Gaussians β=2 is the optimal choice), w[i]
m

and w[i]
c are the sigma point mean and covariance weights, respectively.

2. Sigma point propagation

y[i] = f(χ[i), (2.11)

where f is the non-linear transformation.

3. Recover the propagated distribution

µ′ =

2n∑
i=0

w[i]
my

[i] (2.12)

Σ′ =

2n∑
i=0

w[i]
c (y[i] − µ′)(y[i] − µ′)T , (2.13)

where µ′ and Σ′ are the mean and covariance, respectively, of the propagated sigma points.

2.1.5 Digital Elevation Map

A DEM, also known as Digital Elevation Model or Digital Terrain Model, is a 3D representation of a surface. It

is sometimes confused with a Digital Surface Model. While the first only contemplate the height of the Earth’s

surface, the latter takes into account structures on it, as can be seen in Figure 2.4.

These maps are generally represented as a Triangular Irregular Network (TIN), regular grids or contour lines,

as shown in Figure 2.5. TIN concentrates more data points where the terrain has more variation and fewer where

the surface is flatter. The regular grid has equally distanced sample points, and this distance is known as the DEM’s

10



Figure 2.4: Difference between DSM and DEM/DTM (adapted from [5])

resolution. While a TIN manages to represent rough surfaces more accurately, it is more complex, therefore more

demanding and time-consuming to process. On the other hand, grid models are easy to store and manipulate [28].

Figure 2.5: Different DEM representations (adapted from [4])

When querying a point of the DEM that does not match the exact location of a sample point, different ap-

proaches can be taken, depending on the map’s representation. In case of a TIN, the solution is to solve the plane

equation for the triangle where the query point lies. In case of a regular grid, different interpolation methods can

be used. According to [18], for grids with finer resolutions (up to 30 meters), linear methods such as linear or

bi-linear interpolation provide good results with low computational cost and processing time. On the other hand,

grids with more coarse resolution (100 to 1000 meters) require polynomial interpolation methods for better results.

2.1.6 Kalman Filter

In this work, two non-linear Kalman filters were considered, the EKF and CKF, and are described in the following

Subsections. A discrete non-linear system with Gaussian noise can be characterized as follows:

xk+1 = f(xk) + wk (2.14a)

zk+1 = h(xk+1) + vk+1 (2.14b)
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where xk is the state vector, zk the measurement vector, f(xk) and h(xk) the process and measurement models,

respectively, and wk (w ∼ N (0,Qk))and vk (v ∼ N (0,Rk)) the uncorrelated system and measurement noises

with covariances given by Qk and Rk.

2.1.6.A Extended Kalman Filter

The EKF was developed as a modification of the original Kalman Filter to deal with systems having non-linear

dynamics or nonlinear measurement models. It proposes the linearization of said models by performing a first-

order Taylor series expansion.

The EKF algorithm is composed of a prediction step and an update step.

Prediction phase:

x̂k+1|k = f(x̂k|k), (2.15)

ẑk+1|k = h(x̂k+1|k), (2.16)

Pk+1|k = Φk+1|kPk|kΦTk+1|k + Qk, (2.17)

where x̂k+1|k is the predicted state at time k+ 1, ẑk+1|k is the predicted measurement at time k+ 1, Pk+1|k is the

error covariance matrix for the estimate at time k + 1 and Φk+1|k is the Jacobian of the system dynamics model

with respect to the state.

Kalman Gain:

Kk+1 = Pk+1|kH
T
k+1[Hk+1Pk+1|kH

T
k+1 + Rk+1]−1Hk+1Pk+1|k, (2.18)

where Hk+1 is the Jacobian of the measurement model.

Update phase:

vk+1 = zk+1 − ẑk+1|k (2.19)

x̂k+1|k+1 = x̂k+1|k + Kk+1vk+1 (2.20)

Pk+1|k+1 = Pk+1|k −Pk+1|kH
T
k+1[Hk+1Pk+1|kH

T
k+1 + Rk+1]−1Hk+1Pk+1|k (2.21)

2.1.6.B Cubature Kalman Filter

For highly nonlinear systems, the EKF becomes unsuitable as the Taylor series expansion induces linearization er-

rors that slow or prevent filter convergence. Following the Unscented Kalman Filter (UKF) approach, the CKF also

uses sample points, called cubature points, of equal weight to calculate the mean and covariance of state variables
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which after non-linear transformation yield performance of nonlinear optimal approximation, filtering accuracy

and numerical stability [16]. These cubature points are chosen based on the spherical-radial transformation and

guarantee the exact approximation of the Gaussian distribution up the third moment. The resulting filter ends up

being a special case of the UKF, for α = 1 and β = κ = 0.

The CKF algorithm [9] is defined by a time update and measurement update:

Time update:

1. Cubature point generation χ(i)
k (i = 1, . . . , 2n):

χ
(i)
k =

√
P̂kξ

(i) + x̂k, (2.22)

where ξ =
√
n[1], n being the number of state variables and [1] the full permutation of the n dimension unit

vector,

[1] =




1

0
...

0

 , . . . ,


0
...

0

1

 ,


− 1

0
...

0

 , . . . ,


0
...

0

−1



 , for [1]i ∈ Rn.

2. Propagate the cubature points:

χ
(i)
k+1|k = f(χ

(i)
k ) (2.23)

3. Estimate the propagated state and covariance matrix for time k + 1:

xk+1|k =
1

2n

2n∑
i=1

χ
(i)
k+1|k (2.24)

Pk+1|k =
1

2n

2n∑
i=1

[χ
(i)
k+1|kχ

T (i)
k+1|k]− [xk+1|kx

T
k+1|k] + Qk (2.25)

Measurement update:

1. Cubature point regeneration χ(i)
k+1(i = 1, . . . , 2n):

χ
(i)
k+1 =

√
Pk+1|kξ + xk+1|k, (2.26)

2. Propagate cubature points through the measurement model:

γ
(i)
k+1 = h(χ

(i)
k+1) (2.27)
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3. Estimate the predicted measurement, innovation covariance matrix and cross-covariance matrix:

yk+1 =
1

2n

2n∑
i=1

γ
(i)
k+1 (2.28)

Pyyk+1 =
1

2n

2n∑
i=1

[γ
(i)
k+1γ

T (i)
k+1 ]− [yk+1y

T
k+1] + Rk (2.29)

Pxyk+1 =
1

2n

2n∑
i=1

[χ
(i)
k+1γ

T (i)
k+1 ]− [xk+1|ky

T
k+1] (2.30)

4. Estimate the Kalman gain, update state and covariance matrix:

Kk+1 = Pxyk+1(Pyyk+1)−1 (2.31)

x̂k+1 = xk+1|k + Kk(yk+1 − yk+1) (2.32)

P̂k+1 = Pk+1|k −Kk+1P
yy
k+1K

T
k+1 (2.33)
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2.2 State-of-the-Art

This subsection divides and details the different state-of-the-art approaches for the georeferencing problem accord-

ing to their base methodology.

2.2.1 Optic-Ray Surface Intersection

When projecting a 3D point from the world to the 2D image plane, there is a loss of information. The 2D points

are defined up to an unknown scale factor, defined by the distance from the 3D point to the principal point of

the camera. To invert the projection, assuming that the IP and EP are known, either this distance or information

regarding the surface where the point lies needs to be known.

2.2.1.A Flat Earth Hypothesis

Leira et al. [27] propose the intersection of the optic ray, whose direction is defined by the pixel to map, with a

plane with Z equal to zero. The UAV is equipped with a gimbal and a thermal camera, and the transformation

between the camera frame and the inertial frame is known. By doing this assumption, the scaling factor can be

calculated and the optic ray is projected to the surface. An accuracy of 7.8 meters was achieved for a variable flight

height, between 50 and 100 meters.

Xiang and Tian [38] propose an automatic georeferencing algorithm that estimates the target’s world coordi-

nates and mosaics the images together based on their estimated geographical positions. Since the purpose of that

paper was to find horizontal coordinates, it assumes that all targets are on the same elevation plane.

Parcelas [33] studies how the variation of the camera’s intrinsic and distortion parameters, by varying the

lenses configuration, influences the results of the geolocation procedure. The flat earth hypothesis was valid since

the purpose was to locate vessels. Different tests were conducted with a variable height between 80 meters and

100 meters, with the mean absolute error varying from 7 meters to 35 meters.

2.2.1.B Digital Surface

Sheng [36] tests three different algorithms to solve the optic ray-DEM intersection: Iterative Photogrammetry

(IPG), Ray-Tracing (RT) and Iterative Ray-Tracing (IRT). The IPG’s convergence depends on the initial elevation,

the view angle and profile inclination angle and is prone to fail with occlusions or rough terrains while IRT’s

convergence depends on the step chosen to iterate along the optic ray. RT actually calculates the intersection point

so it is the most robust method, however, it is more computationally demanding when compared to IRT and IPG.

If computational power is available, the best option is the RT, otherwise, the IRT seems the best option as it is not

so prone to fail with occlusions as the IPG and its convergence only depends on the step size.

Sheng [37] continue the previous work and review in detail the IPG, as it is the most promising and efficient of

the methods. The convergence condition and convergence speed are analyzed.
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2.2.2 Image Feature Extraction and Matching

2.2.2.A Structure from Motion

Structure from motion is a method that relies on feature extraction and matching from sequential images captured

with different camera poses. Having multiple images with the 2D coordinates of these features enables stereo-

vision techniques to solve their 3D coordinates. These coordinates are then georeferenced in two possible ways:

the camera pose in the inertial frame is known, via GPS and IMU, or with the placement of GCP. SfM is usually

followed by a Bundle Adjustment (BA). BA is an algorithm that takes as input the targets’ 3D and 2D positions in

the camera and image frames, respectively, and performs a least-squares minimization with the reprojection error

as a cost function. In case the camera’s IP and EP are known, these too are refined. If not, they can be estimated,

increasing the complexity of the algorithm.

Forlani et al. [15] propose the use of SfM to match a set of images acquired under poor Global Navigation

Satellite System (GNSS) coverage, designated as the master block, to a set of georeferenced images acquired

under nominal GNSS coverage, designated as the auxiliary block. Features are extracted and used to match the

images from the master to the auxiliary blocks and are followed by a BA. The method was tested with different

camera calibrations. A Root Mean Squared Error (RMSE) of centimetres was achieved for a master block flown at

30 meters and an auxiliary block flown at 100 meters.

He et al. [20] present the mathematical premise of SfM with detail. Prior knowledge of the vehicle trajectory

(planar motion) is used to simplify the problem from 6 Degrees Of Freedom (DOF) to 3DOF, enabling a 2-point

approach. An incremental approach is compared to a global approach in terms of EP recovery, followed by a

BA. The RMSEs obtained for both methodologies are on the centimetre order, with the global strategy performing

slightly better than the incremental, for a maximum flight height of 50 meters.

2.2.2.B Geo-Referenced Imagery

This methodology consists of matching images captured by an aerial vehicle with available georeferenced imagery,

such as Google Earth. Conte et al. [12] propose an image registration approach by pattern-matching the images

collected at 100 meters from a micro aerial vehicle with satellite imagery. Multiple measurements are taken and a

recursive least square filter is applied. The method is compared against the intersection of the optic ray assuming

the flat earth simplification. The proposed method achieved a RMSE of 2.25m while the intersection method best

result was a RMSE of 22 meters.

Hamidi and Samadzadegan [19] propose the IPG algorithm combined with EP refinement using feature match-

ing with georeferenced imagery. The DEM used was the Shuttle Radar Topography Mission [14], with a spatial

resolution of 90 meters. On a first stage, the EP are computed using the information provided by the UAV’s IMU

and GPS. On a second stage, the EP are adjusted and the IPG is applied. The mean UAV height in the experimental

procedure was 400 meters. The refinement improved the position accuracy by 100 meters to 14.476 meters.
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2.2.3 Line-of-Sight Filtering

Barber et al. [10] applies the flat earth simplification to calculate the target’s coordinates, but its main innovation

is applying a recursive least square filter to multiple observations while performing a loitering pattern. By doing

so, the geo-location errors decreased from 40 meters to less than 5 meters.

Ponda et al. [34] introduces a bearings-only 3D target coordinate estimation with an EKF. This model filters

the azimuth and elevation angles between the aerial vehicle and the target for every measurement. Three cases

are simulated: stationary target, slow-moving target and fast-moving target. In all cases, a stationary process is

assumed and the process noise is tuned to allow unknown target motion. The filter manages to track the target for

the stationary and slow-moving cases and fails to do so in the fast-moving case. Trajectory optimization is also

studied in that paper, but it is out of the scope of this thesis so it will not be reviewed.

Xu et al. [40] also estimate the target’s position by filtering multiple bearing measurements with a CKF [9]

while performing a loitering trajectory, centred on the target. The filter’s initial state is calculated with the IPG

using the ASTER-GDEM V2 [3], which has 30-meter spatial resolution. The CKF method is compared against the

standalone IPG and flat earth simplification. Two experiments are performed on different terrains, rough and flat.

In the two cases, the standalone IPG achieves similar accuracy, 39.6 and 36.2 meters. In the flat terrain, the CKF

and the flat earth simplification achieve similar RMSEs, 10.8 and 12.9 meters respectively. Finally, in the rough

terrain, the flat earth has a bad performance (105.6 meters), because this approximation is invalid for this terrain

type, whereas the proposed method achieves a RMSE of 13.8 meters. For both experiments, the UAV flew at a

maximum height of 500 meters.

2.2.4 Others

Zhang et al. [42] use a stereo vision technique to determine the target relative height with respect to the UAV. A

yaw bias estimation algorithm is also proposed. Two different trajectories were tested, overflight and loitering.

Firstly, the relative target height and yaw bias are estimated using multiple bearing measurements of the same

target. Then its coordinates are estimated. The proposed method achieves a horizontal and vertical accuracy of 0.7

and 0.5 meters, respectively, for the loitering trajectory, and 1.77 and 1.15 meters for the overflight, for maximum

flight heights of 20 meters. That work provides an interesting result by showing that the trajectory of the UAV is

an important factor to take into account when determining the target’s position.

Zhang et al. [41] continue the work developed in [42] and study the influence of the trajectory on the accuracy

of the georeferencing algorithm. Trajectory planning is out of the scope of this thesis but was again demonstrated

to influence the georeferencing accuracy.
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2.3 Proposed Approach

The main goal of this work is to develop a georeferencing algorithm as part of the FIREFRONT project. As input,

it has the image pixels that correspond to the fire, the GPS and IMU data from the aerial vehicle and should output

the geodetic coordinates of said pixels and the uncertainty of the estimated target positions. Furthermore, we

expect some errors in the telemetry data, so we also aim at developing a methodology that takes these errors into

account and optimizes the target position.

The following limitations were found in the state of the art with respect to the problem we intended to address.

The SfM and image registration techniques achieve very accurate results, however, these methodologies rely on

feature extraction and matching. This requires rich, differentiated and stationary texture in the acquired imagery.

In a forest environment, the texture is poor, repetitive and is subject to dynamic elements like the wind. In addition,

smoke caused by the fire might prevent feature extraction. All these factors render the SfM unreliable. Other works

intersect the optic ray with a surface, with the majority assuming the flat earth simplification. In our case, this hy-

pothesis is not suitable, since the algorithm we aim at developing must work on all surfaces, and this simplification

would be unreliable in rough terrains. Finally, the line-of-sight filtering requires an accurate initialization of the

target position and is, therefore, a methodology that does not work as a solution by itself since it requires some

other methodology to perform this initialization. The work that most resembles our proposal is [40], where they

estimate the target’s position using a Bearings-Only CKF initialized with the IPG algorithm. As was reviewed, the

IPG is prone to diverge in rough terrains where the view angle is smaller than the profile inclination angle.

Considering the limitations encountered in the literature, we propose using the IRT algorithm, suitable for all

terrains, to calculate the intersection between the optic ray and the EU-DEM v1.1, which has a spatial resolution

of 25 meters. This algorithm will be used together with the Unscented Transform, to estimate the target position

and characterize its uncertainty. Regarding the errors in the telemetry, we propose a new Bearings-Range filtering

measurement model that takes advantage of the available distance between the vehicle and the target. Considering

possible linearization errors induced by the EKF, a performance comparison is done with a CKF.

2.4 Contributions

This work’s main contribution is a georeferencing algorithm applicable in a forest fire scenario. We propose using

for the first time the IRT together with the UT, to calculate the position of the fire and characterize its uncertainty.

Furthermore, the selected DEM has a finer spatial resolution when compared to the ones reviewed in the state of

the art. Finally, a novel Bearings-Range model is presented to filter multiple observations of the same target, with

the purpose of improving its position and uncertainty.

A paper [35], presented in Appendix B, was submitted and accepted in the RECPAD2020 Conference, a remote

event that took place on October 30 2020.

Lastly, an application was developed to aid the Civil Protection. An Optical Character Reader (OCR) was
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designed and integrated with the georeferencing algorithm, enabling the direct processing of the videos provided

by the aerial vehicles. This application is detailed in Appendix C.
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The proposed approach can be divided in three steps: the pre-flight camera calibration, the georeferencing

algorithm and the Bearings-Range filtering algorithm.

3.1 Camera Calibration

The camera calibration is an important procedure in computer vision that calculates the camera’s intrinsic param-

eters and allows the extraction of metric information from bi-dimensional images. For this reason, before taking

off, the camera must be calibrated, and assuming that the lenses configuration is not manipulated, these parameters

remain constant throughout the flight.

Using one of the many computer vision tools available (OpenCV or MATLAB Image Processing and Computer

Vision Toolbox), the calibration is done by moving and changing the pose of a known pattern in the camera’s line of

sight [43]. Usually this pattern is a checkerboard and the size of the checkerboard square is measured beforehand.

By performing the calibration, the camera’s intrinsic and distortion parameters are calculated, crucial to define

the optic ray from the projection center to the target pixel.

3.2 Coordinate Frames

This section describes the five coordinate frames considered: camera, gimbal, body, vehicle and inertial. This

frames are denoted respectively by: FC = (xC , yC , zC), FG = (xG, yG, zG), FB = (xB , yB , zB), FV =

(xV , yV , zV ) and F I = (xI , yI , zI). The vehicle frame is a North-East-Down frame centered on the vehicle’s

centre of mass and is related to the inertial frame by a simple translation. This work considered that the camera,

gimbal and UAV centers of mass coincided with the GPS position, meaning that the translations in the frame

transformations are zero, tBA = [0 0 0]T . Still, they are presented in the following Subsections for consideration in

future works.

3.2.1 Camera Frame

The camera frame, represented in Figure 3.1, has its origin in the optical center, the xC axis points to the right of

the image plane , the yC axis points downward on the image plane and zC axis points in the direction of the optical

axis of the camera. Defining the rotation from camera to the gimbal coordinates as RGC and tGC as the translation

from the camera optical center to the gimbal center of mass, the transformation from the camera to the gimbal

coordinate frame is defined by

TGC =

 RGC tGC

0 1

 , (3.1)
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where

RGC =


0 0 1

1 0 0

0 1 0

 (3.2)

and tGC the translation from the camera optic center to the gimbal center of mass.

The opposite transformation, from gimbal to camera coordinate frames is defined by

TCG =

 RCG tCG

0 1

 , (3.3)

where

RCG =


0 1 0

0 0 1

1 0 0

 (3.4)

and tCG the translation from the gimbal center of mass to the camera optic center.

Figure 3.1: Camera and gimbal coordinate frames (adapted from [40])

3.2.2 Gimbal Frame

The gimbal coordinate frame, represented in Figures 3.2 and 3.1, has two degrees of freedom around yG and zG

due to its pan and tilt movements, respectively. Defining the pan (elevation) and tilt (azimuth) angles as αel and

αaz , and the translation from the gimbal to the UAV centers of mass as tBG, the transformation from the gimbal

coordinate frame to body coordinate frame is defined by

TBG =

 RBG tBG

0 1

 , (3.5)
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where

RBG = Rz(−αaz)Ry(−αel) =


cosαel cosαaz − sinαaz sinαel cosαaz

sinαaz cosαel cosαaz sinαaz sinαel

− sinαel 0 cosαel

 (3.6)

and tBG is the translation from the gimbal to the UAV center of mass in the body coordinate frame.

The opposite transformation, from body to gimbal coordinate frames is defined by

TGB =

 RGB tGB

0 1

 , (3.7)

where

RGB = Ry(αel)Rz(αaz) =


cosαel cosαaz sinαaz cosαel − sinαel

− sinαaz cosαaz 0

sinαel cosαaz sinαaz sinαel cosαel

 (3.8)

and tGB is the translation from the UAV to the gimbal center of mass in the gimbal coordinate frame.

(a) Top view (b) Side view

Figure 3.2: UAV, gimbal and camera frames (adapted from [10])

3.2.3 Body Frame

The body frame describes the aircraft movement and has its origin in the center of mass of the UAV. The xB axis

points in the direction of the nose, the yB axis points towards the right wing and the zB axis points towards the

aircraft belly, as represented in Figure 3.2.

Defining the roll (φ), pitch (θ) and yaw (ψ) angles as the movement of the UAV around the axis xB , yB and

zB , respectively, and tVB as the translation from the UAV center of mass to the GPS position, the transformation
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from the body to the vehicle coordinate frame is defined as

TVB =

 RVB tVB

0 1

 , (3.9)

where RVB = Rz(−ψ)Ry(−θ)Rx(−φ),

RVB =


cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ

sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ

− sin θ cos θ sinφ cosβ cosφ

 , (3.10)

and tVB is the translation from the UAV center of mass to the GPS position in the body coordinate frame.

The opposite transformation, from vehicle to body coordinate frame, is defined as

TBV =

 RBV tBV

0 1

 , (3.11)

where RBV = Rx(φ)Ry(θ)Rz(ψ).

RBV =


cosψ cos θ sinψ cos θ − sin θ

cosψ sin θ sinφ− sinψ cosφ sinψ sin θ sinφ+ cosψ cosφ cos θ sinφ

cosψ sin θ cosφ+ sinψ sinφ sinψ sin θ cosφ− cosψ sinφ cosβ cosφ

 , (3.12)

and tBV is the translation from the GPS position to the UAV center of mass in the vehicle coordinate frame.

3.2.4 Vehicle Frame

The vehicle coordinate frame is centered on the GPS position and its Cartesian coordinates are calculated based

on the its Geodesic coordinates, latitude (φ), longitude (λ) and altitude (h) above the geoid provided by the GPS

receptor.

To convert geodetic coordinates do Cartesian coordinates and vice-versa, it is necessary to choose an adequate

ellipsoid. Considering that the main ellipsoid of reference when using GPS systems is the World Geodetic System

1984 (WGS84), this is the one chosen for this work. The WGS84 defines the Earth-Centered Earth-Fixed (ECEF)

coordinate system characterized by the following parameters:

• Semi-major Axis - a = 6378137 meters;

• Semi-minor Axis - b = 6356752 meters;

• Flattening - f = 1/298.257223563;
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• Eccentricity - e = 0.08181919;

• Radius of curvature in the prime vertical - N = a√
1−f(2−f) sin2 φ

Given a point in geodetic coordinates P = [φ λ h]T , the coordinates in the ECEF system are given by

PECEF =


xP

yP

zP

 =


(N + h) cos (φ) cos (λ)

(N + h) cos (φ) sin (λ)

((1− f)2N + h) sin (φ)

 . (3.13)

According to [44], the most accurate transformation from ECEF to geodetic coordinates is based on the following

equations, deduced in [22]:

r =
√
x2P + y2P (3.14)

F = 54b2z2P (3.15)

G = r2 + (1 + e2)z2 − e2(a2 − b2) (3.16)

c =
e4Fr2

G3
(3.17)

s =
3

√
1 + c+

√
c2 + 2c (3.18)

T =
F

3(s+ 1
s + 1)2G2

(3.19)

Q =
√

1 + 2e4T (3.20)
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r0 = − Te2r

1 +Q
+

√
a2

2
(1 +

1

Q
)− T (1− e2)z2

Q(1 +Q
− Tr2

2
(3.21)

U =
√

(r − e2r0) + z2p (3.22)

V =
√

(r − er0)2 + (1− e2)z2p (3.23)

z0 =
b2z

aV
(3.24)

e0 =
a2 − b2

b2
(3.25)

The altitude is defined by

h = U(1− b2

aV
) (3.26)

and the latitude (φ) and longitude (λ) by

φ = arctan(
zp + e0z0

r
) (3.27)

λ = arctan(
y

x
) (3.28)

3.3 Georeferencing Algorithm

Defining ~PVTarget as the vector pointing from the UAV to the target in the inertial coordinate frame and ~P IV as the

vector pointing from the inertial frame origin to the UAV, the target position is defined as the sum of these vectors.

To obtain ~PVTarget, the vector pointing from the camera optical center to the target pixel [u, v]T must be defined,
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assuming fx ≈ fy ,

~PCTarget =


u− cx
v − cy
fx+fy

2

 , (3.29)

and transformed to the vehicle coordinate frame using the coordinate frame transformations described in Section

3.2,

~PVTarget =


X ′d

Y ′d

Z ′d

 = TVB T
B
G T

G
C
~PCTarget, (3.30)

where ~PVTarget references the target vector to the inertial frame.

3.3.1 Digital Elevation Model - EU-DEM v1.1

Currently, the DEM with the finest resolution of Portugal’s topography is the EU DEM v1.1, with a 25 meter

spacial resolution and a RMSE of 7 meters with respect to the vertical accuracy. This map was developed as part

of the European Union’s Copernicus Programme and its Coordinate Reference System (CRS) is the EPSG:3035

(ETRS89, LAEA). Its ellipsoid of reference is the GRS80 which, in practicality, is identical to the WGS84. More

information on this DEM can be found in [6].

Although this version has not been validated yet, recent work [32] has shown that it combines the higher

resolution of the ASTER GDEM and the vertical accuracy of both SRTM DEM and ASTER GDEM in low and

high slope areas, respectively. Using the Quantum Geographic Information System (QGIS) software, presented

in Figure 3.3, this elevation model was converted to WGS84 reference system, making it compatible with the

proposed georeferencing algorithm.

Figure 3.3: QGIS with EU-DEM v1.1
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3.3.2 Iterative Ray-Tracing

The IRT is the most suitable algorithm to perform the intersection between the optic ray and a DEM. As was

reviewed in Section 2.2, the IRT method does not have a convergence condition as the IPG, which prevents it from

working properly on all terrains, and is more efficient than the RT. Furthermore, the RT method requires a DEM in

TIN format, which is more complex and computationally demanding.

Given the camera position R0 = [Xs Ys Zs]
T in the inertial frame and the normalized pointing vector

Rd =


Xd

Yd

Zd

 =
1

||~PVTarget||
· ~PVTarget =

1√
X ′2d + Y ′2d + Z ′2d

·


X ′d

Y ′d

Z ′d

 (3.31)

from the aerial vehicle to the target, in the vehicle frame, the ray R that starts in the vehicle and points to the target

in the inertial frame is defined as

R(t) = R0 + t · Rd =


Xs

Ys

Zs

+ t ·


Xd

Yd

Zd

 , (3.32)

where t is the step and represents the distance between a point R(t) on the ray and the origin R0. This is valid

since the inertial and the vehicle frame have the same orientation. When the ray elevation ZR becomes less than

the surface elevation ZDEM, the intersection is detected.

Algorithm 1: Iterative Ray-Tracing
Input : Telemetry from GPS and IMU, camera IP, target pixels, DEM
Output: Target coordinates in the inertial coordinate frame tI = [x y z]

1 Define ray origin R0;
2 Define ray direction Rd;
3 Define step size t;
4 while No intersection do
5 Extend ray with (3.32);
6 if ZR ≤ ZDEM then
7 Intersection;
8 else
9 Augment t;

10 end
11 end

3.3.2.A Maximum Height Iteration

Apart from the aerial vehicle recording the fire, others will be fighting the fire. It is expected that the former will

be flying at higher altitudes in order not to perturb the theater of operations. This places the camera position R0 at
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a much higher altitude, forcing the IRT to perform more iterations or the user to increase step size in order to have

less iterations. A solution to avoid this problem is to begin iterating at the maximum height of the loaded DEM,

Zmax. This way, the method only starts where it is factual that an intersection will occur.

By defining a scaling factor,

λ =
Zmax − ZR0

Zd
, for λ > 0 (3.33)

where ZR0
is the height of the camera and Zd is the third component of the optic ray, it is possible to calculate the

new starting point, with Z = Zmax

R′0 = R0 + λ · Rd. (3.34)

3.3.2.B Dynamic Step

Defining and adequate value for t is crucial as it influences the speed and the accuracy of the algorithm. A bigger

step increases convergence speed but decreases the accuracy, while a smaller step decreases speed but increases

accuracy. A compromise can be achieved by implementing a dynamic step. The basic idea is the following. The

algorithm is initialized with a large step value and when the intersection is detected (ZR ≤ ZDEM), the step size

is reduced with a step divider, tdiv. This way, the number of iterations is reduced without sacrificing the IRT’s

accuracy. This strategy can be repeated until the step size becomes smaller than a pre-defined threshold, tth.

3.3.2.C Bilinear Interpolation

A gridded DEM such as the EU-DEM v1.1 is a map sampled at a constant spacial resolution. Each pixel represents

a planar surface (area equal to the squared resolution) with constant elevation, when in fact this elevation represents

only the center of the cell. This is known as the rigid pixel paradigm. On the other hand there is the surface adjusted

paradigm, where the sampled points are interpolated to approximate the real world topography. These paradigms

are represented in Figure 3.4.

(a) Rigid pixel paradigm (b) Surface adjusted paradigm

Figure 3.4: Rigid pixel and surface adjusted paradigms (adapted from [17])
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As was reviewed in Subsection 2.1.5, for maps with finer resolutions, the bilinear interpolation provides a

satisfactory approximation of the real surface without compromising real-time application of the algorithm. Given

four known points, the bilinear interpolation consists in performing the linear interpolation across one of the

dimensions and with the resulting points perform it again across the other dimension (Figure 3.5).

Figure 3.5: Bilinear interpolation

3.3.3 Complete Iterative Ray-Tracing Algorithm

The following algorithm describes the complete IRT algorithm, with the aforementioned variants included:

Algorithm 2: Complete Iterative Ray-Tracing
Input : Telemetry from GPS and IMU, camera IP, target pixels, DEM
Output: Target coordinates in the inertial coordinate frame tI = [x y z]

1 Define ray origin R0;
2 Define ray direction Rd;
3 Define step size t;
4 Define step size threshold tth;
5 Define step size divider tdiv;
6 if ZR0 ≥ Zmax then
7 Update ray origin with (3.34);
8 end
9 while No Intersection do

10 Extend ray with (3.32);
11 Interpolate ray;
12 if ZR ≤ ZDEM AND t ≥ tth then
13 Update step t by diving it by step divider tdiv;
14 else if ZR ≤ ZDEM AND t < tth then
15 Intersection;
16 else
17 Augment t with current step value;
18 end
19 end
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3.4 Position and Uncertainty Characterization with the Unscented Trans-

form

Three sources of uncertainty were be taken into account: the vehicle GPS, IMU and gimbal. The GPS contributed

with three degrees of uncertainty related to the position of the vehicle in the vehicle frame, σx, σy and σz . The

vehicle IMU contributed with another three degrees of uncertainty related to the orientation angles of the vehicle

with respect to the vehicle frame, roll σφ, pitch σθ, and yaw σψ . Finally, the gimbal contributed with two degrees

of uncertainty related to the elevation and azimuth angles that establish the orientation of the gimbal with respect

to the body frame, σαel
and σαaz

. This makes a total of n = 8 degrees of uncertainty. The standard deviations

presented in Table 3.1 were assumed independent and the covariance matrix was defined as in (3.35).

Device Standard Deviation σi Value

GPS
σx
σy
σz

10m
10m
10m

IMU
σφ
σθ
σψ

1◦

1◦

3◦

Gimbal
σαel

σαaz

1◦

1◦

Table 3.1: GPS, IMU and Gimbal standard deviations

Σ = diag(σ2
x, σ

2
y, σ

2
z , σ

2
φ, σ

2
θ , σ

2
ψ, σ

2
αel
, σ2
αaz

) (3.35)

Parameter Value

α 1√
8

κ 0
β 2

Table 3.2: UT parameters

The UT parameters were set according to Table 3.2. Since we approximate the distribution as a Gaussian, β =

2 is the optimal choice to minimize higher order information from the Taylor Series expansion. As for α and κ,

these values were chosen so as to have the sigma points equal to the standard deviations of the equipment.

The target position and uncertainty are calculated by propagating the sigma points with the complete IRT

described in Algorithm 2 and applying (2.12) and (2.13):
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Algorithm 3: Unscented Transform with IRT
Output: Geodetic target coordinates t = [φ λ h] and uncertainty σxyz = [σx σy σz]

1 Generate 2n+ 1 sigma points;
2 for i← 0 to 2n do
3 Calculate the intersection for each sigma point, yi = IRT(χi);
4 end
5 Recover mean t and covariance P;
6 Convert mean to geodetic coordinates and uncertainty σxyz =

√
diag(P);

3.5 Bearings-Range Measurement Model

Considering measurement errors in the GPS and IMU, this section details the proposed vision-based target local-

ization using bearings and range measurements. Regarding previous works [34, 40], a new filter measurement

model was developed that takes advantage of the available range information between the vehicle and the target.

Taking into account possible linearization errors induced by the EKF, a performance comparison is done with a

CKF.

The bearings localization problem is based on the extraction of the azimuth β, and elevation φ, angles from the

pointing vector, as shown in Figure 3.6. Since the proposed georeferencing algorithm calculates the 3D coordinates

of the target, it enables the estimation of the distance r between the vehicle and the target. For this methodology

to work, the target must remain in the line-of-sight of the camera.

Figure 3.6: Azimuth (β), elevation (φ) and range (r) between vehicle (p) and target (t)
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The measurements model for the non-linear Gaussian system described in (2.14b) is given by:

h(xk) =


β

φ

r

 =


tan−1

(
py−ty
px−tx

)
tan−1

(
pz−tz√

(px−tx)2+(py−ty)2

)
√

(px − tx)2 + (py − ty)2 + (pz − tz)2

 =


tan−1

(
ry
rx

)
tan−1

(
rz√
r2x+r

2
y

)
√
r2x + r2y + r2z

 (3.36)

where rk = [rx ry rz]
T
k = [px − tx, py − ty, pz − tz]Tk is the relative vector between the vehicle and the target

for the kth measurement, pk = [px py pz]
T
k is the position of the vehicle and xk = tk = [tx ty tz]

T
k is the position

of the target and the state to be estimated.

Assuming that a fire front is stationary when comparing images taken within a small time interval, the target

dynamics model used in (2.14a) is given by:

f(xk) = Φk+1|kxk =


1 0 0

0 1 0

0 0 1

xk (3.37)

and the covariance of the system noise wk is given by

Qk =


0 0 0

0 0 0

0 0 0

 . (3.38)

For the EKF, the Jacobian of the measurement function with respect to the state is

Hk =
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. (3.39)

The sensor noise mentioned in Section 3.4 is used to model the noise covariance matrix, tuned to the following

values

Rk =


σ2
αaz

0 0

0 σ2
αel

0

0 0 σ2
r

 =


12 0 0

0 12 0

0 0 102

 , (3.40)

where σαaz and σαel
are the gimbal’s azimuth and elevation uncertainties and σr is the range uncertainty. The IRT

and UT results of the first observation initialize the filters’ state and covariance, x̂0 and P̂0.
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3.6 Metrics

The metrics presented in this Section will be used throughout the following chapters. The position error, ep defined

in (3.41) is used to determine the distance between the target position, t, and its estimates, t̂,

ep = [epx epy epz ]T = [tx ty tz]
T − [t̂x t̂y t̂z]

T . (3.41)

To characterize the accuracy of the algorithm, the average position error and RMSE are defined, respectively,

µep =

∑N
i=1 ||epi ||
N

=

∑N
i=1

√
e2pxi

+ e2pyi
+ e2pzi

N
, (3.42)

RMSE =

√∑N
i=1 ||epi ||2
N

=

√∑N
i=1 e

2
pxi

+ e2pyi
+ e2pzi

N
. (3.43)

While the former provides the average distance between the estimates and the target, the latter characterizes their

dispersion.

Finally, the uncertainty is defined as the square root of the sum of the diagonal of matrix P,

P =


σ2
xx σ2

xy σ2
xz

σ2
yx σ2

yy σ2
yx

σ2
zx σ2

zy σ2
zz

 , (3.44)

σxyz =
√

diag(P) = [σxx, σyy, σzz]
T . (3.45)

The average position uncertainty is defined as

µσxyz =

∑N
i=1

√
σ2
xxi

+ σ2
yyi + σ2

zzi

N
. (3.46)
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The following chapter describes the simulations designed to validate the IRT, the uncertainty characterization

using the UT and the filtering algorithm.

Section 4.1 describes the datasets used to perform the simulations, their terrain type and the software used.

Section 4.2 analyzes the contribution of each IRT upgrade proposed in the previous chapter considering a fixed

system configuration.

In Section 4.3 the UT behaviour is validated with eight different simulation scenarios.

Finally, Section 4.4 describes two simulations planned to validate the Bearings-Range filtering algorithm. The

performances of the EKF and CKF are compared with the standalone IRT and conclusions are drawn on which

Kalman Filter is better for this measurement model.

4.1 Simulation Environment

In this thesis, two terrain types were considered to perform the simulations, rough and flat, following the example

of previous works [40] on this topic.

4.1.1 Rough Terrain Dataset

The chosen rough terrain is located near Coentral, Leiria, where a fire simulacrum planned by the FIREFRONT

project took place. There, an airplane was used to acquire RGB and thermal imagery. Some of the RGB images

are shown in Figure 4.1. Figure 4.2 shows the chosen rough terrain area and the respective DEM is presented in

Figure 4.3. The main characteristics of the terrain are summarized in Table 4.1.

Characteristics

Maximum Height [m] 1088.00
Minimum Height [m] 850.57
WGS84/EPSG:4326 Coordinates [◦] N[40.060, 40.067] E[-8.166, -8.159]

Table 4.1: Coentral DEM characteristics

Gazebo was used to acquire telemetry and imagery data. Gazebo is an open-source robotic simulator useful

for robot simulation, or to simulate a sensor or an actuator. In the context of this thesis, it was used to acquire

position and orientation of a vehicle and imagery of a target using a camera attached to said vehicle. A linear

trajectory parallel to the elevation was simulated, with constant yaw equal to 48◦, roll and pitch equal to 0◦, and

a variable azimuth and elevation angles that kept the target in sight of the camera. This way, it was possible to

manually identify the pixel corresponding to the target on each image. Because there is no fire model available

in the Gazebo library, a checkerboard was used to represent the target. Figure 4.4 shows the target surrounded by

trees, to resemble a forest environment. The camera parameters presented in Table 4.2 were used throughout all the

Gazebo simulations, with a resolution of 640x480. This camera was considered ideal, with no radial or tangential

distortions.
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(a)

(b)

(c)

Figure 4.1: Imagery from the fire simulacrum near Coentral, Leiria
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Figure 4.2: Testing area near Coentral, Leiria

Figure 4.3: DEM of testing area near Coentral, Leiria
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Figure 4.4: Gazebo target setup for image and telemetry acquisition

Parameter Value

fx 480.0
fy 480.0
cx 319.5
cy 239.5

Table 4.2: Camera parameters used in the Gazebo environment
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4.1.2 Flat Terrain Dataset

Regarding the flat terrain dataset, a small area near Porto de Mós, Leiria, represented in Figure 4.5, was chosen. Its

DEM is presented in Figure 4.6 and the main characteristics are summarized in Table 4.3. The same area was later

used to perform a real experiment, to be presented in the following chapter. For this terrain type, MATLAB was

Figure 4.5: Testing area near Porto de Mós, Leiria

Figure 4.6: Testing area near Porto de Mós, Leiria

used to generate ground truth telemetry data. As in the previous dataset, a linear trajectory was simulated. This

time, the vehicle moved East, therefore with the yaw equal to 90◦, while the roll and pitch were set to 0◦. It was

assumed that the target was always centred in the images, so no camera model was needed and the azimuth and
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Characteristics

Maximum Height [m] 224.82
Minimum Height [m] 155.25
WGS84/EPSG:4326 Coordinates [◦] N[39.5940, 39.5998] E[-8.8507, -8.8424]

Table 4.3: Porto de Mós DEM characteristics

elevation angles were calculated based on the trigonometric relation between the aerial vehicle and the target.

4.2 Iterative Ray-Tracing Validation

To validate the Algorithm 2 described in 3.3.3, an experiment was conducted using data from the rough terrain

dataset. Each algorithm variant was implemented individually and its performance was tested against the basic

IRT described in Algorithm 1. The system’s position and attitude were kept constant, as was the target’s position.

Pixel Vehicle Position [m] Attitude [rad] Target Position [m]

u v x y z φ θ ψ αel αaz x y z

316 249 42.5 582.5 2350.0 0 0 0.75 -1.25 0.75 350.3 312.0 1041.7

Table 4.4: System and target setup for IRT validation

Three different variables were taken into account when analysing the IRT variant performances: the number of

iterations, the processing time, and the position error. The chosen step size t was 10 meters, the step divider tdiv

was 10 and the step threshold tth was 1 meter.

Method Iterations Processing Time [ms] Position Error [m]

Basic IRT 139 4.610 19.405
Dynamic Step 143 7.727 13.570
Maximum Height Iteration 7 1.890 20.839
Bilinear Interpolation 138 5.236 9.792
Combined 10 1.934 5.869

Table 4.5: Performance comparison of the IRT variants

The results presented in Table 4.5 are in agreement with what was expected. The dynamic step increases the

accuracy but also increases the number of iterations and, consequentially, the processing time. The maximum

height iteration decreases significantly the number of iterations since the maximum height of the loaded map was

1088 meters and the vehicle height was 2350 meters. The bilinear interpolation increases the accuracy of the

IRT but also increases the processing time. In conclusion, the combination of all the variants not only achieves

the best result in terms of position error but also minimizes their individual disadvantages. Figure 4.7 allows the

visualization of the results of the complete IRT algorithm.
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(a) Top view (b) Perspective view

Figure 4.7: IRT combining all algorithm variants

4.3 Characterization of IRT Uncertainty

To validate the UT applied to the characterization of uncertainty of the IRT algorithm, data from the rough terrain

dataset was used. A total of 8 different scenarios were simulated, whose parameters are presented in Table 4.6. The

main purpose of this set of simulations was to verify the evolution of the uncertainty as a function of the distance

to the target.

Test Pixel Vehicle Position [m] Attitude [rad] Target Position [m]

u v x y z φ θ ψ αel αaz x y z

1 321 241 350.3 312.0 1100.0 0 0 0 -π2 0 350.3 312.0 1041.7
2 323 189 272.5 312.5 1100.0 0 0 0 -0.75 0 350.3 312.0 1041.7
3 322 259 192.5 312.5 1200.0 0 0 0 -0.75 0 350.3 312.0 1041.7
4 212 245 192.5 387.5 1200.0 0 0 0.75 -0.75 0.75 350.3 312.0 1041.7
5 322 290 42.5 312.5 1650.0 0 0 0 -1 0 350.3 312.0 1041.7
6 313 230 42.5 582.5 1650.0 0 0 0.75 -1 0.75 350.3 312.0 1041.7
7 320 278 42.5 312.5 2350.0 0 0 0 -1.25 0 350.3 312.0 1041.7
8 316 249 42.5 582.5 2350.0 0 0 0.75 -1.25 0.75 350.3 312.0 1041.7

Table 4.6: System setup for IRT uncertainty characterization with the UT

The results presented in Table 4.7 show that as the distance to the target increases, the larger are the uncertain-

ties due to the GPS, IMU and gimbal pose. Furthermore, the GPS errors are the dominant source of uncertainty

for distances closer to the target, while the IMU and gimbal errors become the dominant source of uncertainty for

greater distances. As an example, the uncertainty region estimated with the UT for test 8 is plotted in Figure 4.8

using the uncertainties presented in Table 3.1.
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Test Distance to Target [m] σx [m] σy [m] σz [m] Position Error [m]

1 58.3 10.14 10.05 10.24 3.710
2 97.25 10.01 10.96 7.50 2.741
3 223.54 9.95 13.55 7.52 2.657
4 235.94 10.20 14.07 7.58 2.354
5 681.76 17.36 22.30 16.50 4.095
6 733.46 21.42 26.15 18.88 3.592
7 1346.35 31.37 30.16 26.65 2.917
8 1370.98 31.97 34.84 34.28 5.885

Table 4.7: UT validation results

Device Standard Deviation σi Value

GPS
σx
σy
σz

10m
10m
10m

IMU
σφ
σθ
σψ

1◦

1◦

3◦

Gimbal
σαel

σαaz

1◦

1◦

Table 3.1: GPS, IMU and Gimbal standard deviations (repeated from page 32)

Figure 4.8: Test 8 with uncertainty region
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4.4 Bearings-Range Model Validation

This section details two simulations performed with the following purposes: to compare the Bearings-Range with

the Bearings-Only measurement models; to conclude on whether the CKF is, in fact, a better alternative, for

the Bearings-Range measurement model, than the EKF. In addition, they served as a verification of the expected

behaviour of the georeferencing algorithm in rough and flat terrains. In both simulations a linear trajectory was

assumed, with the vehicle travelling at a constant speed of 250 km/h and acquiring telemetry and imagery with a

frequency of 1 Hz.

The ground truth telemetry data was perturbed using the following model:

x̂i(t) = xi(t) + w(t), w ∼ N (0, σxi
), (4.1)

where x̂i is the noisy variable, xi is the ground truth variable, w is the zero-mean noise with σxi
standard deviation.

The assumed values for σxi are the same as the ones used for the UT, presented in Table 3.1. For each simulation,

100 runs were performed with independent noise sequences.

On a first stage, the IRT was applied to each measurement. The resulting estimated positions were then filtered

with the Bearings-Range and Bearings-Only models. The IRT results are an average of all measurements, while

the filtering results are an average of their final correction.

4.4.1 Rough Terrain Simulation

A total of 25 measurements were collected at a constant height of 1650 meters. Figure 4.9 presents the mea-

surements with undisturbed vehicle position and system attitude. Figure 4.10 shows the resulting measurements

following the model presented in (4.1) to disturb the system. The average distance to the target was 880 meters.

Figure 4.9: Measurements with ground truth position and attitude on the Coentral simulation
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Figure 4.10: Measurements with noise-induced position and attitude on the Coentral simulation

4.4.2 Flat Terrain Simulation

A total of 21 measurements were collected at a constant height of 950 meters. Figure 4.11 presents the measure-

ments with ground truth data. Figure 4.12 shows the resulting measurements with noisy data. The average distance

to the target was 985 meters.

Figure 4.11: Measurements with ground truth position and attitude on the Porto de Mós simulation
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Figure 4.12: Measurements with noise-induced position and attitude on the Porto de Mós simulation

4.4.3 Results

This subsection presents the results of the rough and flat terrain simulations for the Bearings-Only and Bearings-

Range measurement models.

The averaged norm of the position error and uncertainty for the rough case are plotted in Figure 4.13 as a func-

tion of the number of measurements. Table 4.9 summarizes the results of the IRT, IRT+Bearings-Range Extended

Kalman Filter (BR-EKF), IRT+Bearings-Only Extended Kalman Filter (BO-EKF), IRT+Bearings-Range Cubature

Kalman Filter (BR-CKF) and IRT+Bearings-Only Cubature Kalman Filter (BO-CKF). Table 4.11 compares the

average processing time per iteration of the EKF and CKF.

Method Iterations Norm of Position Error [m] RMSE [m] Norm of Position Uncertainty [m]

IRT 30.527 30.743 35.965
IRT+BR-EKF 24 6.221 11.726 3.837
IRT+BO-EKF 24 8.225 13.071 5.137
IRT+BR-CKF 24 6.222 11.785 3.782
IRT+BO-CKF 24 8.193 13.136 5.054

Table 4.9: IRT, IRT+BR-EKF, IRT+BO-EKF, IRT+BR-CKF and IRT+BO-CKF results for the rough terrain sce-
nario

For the flat terrain simulation, Figure 4.14 presents the evolution of the averaged position error and uncertainty

norm as a function of the number of measurements. The results are summarized in Table 4.10.

As can be seen in Figures 4.13 and 4.14, for both terrain types, the Bearings-Range model converges faster

than the Bearings-Only. This is evident for k = 10, for example. This faster convergence is also evident on the

results presented in Tables 4.9 and 4.10, with the BR-EKF and BR-CKF achieving lower position errors, RMSE’s
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(a) BR-EKF and BR-CKF average norm of the position error (b) BR-EKF and BR-CKF average norm of the position uncer-
tainty

(c) BO-EKF and BO-CKF average norm of the position error (d) BO-EKF and BO-CKF average norm of the position uncer-
tainty

Figure 4.13: EKF and CKF filtering results for the rough terrain simulation

Method Iterations Norm of Position Error [m] RMSE [m] Norm of Position Uncertainty [m]

IRT 43.121 43.405 48.373
IRT+BR-EKF 20 11.020 19.910 3.898
IRT+BO-EKF 20 11.565 21.578 3.909
IRT+BR-CKF 20 11.000 19.842 3.899
IRT+BO-CKF 20 11.575 21.573 3.911

Table 4.10: IRT, IRT+BR-EKF, IRT+BO-EKF, IRT+BR-CKF and IRT+BO-CKF results for the flat terrain scenario

and uncertainties when compared to their Bearings-Only counterparts. Furthermore, the EKF achieves a faster

processing time than the CKF, a result that is in agreement with previous works [16] and is due to the differences

in their algorithms.
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(a) BR-EKF and BR-CKF average norm of the position error (b) BR-EKF and BR-CKF average norm of the position uncer-
tainty

(c) BO-EKF and BO-CKF average norm of the position error (d) BO-EKF and BO-CKF average norm of the position uncer-
tainty

Figure 4.14: BR-EKF and BR-CKF filtering results for the flat terrain simulation

Kalman Filter Average Processing Time [ms]

Extended 0.795
Cubature 0.83

Table 4.11: EKF and CKF processing time comparison

4.4.4 Discussion of Results

Comparing Tables 4.9 and 4.10, the rough terrain achieves better results in terms of the standalone IRT. This can

be explained by two factors: distance to the target and incidence angle. While the average distance to the target

in Porto de Mós was 985 meters, in the Coentral simulation the average distance was 880. As it had already been

concluded from the UT validation, the greater the distance, the greater the position error and uncertainty. The
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other important factor is the incidence angle. In the Coentral scenario, the optic-ray is more perpendicular to the

surface than in Porto de Mós. Considering the study in Appendix A, the more perpendicular to the surface, the less

amplified is the uncertainty.

These simulations demonstrate the advantage of including the range information in the filtering algorithm. Both

in the rough and flat scenarios, the Bearings-Range measurement model achieves lower position errors, position

uncertainties and RMSE’s for the same number of measurements, therefore is more accurate than the Bearings-

Only measurement model. These results also show a clear improvement on the accuracy of the estimated target

position when applying the filtering algorithm. The IRT RMSE is reduced by 61.86% and 54.12% for the rough

and flat terrains, respectively, both for the BR-EKF and BR-CKF. Since both filters achieve the same final result

with an identical progression, both in the position error and uncertainty, there is no clear advantage in using the

BR-CKF over the BR-EKF on this measurement model. In addition, the EKF shows a slightly faster processing

time per iteration, making it more appropriate for real-time applications, as is the case of the FIREFRONT project.

Regarding the state-of-the-art, results are in agreement with the ones presented in [40], which is the work that

mostly resembles this work. A comparison is done on Table 4.12. There are various key factors that contribute to

Terrain Type Xu et al. [40] This work

Rough 13.8 11.7
Flat 10.8 19.8

Table 4.12: Comparison with state-of-the-art RMSE [m]

the difference in the results. In their work, the UAV performed a circular trajectory around the target, at a height

of 500 meters, acquiring at least 60 measurements for the flat terrain and 120 for the rough terrain. In this work,

the aerial vehicle followed a linear trajectory, at height of 950 and 1650 meters and acquired no more than 21 and

25 measurements, for the flat and rough terrains, respectively. Furthermore, the equipment measurement errors in

that work were more accurate than in this work. Under the same circumstances, as was the case in the simulations

presented in this chapter, it is demonstrated that the Bearings-Range is a clear improvement over the Bearings-Only

measurement model.
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This chapter details the experimental procedures conducted to verify the validity of the proposed methodology.

It is divided in two sections, Section 5.1 which details the different experiments, their objectives and the data used,

and Section 5.2, that summarizes the results obtained in each experiment and concludes on them.

5.1 Experiments

Three experiments compose this section and are presented in the following manner: Subsection 5.1.1 details the

procedure where a mobile phone was used to acquire telemetry and imagery of a target along a pedestrian path,

near Porto de Mós, Leiria.

Subsection 5.1.2 describes the georeferencing algorithm applied to a footage recorded by a Portuguese Air

Force UAV near Chaves, Vila Real.

Finally, subsection 5.1.3 describes another experiment using footage from a UAVision’s UAV recorded near

Pombal, Leiria. A minimization problem is proposed to calculate the camera’s intrinsic parameters and the results

are used on the georeferencing algorithm.

5.1.1 Mobile Phone

The purpose of this procedure was to simulate the flight of an aerial vehicle using a mobile phone. Therefore, 14

images of a target were captured and also its IMU was used to acquire telemetry data.

To calibrate the camera, a set of 20 images of a squared checkerboard pattern was captured and given as

input to the MATLAB Camera Calibrator from the Computer Vision Toolbox. In order to access the mobile

phone’s accelerometer, gyroscope, magnetometer and GPS, the MATLAB Mobile App was used. The App, whose

interface is presented in Figure 5.1, allows the logging and upload of raw sensor data with a configurable sample

rate, from 0.5 to 100 Hz. It also provides the roll, pitch and azimuth angles calculated by the mobile phone’s

internal algorithm with respect to the coordinate frame presented in Figure 5.2.. The GPS sample rate is not

configurable and is fixed at 1 Hz.

To perform the integration of the raw data from the accelerometer, gyroscope and magnetometer, MATLAB

Sensor Fusion and Tracking Toolbox was used. More specifically, ahrsfilter, which initializes an indirect Kalman

Filter described in [7]. This filter has nothing to do with the BR-EKF. Instead of tracking the actual state vector,

the indirect Kalman Filter tracks the errors for the orientation, gyroscope bias, linear acceleration and magnetic

disturbance. This filter requires as input the sensors noise covariances in addition to the sensor data. The mobile

phone’s manufacturer does not disclose the sensor models used, therefore the covariances could not be obtained by

looking at the sensors’ datasheets. As an alternative, an Allan Variance analysis was employed on 8 hours of static

accelerometer and gyroscope. The plots are presented in Figure 5.3 and the results are summarized in Table 5.1.

Different small experiments at 10 Hz frequency were conducted to validate the result of the MATLAB imple-

mented filter by comparing it with the orientation outputted by the mobile phone’s internal algorithm. One of these
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(a) (b)

Figure 5.1: MATLAB Mobile sensor interface

Figure 5.2: iPhone coordinate frame

experiments is presented in Figure 5.4. While the roll and pitch were practically identical in all experiments, an

unexpected behaviour was detected in the iPhone outputted yaw, which had a constant offset when compared to

the yaw angle estimated by the Kalman Filter. It was latter found that the MATLAB Mobile app always initializes

this angle with -90◦, and does not calculate it with respect to the magnetic north. Correcting the offset, the curves
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(a) Accelerometer (b) Gyroscope

Figure 5.3: Allan Deviation Plots

Noise Density Random Walk

Accelerometer 5.28 ×10−4 m/s2/
√
Hz 1.15 ×10−5 m/s3/

√
Hz

Gyroscope 9.19 ×10−5 rad/s/
√
Hz 3.43 ×10−6 rad/s2/

√
Hz

Table 5.1: Accelerometer and gyroscope Noise and Random Walk Bias

were practically identical, therefore the parameters estimated with the Allan Variance were validated.

Regarding the actual experiment, the water deposit with the WGS84 coordinates N39.5962162 E-8.846342,

shown in Figure 5.5, was chosen as the target since it was a landmark that stood out and was easier to detect. In

total, a set of 14 images were acquired. For every image, the position and attitude were registered. Although the

GPS and IMU data were asynchronous, this did not pose as a major problem since the mobile phone was held

at an approximately constant position for more than 1 second when an image was being captured. This ensured

that the translation errors caused by GPS and IMU latency were minimized. The image timestamps were also

asynchronous with the IMU data so the methodology adopted was to register the attitude and position immediately

before the image timestamp.

The sample rate was set to 10 Hz in the MATLAB Mobile App and the IMU data was acquired along the

trajectory plotted in Figure 5.6. On the left, the trajectory is represented in blue and the target is in red. On the

right, the positions where the images were acquired along the trajectory. Some of these images are shown in Figure

5.7 with the target highlighted.
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(a) Roll (b) Pitch

(c) Yaw

Figure 5.4: Comparison between the output iPhone orientation and Kalman Filter estimated orientation
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Figure 5.5: Water deposit

(a) Trajectory and target in OpenStreetMap (b) Trajectory and target satellite view

Figure 5.6: OpenStreetMap and satellite views of the mobile phone experimental procedure configuration
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(a) (b)

Figure 5.7: Two images of the mobile phone experimental procedure
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5.1.2 Portuguese Air Force UAV Footage

In this video, a UAV recorded a fire burning near Chaves, Vila Real, at 41.631724N -7.465919E, as shown in

Figure 5.8. The camera intrinsic parameters were not available. However, the target was locked in the centre of

the image, making it possible to geolocate without them because the centre pixel always points in the direction

of the camera axis. The gimbal’s azimuth and elevation angles are overlayed on the video feed. The former is

calculated with respect to the vehicle coordinate frame. The latter, however, is provided with respect to the UAV’s

body. This was not problematic since the horizon line was parallel to the horizontal image frame. The feed also

provided the UAV’s position in the WGS84 reference system. A total of 7 frames were collected and used to test

the georeferencing algorithm. Due to its confidentiality, no video frame can be presented.

Figure 5.8: Chaves fire location

5.1.3 UAVision UAV Footage

This video recorded a forest fire near Pombal, Leiria, at 39.832856N -8.519885E, as shown in Figure 5.9. As in the

previous recording, the overlay displayed information on the azimuth and elevation angles, as well as the UAV’s

position in the WGS84 reference frame.

Again, the camera was not calibrated, therefore no intrinsic parameters were available. Furthermore, the vehicle

performs a slight turn along its trajectory, meaning that the horizon line is not centered and parallel to the horizontal

image frame and therefore the elevation angle is not reliable. To overcome these setbacks, three video frames

with visible landmarks, presented in Figure 5.10, were selected. This allowed the formulation of a minimization

problem to estimate the intrinsic parameters and to refine the rotation matrix of the system when those images were
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Figure 5.9: Pombal fire location

captured. As a cost function, the reprojection error was used

J(Ri, ti,K) =

3∑
i=1

Nk∑
k=1

(uik − ûik)2 + (vik − v̂ik)2, (5.1)

where Ri and ti are the rotation matrix and translation vector that establish the transformation from world to

camera coordinates for frame i, K is the IP matrix, (uik, vik) is the measured pixel k in frame i and (ûik, v̂ik)

is the predicted pixel. It was assumed that the skew s was zero, fx = fy and that the optical centre matched the

image centre, cx = 640 and cy = 360:

arg minJ(Ri, ti,K)

s.t. ||ri1|| = 1, ||ri2|| = 1, ||ri3|| = 1

ri1r
T
i2 = 0, ri2r

T
i3 = 0, ri1r

T
i3 = 0

fx = fy

, (5.2)

where rik is the row k of rotation matrix i. The six initial constraints are related to the orthogonality condition of

the rotation matrices. The resulting intrinsic parameters and refined rotation matrices were used to calculate the

location of some landmarks.
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(a) Frame 1

(b) Frame 2

(c) Frame 3

Figure 5.10: Three frames used to calculate the camera’s intrinsic parameters
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5.2 Experimental Results

5.2.1 Mobile Phone Experimental Results

A total of 20 images were used to calibrate the camera. Six are presented in Figure 5.11. As a result, the following

intrinsic and distortion parameters were obtained:

Kint =


fx 0 cx

0 fy cy

0 0 1

 =


3363.507 0 1967.377

0 3369.501 1419.890

0 0 1

 (5.3)

k =
[
k1 k2 k3

]T
=
[
0.2265 −1.0227 1.7296

]T
(5.4)

p =
[
p1 p2

]T
=
[
−0.0098 −0.0065

]T
(5.5)

A mean reprojection error of 0.68 pixels was achieved with a 3-parameter radial distortion model.

(a) (b) (c)

Figure 5.11: iPhone image samples for calibration

In Figure 5.12 the trajectory is plotted in a local ENU coordinate system, with the location of the images, the

target and the estimated locations of the target. The average distance between the position of the images and target

was 640.83 meters, with a maximum of 770.92 meters and 493.90 meters. The results are presented in Table 5.2.

Average Norm of Position Error [m] RMSE [m] Average Norm of Position Uncertainty [m]

74.483 77.498 157.035

Table 5.2: Standalone IRT results of the mobile phone experimental procedure

Given the lower quality of the mobile phone IMU, the azimuth and elevation measurement error was tuned to
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Figure 5.12: Trajectory and IRT results in local ENU coordinate system

5◦, i.e.,

Rk =


52 0 0

0 52 0

0 0 102

 . (5.6)

The first estimated position was used to initialize the state of the EKF. The other 13 measurements were filtered.

Figure 5.13 presents the results of the filtering algorithm. On the left, the estimation error is plotted for each axis

and on the right the standard deviation. Table 5.3 presents the final position error, uncertainty and the RMSE.

Norm of Position Error [m] RMSE [m] Norm of Position Uncertainty [m]

33.620 41.501 7.250

Table 5.3: BR-EKF filtering results of the mobile phone experimental procedure

Figure 5.14 provides a clear view of the IRT estimated positions and the improvement achieved by applying

the EKF. A bias along the positive East direction is visible, since 12 of the 14 estimated positions are on that

area. This can be due to the non-ideal experimental setup, i.e., a line-of-sight more parallel to the ground when

compared to a more vertical one from an aerial vehicle. The mean position and uncertainty are plotted in Figure

5.15 and evidence this ill-conditioned setup, with a stretched uncertainty region along the line-of-sight direction.

This means that a small error on the vertical image direction, be it the selected pixel or the roll angle, is amplified
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(a) Position error (b) Position uncertainty

Figure 5.13: Position error and uncertainty evolution per BR-EKF iteration

Figure 5.14: Real and estimated target positions by the IRT and BR-EKF algorithms

by this configuration. In addition, the images were taken at approximate positions, limiting the new information

added to the BR-EKF.

The same experiment was simulated to investigate the origin of this bias. More specifically, to understand if it

was due to the non-ideal perspective or if it was related to IMU or pixel identification errors. The mean position and

uncertainty are plotted in Figure 5.16. The results presented in Table 5.4 demonstrate the non-ideal perspective

of the experimental procedure, with an increase by almost 100% in the RMSE and 72 meters in the position

uncertainty when compared to the results of the experimental procedure presented in Table 5.2. Furthermore, the
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Figure 5.15: Mean position and uncertainty from experimental procedure

Figure 5.16: Mean position and uncertainty from ground perspective simulation

mean estimated target position presented Figure 5.16 is shifted towards West when compared to the actual target

position, showing that the bias identified in the experimental procedure, despite being towards East, is mainly

caused by the sub-optimal line-of-sight.
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Method Iterations Norm of Position Error [m] RMSE [m] Norm of Position Uncertainty [m]

IRT 134.377 140.2487 229.571
IRT+BR-EKF 13 73.923 94.686 4.055

Table 5.4: Results from the Porto de Mós experimental procedure simulated with a ground perspective

Finally, the same trajectory was simulated with an aerial perspective at a height of 950 meters. The results

presented in Table 5.5 validate the use of aerial vehicles when applying the proposed methodology. The RMSE

Method Iterations Norm of Position Error [m] RMSE [m] Norm of Position Uncertainty [m]

IRT 47.120 47.605 43.560
IRT+BR-EKF 13 13.908 21.946 5.109

Table 5.5: Results from the Porto de Mós experimental procedure simulated with an aerial perspective

decreased by 36 meters and the position uncertainty was reduced by 113 meters, as a result of a more perpendicular

line-of-sight evidenced in Figure 5.17. In addition, the biases identified in the experimental procedure and ground

simulation are no longer present since the mean estimated target position is practically identical to the real target

position. In conclusion, the use of an aerial vehicle is clearly advantageous when applying the proposed algorithm,

providing a more accurate estimate of the target’s position, which is further improved with the Bearings-Range

EKF.

Figure 5.17: Mean position and uncertainty from aerial perspective simulation
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5.2.2 Portuguese Air Force UAV Footage Results

In this experiment, the UAV flew at approximately 1920 meters, and the average distance to the target was 3183

meters, meaning that the horizontal component was 2539 meters. As in the Porto de Mós experimental procedure,

the optic ray is more parallel to the ground when compared to the perspective of an aerial vehicle, explaining why

the uncertainty regions plotted in Figure 5.18 are stretched along the line-of-sight direction. In 6 out of 7 frames,

the target is included in the uncertainty region.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.18: Portuguese Air Force footage georeferencing results
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The fact that the observations are very similar means that no new information is added on each EKF iteration.

Furthermore, only 7 measurements were taken, where one was used to initialize the filter state and covariance and

only six were left to iterate. These factors contribute to the increase in the position error estimated by the filtering

algorithm, as presented in Figure 5.19 and summarized in Table 5.6. An important conclusion can be drawn from

this. When georeferencing targets at greater distances, the uncertainties associated with the estimated positions

are amplified. Therefore, the number and variability of measurements required for an accurate target position

increases.

(a) EKF position error (b) EKF position uncertainty

Figure 5.19: Chaves BR-EKF position error and uncertainty

Method Iterations Norm of Position Error [m] RMSE [m] Norm of Position Uncertainty [m]

IRT 136.250 146.049 292.600
IRT+BR-EKF 6 198.434 157.056 24.7578

Table 5.6: Portuguese Air Force IRT and IRT+EKF results

5.2.3 UAVision UAV Footage Results

The estimated intrinsic parameters from the minimization problem were

Kint =


fx 0 cx

0 fy cy

0 0 1

 =


1063.17 0 640

0 1063.17 360

0 0 1

 . (5.7)

These parameters and the calculated rotation matrices were used to georeference the position of several landmarks.

Table 5.7 presents the number of landmarks selected in each frame and the average norm of the position error,
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average norm of position uncertainty and RMSE. The targets, estimated positions and uncertainty regions are

plotted in Figure 5.20.

Frame Landmarks Norm of Position Error RMSE [m] Norm of Position Uncertainty [m]

1 8 15.166 16.432 81.277
2 6 6.598 6.857 60.226
3 4 25.908 26.029 65.896

Table 5.7: UAVision footage results

Frames 1 and 2 present similar results in terms of position error and RMSE. Position uncertainty is greater on

the first frame because it is georeferencing targets that are further from the vehicle than in the second frame. The

third and final frame presents the worst results in terms of position error and RMSE. This is due to being the image

with less landmarks, and as a consequence is less refined by the minimization problem when compared to the other

frames. Overall, accurate results were obtained for targets that distanced more than one kilometer from the UAV.

In a real scenario, were the position error and RMSE will not be available, the uncertainty is taken into account as

metric of the georeferencing algorithm, with a lower value representing a more trustworthy estimated position.
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(a) Frame 1 (b) Frame 2

(c) Frame 3

Figure 5.20: UAVision georeferencing results
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Having validated the proposed methodology, this chapter presents the main achievements of this thesis, its

conclusions and suggestion for future work.

6.1 Achievements

The IRT algorithm proposed in this thesis presents a robust solution for forest fire georeferencing. It only re-

quires the camera’s IPs, the onboard sensor data (GPS/IMU/gimbal) and a DEM, whilst current state-of-the-art

approaches rely on feature identification and matching.

Equipped with the UT, the georeferencing algorithm provides an estimate of the target position and character-

izes its uncertainty. That is a relevant achievement for the FIREFRONT project since it provides crucial information

regarding the confidence of the estimated target position to the fire fighting personnel.

Finally, a novel Bearings-Range filter measurement model was developed to filter the bearings and range in-

formation from relative geometry between the aerial vehicle and the estimated position.

The results obtained in a controlled simulation environment demonstrate the potential of the developed algo-

rithm. At distances of almost 1000 meters, two simulations were run on rough and flat terrains, achieving RMSEs

of 30.7 and 43.4 meters with 25 and 21 measurements, respectively. After applying the BR-EKF, these errors re-

duced to 11.0 and 19.9 meters, a decrease of 58.5% and 54.7%. This relation was also verified in the mobile phone

experimental procedure, where an initial RMSE of 77.5 meters was reduced to 41.5 meters with just 14 measure-

ments. Finally, georeferencing with accurate intrinsic and extrinsic parameters, as was the case in the UAVision

experimental procedure, resulted in very accurate estimated positions. An average RMSE of 16.33 meters was

achieved on a total of 18 landmarks that distanced more than 1000 meters from the UAV.

6.2 Future Work

Regarding the acquisition of multiple images of the same target, it was seen in the literature that the results of

the georeferencing algorithms are influenced by the flight pattern. These can also influence the filtering algorithm

since it strives on differentiated measurements. For this reason, the next step would be to design flight patterns

that minimize the error of the IRT algorithm but also maximize the information extracted from Bearings-Range

measurement model.

Another possible future work would be the development of a cooperative georeferencing algorithm that allows

multiple aerial vehicles to simultaneously geolocate an object of interest. That would increase the problem com-

plexity and require extra coordination with the aerial vehicles fighting the fire but would allow a faster and more

accurate georeferencing.

A mobile phone application could be developed, considering the results obtained with the mobile phone ex-

perimental procedure. The user would upload telemetry and fire imagery and these could be used to georeference
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the fire together with the data from the aerial vehicle or as an alternative, in case something prevented it from

operating.

Lastly, considering the procedure followed in the UAVision footage, an algorithm could be developed that

searches recognizable landmarks in the imagery acquired by the aerial vehicle. These landmarks could then be

georeferenced using image registration techniques and used to refine the camera’s EPs.
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A.1 Optic Ray

The optic ray is defined as the vector with origin in the camera’s optical centre and pointing at the pixel one intends

to project.

This vector is defined in the camera’s coordinate frame as

PC =


u− cx
v − cy
fx+fy

2

 , (A.1)

assuming fx ≈ fy , where [u, v]T is the pixel, [cx, cy]T is the principal point and fx, fy are the camera’s focal

lengths with respect to x and y. Normalizing,

P ′C =
1√

(u− cx)2 + (v − cy)2 + (
fx+fy

2 )2
PC (A.2)

Depending on the system configuration, this vector can be transformed to an inertial coordinate frame, where

it is designated as PI .

A.2 Plane - Optic Ray Intersection

A plane is defined by

ax+ by + cz + d = 0, (A.3)

where (a, b, c) are the coordinates of the plane’s normal vector ~n and d is the distance to the origin of the coordinate

frame. Any point (x, y, z) belonging to said plane verifies (A.3).

The optic ray can be written with the following equation:

r(x, y, z) = (vx, vy, vz) + k(PIx, PIy, PIz), (A.4)

where (vx, vy, vz) is the camera’s position in the inertial frame.

To calculate the intersection between the optic ray and the plane, one solves (A.5) with respect to k, obtaining

(A.6),



x = vx + kPIx

y = vy + kPIy

z = vz + kPIz

ax+ by + cz + d = 0

, (A.5)

82



k = −d+ avx + bvy + cvz
aPIx + bPIy + cPIz

. (A.6)

The coordinates of the intersection are given by
tx

ty

tz

 =


vx − d+avx+bvy+cvz

aPIx+bPIy+cPIz
PIx

vy − d+avx+bvy+cvz
aPIx+bPIy+cPIz

PIy

vz − d+avx+bvy+cvz
aPIx+bPIy+cPIz

PIz

 . (A.7)

The incidence angle, represented in Figure A.1, is given by

θi = cos−1 (− ~PI · ~n), θi ∈ [0,
π

2
[ (A.8)

Rewritten,

θi = cos−1 (−(aPIx + bPIy + cPIz)), θi ∈ [0,
π

2
[ (A.9)

Figure A.1: Incidence angle

Considering (A.7) and (A.9), one can conclude that the intersection coordinates are dependent on the incidence

angle. Therefore, (A.7) can be rewritten as
tx

ty

tz

 =


vx +

d+avx+bvy+cvz
cos θi

PIx

vy +
d+avx+bvy+cvz

cos θi
PIy

vz +
d+avx+bvy+cvz

cos θi
PIz

 . (A.10)

The overall configuration is represented in Figure A.2.
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Figure A.2: Optic ray projection to linear surface

A.3 Propagation of Position Uncertainty

Considering that the camera’s position is affected by errors, v′x,y,z = vx,y,z ± δx,y,z and replacing in (A.7),


t′x

t′y

t′z

 =


(vx ± δx) +

d+a(vx±δx)+b(vy±δy)+c(vz±δz)
cos θi

PIx

(vy ± δy) +
d+a(vx±δx)+b(vy±δy)+c(vz±δz)

cos θi
PIy

(vz ± δz) +
d+a(vx±δx)+b(vy±δy)+c(vz±δz)

cos θi
PIz

 . (A.11)

The error is calculated subtracting (A.11) to (A.10),


εx = ∓δx + PIx

cos θi
(∓aδx ∓ bδy ∓ cδz)

εy = ∓δy +
PIy

cos θi
(∓aδx ∓ bδy ∓ cδz)

εz = ∓δz + PIz

cos θi
(∓aδx ∓ bδy ∓ cδz)

. (A.12)

The result deducted in (A.12) shows that as the incidence angle increases, the more amplified are the position

errors. The minimum is achieved with θi = 0◦.

A.4 Propagation of Orientation Uncertainty

Considering now that the camera’s orientation is affected by errors,


t′x

t′y

t′z

 =


vx − d+avx+bvy+cvz

aP ′
Ix+bP

′
Iy+cP

′
Iz
P ′Ix

vy − d+avx+bvy+cvz
aP ′

Ix+bP
′
Iy+cP

′
Iz
P ′Iy

vz − d+avx+bvy+cvz
aP ′

Ix+bP
′
Iy+cP

′
Iz
P ′Iz

 . (A.13)
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Rewritten, 
t′x

t′y

t′z

 =


vx +

d+avx+bvy+cvz
cos θ′i

P ′Ix

vy +
d+avx+bvy+cvz

cos θ′i
P ′Iy

vz +
d+avx+bvy+cvz

cos θ′i
P ′Iz

 . (A.14)

The error is calculated subtracting (A.14) to (A.10),


εx = (d+ avx + bvy + cvz)(

PIx

cos θi
− P ′

Ix

cos θ′i
)

εy = (d+ avx + bvy + cvz)(
PIy

cos θi
− P ′

Iy

cos θ′i
)

εz = (d+ avx + bvy + cvz)(
PIz

cos θi
− P ′

Iz

cos θ′i
)

. (A.15)

The result obtained in (A.15) shows that the distance to the plane, (d+avx+bvy+cvz), amplifies the orientation

errors. In addition, it is also shown that the incidence angle influences the error propagation, and this influence

is proportional to the derivative value on the central point. The derivative of cosx, d
dx cosx = − sinx, has a

minimum for x = 0 and maximum for x = π
2 . In conclusion, incidence angles closer to 90◦increase significantly

the error propagation when compared to incidence angles close to 0◦.
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Abstract

This paper discusses the design and implementation of the Iterative Ray-
Tracing algorithm for forest fire georeferencing using aerial imagery, a
Global Positioning System (GPS), an Inertial Measurement Unit (IMU)
and a Digital Elevation Model (DEM). Taking into account that measure-
ment errors are amplified by the target distance, an Extended Kalman
Filter (EKF) is proposed to filter multiple observations of the same ob-
ject of interest. This filter extracts the bearings and range information
from the geometric relation between the target and the camera in a local
coordinate system. A performance comparison is done with a Cubature
Kalman Filter (CKF) considering possible linearization errors induced by
the EKF.

In order to validate the georeferencing and filtering algorithms, an
experiment was conducted. A mobile phone was used to acquire GPS,
IMU and 14 images of a target. An average position error of 74.483m was
obtained at an average distance of 605m. Applying the Bearings-Range
EKF and CKF reduced the error to 33.620 and 33.820, respectively.

1 Introduction

Forest fires are increasingly becoming a frequent problem in modern day
society. Their destructive potential makes them a serious concern and a
challenge for firefighting authorities.

Fire propagation models have already been studied that take into ac-
count weather variables such as wind [7] and also the terrain type [6].
However, these models usefulness is limited since no fire geolocation al-
gorithm has been developed for this purpose. Henceforth, the aim of this
work is to fill in this gap and develop a georeferencing algorithm based
on images and telemetry recorded by an aerial vehicle. This images are
assumed to be pre-processed to identify the pixels that correspond to fire.

1.1 Related Work

Forlani et al. [3] apply direct georeferencing by using the on-board Global
Navigation Satellite System with the Real-Time Kinematic option with
Structure from Motion and Bundle Adjustment. No ground control points
are used. This methodology is, however, not suitable in a forest fire sce-
nario, where the lack of differentiated texture and smoke prevents feature
extraction and matching.

Conte et al. [2] propose an image registration approach by pattern-
matching the images collected from a Micro Aerial Vehicle with satellite
imagery. Multiple measurements are taken and recursive least square filter
is applied. Similarly to [3], this technique relies on feature extraction, and
is therefore unreliable in a forest fire environment.

Ponda et al. [8] develop a Line-of-Sight Bearings-Only EKF for tar-
get localization. This requires, however, a prior knowledge of the target’s
position, which is not reviewed in that work. Xu et al. [10] propose the
same measurement model using a CKF instead, considering possible lin-
earization errors induced by the standard EKF. To determine an initial
approximation of the target’s position, the Iterative Photogrammetry (IP)
algorithm [9] is used. In spite of being efficient, the IP method can diverge
when the incidence angle is smaller than the profile inclination angle.

Leira et al. [5] propose the intersection of the optic ray with a flat
surface. This generalization, however, is not suitable in rough terrains, as
seen in [10].

Figure 1: Iterative Ray-Tracing (adapted from [9]).

2 Georeferencing Algorithm - Iterative Ray-Tracing

The proposed georeferencing algorithm is the Iterative Ray-Tracing (IRT)
[9], presented in Figure 1, and the DEM used is the EU-DEM v1.1 [1],
with a spatial resolution of 25 meters and georeferenced in EPSG:3035.
Since the purpose of this work is to output the geodetic coordinates of the
target, this map is converted to the EPSG:4326.

The IRT works by extending the optic ray with a step size until it
hits the surface. A GPS and IMU are needed to define the origin and
direction of this ray, respectively, in a local NED frame. The intersection
is detected when the point elevation is equal or smaller than the elevation
of the DEM.

Multiple upgrades were introduced in the basic IRT, including a dy-
namic step size, to increase the accuracy of the algorithm. Furthermore,
the starting iteration point was set as the intersection of the ray with the
maximum elevation of the loaded DEM. It is expected that the aerial ve-
hicles will operate at heights greater than the local terrain, and this can re-
duce the number of iterations considerably. Finally, bilinear interpolation
was implemented to refine the elevation of the queried point. Ghandehari
et al. [4] concluded in their work that for DEM’s with finer resolutions,
such has the EU-DEM v1.1, this type of interpolation achieves good re-
sults with low processing times.

3 Bearings-Range Filter

3.1 Target Dynamic Model

In this work, the target is assumed to be stationary. Therefore, its dy-
namics can be modeled by tk+1 = Φk+1|ktk +Qk, where tk represents the
target position, Φk+1|k the state transition matrix and Qk the process co-
variance matrix:

Φk+1|k =




1 0 0
0 1 0
0 0 1


 , Qk =




0 0 0
0 0 0
0 0 0


 . (1)

3.2 Bearings-Range Measurement Model

The measurement model is given by zk+1 = h(tk+1)+Rk, where zk+1 is
the new measurement, h is the non-linear measurement function and Rk
is the measurement noise covariance matrix.
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Figure 2: Bearings-Range model geometry.

h(tk+1) =




β
φ
r


=




tan−1
(

py−ty
px−tx

)

tan−1
(

pz−tz√
(px−tx)2+(py−ty)2

)

√
(px− tx)2 +(py− ty)2 +(pz− tz)2



, (2)

where β and φ are the azimuth and elevation angles, respectively, and r is
the distance between the target, t, and the aerial vehicle, p, as presented
in Figure 2.

4 Experiment

The unavailability of telemetry and imagery data from an aerial vehicle
led to the development of an alternative methodology to validate the pro-
posed algorithm. A mobile phone was used to record GPS, IMU and
image data along a pedestrian path. The natural elevation of Serra dos
Candeeiros, near Porto de Mós, Leiria, was used to capture images of a
target at a lower height, so as to simulate the overview of an aerial ve-
hicle. A total of 14 images were acquired at an average target distance
of 605 meters. For the filtering, the IRT result for the first observation is
used to initialize the filter state, t0. The initial state covariance P0 and
measurement noise covariance matrix Rk were tuned to

P0 =




202 0 0
0 502 0
0 0 12


 , Rk =




52 0 0
0 52 0
0 0 102


 . (3)

Details on the EKF and CKF algorithms can be found in [8] and [10],
respectively.

The position error is defined as ep = t− t̂, where t̂ is the estimated
target. σx, σy and σz are defined as the square root of the filter state
covariance matrix diagonal. The results of the standalone IRT, EKF and
CKF are summarized in Table 1.

Method ||ep|| [m] ||σx,y,z|| [m]
IRT 74.483 n.d.
IRT+EKF 33.620 7.2497
IRT+CKF 33.820 7.2502

Table 1: Norm of the average position error for the standalone IRT and
for the final correction of the EKF and CKF.

The IRT results presented in Figure 3 evidence a bias along the pos-
itive East direction, which then influences the estimated positions of the
EKF and CKF.

5 Conclusions

In this paper, the IRT is proposed as a georeferencing algorithm using the
EU-DEM v1.1. Expecting measurement errors from the GPS and IMU,
a bearings-range filtering algorithm was developed, with a performance
comparison between the EKF and CKF. Preliminary results using the data
collected with a mobile phone show evidence of bias susceptibility. This
may be due to the non-ideal preliminary experimental setup using a line
of sight more parallel to the ground when compared to the more vertical
one from an aerial vehicle. Furthermore, the 14 images were captured at
approximate positions, limiting the new information added to the filtering
algorithm. Still, an improvement of 41 meters is achieved on the 74 meter

Figure 3: Real and estimated target positions by the IRT, EKF and CKF
algorithms.

average position error of the standalone IRT. There is no clear advantage
in using the CKF over the EKF for this measurement model.
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The current georeferencing methodology of the Civil Protection is dependent on the availability of operators

to analyze the imagery acquired by the aerial vehicles. These are manually georeferenced by inspection with the

help of visible landmarks and satellite imagery. Therefore, this task is too time consuming and prone to errors.

With the purpose of aiding the Civil Protection, an Optical Character Reader (OCR) was developed to read

the telemetry overlayed on the video feeds transmitted by the aerial vehicles. This OCR was then successfully

integrated with the georeferencing algorithm developed in this thesis, demonstrating its operational potential.

This OCR follows a template-matching approach to extract the desired data (gimbal azimuth, gimbal elevation,

camera zoom, vehicle latitude, vehicle longitude and vehicle altitude) from the feed. The characters presented

in Figure C.1 were extracted from multiple videos and are used as templates. As can be seen in Figure C.2, the

telemetry is placed on a fixed positions with respect to the image frame. To reduce the processing time, the original

image is cropped on these positions, as shown in Figure C.3. The gimbal telemetry moves on a bounded area of

the image, depending on the angle values, so the image is cropped along this area.

Two approaches were tested for video processing: to analyze all frames and perform the georeferencing algo-

rithm as soon as the data is updated by the UAV software; to process a frame everyN frames, where this interval is

configurable. The first approach proved to be too time-consuming, and since the feed is updated at least once per

second, the errors induced by this delay are negligible, in practicality. Therefore, the second solution was chosen.

The output of the program is presented in Figure C.4.

To improve this application, a graphical user interface can be developed where the operator selects the tar-

get to georeference and the result is presented directly on satellite imagery. The Python code is available in

the following GitHub repository: https://github.com/bernardosanti/georeferencing irt u

t.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure C.1: Character templates extracted from the overlay and used in the template-matching OCR
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Figure C.2: Original image

(a) Gimbal elevation (b) Gimbal azimuth (c) Zoom

(d) Vehicle latitude (e) Vehicle longitude (f) Vehicle altitude

Figure C.3: Image cropping for the template-matching OCR

Figure C.4: Software output
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