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Direct Georeferencing of Fire Front Aerial
Images using Iterative Ray-Tracing and a
Bearings-Range Extended Kalman Filter

Bernardo Santana, MSc Student, Instituto Superior Técnico

Abstract—This work proposes the Iterative Ray-
Tracing as a forest fire georeferencing algorithm using
images captured by an aerial vehicle. The Iterative Ray-
Tracing requires that the vehicle is equipped with a
Global Positioning System, an Inertial Measurement Unit
and a Digital Elevation Map. In addition, the camera’s
Intrinsic Parameters and pixels to georeference must be
known. Considering errors in the equipment, the Un-
scented Transform is proposed to characterize the uncer-
tainty of the Iterative Ray-Tracing. Furthermore, a novel
Bearings-Range filter measurement model is put forward,
with the purpose of improving the target position and
reducing its uncertainty. The georeferencing and filtering
algorithms were validated with two simulations on rough
and flat terrains. The standalone Iterative Ray-Tracing
obtained Root Mean Squared Errors of 30.7 meters and
43.4 meters on the rough and flat terrains, respectively,
while the Bearings-Range filtering algorithm achieves an
improvement by reducing these errors to 11.0 meters and
19.9 meters, outperforming the Bearings-Only model. A
performance comparison was done between the Extended
and Cubature Kalman Filters using the Bearings-Range
and Bearings-Only measurement models. Identical results
were achieved, with the former performing slightly faster.
Three experiments were conducted using real data and
the results obtained demonstrate the applicability of the
proposed methodology to georeference forest fires.
Index Terms—forest fire, aerial vehicle, georeferencing,
GPS, IMU, DEM

I. INTRODUCTION

In recent years, remote sensing has seen an increased
interest in the scientific community. The development
and widespread of Unmanned Aerial Vehicles (UAVs)
as a cheaper solution when compared to manned aerial
vehicles enabled the development of target geolocaliza-
tion applications. This includes precision agriculture
[10] , natural disaster management [15] and fire de-
tection and monitoring [9]. This work addresses the
latter.

The most commonly used sensors regarding target
geolocalization are digital cameras, Global Position-
ing Systems (GPSs) and Inertial Measurement Units
(IMUs). This became known as Direct Georeferencing,
since direct sensor orientation is computed by process-
ing the information provided by the on-board sensors
[8], i.e., the camera’s extrinsic parameters (EPs) are
directly calculated.

Depending on the accuracy requirements, sensors

with different specifications can be used. However,
the higher the desired accuracy, the higher the cost
and/or size of the hardware. Due to payload constraints,
UAV’s typically use smaller and error-prone IMU’s,
specially in yaw measurements [4], such as MicroElec-
troMechanical Systems (MEMS). This lack of quality
lead to the development of computer vision algorithms
such as Structure from Motion (SfM) that extract
and match features between images. The integration
of these algorithms with the pose provided by the
IMU and GPS greatly increase the accuracy of the
georeferencing process.

Alternatively, Indirect Georeferencing can be used
for systems that lack navigation equipment. This re-
quires, however, the placement of Ground Control
Points (GCP) to determine the camera’s EPs, which
can be time consuming and costly [7]. Furthermore, in
a natural disaster scenario or in rough and inaccessible
terrains, it is impracticable to place GCP.

I-A. Motivation
Fire propagation has been under investigation for many
decades. The effect of environment variables such
as terrain [12] has been studied and models for the
fire propagation have been developed. However, the
absence of a method capable of georeferencing the fire
front, limits the usefulness of said models. Therefore,
the aim of this work is to fill in this gap and develop
an algorithm capable of performing forest fire geolo-
calization, enabling the use of fire propagation models
to improve firefighting strategies. We also propose
using the Unscented Transform (UT) to characterize
the uncertainty of the algorithm, which can be very
useful in making the stochastic simulation of fire
propagation more realistic. Finally, a novel Bearings-
Range measurement model is put forward, to improve
the position and uncertainty estimates given multiple
observations of the same target.

I-B. Related Work
Forlani et al. [5] apply direct georeferencing by using
the on-board Global Navigation Satellite System with
the Real-Time Kinematic option with SfM and Bundle
Adjustment. No GCP are used. This methodology is,
however, not suitable in a forest fire scenario, where
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the lack of differentiated texture and smoke prevents
feature extraction and matching.

Conte et al. [3] propose an image registration ap-
proach by pattern-matching the images collected from
a Micro Aerial Vehicle with satellite imagery. Multiple
measurements are taken and recursive least square filter
is applied. Similarly to [5], this technique relies on
feature extraction, and is therefore unreliable in a forest
fire environment.

Ponda et al. [13] develop a Line-of-Sight Bearings-
Only EKF for target localization. This requires, how-
ever, a prior knowledge of the target’s position, which
is not reviewed in that work. Xu et al. [16] propose
the same measurement model using a CKF instead,
considering possible linearization errors induced by the
standard EKF. To determine an initial approximation
of the target’s position, the Iterative Photogrammetry
(IPG) algorithm [14] is used. In spite of being efficient,
the IPG method can diverge when the incidence angle
is smaller than the profile inclination angle.

Leira et al. [11] propose the intersection of the optic
ray with a flat surface. This generalization, however, is
not suitable in rough terrains, as seen in [16].

II. METHODOLOGY

II-A. Camera Calibration
The camera calibration is an important procedure in
computer vision that calculates the camera’s intrinsic
parameters and allows the extraction of metric infor-
mation from bi-dimensional images. For this reason,
before taking off, the camera must be calibrated, and
assuming that the lenses configuration is not manipu-
lated, these parameters remain constant throughout the
flight.

Using one of the many computer vision tools avail-
able (OpenCV or MATLAB Image Processing and
Computer Vision Toolbox), the calibration is done by
moving and changing the pose of a known pattern in
the camera’s line of sight [17]. Usually this pattern is a
checkerboard and the size of the checkerboard square
is measured beforehand.

By performing the calibration, the camera’s intrinsic
(1) parameters are calculated, crucial to define the optic
ray from the projection center to the target pixel.

Kint =

fx 0 cx
0 fy cy
0 0 1

 , (1)

where Kint is matrix of intrinsic parameters, (fx, fy)
is focal length and (cx, cy) is the camera’s principal
point.

II-B. Coordinate Frames
Five coordinate frames were considered: camera,
gimbal, body, vehicle and inertial. These frames
are denoted respectively by: FC = (xC , yC , zC),
FG = (xG, yG, zG), FB = (xB , yB , zB), FV =

(xV , yV , zV ) and F I = (xI , yI , zI). The vehicle
frame is a North-East-Down frame centered on the
vehicle’s centre of mass and is related to the iner-
tial frame by a simple translation. If the coordinate
transformations between all these frames are known by
calibration, we can assume, without loss of generality,
that the camera, gimbal and UAV centers of mass
coincided with the GPS position, meaning that the
translations in the frame transformations are zero.

(a) Top view (b) Side view

Fig. 1: UAV, gimbal and camera frames (adapted from [2])

II-B1 Camera Frame
The camera frame has its origin in the optical center,

the xC axis points to the right of the image plane , the
yC axis points downward on the image plane and zC

axis points in the direction of the optical axis of the
camera. The rotation from the camera to the gimbal
coordinate frame is defined by

RGC =

0 0 1
1 0 0
0 1 0

 . (2)

II-B2 Gimbal Frame
The gimbal coordinate frame has two degrees of

freedom around yG and zG due to its pan and tilt
movements, respectively. Defining the pan (elevation)
and tilt (azimuth) angles as αel and αaz , the rotation
from the gimbal coordinate frame to body coordinate
frame is given by RBG = Rz(−αaz)Ry(−αel),

RBG =

cαelcαaz −sαaz sαelcαaz
sαazcαel cαaz sαazsαel
−sαel 0 cαel

 , (3)

where cγ , cos γ and sγ , sin γ.
II-B3 Body Frame
The body frame describes the aircraft movement and

has its origin in the center of mass of the UAV. The
xB axis points in the direction of the nose, the yB

axis points towards the right wing and the zB axis
points towards the aircraft belly. Defining the roll (φ),
pitch (θ) and yaw (ψ) angles as the movement of the
UAV around the axis xB , yB and zB , respectively, the
rotation from the body to the vehicle coordinate frame
is defined as RVB = Rz(−ψ)Ry(−θ)Rx(−φ),

RVB =

cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ
sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ
−sθ cθsφ cβcφ

, (4)

.
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II-C. Iterative Ray-Tracing
Defining ~PVTarget as the vector pointing from the UAV
to the target in the inertial coordinate frame and ~P IV
as the vector pointing from the inertial frame origin to
the UAV, the target position is defined as the sum of
these vectors. To obtain ~PVTarget, the vector pointing
from the camera optical center to the target pixel (u, v)
must be defined, assuming fx ≈ fy ,

~PCTarget =
[
u− cx, v − cy, fx+fy

2

]T
, (5)

and transformed to the vehicle coordinate frame us-
ing the coordinate frame transformations described in
Section II-B,

~PVTarget = [X ′d Y
′
d Z

′
d]
T = RVBR

B
GR

G
C
~PCTarget, (6)

where ~PVTarget references the target vector to the
vehicle frame.

Given the camera position R0 = [Xs Ys Zs]
T in the

inertial frame and the normalized pointing vector

Rd = [Xd Yd Zd]
T =

1

||~PVTarget||
· ~PVTarget (7)

from the aerial vehicle to the target, in the vehicle
frame, the ray R that starts in the vehicle and points
to the target in the inertial frame is defined as

R(t) = R0 + t · Rd =

Xs

Ys
Zs

+ t ·

Xd

Yd
Zd

 , (8)

where t is the step and represents the distance between
a point R(t) on the ray and the origin R0. When
the ray elevation ZR becomes less than the surface
elevation ZDEM, the intersection is detected. To do this,
we use a method with a dynamic step size for t. The
basic idea is the following. The algorithm is initialized
with a large step value t and when the intersection is
detected (ZR ≤ ZDEM), the step size is reduced with
a step divider, tdiv, until the t becomes smaller than
a pre-defined threshold, tth. Furthermore, the starting
iteration point, R′0, is set as the intersection of the
ray with the maximum elevation of the loaded DEM
with respect to the inertial frame, Zmax. By defining
a scaling factor,

λ =
Zmax − ZR0

Zd
, for λ > 0 (9)

where ZR0
is the height of the camera and Zd is the

third component of the normalized pointing vector, it is
possible to calculate the new starting point, with ZR0

= Zmax

R′0 = R0 + λ · Rd. (10)

Finally, bilinear interpolation was implemented, as in
[16], to refine the elevation of the queried point.
Ghandehari et al. [6] concluded in their work that

for DEM’s with finer resolutions, such has the EU-
DEM v1.1 [1], the one used in this work, this type of
interpolation achieves good results with low processing
times.

Algorithm 1: Complete Iterative Ray-Tracing
Input : Telemetry from GPS and IMU,

camera IP, target pixels, DEM
Output: Target coordinates in the inertial

coordinate frame tI = [x y z]
1 Define ray origin R0;
2 Define ray direction Rd;
3 Define step size t;
4 Define step size threshold tth;
5 Define step size divider tdiv;
6 if ZR0

≥ Zmax then
7 Update ray origin with (10);
8 end
9 while No Intersection do

10 Extend ray with (8);
11 Interpolate ray;
12 if ZR ≤ ZDEM AND t ≥ tth then
13 Update step t by diving it by step

divider tdiv;
14 else if ZR ≤ ZDEM AND t < tth then
15 Intersection;
16 else
17 Augment t with current step value;
18 end
19 end

II-D. Position and Uncertainty Characterization with
the Unscented Transform

Three sources of uncertainty were taken into account:
the vehicle GPS, IMU and gimbal. The GPS con-
tributed with three degrees of uncertainty related to
the position of the vehicle in the vehicle frame, σx,
σy and σz . The vehicle IMU contributed with three
degrees of uncertainty related to the orientation angles
of the vehicle with respect to the vehicle frame, roll σφ,
pitch σθ, and yaw σψ . Finally, the gimbal contributed
with two degrees of uncertainty related to the elevation
and azimuth angles that establish the orientation of the
gimbal with respect to the body frame, σαel

and σαaz
.

This makes a total of n = 8 degrees of uncertainty. The
standard deviations presented in Table I were assumed
independent and the covariance matrix was defined as
in (11).

Σ = diag(σ2
x, σ

2
y, σ

2
z , σ

2
φ, σ

2
θ , σ

2
ψ, σ

2
αel
, σ2
αaz

) (11)

The UT parameters were set according to Table II.
Since we approximate the distribution as a Gaussian,
β = 2 is the optimal choice to minimize higher order
information from the Taylor Series expansion. As for
α and κ, these values were chosen so as to have
the sigma points equal to the standard deviations of
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Device Standard Deviation σi Value

GPS
σx
σy
σz

10m
10m
10m

IMU
σφ
σθ
σψ

1◦
1◦
3◦

Gimbal σαel

σαaz

1◦
1◦

TABLE I: GPS, IMU and Gimbal standard deviations

Parameter Value

α 1√
8

κ 0
β 2

TABLE II: UT Parameters

the equipment. The target position and uncertainty are
calculated by propagating the sigma points with the
complete iterative ray-tracing:

Algorithm 2: Unscented Transform with IRT
Output: Geodetic target coordinates t =

[φ λ h] and uncertainty σxyz =
[σx σy σz]

1 Generate 2n+ 1 sigma points;
2 for i← 0 to 2n do
3 Calculate the intersection for each sigma

point, yi = IRT(χi);
4 end
5 Recover mean t and covariance P;
6 Convert mean to geodetic coordinates and

uncertainty σxyz =
√

diag(P);

II-E. Bearings-Range Measurement Model
Considering measurement errors in the GPS and IMU,
this section details the proposed vision-based target
localization using bearings and range measurements.
Regarding previous works [13, 16], a new filter mea-
surement model was developed that takes advantage
of the available range information between the vehicle
and the target. Taking into account the possible lin-
earization errors induced by the EKF, a performance
comparison is done with a CKF. Details on these filters
can be found in [13, 16].

The bearings localization problem is based on the
extraction of the azimuth β and elevation φ angles from
the pointing vector, as shown in Figure 2. Since the
proposed georeferencing algorithm calculates the 3D
coordinates of the target, it enables the estimation of
the distance r between the vehicle and the target.

A discrete non-linear system with Gaussian noise
can be characterized as follows:

xk+1 = f(xk) + wk (12a)
zk+1 = h(xk+1) + vk+1 (12b)

Fig. 2: Azimuth (β), elevation (φ) and range (r) between vehicle
(p) and target (t)

The measurement model described in (12b) is given
by:

h(xk) =

βφ
r

 =


tan−1

(
ry
rx

)
tan−1

(
rz√
r2x+r

2
y

)
√
r2x + r2y + r2z

 (13)

where rk = [rx ry rz]
T
k = [px−tx, py−ty, pz−tz]Tk is

the relative vector between the vehicle and the target
for the kth measurement, pk = [px py pz]

T
k is the

position of the vehicle and xk = tk = [tx ty tz]
T
k is

the position of the target and the state to be estimated.
Assuming that the fire front is stationary when

comparing images taken within a small time interval,
the target dynamics model described in (12a) is given
by:

f(xk) = Φk+1|kxk =

1 0 0
0 1 0
0 0 1

xk (14)

and the covariance of the system noise wk is given by

Qk =

0 0 0
0 0 0
0 0 0

 . (15)

For the EKF, the Jacobian of the measurement function
with respect to the state is described in (16),

Hk =


ry

r2x+r
2
y

− rx
r2x+r

2
y

0

rxrz
||r||2
√
r2x+r

2
y

ryrz

||r||2
√
r2x+r

2
y

−
√
r2x+r

2
y

||r||2

− rx
||r|| − ry

||r|| − rz
||r||


k

. (16)

The sensor noise mentioned in Section II-D is used
to model the noise covariance matrix, tuned to the
following values

Rk =

σ2
αaz

0 0
0 σ2

αel
0

0 0 σ2
r

 =

12 0 0
0 12 0
0 0 102

, (17)

where σαaz
[◦] and σαel

[◦] are the gimbal’s azimuth and
elevation uncertainties and σr[m] is the range uncer-
tainty. The IRT and UT results of the first observation
initialize the filters’ state and covariance, x̂0 and P̂0.
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II-F. Metrics
The metrics presented in this Section will be used
throughout the following chapters. The position error,
ep defined in (18) is used to determine the distance
between the target position, t, and its estimates, t̂,

ep = [tx ty tz]
T − [t̂x t̂y t̂z]

T . (18)

To characterize the accuracy of the algorithm, the aver-
age position error and RMSE are defined, respectively,

µep =

∑N
i=1

√
e2pxi

+ e2pyi
+ e2pzi

N
, (19)

RMSE =

√∑N
i=1 e

2
pxi

+ e2pyi
+ e2pzi

N
. (20)

While the former provides the average distance be-
tween the estimates and the target, the latter character-
izes their distribution.

Finally, the uncertainty is defined as the square root
of the diagonal of the matrix P,

P =

σ2
xx σ2

xy σ2
xz

σ2
yx σ2

yy σ2
yx

σ2
zx σ2

zy σ2
zz

 , (21)

σxyz = [σxx, σyy, σzz]
T . (22)

The average position uncertainty is defined as

µσxyz
=

∑N
i=1

√
σ2
xxi

+ σ2
yyi + σ2

zzi

N
. (23)

III. SIMULATION PROCEDURE
In this work, two terrain types were considered, rough
and flat, as in previous works on this topic [16]. In
both cases, a linear trajectory was followed, with the
aerial vehicle flying at a speed of 250 km/h. Ground
truth telemetry was generated and perturbed with the
following model:

x̂i(t) = xi(t) + w(t), w ∼ N (0, σxi), (24)

where x̂i is the noisy variable, xi is the ground truth
variable, w is the zero-mean noise with σxi

standard
deviation. The assumed values for σxi

are the same
as the ones used for the UT, presented in Table I.
For each simulation, 100 runs were performed with
independent noise sequences, and the EKF and CKF
performances using the Bearings-Range (BR-EKF, BR-
CKF) and Bearings-Only (BO-EKF, BO-CKF), the
latter described in detail in [13], measurement models
were compared. The results presented are an average
of all the runs.

III-A. Rough Terrain Simulation
A total of 25 measurements were collected at a
constant height of 1650 meters. Figure 3 shows the
resulting measurements following the model presented
in (24) to disturb the system. The average distance to
the target was 880 meters.

Fig. 3: Measurements with noise-induced position and attitude on
the rough terrain simulation

Method µep [m] RMSE [m] µσxyz [m]

IRT 30.527 30.743 35.965
IRT+BR-EKF 6.221 11.726 3.837
IRT+BO-EKF 8.225 13.071 5.137
IRT+BR-CKF 6.222 11.785 3.782
IRT+BO-CKF 8.193 13.136 5.054

TABLE III: IRT, IRT+BR-EKF, IRT+BO-EKF, IRT+BR-CKF and
IRT+BO-CKF results for the rough terrain scenario

III-B. Flat Terrain Simulation
A total of 21 measurements were collected at a con-
stant height of 950 meters. Figure 5 shows the resulting
measurements with noisy data. The average distance to
the target was 985 meters.

Method µep [m] RMSE [m] µσxyz [m]

IRT 43.121 43.405 48.373
IRT+BR-EKF 11.020 19.910 3.898
IRT+BO-EKF 11.565 21.578 3.909
IRT+BR-CKF 11.000 19.842 3.899
IRT+BO-CKF 11.575 21.573 3.911

TABLE IV: IRT, IRT+BR-EKF, IRT+BO-EKF, IRT+BR-CKF and
IRT+BO-CKF results for the flat terrain scenario

Kalman Filter Average Processing Time [ms]

Extended 0.795
Cubature 0.83

TABLE V: EKF and CKF processing time comparison

III-C. Discussion of Simulation Results
These simulations demonstrate the advantage of in-
cluding the range information in the filtering algorithm.
Both in the rough and flat simulations, the Bearings-
Range measurement model achieves lower position
errors, position uncertainties and RMSE’s for the same
number of measurements, therefore is more accurate
than the Bearings-Only measurement model. Further-
more, it has a faster convergence, evident for k = 10 in
Figures 4 and 6. The results presented in Tables III and
IV show the clear improvement on the accuracy of the
estimated target position when applying the Bearings-
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(a) BR-EKF and BR-CKF average norm of the
position error

(b) BR-EKF and BR-CKF average norm of the
position uncertainty

(c) BO-EKF and BO-CKF average norm of the
position error

(d) BO-EKF and BO-CKF average norm of the
position uncertainty

Fig. 4: EKF and CKF filtering results for the rough terrain simulation

Fig. 5: Measurements with noise-induced position and attitude on
the flat terrain simulation

Range filtering algorithm. The IRT RMSE is reduced
by 61.86% and 54.12% for the rough and flat terrains,
respectively, both for the BR-EKF and BR-CKF. Since
both achieve the same final result with an identical
progression in the position error and uncertainty, there
is no clear advantage in using the BR-CKF over the
BR-EKF. In addition, the EKF shows a slightly faster
processing time per iteration (Table V), making it more
appropriate for real-time applications.

IV. EXPERIMENTAL PROCEDURE

Three experiments compose this section and are pre-
sented in the following manner: Subsection IV-A de-
tails the procedure where a mobile phone was used

to acquire telemetry and imagery of a target along a
pedestrian path, near Porto de Mós, Leiria.

Subsection IV-B describes the georeferencing algo-
rithm applied to a footage recorded by a Portuguese
Air Force UAV near Chaves, Vila Real.

Finally, subsection IV-C describes another experi-
ment using footage from a UAVision’s UAV recorded
near Pombal, Leiria. A minimization problem is pro-
posed to calculate the camera’s intrinsic parameters and
the results are used on the georeferencing algorithm.

IV-A. Mobile Phone Procedure
A mobile phone was used to record GPS, IMU and
image data along a pedestrian path. The natural ele-
vation of Serra dos Candeeiros, near Porto de Mós,
Leiria, was used to capture images of a target at a
lower height, to simulate the overview perspective of
an aerial vehicle. A total of 14 images were acquired
at an average target distance of 605 meters. For the
filtering, the IRT result for the first observation is
used to initialize the filter state. For this experiment,
considering that the IMU of the mobile phone had a
lower quality when compared to the ones used onboard
of an aerial vehicle, the measurement noise covariance
matrix Rk was tuned to

Rk =

52 0 0
0 52 0
0 0 102

 . (25)
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(a) BR-EKF and BR-CKF average norm of the
position error

(b) BR-EKF and BR-CKF average norm of the
position uncertainty

(c) BO-EKF and BO-CKF average norm of the
position error

(d) BO-EKF and BO-CKF average norm of the
position uncertainty

Fig. 6: EKF and CKF filtering results for the flat terrain simulation

IV-B. Portuguese Air Force UAV Footage
In this video, a UAV recorded a fire burning near
Chaves, Vila Real, at 41.631724N -7.465919E. The
camera intrinsic parameters were not available. How-
ever, the target was locked in the center of the image,
making it possible to geolocate without them. The
gimbal’s azimuth and elevation angles are overlayed on
the video feed. The former is calculated with respect
to the vehicle coordinate frame. The latter, however,
is provided with respect to the UAV’s body. This was
not problematic since the horizon line was parallel to
the horizontal image frame. The feed also provided
the UAV’s position in the WGS84 reference system. A
total of 7 frames were collected and used to test the
georeferencing algorithm.

IV-C. UAVision UAV Footage
This video recorded a forest fire near Pombal, Leiria, at
39.832856N -8.519885E. As in the previous recording,
the overlay displayed information on the azimuth and
elevation angles, as well as the UAV’s position in the
WGS84 reference frame.

Again, the camera was not calibrated, therefore no
intrinsic parameters were available. Furthermore, the
vehicle performs a slight turn along its trajectory,
meaning that the horizon line is not centered and
parallel to the horizontal image frame and therefore
the elevation angle is not reliable. To overcome these
setbacks, three video frames with visible landmarks

with known coordinates were selected. This allowed
the formulation of a minimization problem to estimate
the intrinsic parameters and to refine the rotation
matrix of the system when those images were captured.
As a cost function, the reprojection error was used

J(Ri, ti,Kint) =
∑3
i=1

∑Nk

k=1(uik − ûik)2 + (vik − v̂ik)2, (26)

where Ri and ti are the rotation matrix and translation
vector that establish the transformation from world
to camera coordinates for frame i, Kint is the IP
matrix, (uik, vik) is the measured pixel k in frame i
and (ûik, v̂ik) is the predicted pixel using the current
estimates of Ri, ti and Kint. It was assumed that the
skew s was zero, fx = fy and cx = 640 and cy = 360:

arg min J(Ri, ti,Kint)
s. t. ||ri1||=1, ||ri2||=1, ||ri3||=1,

ri1r
T
i2=0, ri2r

T
i3=0, ri1r

T
i3=0,

fx=fy,

(27)

where rik is the row k of rotation matrix i. The
six initial constraints are related to the orthogonality
condition of the rotation matrices. The resulting in-
trinsic parameters and refined orientation were used to
calculate the location of some landmarks.

V. DISCUSSION OF RESULTS

V-A. Mobile Phone Experimental Results
A total of 20 images were used to calibrate the cam-
era. As a result, the following intrinsic and distortion
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parameters were obtained:

Kint =

3363.507 0 1967.377
0 3369.501 1419.890
0 0 1

 (28)

k =
[
0.2265 −1.0227 1.7296

]T
(29)

p =
[
−0.0098 −0.0065

]T
(30)

A mean reprojection error of 0.68 pixels was achieved
with a 3-parameter radial distortion model.

The average distance between the position of the
images and target was 640.83 meters, with a maximum
of 770.92 meters and 493.90 meters. The results are
presented in Table VI.

Method µep [m] RMSE [m] µσxyz [m]

IRT 74.483 77.498 157.035
IRT+BR-EKF 33.620 41.501 7.250

TABLE VI: Standalone IRT and IRT+BR-EKF filtering results of
the mobile phone experimental procedure

Figure 7 provides a clear view of the IRT estimated
positions and the improvement achieved by applying
the BR-EKF. A bias along the positive East direction
is visible, since 12 of the 14 estimated positions are on
that area. This can be due to the non-ideal experimental

Fig. 7: Real and estimated target positions by the IRT and EKF
algorithms

setup, i.e., a line-of-sight more parallel to the ground
when compared to a more vertical one from an aerial
vehicle. The mean position and uncertainty are plotted
in Figure 8 and evidence this ill-conditioned setup,
with a stretched uncertainty region along the line-
of-sight direction. This means that a small error on
the vertical image direction, be it the selected pixel
or the roll angle, is amplified by this configuration.
In addition, the images were taken at approximate
positions, limiting the new information added to the
BR-EKF.

The same experiment was simulated to investigate
the origin of this bias. More specifically, to understand
if it was due to the non-ideal perspective or if it
was related to IMU or pixel identification errors. The
mean position and uncertainty are plotted in Figure 9.
The results presented in Table VII demonstrate the

Fig. 8: Mean position and uncertainty from experimental procedure

Fig. 9: Mean position and uncertainty from ground perspective
simulation

Method µep [m] RMSE [m] µσxyz [m]

IRT 134.377 140.2487 229.571
IRT+BR-EKF 73.923 94.686 4.055

TABLE VII: Results from the Porto de Mós experimental procedure
simulated with a ground perspective

non-ideal perspective of the experimental procedure,
with an increase by almost 100% in the RMSE and
72 meters in the position uncertainty when compared
to Table VI. Furthermore, the mean estimated target
position presented Figure 9 is shifted towards West
when compared to the actual target position, showing
that the bias identified in the experimental procedure,
despite being towards East, is mainly caused by the
sub-optimal line-of-sight.

Finally, the same trajectory was simulated with an
aerial perspective at a height of 950 meters. The results
presented in Table VIII validate the use of aerial
vehicles when applying the proposed methodology.
The RMSE decreased by 36 meters and the position

Method µep [m] RMSE [m] µσxyz [m]

IRT 47.120 47.605 43.560
IRT+BR-EKF 13.908 21.946 5.109

TABLE VIII: Results from the Porto de Mós experimental proce-
dure simulated with an aerial perspective

uncertainty was reduced by 113 meters, as a result of
a more perpendicular line-of-sight evidenced in Figure
10. In addition, the biases identified in the experimental
procedure and ground simulation are no longer present
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since the mean estimated target position is practically
identical to the real target position. In conclusion, the
use of an aerial vehicle is clearly advantageous when
applying the proposed algorithm, providing a more
accurate estimate of the target’s position, which is
further improved with the Bearings-Range EKF.

Fig. 10: Mean position and uncertainty from aerial perspective
simulation

V-B. Portuguese Air Force UAV Footage Results
In this experiment, the UAV flew at approximately
1920 meters, and the average distance to the target was
3183 meters, meaning that the horizontal component
was 2539 meters. As in the Porto de Mós experimental
procedure, the optic ray is more parallel to the ground
when compared to the perspective of an aerial vehicle.

The fact that the observations are very similar means
that no new information is added on each EKF itera-
tion. Furthermore, only 7 measurements were taken,
where one was used to initialize the filter state and co-
variance and only six were left to iterate. These factors
contribute to the increase in the position error estimated
by the filtering algorithm, as presented in Table IX.
An important conclusion can be drawn from this.
When georeferencing targets at greater distances, the
uncertainties associated with the estimated positions
are amplified. Therefore, the number and variability of
measurements required for an accurate target position
increases.

Method µep [m] RMSE [m] µσxyz [m]

IRT 136.250 146.049 292.600
IRT+BR-EKF 198.434 157.056 24.7578

TABLE IX: Portuguese Air Force IRT and IRT+BR-EKF results

V-C. UAVision UAV Footage Results
The estimated intrinsic parameters from the minimiza-
tion problem were

Kint =

1063.17 0 640
0 1063.17 360
0 0 1

 . (31)

These parameters and the refined rotation matrices
were used to georeference the position of several
landmarks. Table X presents the number of landmarks

selected in each frame and the average norm of the
position error, average norm of position uncertainty
and RMSE. Frames 1 and 2 present similar results in

Frame Landmarks µep [m] RMSE [m] µσxyz [m]

1 8 15.166 16.432 81.277
2 6 6.598 6.857 60.226
3 4 25.908 26.029 65.896

TABLE X: UAVision footage results

terms of position error and RMSE. Position uncertainty
is greater on the first frame because it is georeferencing
targets that are further from the vehicle than in the
second frame. The third and final frame presents the
worst results in terms of position error and RMSE. This
is due to being the image with less landmarks, and
as a consequence is less refined by the minimization
problem when compared to the other frames. Overall,
accurate results were obtained for targets that distanced
more than one kilometer from the UAV. In a real
scenario, were the position error and RMSE will not be
available, the uncertainty is taken into account as met-
ric of the georeferencing algorithm, with a lower value
representing a more trustworthy estimated position.

VI. CONCLUSIONS

The IRT algorithm proposed in this work presents a
robust solution for forest fire georeferencing. It only
requires the camera’s IPs, the onboard sensor data
(GPS/IMU/gimbal) and a DEM, while current state-
of-the-art approaches rely on feature identification and
matching.

Equipped with the UT, the georeferencing algorithm
provides an estimate of the target position and char-
acterizes its uncertainty. That is a relevant achieve-
ment since it provides crucial information regarding
the confidence of the estimated target position to the
firefighting personnel.

Finally, a novel Bearings-Range filter measurement
model was developed to filter the bearings and range
information from the relative geometry between the
aerial vehicle and the estimated position.

The results obtained in a controlled simulation en-
vironment demonstrate the potential of the developed
algorithm. At distances of almost 1000 meters, two
simulations were run on a rough and flat terrains,
achieving RMSEs of 30.7 and 43.4 meters with 25
and 21 measurements, respectively. After applying the
BR-EKF, these errors reduced to 11.0 and 19.9 meters,
a decrease of 58.5% and 54.7%. This relation was also
verified in the mobile phone experimental procedure,
where an initial RMSE of 77.5 meters was reduced
to 41.5 meters with just 14 measurements. Finally,
georeferencing with accurate intrinsic and extrinsic
parameters, as was the case in the UAVision experi-
mental procedure, resulted in very accurate estimated
positions. An average RMSE of 16.33 meters was



10

achieved with a total of 18 landmarks that distanced
more than 1000 meters from the UAV.

VI-A. Future Work
Regarding the acquisition of multiple images of the
same target, the next step would be to design flight
patterns that minimize the error of the IRT algorithm
but also maximize the information extracted from
Bearings-Range measurement model. In addition, con-
sidering the last experimental procedure, an algorithm
could be developed that searches recognizable land-
marks in the imagery acquired by the aerial vehicle.
These landmarks could then be georeferenced using
image registration techniques and used to refine the
camera’s EPs.
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