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“Ce monde en lui-méme n’est pas raisonnable,
c’est tout ce qu’on peut en dire.

Mais ce qui est absurde,

c’est la confrontation de cet irrationnel et

de ce désir éperdu de clarté

»”

dont appel résonne au plus profond de [’homme.

Albert Camus, Le mythe de Sisyphe (1942)
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Resumo

O Modelo Padrao da fisica de particulas descreve com uma precisao notdavel miltiplos fenémenos rela-
cionados com as interacoes entre os constituintes fundamentais da matéria. Porém, as observagoes das
oscilagoes de neutrinos implicam a existéncia de neutrinos massivos e mistura leptdnica, os quais tém de
ser explicados em extensoes do Modelo Padrao.

Nesta tese, consideramos uma implementacao a baixa escala do mecanismo de seesaw. De facto,
realizamos um estudo aprofundado do cenario minimo do inverse seesaw constituido por dois ”neutrinos
de direita” e dois singletos fermidénicos estéreis. Comegamos por uma andlise de texturas de zero para
determinar os conjuntos de matrizes de massas de leptoes maximamente restritivas compativeis com os
dados das oscilagoes de neutrinos. De seguida, trabalhando com um sector escalar minimo composto por
dois dubletos de Higgs e dois escalares neutros complexos, conseguimos implementar alguns dos conjuntos
de texturas através de simetrias Abelianas de sabor. Para as texturas realizdveis dedicamos o restante
deste trabalho aos estudos fenomenoldégicos. Comecamos por mostrar que a violagdo espontanea de CP
é possivel e que é comunicada com sucesso ao sector leptonico, o que fornece uma origem comum para
os efeitos de violagao de CP lepténicos no modelo, codificados nas fases de CP de Majorana e de Dirac.
Adicionalmente, estudamos diversos processos de violagao do sabor lepténico, sendo obtidas as regides
de exclusao estabelecidas por limites experimentais atuais, bem como as sensibilidades projetadas por
futuras procuras. Finalmente, consideram-se constrangimentos experimentais adicionais traduzidos em

termos da mistura entre neutrinos leves e pesados.

Palavras-chave: Fisica de neutrinos; inverse seesaw; texturas zero; simetrias Abelianas de

sabor; violacao espontanea de CP; violagdo do sabor leptdnico.
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Abstract

The Standard Model of particle physics describes with remarkable precision numerous phenomena related
to the interactions amongst the fundamental constituents of matter. However, the observations of neutrino
oscillations imply the existence of massive neutrinos and lepton mixing, which must be accounted through
extensions of the Standard Model.

In this thesis, we consider a low-scale implementation of the seesaw mechanism. In fact, we perform
a thorough study of the minimal inverse seesaw scenario containing two ”right-handed neutrinos” and
two sterile fermion singlets. We start with a texture-zero analysis in order to determine the maximally-
restrictive sets of lepton mass matrices compatible with neutrino oscillation data. Next, working within
the framework of a minimal scalar sector composed of two Higgs doublets and two complex neutral scalar
singlets, we are able to realise some of the texture sets through Abelian flavour symmetries. For these
realisable sets we dedicate the rest of this work to phenomenological studies. We start by showing that
spontaneous CP violation is possible and can be successfully communicated to the lepton sector. This
provides a common origin for leptonic CPV effects in the model encoded in the Majorana and Dirac CP
phases. Additionally, we study several lepton flavour-violating processes to obtain the exclusion regions
set by the current experimental limits as well as the projected sensitivities of future searches. Lastly, we

consider additional experimental constraints translated in terms of active-sterile mixing.

Keywords: Neutrino physics; inverse seesaw; texture zeros; Abelian flavour symmetries; spon-

taneous CP violation; Lepton flavour violation.
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Chapter 1

Introduction

The last missing piece of the Standard Model (SM) of particle physics [1-3], the famous Higgs bo-
son [4], was discovered in 2012 by the ATLAS and CMS collaborations at the CERN Large Hadron
Collider (LHC). This further reaffirmed the success of the SM which describes the electromagnetic (EM),
weak and strong interactions amongst the fundamental constituents of matter. From an elegant theoret-
ical framework, the SM allows to explain with remarkable precision a substantial number of phenomena
and has successfully stood the tests of numerous experiments. However, the picture does not end here,
and the work moving forward for particle physicists is an endless journey of understanding the sur-
rounding phenomena in the Universe. In fact, some theoretical aspects lack explanation within the SM,
for example, the strong charge-conjugation and parity (CP) problem, the colour confinement in quan-
tum chromodynamics (QCD), the hierarchy problem, the number of fermion generations and hierarchy
among their different masses, the origin of symmetries, the flavour puzzle, and the list goes on. Further-
more, there is experimental evidence pointing to new physics, namely, the amount of dark matter/energy,
the baryon asymmetry of the Universe or matter-antimatter asymmetry, and the phenomenon of neu-
trino oscillations [5, 6] that imply massive neutrinos and lepton mixing. From the theoretical viewpoint,

addressing these questions requires going beyond the SM (BSM) scope.

The numerous neutrino oscillation experiments performed in the last decades have measured neutrino
observables with increased precision, among which the mass-squared differences and the mixing angles
parameterising the lepton mixing matrix. Several global data analyses of oscillation phenomena in a three-
neutrino mixing scheme [7-9] are able to establish up to date best-fit values for these observables. These
analyses take into account experiments with a variety of neutrinos sources, namely, the solar, atmospheric,
reactor and accelerator neutrinos. The implications of these experiments is the existence of at least
two massive active neutrinos and lepton mixing, constituting evidence of BSM physics. Nevertheless,
oscillation experiments cannot provide information on the absolute neutrino mass scale nor the mass
ordering, which remain unknown. Moreover, neutrino masses are six orders of magnitude smaller than
the mass of the electron, making them abnormally small. Since neutrinos are the only known neutral
fermions, they can possibly be their own antiparticle, as proposed by Ettore Majorana in 1937 [10],

while the remaining fermions are Dirac particles. This question is still unanswered and searches for the



lepton number violating (LNV) process of neutrinoless double beta decay [11] aim at determining the
nature of neutrinos. Furthermore, controversial results from current neutrino oscillation experiments like
LSND [12] and MiniBooNE [13] may be hinting at the existence of sterile neutrinos with masses in the
eV range. To accommodate all data, more general active-sterile neutrino mixing schemes would then be
required. This inspired several analyses of oscillation data beyond the three-neutrino paradigm (see, for

instance, Refs. [14-18]).

The most popular extensions of the SM providing an appealing and elegant framework for the explana-
tion of neutrino masses and lepton mixing are those based on the so-called seesaw mechanisms [11, 19-32].
In these models, new particles with a typical mass scale A are introduced. Depending on the magnitude
of A, one can have high-energy models with A > v, where v is the electroweak (EW) scale, or low-energy
scenarios allowing A ~ v. As an example of the former type, in the canonical Type-I seesaw scenario [19—
23], very heavy right-handed (RH) neutrinos with masses near the grand unified theory (GUT) scale
or unnaturally tiny Yukawa couplings are required to generate small neutrino masses, leaving aside any
viable experimental search for direct new physics signals. In this work we will focus on the latter type
of models and specifically on the so-called inverse seesaw (ISS) [30-32]. In this case, neutrino mass sup-
pression is triggered by small LNV mass parameters. Hence, the lightness of neutrinos stems from an
approximate lepton-number symmetry which is restored when those parameters are set to zero. There-
fore, the ISS provides a natural neutrino-mass generation mechanism in the 't Hooft sense [33]. A crucial
feature of the ISS (not shared by the canonical type I seesaw) is that small Majorana neutrino masses
can be generated with RH neutrino masses at the TeV scale (or below) and O(1) Yukawa coupling pa-
rameters. As a result, the mixing between the (active) light neutrinos and the new (sterile) states can be
sizeable for sterile neutrino masses lying not far from the EW scale. The presence of new neutral fermions
interacting with SM leptons and gauge bosons motivates phenomenological studies BSM, making the ISS
a perfect theoretical framework to guide new physics probes. In particular, experimental searches for
charged lepton flavour violating (cLFV) processes like u — ey [34, 35], u — eee [36] and p — e conversion
in nuclei [37-41] have been studied in the ISS framework [42-49] with the purpose of understanding at
which extent our current knowledge on those processes is able to constrain the ISS parameter space.
Depending on their masses and mixing with the SM degrees of freedom, sterile neutrinos may also lead
to interesting signals potentially observable at the LHC, as well as at other experiments sensitive to new
physics effects induced by the presence of those particles [50-54]. As turns out, it is possible to construct
several ISS low-scale models that are compatible with neutrino oscillation data and, simultaneously, sat-
isfy all phenomenological constraints. In particular, it has been shown that the minimal ISS realisation
corresponds to extending the SM with two RH neutrinos and two sterile singlet fermions [43], to which

we will refer as the ISS(2,2) model.

A longstanding and challenging issue in particle physics is the lack of a guiding principle to explain
the flavour structure of the SM, i.e., the observed fermion mass spectra and mixing patterns. This flavour
puzzle provides a strong motivation for building models with additional particle content and extended
continuous and/or discrete symmetries. Once such symmetries are explicitly or spontaneously broken,

they will lead to the required fermion mass and mixing structures. Several frameworks have been put



forward to tackle this puzzle (for reviews on neutrino mass and mixing models see e.g. [55-59]). One of
the simplest approaches consists on the implementation of texture zeros in the Yukawa coupling and mass
matrices, imposed by continuous U(1) and/or discrete Zx transformations (see, for instance, Refs. [60—
72]). In the SM extended with RH neutrinos, the realisation of texture zeros with such symmetries is
not compatible with data since, in general, they lead to massless charged leptons, massless neutrinos or
vanishing lepton mixing angles [72, 73]. This is due to the fact that all fermions in the SM couple to the
same Higgs field. Thus, enlarging the Higgs sector is a viable solution to surmount this difficulty, being
the two-Higgs doublet model (2HDM) [74] the most economical one.

Inspired by the above ideas, in this work we consider the ISS(2,2) within the 2HDM supplemented
with Abelian symmetries to ensure maximal predictability, i.e., to impose the most constraining flavour
structure, so that the charged-lepton masses and current neutrino data can be accommodated, while
fulfilling all relevant phenomenological constraints. This can be realised by adding to the scalar sector
of the SM another scalar doublet and two complex scalar singlets which, upon spontaneous symmetry
breaking, generate all relevant mass terms required to implement the ISS(2,2). Moreover, we will show
that CP can be spontaneously broken by the complex vacuum expectation value (VEV) of one of the
singlets, and that such CP violation (CPV) can be communicated to the neutrino sector via neutrino-
scalar interactions.

The thesis is organised as follows. In Chapter 2, we start by briefly reviewing the main aspects
of the SM, focusing on the EW sector and show its limitations in what concerns neutrino masses and
lepton mixing. Furthermore, we discuss the description for massive Majorana neutrinos and lepton
mixing and we present the neutrino oscillation observables as well as the experimental constraints on the
effective Majorana mass. Additionally, we succinctly describe the Type-I, II and III canonical seesaw
mechanisms as minimal extensions of the SM that tackle neutrino masses and mixing. In Chapter 3, we
build the minimal ISS model to which this thesis is dedicated. We start by reviewing general aspects of
the ISS mechanism, paying special attention to the comparison between the effective and full treatment
of neutrino masses and mixing. The most restrictive flavour structures for the mass matrices in the
1SS(2,2) framework are then identified in Section 3.2.1 by performing a systematic search of all possible
texture-zero combinations leading to low-energy neutrino parameters compatible with global analyses of
neutrino oscillation data. After setting the successful cases, in Section 3.2.2 we select those which can
be realised by Abelian horizontal symmetries. The phenomenological analysis is presented in Chapter 4.
In Section 4.1, we analyse leptonic CPV where spontaneous CPV (SCPV) is considered and the relation
between the Dirac and Majorana phases is established in light of present neutrino data. Predictions for
the effective neutrino mass parameter relevant for neutrinoless double beta decay are also discussed in
that section. The impact of radiative corrections on light-neutrino masses is analysed in Section 4.2, while
the constraints imposed by cLFV decays on the model parameter space are investigated in Section 4.3.
Possibilities of testing the ISS(2,2) with Abelian flavour symmetries at other experiments as, for instance,
the LHC, future colliders, beam-dump experiments and cLFV searches are discussed in Section 4.4.
Finally, our concluding remarks are presented in Chapter 5. Details regarding the scalar sector and the

computations of cLFV decay rates are collected in the appendices.






Chapter 2

Neutrino masses in minimal

extensions of the Standard Model

In this chapter, we briefly introduce the SM, focusing on the EW sector. We then address its limitations
with regard to neutrino masses and lepton mixing, which requires to extend the SM, amongst which are

the canonical seesaw models.

2.1 The Standard Model of particle physics

The SM of particle physics was constructed through the work of many physicists during the second half
of the 20" century. In 1954, Yang and Mills [75] pioneered work on non-Abelian theories, which are
the fundamental mathematical building blocks of the SM. The unification of the electromagnetic (EM)
and weak interactions was first proposed by S.L. Glashow in 1961 [1]. A few years later, in 1964-66, the
famous Brout-Englert-Higgs (BEH) mechanism [76-79] was formulated and it was shown that spontaneous
symmetry breaking (SSB) of a local gauge symmetry could generate massive vector bosons together with
massless unphysical scalars, the so-called Nambu-Golstone bosons [80-83], ensuring gauge invariance. In
1967-68, S. Weinberg and A. Salam [2, 3] implemented the BEH mechanism in a non-Abelian gauge theory
of EW interactions based on the SU(2);, x U(1)y group. Furthermore, the quark model was proposed
independently by Gell-Mann and Zweig in 1964 [84, 85|, addressing some properties of hadrons and
strong interactions. Finally, the renomalisability of the theory of EW interactions was proved in 1971-72
by 't Hooft and Veltman [86, 87]. Hence, these various ground-breaking works constitute the SM, one of
the greatest achievements in theoretical physics, whose wide acceptance was established throughout the

years due to numerous experiments that successfully tested the model.

2.1.1 Particle content and electroweak interactions

The SM is a non-abelian gauge quantum field theory (QFT) based on the symmetry group

Gsn = SU(3). x SU(2), x U(1)y, (2.1)



described by the following Lagrangian locally invariant under Ggyy,
Lsm = Loep + Laauge + Liermions + Lo + Lgr + Lyuk.- (2.2)

In Eq. (2.1), SU(3). corresponds to the strong interactions with ¢ standing for colour. Invariance under
this group requires the introduction of eight gluons G, (a =1,...,8) one for each group generator. The
associated QFT is QCD, whose interactions are described by Lqcp. Throughout the work in this thesis
we will focus on leptons. Therefore, we will analyse the EW sector of the SM, being interested only in
the remaining terms in Lgy. The corresponding gauge group is SU(2); ® U(1)y, where L stands for
left-handedness and Y is the hypercharge. Invariance under this group requires the introduction of four

EW gauge bosons: three W/ (i =1,2,3) for SU(2), and one B, for U(1)y.

In contrast to the gauge bosons, the number of fermions and scalars are not fixed by Ggyr; they are
instead determined empirically. In the SM, we have three generations of fermions, comprised of quarks
and leptons. Fermion fields ¢ are Dirac spinors, decomposable in their chiral left-handed (LH) and

right-handed (RH) components as

=1 +Yr =P+ Pr, (2.3)

where Py, g = (1 F v5) /2 are the chiral projectors. Additionally, there is only one scalar doublet in the
theory that generates all the masses of the particles. All fields transform under the SM gauge group,
namely quarks transform as triplets 3 under SU(3)., all LH fermions ¢r,, 1, and the Higgs doublet ® are
organised in doublets 2 of SU(2)y, while RH fermions qr, er are singlets 1 of SU(2);,. These fields are
given by

Ual UaR = UR, CRy IR ValL o
qalL. = ) 5 EO(L = y €CaR = €R, MR, TR} o = 0 . (24)
dar dor = dr,SRr,br €al o)

Local gauge invariance is ensured by replacing the ordinary derivative d,, by the covariant derivative
Y LA
Dy, =0, —ig' 5By ~ ig» SV (2.5)
i=1

where ¢’ and g are the coupling constants associated to the U(1)y and SU(2); groups, respectively.
The generators of these groups are respectively Y/2 and T; = 7,/2 with 7; (¢ = 1,2, 3) being the Pauli
matrices. We now proceed to write the covariant derivative in terms of the physical gauge fields W+, Z

and A. First, using the raising and lowering operators Ty = (T 4 4T%) /v/2 of SU(2) we define

1
+ . —
Wy = 7 (W, FiW)) = W, + oW, =T W, +T_-W, . (2.6)

Additionally, the unphysical fields Wg’ and B, mix among themselves through the Weinberg angle 6y



defined as
!
e
tan@wz—g— S W = ——, SW o= =, (2.7)
g g
where e is the electric charge of the positron, cy = cosfy and sy = sinfy,. This enables to relate WS

and B, to the physical bosons Z,, and A, through the rotation

Z, cw o Sw w3 Y
o - ") = g G Bu+ gV = —eQA, + Ty~ 2,Q) Z,, (2.8)
A# —Sw Ccw BM w

with @ being the electric charge operator defined through the Gell-Nishijima formula as Q = T5+Y/2 [88].
Finally, the covariant derivative can be written as
i . S
Dy = 0 +ieQA, =~ (Ty = 5% Q) Z, — ig (W, T* + W T7). (2.9)
w
The matter fields interact with the gauge bosons through the covariant derivative as we will show below.
In Table 2.1, we summarise the SM particle content, including the representation of each field under the

gauge group and the values for the weak-isospin T', its third component T3, the hypercharge Y and the
charge () for each matter field.

Having presented the SM particle content and defined the covariant derivative, we now turn our
attention to the terms of Lgy in Eq. (2.2). We start with the Lagrangian that encodes the kinetic terms,
triple and quartic self-interactions of the gauge bosons given by

3
1 1 ,
Lanuge =~ F" Fu — > FMF; (2.10)

pvo
i=1
where

3
FM = 0MBY —9"B" | FI" = "W} = 0"W/'+g Y einWIWY. (2.11)
j,k=1

Next, the Lagrangian containing the kinetic terms of the fermions and their interactions with the gauge

bosons is written as
»Cfermions = %7 (ZE) qoL + UaR (ZE) UaqR + E (ZlD) daR + m (Zﬂ)) EaL + €ear (ZlD) €aR; (212)

where we use the slashed notation Ip = ~v#*D,,. The above Lagrangian contains the charged-current (CC)
and the EM and weak neutral-current (NC) interactions. In the weak-basis, the CC interactions are given
by,

oo (o i TP o1

where H.c. stands for Hermitian conjugate. Notice that the CC interactions are chiral since they involve

only LH fields. Furthermore, the NC Lagrangian terms in the weak basis are

LR = —eALY  Qpipy iy, (2.14)
f



Gauge Fields Rep. in Gsum

G, (8,1,0)
W, (1,3,0)
BH (17170)

Matter Fields Rep. in Gsyy T T3 Q
Uq +1/2  +2/3
oL = ( L) (3,2,1/3) 1/2 / /

oz ~1/2 —1/3

Uar (3,1,4/3) 0 0 +2/3

dar (3,1,-2/3) 0 0 ~1/3
VaL +1/2 0

lar, = 1,2,-1 1/2

L <eQL> ( ) / ~1/2 -1
Car (1,1,-2) 0 0 -1
+ /2 +1
o— (%, (1,2, 1) g TUEOE
P ~1/2 0

Table 2.1: Summary of the SM particle content. The representations of each field under SU(3)., SU(2)L
and the hypercharge under U(1)y are respectively indicated in parenthesis. The values for the weak
isospin T" and its third component T3 as well as the electric charge @ are presented for each matter field.

g —_
LNE" = @Zu > (Q{PL + gﬁPR) Vro gl =T —Qsshy , gh = —Qrsky, (2.15)
f

where the sum in f is performed over all fermions ¢ with charge @)y and third component of weak

isospin T; . The Z-boson fermion couplings are gij R

2.1.2 Electroweak symmetry breaking

The scalar sector of the SM is defined by the Higgs Lagrangian
Lo = (D,®)(D'®) -V (®) , V (®) = p2®Td + \(®TD)?, (2.16)

where V (®) is the most general renormalisable scalar potential invariant under Ggys that can be con-
structed with one doublet. In the above expression, p has mass dimension and the dimensionless quartic

coupling A is positive in order to have a potential bounded from below.

The SU(2);, ® U(1l)y symmetry is not observed in Nature. In fact, only the symmetry of electro-
magnetism U(1)gnm is conserved. Therefore, SU(2)r ® U(1)y should be broken down to U(1)gy. This is
known as the electroweak symmetry breaking (EWSB), and it takes place when a field acquires a non-zero
vacuum expectation value (VEV). Such a field must be a scalar, in order to preserve Lorentz invariance,
and electrically neutral not to break the EM symmetry. The SM adopts the simplest possible choice to

achieve spontaneous symmetry breaking (SSB) by introducing a single scalar doublet.



The minimum of V (®) for p? < 0 is given by

(0TD) = ? vt = Ji; >0, (2.17)
where the VEV v is taken to be real without loss of generality. Before SSB, the theory consists of four
massless gauge bosons, each with two transversal polarisation degrees of freedom (d.o.f), and the scalar
doublet with four d.o.f. giving a total of twelve d.o.f.. When, SSB of SU(2);, ® U(1)y — U(1)gm occurs,
the neutral scalar field ¢° in Eq. (2.4) acquires a non-zero VEV. Note that, only the charge operator Q,
leaves the vaccum invariant. Therefore, the scalar doublet will be composed of three unphysical Nambu-
Goldstone bosons G* and G° [82, 83] and there will also be one massive real scalar field — the Higgs
boson H®. The unphysical fields will be respectively absorbed in the longitudinal components of the

gauge bosons W+ and Z, providing them mass, while the photon A remains massless. Hence, we still

maintain the same number of physical d.o.f.. This is known as the Brout-Englert-Higgs mechanism.

The scalar doublet can be parameterised as

1 V2GT 1 (0
R c@y =], (2.18)
V2 \v 4+ HO 4GP V2 \ v
with the value for the VEV being v ~ 246.2 GeV [89]. The scalar potential in Eq. (2.12) encodes the
scalar self-interactions, the remaining kinetic term with the covariant derivative describes the interactions
between the scalar d.o.f. and the gauge bosons which, after EWSB, yields the following mass terms:

2 2
m M
Egmss — 7THOHO2 —+ TZZ#Z” + M‘%VVV/:WJrﬂa

qu qu MEV
— /=242 M, = My =2 = p= =1.
mpgo e Z 2w ’ w 9 P C‘Q/VM%

(2.19)

Note that the photon has no mass term, thus remaining masseless; the masses of the W* and Z bosons
are My ~ 80.4 GeV and Mz ~ 91.2 GeV [89]. The remaining mass term corresponds to the one for
the CP-even Higgs boson H? discovered at the LHC by the CMS and ATLAS collaborations in 2012 [4]
with mass mpo >~ 125.4 GeV.

The interaction terms involving the Golstone bosons are very important to be able to perform loop
calculations in an arbitrary gauge. In fact, the inverse propagator of the photon A is non-invertible and
the ones for the Z and W* bosons are invertible, but can only be used in the unitary gauge, which poses
some technical problems in loop-diagram calculations, since they can worsen divergences appearing at

one-loop level. To solve these problems, the gauge fixing term

Lot = b (0"A,)* - L (0#7, — £, Mz G0)?
284 287
. (2.20)
— 5 (8“‘/1/,1L — ZﬁwaG+) (8"le + waMwGi) ,

is usually added to the Lagrangian, where {4 7w are the real and arbitrary R¢ gauge parameters,

essentially acting as Lagrange multipliers. Hence, no physical quantity such as an amplitude computed



for a given observable depends on these parameters. Furthermore, in the Feynman-'t Hooft gauge we

set £a,zw = 1.

2.1.3 Fermion masses and mixing

In the SM, a Dirac mass term given by

—mypp = —my (YrYr +PRYL) , (2.21)

cannot be constructed consistently from gauge principles. In fact, this term is not invariant under
SU(2);, ® U(1)y since it is not a singlet of SU(2); and the LH and RH fermionic fields have different
U(1)y hypercharge values. However, it is invariant under U(1)gy, which hints at the possibility that
this term can be generated through SSB. Therefore, we consider the Yukawa interaction terms among

the fermion fields and the Higgs doublet
— Lyue. = 0. Y Dep + qrYuPug + Y 4®dg + Hee., (2.22)

where ® = iT,®*. The Yukawa Lagrangian contains the invariant Higgs couplings to the fermions, encoded
in the 3 x 3 arbitrary complex Yukawa coupling matrices Yy ,, 4. After EWSB, the scalar doublet acquires
a non-zero VEV leading in the weak basis to the fermion mass terms

v

V2

- ‘Cmass = @MEeR + WMU//U/R + EMddR + H.c. 5 M@,u,d = Yf,u,d' (223)

Notice that it is not possible to construct a Yukawa term for neutrinos, since there are no RH neutrinos
in the SM. Thus, neutrinos are strictly massless in the SM.
In order to bring the mass matrices to the mass-eigenstate basis, we perform unitary rotations of the

quark and charged-lepton fields, such that the matrices are bidiagonalised as,

ur, = Viurp , ugp = Viug = VZTMMV“ = diag (my, me, me) ,
dy = Vidy , dp — Vhdr = VI MV} = diag (ma, ms, ms), (2:24)

e, > Vier, eg = Vger = VTLMgVR = diag (me, my, m.) ,

where all fermion masses are taken to be real and positive, and their present values are given in Ref. [89].
The field rotations above do not affect the NC interactions, ensuring that there are no flavour-changing
neutral currents (FCNC) at tree level in the SM. However, in the quark case, the CC interactions will be

described by a 3 x 3 unitary quark-mixing matrix V, such that

9

\/inﬁLyl‘VdL +Hec, V=Vive (2.25)

Lco D

where V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [90, 91]. In general, an n X n unitary matrix

depends on n? parameters comprised of n(n — 1)/2 mixing angles and n(n + 1)/2 phases. Therefore, the

10



CKM matrix contains ¢ priori nine parameters, among which are three mixing angles and six phases.
However, not all the phases are physical since we have the freedom to rephase the LH fields without alter-
ing the interactions terms. Thanks to this property, we are able to remove five unphysical phases. Hence,
we are left with four physical parameters in the quark mixing matrix: three mixing angles 615, 613, 023
and a Dirac charge-conjugation and parity violation (CPV) phase §. The standard parameterisation of

this matrix is given by [92]

36

C12€13 $12€13 S13€
V = | —s12c23 — c128923513€" C12€23 — 512523513¢€" s23€13 | > (2.26)
is s
512523 — C12€23513€" —C12823 — 512€23513€"°  C23C13

where ¢;; = cos 6, s;; = sinf;; and we take without loss of generality 0;; € [0,7/2] and § € [0, 27].

In the lepton sector, since we have the freedom to perform the neutrino field rotation vy, — Vv, no
lepton mixing matrix appears in the leptonic CC interactions. Thus, there is no lepton mixing in
the SM. Furthermore, there is conservation of lepton number for each flavour and thus the total lepton

number is conserved in the SM.

2.2 Massive neutrinos

As seen in the previous section, RH neutrinos are missing from the SM. Therefore, we start our study
of massive neutrinos by adding three RH neutrino fields vy, singlets under the SM gauge group. We
recall that adding an arbitrary number of gauge singlets to the SM particle content does not affect the
anomaly-cancellation constraints. We can write a Yukawa term for neutrinos, similar to the one of the

up-type quarks, leading to a Dirac mass term,

EWSB v

Lyvak. D .Y, ®vp + Hee. =2 —prM,vg + Hee., M, = EYV, (2.27)

where M, is the 3 x 3 complex neutrino mass matrix of Dirac type, which can be bidiagonalised as in
Eq. (2.24) by performing the following unitary rotations of the flavour neutrinos v, (o = e, u, 7) relating

them to the massive neutrino states v; (i = 1,2, 3),
v — Vi, vg = Vg = VYIM, VY% = diag (m1, ma, ms) (2.28)

where mq 2 3 are the real and positive neutrino masses. Furthermore, there will be mixing in the leptonic
CC interactions as for the quarks. Hence, flavour lepton number is no longer conserved, but the total
lepton number remains conserved.

Let us take a look at the order of magnitude of neutrino masses. We quote a couple of recent bounds,
the first one is the cosmological constraint > m, < 0.12 eV (95% CL) on the sum of neutrino masses
provided by the Planck collaboration (2018) [93] and the second one is the upper neutrino mass limit
of 1.1 eV (90% CL) obtained by the KATRIN collaboration (2019) [94]. Hence, we notice that neutrino

11



masses are extremely tiny around 10° times smaller than the mass of the lightest charged fermion,
the electron. Therefore, since v ~ 246.2 GeV, to generate small neutrino masses one has to assume
unnaturally small Yukawa couplings Y, of the order of 1072, According to 't Hooft’s naturalness
criterium which goes as “at any energy scale p, a physical parameter or set of physical parameters a;(p)
is allowed to be very small if the replacement a; () = 0 would increase the symmetry of the system” [33],
a Dirac mass term for neutrinos is unnatural. Indeed, if we take the limit Y, — 0, the theory does not
exhibit a new symmetry. Nonetheless, there is an alternative way to describe the nature of neutrinos

that allows for naturally small couplings, which we discuss in the following section.

2.2.1 Majorana neutrinos

There is the possibility that neutrinos are Majorana particles as first proposed in 1937 by E. Majorana [10].
We start by defining the charged-conjugate fermion field as ¢¢ = C@T (¢ = 1), where C is the charge

conjugation operator with the following useful properties:
ct=c',c"=—C,c =-C', cylorl =1 (2.29)

Notice that the spinor ¢ with electric charge ¢ in the presence of an EM field A, obeys the following
Dirac equation

(i —qh —m)p =0 — (i + gA —m) ¢v° =0, (2.30)

implying that the spinor ¥°¢ satisfies the same equation but with opposite charge. In other words, ¢
represents the antiparticle of ¢». A Majorana fermion is a self-conjugate field, i.e., its own antiparticle
and, thus, the Majorana condition reads ¢¢ = . Consequently, only neutral particles can be of Majorana

type. Writing a Majorana field in its chiral components we have

V=1L +vYr =9 =Y =9, vr=191. (2.31)

Hence, the spinor ¢§ acts as a RH field under Lorentz transformations and vice-versa. We can therefore

write a Majorana mass term of the form
— g = _%Wc +He. = —%EC@T + %ch—lw, (2.32)

where the bilinear ¥1)¢ is Lorentz invariant. Note that this term is only possible if the field 1) anticommutes
since, otherwise, it would vanish. The only anticommuting fields in the SM are fermions. Therefore, the
only possible candidate in the SM to be of Majorana type are the neutrinos since they are electrically
neutral fermions. Note also that if the fields ¢ carry a charge under a U(1) symmetry, 1) — €?9%), then

the Majorana mass term breaks this symmetry.

Considering an arbitrary number ng of RH neutrinos v we can assign a Majorana mass term for

12



vy, and vy as follows [95]

M
‘Cmass

=LY+ = —%QMU/L - %ﬁMRV}% + H... (2.33)
Due to the anticommuting character of fermionic fields and the antisymmetric property of C' as shown in
Eq. (2.29), we have Uarv§;, = Uprvg (the same for ). Therefore, the Majorana mass matrices My, and
Mpg are symmetric. In addition, these terms violate the total lepton number by two units. The smallness
of a Majorana mass for active neutrinos is natural according to 't-Hooft, since if we take the limit M — 0,
we regain total lepton number conservation. Additionally, £} is invariant under SU(2);, x U(1)y since
the RH neutrinos are singlets under the gauge group. However, EIL”I is not invariant under the SM gauge
group since v$ vy, belongs to a triplet of SU(2), and has hypercharge Y = —2. As we will see later on, to
generate a singlet out of this term we would need to extend the SM with the addition of a scalar triplet

of hypercharge Y = +2 (see Section 2.3.2).

2.2.2 Lepton mixing and observables

We focus on the case where we have the same particle content as in the SM, but vy, is a Majorana field,
with mass term £ as in Eq. (2.33). Besides the unitary rotations of the charged-lepton fields, we also

perform a unitary rotation of the neutrino fields such that the symmetric matrix M, is diagonalised as
Va, = (Uy)ajv;, = UM, U, = diag(my, ma, m3), (2.34)

where the mass eigenstate Majorana neutrinos v; have real and positive masses m; 2 3. The field rotation
will affect the CC interactions leading to the 3 x 3 unitary Pontecorvo-Maki-Nakagawa-Sakata lepton

mixing matrix U’ [5, 96]

9

ﬂéLwU’ viW, +He., U =VIU,. (2.35)

Lce D

The matrix U’ contains a total of six parameters: three mixing angles 012, 623, and 613, and three CPV
phases: the Dirac-type phase é and two Majorana-type phases o1 and agp. If neutrinos are of Majorana
type we cannot rephase the vy fields without altering the Lagrangian; hence this leads to two extra
physical phases in the mixing matrix. The Dirac neutrino case is similar to what happens for quarks,

i.e., we have ag; = a3; = 0. We can parameterise U’ as [25, 97]

C12€13 S$12€C13 513 1 0 0
;L s s 5 ,
U’ = | —s12c03 — c12823513€" 12023 — S12823513€" s93C13€" 0 e 0 ) (2.36)
5 5 is o
512823 — C12C23513€" —C12523 — S12C23513€*’  Ca3Ci3e’ 0 0 etont

where without loss of generality 0;; € [0,7/2], 6 € [0,2n[, and a21,31 € [0,27[. Note that the parameters
in the leptonic mixing matrix U’ are completely different from the ones in the CKM matrix in Eq. (2.26),

although for the sake of simplicity we keep the same notation.

13



Parameter Best Fit £1o 30 range
012(°) 34.3+1.0 31.4 — 374
623(°)[NO] 48797993 41.63 — 51.32
623 (°)[10] 4879719 41.88 — 51.30
615(°)[NO] 8.587014 8.16 — 8.94
613(°)[10] 8.6310 1% 8.21 — 8.99
§(°)[NO] 21615} 144 — 360
§(°)[10] 277123 205 — 342
Am3; (x1075 eV?) 7.5017022 6.94 — 8.14
|Am3, | (x1073 eV?) [NO] 2.5615-03 2.46 — 2.65
|Am3,| (x1072 eV?) [I0]  2.46 +0.03 2.37 — 2.55

Table 2.2: Current neutrino data obtained from the global fit of three flavour oscillation parameters [8].

Neutrinos can undergo a quantum mechanical phenomenon known as neutrino oscillations [5, 6]. The
transition probability, in vacuum, of a neutrino with flavour « created at a source (0,0) with energy E
that oscillates through time arriving at a detector (¢, L) with different flavour § is given by the well-known
expression [95]

2
Amg, L

P(vy —vp) = ZUZ} 5; Ui Ujy, exp (z 5B > , Am?k = m? —m3. (2.37)
jik

Notice that neutrino oscillations are lepton number conserving; therefore the transition probability above
does not involve the Majorana phases. Oscillation experiments cannot determine whether neutrinos

are of Dirac or Majorana type. Moreover, these experiments are only sensitive to the neutrino mass-

squared differences Am?k, providing no information on the absolute neutrino mass scale. Nevertheless,
they do provide information on the mixing angles and the Dirac CPV phase. The current experimental
setups that analyse neutrino oscillation phenomena use various types of neutrino sources, namely solar,
atmospheric, accelerator and reactor neutrinos. Hence, a common notation for the neutrino observables

is Am3, = Am2,, 012 (solar), Am3, = Am?

20 Zim> 023 (atmospheric) and 613 is the mixing angle obtained

from the data analysis of nuclear reactor and accelerator experiments.

Global data analyses of oscillation phenomena in a three-neutrino mixing scheme [7-9] allow to obtain
the most up to date values for the neutrino observables. In this thesis, we take as reference the data
obtained from the most recent (2020) global fit of neutrino oscillation parameters [8]. The results are
presented in Table 2.2 which, among others, include the data from the solar neutrino experiments Sudbury
Neutrino Observatory (SNO) [98] and KamLAND [99]; the atmospheric neutrino experiments Super-
Kamiokande [100] and IceCube DeepCore [101, 102]; the reactor experiments RENO [103] and Daya
Bay [104]; the long-baseline accelerator experiments NOvA [105], T2K [106, 107], MINOS [108] and
K2K [109].

Notice from Table 2.2 that, Am3, < Am3; and the sign of Am3, is still unknown, leaving the
possibility for two neutrino mass orderings: normal ordering (NO) where m; < ms < mg, and in-

verted ordering (I0) where ms < m; < mq. For both cases we can write the neutrino mass-squared
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Present limit Future sensitivity

Experiment mgp (meV) Experiment mgap (meV)
KamLAND-Zen [110] 61 — 165 AMORE II [114] 15— 30
GERDA [111] 79 — 180 CUPID [115] 10 - 15
CUORE [112] 73— 350 LEGEND [116] 15 — 50
EXO0-200 [113] 93 — 286 SNO+ I [117] 41— 99
KamLAND2-Zen [110] 25— 70

nEXO [118] 818

PandaX-I1I [119] 20 — 50

Table 2.3: Present limits and future sensitivities for the effective Majorana mass mgg of several 580,
experiments.

differences in terms of the lightest neutrino states,

NO : mg = \/m? + AmZ, , m3 =/m3 + |Am3,|, (2.38)
10 : my = y/m3 + |Am2,|, ma = \/mg + Am2, + |Am3,|. (2.39)

At this point it is also worthwhile to remark that, since only information on Am?k is obtained experi-

mentally, there is the possibility for a massless neutrino state. In fact, the work in this thesis will focus
on a minimal model where the lightest neutrino state is massless, so that m, = 0 for NO and m3 =0 for
IO (see Chapter 3).

As mentioned before, the most stringent bound on the absolute neutrino mass scale is the cosmological
constraint > m, < 0.12 eV (95% CL) on the sum of neutrino masses provided by the Planck collabora-
tion (2018) [93]. If one neutrino is massless, we have > m, ~ 0.059 eV for NO and > m, ~ 0.099 ¢V for
10, both satisfying the cosmological bound. However, this is an indirect limit since it is model depen-
dent. The most important bounds come from the direct measurements of the 5-decay endpoint of tritium
3H — 3He + e~ + ¥,. This provided an upper neutrino mass limit of 1.1 eV (90% CL) obtained by the
KATRIN collaboration (2019) [94]. In the upcoming years, KATRIN’s goal is to improve this bound up
to 0.2 eV.

The determination of the nature of neutrinos has been rather challenging, and no experimental infor-
mation on the Majorana phases have been obtained so far. However, promising searches for the lepton
number violating (LNV) process of neutrinoless double beta decay (880,) [11] have been made. The
amplitude for this rare process is proportional to the effective Majorana mass [95]

3
mpp = Z U’ejmj = |(mlcf2 + mgs%Qezmm) s+ mgs%Bezm31| , (2.40)

=1

which can be written in terms of the lightest neutrino mass for both spectrum orderings as

NO s man = ‘(m +y/m3 + Am3, ) By /m3 + | Am3, | s3pe?ion ], (2.41)
10 < mpp = ‘( v m3 + |Am3,| cf, + \/m§ + Am3; + |Am3, | 3?262mm> cis +masize® | (2.42)

In the case of a massless neutrino, we immediately conclude that one of the phases is unphysical and
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the sole physical Majorana phase is a = ag; — a1 for NO or a = ag; for 10. In Table 2.3 we display
the present upper limits on mgg reported by the KamLAND-Zen [110], GERDA [111], CUORE [112]
and EX0-200 [113] collaborations. We also show the future mgg sensitivities projected by the upcoming
experiments AMORE II [114], CUPID [115], LEGEND [116], SNO+ I [117], KamLAND2-Zen [110],
nEXO [118] and PandaX-IIT [119].

In summary, if neutrinos are Majorana particles, the lepton sector contains a total of twelve parame-
ters: three charged lepton masses, three light neutrino masses, three mixing angles and three phases. If
one neutrino is massless, the number of parameters is reduced to ten. Any extension of the SM that aim

at studying neutrinos must take into account the experimental observables presented in this section.

2.3 Seesaw mechanisms

As mentioned before, a Majorana mass term for the LH neutrinos vy, as the one presented in Eq. (2.33) is
not allowed by the SM symmetries. However, the origin of such term can be explained if we consider the
SM as a low-energy effective theory resulting from a more complete theory at a high-energy scale A > v.
Any given ultraviolet (UV) completion of the SM is composed of additional heavy fields, denoted here
by N;, where ¢ runs over the number of extra particles with mass scale of the order of A. Using the path
integral formalism these heavy states can be integrated out leading to an effective Lagrangian L.g. The

effective action Seg is defined as [120-122]
"%t = exp (z / d4g;£eff(x)> = / DNDNe' = ¢iSsm / DNDNeS¥ ), (2.43)

where DN is the integral measure and S is the full action, which we separate in the terms involving the
SM fields Ssy and the terms involving the heavy fields Sy. Expanding the action Sy (N) around its

stationary point, i.e., the minimum energy configuration Ny, we obtain
eiSsM /DNDNSZ'SN(N) _ eiSSM /DNDNGZ'[SN(N0)+5SN(N0)+525N(N0)+~~] ~ ei[SSM+SN(N0)], (244)

where the first order term 65y (Ny) vanishes due to the minimum condition and higher-order terms are

neglected. This procedure yields the effective action
Seff = /d4$ [Lsm + Ln(No)] = Ssm + Sn(No)- (2.45)

The stationary fields are obtained by solving the classical Euler-Lagrange equations of motion (EOM),

08

—0 08
ON; |7

b
N;=No; ON; N;=No;

= 0. (2.46)

Inserting their solutions in the action Sy (Ng) will lead to an effective Lagrangian valid at scales much

lower than A, which can be written as

Log = Lsm + Ln(No) = Loy + La=5 + La=6 + ... , (2.47)
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where L4—,, are non-renormalisable dimension d = n > 4 operators, invariant under Ggyr, suppressed by
a factor of A4,

The lowest dimension operator of such kind that can be constructed with the SM particle content
is the unique dimension-five Weinberg operator [123], which leads, after EWSB, to a Majorana mass

term for the LH neutrinos of the form as the one given in Eq. (2.33),

cl3 e\ (= EwsB  1— 2
Las = 2 (szcb*) (@TZBL) + Hee. 258 — VMo + He. , Mo = —5-cl5™ (2.48)

In the above expression, the coefficient ¢?=° is suppressed by A~ and Mg is the effective light-neutrino
mass matrix. Note that a Majorana neutrino mass term is the lowest order effect of high-energy physics.
Thus, neutrinos open a new window to physics beyond the SM. Additionally, the dimension-six
operators are numerous and depend on the given UV completion of the SM we work with. These higher-
order operators are crucial for the identification of other low-energy effects, such as the non-unitarity of
the lepton mixing matrix.

In the following sections, we describe the canonical Type-I, II and IIT seesaw mechanisms which are
minimal extensions of the SM. Note that special emphasis will be given on deriving the effective neutrino
mass matrix Meg. Additionally, we will focus in more detail on the Type-I mechanism since the analysis

developed for this case will be very helpful to the remaining work in this thesis.

2.3.1 Type-I mechanism

The most common framework to generate small neutrino masses and lepton mixing is the Type-I seesaw
mechanism [19-23]. In this case, we add nr RH neutrinos vg to the SM leading to the most general

Lagrangian invariant under Ggy given by
—~ 1—
L1 = Lom + iVRAvR — <€L<I>Y*DVR + il/lc%MRl/R + H.c.) , (2.49)

where the nyp X ng mass matrix Mg is of Majorana type and the complex 3 x nr matrix Yp is of
Dirac type. In order to obtain the effective neutrino mass matrix two approaches can be adopted: the
diagonalisation method and the integration of heavy states.

Diagonalisation method

After EWSB the neutrino mass Lagrangian reads

— N Ak 17 ’UYD
- [’Ilj,mass =v Mprg + QVRMRVR +H.c., Mp = ol (2.50)
Organising the neutrino fields in the vector Ny = (VL,VIC%)T of dimension ny = 3 + ng, with vy =
(Ver, VurL, I/TL)T, vr = (VR1, .. ,VRnR)T, we obtain the simplified form
. 1— 0 Mp
— Ly mass = 3 N M Ny +He., M= , (2.51)
2 M}, Mg
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where M is the full ny x ny Majorana-type mass matrix. If we assume the mass hierarchy Mp < Mp
for the mass matrix entries, the full neutrino mass matrix can be block-diagonalised through the unitary

matrix Up [124], so that

v1 — FFT F M! 0
Up = SULMUg=|" " , (2.52)
—FJr vV 1-— FTF 0 Mheavy

where Miﬂ is the 3 x 3 effective light neutrino mass matrix and Myeavy is the ng x ngr heavy neutrino

mass matrix. At first order in F ~ O (M n 1) we obtain the following system of matrix equations:

Ml ~ —F*MzF' — F*M% + MpFf, 0~ Mp — F*Mpy — F*MEF, R
=F~MpMp) ™t (2.53)
0~ ME - MgF' — FTMpF' , Mpeayy =~ Mg + F'Mp + MEF,

which leads to the light and heavy neutrino mass matrices
M.; = ~F*MgF! = -MpM,'M% | Mycary = Mg, (2.54)

at first order in the seesaw approximation. Notice that the effective light neutrino mass formula is inversely
proportional to the mass of the heavy neutrinos. Therefore, for natural Dirac Yukawa couplings of the
order of unity, it is required a mass scale Mg ~ 10'* GeV to be able to explain the smallness of neutrino
masses. This value is near the GUT scale, not allowing for any potential experimental observations of

new physics signals.

The resulting mass matrices in Eq. (2.54) are diagonalised through the following unitary matrices,

vy = U, vy = U Mg U, = D, = diag (1, ...,m3), (2.55)
v — Us v = UL Mpeavy Us = Dieavy = diag (g1, ..., 7, ), (2.56)
where m; (i =1,...,ny) are the real and positive neutrino masses in the seesaw approximation. There-

fore, the full ny x ny unitary matrix U is expressed in the seesaw approximation by

V1 —FFT F U, 0
U= = U MU = diag (y, ..., M, ). (2.57)
—Ff V1 -FF 0 U,

Due to the additional sterile neutrino states vg the lepton mixing matrix U will be non-unitary [125],
U=Vl V1-FFU,=(1-n)U, U =VIU,, (2.58)

where U’ is the unitary lepton mixing matrix and 7 is an Hermitian matrix encoding deviations from
unitarity. In the seesaw approximation, if we expand the square root in Eq. (2.58) in a Taylor series up

to second order in F, i.e., up to O (MgQ), we will have V1 — FFT ~ 1 — %FFT7 and using Eq. (2.53) we
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obtain the following deviations from unitarity:

1 1
n= iVTLFF*VL ~ 5V}Mg(M;tz)*H\/{;ﬁM%VL. (2.59)
Furthermore, since the mass spectrum is composed of light and heavy neutrinos, it becomes clear from
Eq. (2.57) that, in the basis where M, is diagonal, the heavy-light mixing will be given at first order in

F by the 3 x ng matrix
VIFU, ~ VI M}, (M%)~ 'U,. (2.60)

Integration of heavy states method

We now proceed with the second method based on the heavy state integration in order to obtain the
effective neutrino mass matrix in Eq. (2.54). We follow the procedure outlined in Eqs. (2.43) - (2.47).
Assuming My to be real, we start by defining the heavy fields as N = vg + v§, and writing (2.49) in the

following form

L1 = Lo + % [N (i — Mg) N — (WY%&ML FNYLBTS + Hc)} : (2.61)

Hence, from Eq (2.46) we promptly obtain the EOM for the stationary fields Ny,
(i — Mg) Ny = (Y@&ML + Yjﬁﬂ;) . (2.62)
Reinserting the solution back into Eq. (2.54) we get
1 /—= * e qo*
L1 =Lsu+ Ly (Ng) = Lsm — 3 (fLCI)YD + fL‘I) YD) Ny. (2.63)

The higher-order effective operators are obtained by expanding the propagator of the heavy fields. We
have

(i —Mp) "' = —Mz' —id Mz2 + ..., (2.64)

where the first-order term yields the dimension-five operator and the second-order one will provide the
dimension-six operators. We do not expand further the propagator since for our purposes it is enough to
limit the analysis up to the dimension-six operators.

Using the expansion above, the coefficient of the Weinberg operator will produce the effective neutrino

mass matrix as in Eq. (2.54). We obtain

2
=5 = Y My YE 2V v —%ciﬁ — —MpM;'M5p. (2.65)

(S

For this particular UV completion, which is the Type-I mechanism, there is a single dimension-six

operator obtained by using the expansion in Eq. (2.64),
Lo—g = 5 (EEIS) i (EIST 05 L) | 70 = Y MA2YS, (2.66)
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After EWSB, the dimension-six operator essentially modifies the LH neutrinos kinetic term. Notice also

that the coefficient ¢?=% will encode deviations from unitarity as in Eq. (2.59),
N vt d=6
Li—g = z?caﬁ uaL(?VBL —n= ZVLC V. (2.67)

d=5

Furthermore, an important feature of the Type-I seesaw is the fact that both ¢ and ¢?=% depend
quadratically on the Dirac-type mass, and that ¢?=° is suppressed by O (M R 1)7 while ¢?=6 is further

suppressed by O (MgQ).
As expected, the lepton mixing matrix appears in the leptonic CC interactions and there is also
FCNCs. We will reserve the detailed analysis of these effects for the model of interest discussed in the

upcoming chapters. Note however that the methods outlined here are quite generic and, therefore, they

turn out to be useful as well in Chapter 3.

2.3.2 Type-11 mechanism

For the case of the Type-1I seesaw mechanism [11, 24-28] we extend the SM particle content with a
scalar triplet A = (A1, As, As)” with Y = +2. The triplet is in the adjoint representation of SU(2)y,

with generators

0 0 O 0 0 =3 0 — 0
Th=10 0 —i|, =0 o0 ol ,z3=|i 0 o]f-. (2.68)
0 ¢+ O -t 0 0 0 0 O

To work with the charge eigenfields we must diagonalise the charge operator @, this is done by working in
a basis where the generator T3 is diagonal. To achieve this, we perform the similarity transformation T, =

KT,K' (a =1,2,3), with the matrix K relating the flavour fields to the charge eigenstate ones

—-1 i 0 % ATt
1 .
K=—]|0 0 vV2| 2KA= As = At , (2.69)
V2
1 Z O Alj%ﬁz AO

where the charge of the field combinations above was determined by applying the diagonal charge operator

to KA.

Note that we want to obtain an invariant out of a term involving a triplet and two doublets. To see

this is actually the case, we look at the product for the representations under SU(2)y,

2x2x3=(14+3)x3=3+(1+3+5). (2.70)

We notice that a singlet can be obtained from a term composed of two doublets and a triplet. Moreover,

to be able to construct invariant terms involving the SM doublets, we write the fields above in the 2 x 2
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matrix representation as

; Ay +iA A A0 —AY
i (F-A) — [T s ) (V2 . (2.71)
Ay A A AT At

This matrix allows to write the couplings ~ @Aé r and ~ &)TAq), which are invariant under all SM gauge

transformations since they form a singlet under SU(2), and have zero hypercharge.

Hence, the Type-II Lagrangian is given by
1
L= Low— [(YaA + Hel + 5T [(DMA)T (D“A)} —V(®,A), (2.72)
with the scalar potential

V(®,A) = 1MgTr (ATA) + (MA&)TA@ + H.c.) + M Tr (ATA)?
2 (2.73)
+ A Tr (ATAATA) + A30T0Tr (ATA) + M 2TATAD,

where we assume that the mass matrix for the scalar triplet Ma = Madiag (1, 1,1), which suffices for
the purpose of our discussion, namely to illustrate the Type-II seesaw mechanism. Finally, ya has mass

dimension and A; 234 are the dimensionless quartic couplings.

The core idea of the Type-II seesaw mechanism is that the scalar triplet acquires a very small VEV va,
induced after EWSB by the Higgs doublet VEV v, providing the small neutrino masses. In the matrix
representation given in Eq. (2.71), the scalar triplet acquires a VEV as follows

V2 (A — (AT va O
(A) = (%) [l Y , A« (2.74)
— (A7) _\/§<A++> 0 0 v
since only neutral scalar fields can acquire a non-vanishing VEV. To obtain va and show it is indeed
small in comparison to the EW scale, we must minimise the scalar potential. Such a detailed analysis is

out of the scope of this work; thus we simply present the result here:

DN HA
VA = — = ~ — , 2.75
ST UM 42 MR (275)

where the approximate expression is valid for Ag0? < M3%. The VEV given above is small for heavy
scalars with mass Ma > pa. Hence, from Egs. (2.72), (2.74) and (2.75), we obtain the effective light
neutrino mass matrix for the Type-II seesaw case

202k

ML = 20AY A ~ —
€ Mi

Ya. (2.76)

Note an important distinction with the Type-I seesaw. In the Type-II case the effective light neutrino
mass matrix is inversely proportional to MZ. For natural Yukawa couplings of the order of unity and a

coupling constant ua ~ 1 eV, we would only need the masses of the additional scalars to be Ma ~ TeV in
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order to explain the small neutrino masses. Therefore, the Type-II seesaw has a low-scale implementation

enabling feasible experimental detection of direct new physics signals.

2.3.3 Type-111 mechanism

The Type-IIT mechanism [29] consists of adding ny, fermionic triplets i}% = (Z’i, %, ZQ)T (i=1,...,nx),
with Y = 0, to the SM. As explained for the Type-II seesaw mechanism, this triplet flavour isospin pertains
to the adjoint representation of SU(2);,. Furthermore, as outlined in the previous section, we can write

the fields above in the 2 x 2 matrix representation, analogous to Eq. (2.71). We have

- ¥ 4% -3 V2%~ -x0
i7 (7_'" ZR) _ (Tt s - , (2.77)
—%s —Y1 +i¥, %0 /2%t
which relates the flavour fields to the charge eigenstates. From the matrix above, we can construct

invariant coupling terms with the SM doublets.

The Type-III Lagrangian, in the flavour basis, is given by

= - = ~ 1= -
LM =M 4 Sp (i) Sk — [ZR . (Y%@TFKL) + §E§%M§ZR +He. |, (2.78)

where the ny X ny mass matrix My, is of Majorana type and the complex 3 x ny matrix Yy is of

Dirac type. After EWSB, the neutrino mass Lagrangian reads as

v

1
— =ML E% + —X0eMEXS + Hee., Mp = —
vLMp R+2 rMy2p+He , Mp N5

v,mass

Y. (2.79)

Organising the neutrino fields in the vector Ny = (VL, E(}{)T of dimension ny = 3 + ny, with vy, =

(Ver, VurL, I/TL)T, Y = (EORl, ,EORnE)T, the simplified form

111 l — 0 Mp

— Ly mass = 3 N M N +He. , M = , (2.80)
2 M%L My

is obtained. Note that the full neutrino mass matrix has the same form as the one for the Type-I seesaw

case in Eq. (2.51). Then, following a similar block-diagonalisation procedure, in the seesaw approximation

with the hierarchy Mp < My for the mass matrix entries, we obtain the effective light neutrino mass

matrix for the Type-III seesaw case,
MU = -MpM;'M7%. (2.81)

Therefore, in both the Type-I and Type-III seesaw mechanisms, the neutrino masses are inversely propor-
tional to the mass of the particles added to the SM. Hence, for natural values of the Yukawa couplings, it
is required a mass scale My near the GUT scale to be able to explain the smallness of neutrino masses,

which precludes the possibility of potential experimental probes for detecting direct new physics signals.

22



Chapter 3

Minimal inverse-seesaw model with

Abelian symmetries

As seen in the previous chapter, the canonical Type-I and Type-III seesaw scenarios require very heavy
particles or unnaturally tiny Dirac Yukawa couplings in order to generate small neutrino masses and
lepton mixing. However, the Type-II seesaw allows for a low-scale implementation where the masses
of the additional particles are testable at experiments such as the LHC. This thesis will be anchored
in the latter perspective. In fact, we dedicate the rest of this work to the study of a low-scale seesaw
implementation which has gained popularity in recent years: the so-called inverse seesaw (ISS) [30-32].

We mention that the remainder of this work follows closely Ref. [126].

3.1 Inverse seesaw mechanism

The ISS mechanism can be implemented by extending the SM particle content with ng RH neutrinos
vr and ng sterile fermion singlets s, leading to what we denote as ISS(ng,ns). In this framework, the
generic mass Lagrangian for leptons is given in the flavour basis by

mass

1
_LISS ZaMéeR—FﬁMDVR‘FﬁMRS_‘_iSC M;s+ H.c., (31)

where vy, = (ueL,yML,z/TL)T, vr = (VRr1, - ,anR)T, s = (s1,-.. ,sns)T. In the above equation, My is
the 3 x 3 charged-lepton mass matrix, Mp is a 3 X np Dirac-type mass matrix, My is a ng X ng matrix,
and My is a LNV n, x ny Majorana mass matrix. The latter can be naturally small in the 't Hooft [33]
sense, since lepton number conservation is restored in the limit where the last term in Eq. (3.1) vanishes.
Furthermore, note that the above mass Lagrangian is not the most general gauge invariant one that can
be constructed with the additional particle content of vy and s. In fact, the most general one is given by

1
LGen. _ ﬁlrsasss — (VLMDSSC + ilj}C%M/LRVR + H.c.> . (3.2)

mass

23



In order to obtain the ISS mass Lagrangian two assumptions have to be made, which are Mp, = 0
and M,,, = 0. As we will see in the upcoming sections in this chapter, we will forbid the terms involving
these two matrices through Abelian symmetries. From now on, our analysis in this section stems from
the ISS mass Lagrangian in Eq. (3.1).

Defining Ny, = (v, v, s)T of dimension ny = 3 4+ ng + ns, we can write LI5S in the compact form

mass

0 M, o0
11—
~Lpis=eMeer+ s NEMNL +He , M=|M}, 0 Mg/, (3.3)
0 ML M,

where M is the full ny x ny neutrino mass matrix.

The charged-lepton mass matrix is bidiagonalised through the unitary transformations Vi, r defined
in Eq. (2.24). Theses unitary matrices are obtained by diagonalising the Hermitian matrices Hy = M¢M§
and H) = M| My,

ViH,V, = D? = diag (m2,m2,m?) , VL,H,Vy = D? = diag (m?2,m?,m?), (3.4)

2 o

where me , - are the charged lepton masses, taken to be real and positive.
The weak-basis states N r are related to the mass eigenstates (vy, ..., I/nf)T by a ny x ny unitary

matrix U
Np=U,... ,vp,)}  Ne=Ng=U"(v1,... ,vn,)Fs, (3.5)
such that the full neutrino mass matrix is diagonalised as
UTMUZ'D,,:diag(mh... M) (3.6)

where my ., are the ny (real and positive) Majorana neutrino masses. Notice that, in general, the
light-active (heavy-sterile) neutrino masses are labelled as my 23 (M4,....n,)-

In the ISS approximation limit where M, Mp <« Mg, for the matrix entries, we will derive the
effective light neutrino mass matrix, using the diagonalisation method and the integration of heavy

states, following a similar procedure as for the Type-I seesaw case (see Section 2.3.1).

Diagonalisation method

The neutrino mass matrix M of Eq. (3.3) can be block-diagonalised by writing it in the form

0 | M, 0

0 M,
M T M,

M= ([mML| 0 Mg (3.7)

0 | ML M
where the right-hand-side matrix takes the same form as the full Type-I seesaw matrix in Eq. (2.51).
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The full unitary matrix U of Eq. (3.6) can then be parameterised as [124] [see Eq. (2.57)]

V1 — FFi F U, O
U= , (3.8)

~Ff v1-—FF 0 U

so that

. UTM.4U, 0
UTMU = : (3.9)
0 Utheavas

where U, and U, are 3 x 3 and (ng + ns) X (ng + ns) unitary matrices, respectively; Mg and Mieavy
are the effective light and heavy-neutrino mass matrices. At leading order, Mpeayy >~ MY, [see Eq. (2.54)]
yielding ng + ns heavy neutrinos. In Eq. (3.8), F is an 3 X (ng + n,) matrix given at first order in the

seesaw approximation by [see Eq. (2.53)],
F ~ M, (M}) ™ =~ (0, MD(ME)*) : (3.10)
where the inverse of MY, is

— (M M—lMT -1 MZIy-1
MEI _ ( R Vlg R) ( R) ’ (3.11)
(Mpg)~! 0

with M and M invertible. This leads to the 3 x 3 effective light-neutrino mass matrix
M, = —F*MyF! = -M}, (MzM; M%) M}, . (3.12)

We start by comparing the above formula with the Type-I effective mass matrix given in Eq. (2.54). For
the latter case the smallness of neutrino masses is explained through the sole suppression My ! whereas
in the ISS case, thanks to the addition of a second species of sterile fermions, we have two suppressing
factors MglM p and M,. Hence, for natural Dirac Yukawa couplings, Mp ~ v/+/2, and having a small
LNV parameter My ~ eV, we would only need Mg ~ TeV, in order to explain the small neutrino masses.
Hence, the ISS can be regarded as a low-energy scale mechanism, enabling sizeable experimental
observations of new physics signals and LNV processes. This is the reason why the ISS is sometimes
dubbed as a low-scale implementation of the Type-I seesaw mechanism. Furthermore, the above matrix
can be diagonalised through a unitary rotation of the active neutrino fields, v, — U, vy, satisfying [see
Eq. (2.55)]

Ul Mg U, = D, = diag (1,12, 713) , (3.13)

where 11 2 3 are the real and positive light neutrino masses in the ISS approximation. The unitary matrix

U, is obtained from the diagonalisation of the Hermitian matrix Heg = Mengﬂ,

Ul HsU, = D} = diag (7, m3,m3) , (3.14)
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yielding the unitary lepton mixing matrix [see Eq. (2.58)]
U =viu,, (3.15)

after performing the rotation to the charged-lepton mass basis. The matrix U’ can be parameterised
in terms of the lepton observables namely the mixing angles and CPV phases given in Section 2.2.2

by Eq. (2.36).

We now characterise active and active-sterile mixing considering the full mixing matrix U or, more
specifically, the rectangular 3 x ny matrix Wo; = U (o = e,pu, 7, j = 1,...,ny) which, according

to Eq. (3.8), can be decomposed in the form

W = (V1-FF'U,, FU,) = (W,, W,), (3.16)

where W, and W are 3 X 3 and 3 x (ng + ns) matrices, respectively. It is clear that VEWS defines the
mixing between the three active neutrinos and the ngr + ng sterile states in the physical charged-lepton
basis. Due to the additional fermion states, active-neutrino mixing is determined by the non-unitary
matrix [see Eq. (2.58)]

U=Viw,=1-nU, (3.17)

where U’ is the unitary mixing matrix given in Eq. (3.15) and n is an Hermitian matrix encoding
deviations from unitarity of U. Expanding Eq. (3.8) up to second order in F, one has v/1 — FFT ~
— $FFT which, together with Eqs. (3.10) and (3.17), leads to

1 1 _
n= §VTLFFTVL ~ 5VTLMD(1\/13%)—11\/11%11\/1}3%. (3.18)

Note that the expression above is very similar to the Type-I seesaw one in Eq. (2.59), the relevant
difference lying in the order of magnitude of the mass scale M. Active-sterile neutrino mixing is described

by Wy given in Eq. (3.16), which at first order in F is
Viw, = VIFU, ~ Vi (0, Mp(ME) 1)U, (3.19)

in the basis where My is diagonal [see Eq. (2.60)].

Furthermore, leptonic mixing will affect the CC and NC interactions. The detailed modified interac-
tion Lagrangians involving the weak bosons and the scalars in our model are presented in Appendix B.
We introduce here the matrices B and C which will appear in these Lagrangians [127],

3 3
Boj =Y (Vi)kaWij, Cij=> WiWy, (3.20)

k=1 k=1
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which obey the equalities

ng nyg nys 3
Z BuxBji = dap, Z BokCri = Bai, Z CikCj = Cij, Z B.iBaj = Cij, (3.21)
k=1 k=1 k=1 a=1
nf nf nf
kacikcj'k = O, kaBakCZi = 0, kaBakBﬁk =0. (3.22)
k=1 k=1 k=1

Note that the mixing between the light and sterile neutrinos is given by the matrix elements B,; for
a = e u,7and j = 4,...,nys, in the charged-lepton physical basis. Furthermore, the parameters 7,4

encoding deviations from unitarity [see Eq. (3.17)] can be expressed in terms of B through the relation
1<

Map = 5 2 BajBj;, (3.23)
j=4

where we used the first equality in Eq. (3.21) in order to write 1,4 solely in terms of the active-sterile

mixing.

Integration of heavy states method

We proceed to the heavy-state integration in order to obtain the effective ISS light neutrino mass matrix
in Eq. (3.12). In this section, we work with the SM scalar sector of one Higgs doublet and assume that
Mp, is real. Defining the heavy fields as N = vg + v and Z = s + s¢, we have

Liss = Loy + % [Niazv +Z (i — Mg) Z — (NMRZ +NYhL a3, + NYLaTs + Hc)} . (3.24)

where Mp = vYp/v/2. Obtaining the EOM for the classical configurations Ny and Zy, and reinserting
them back in (3.24), we get the ISS effective Lagrangian

(i) — Mg)Zo = MEN, 1o 1—n
) e =L = Lan - EYRNo - SL®Y Ny, (3.25)
iNo — MpZo =YL&, + YLT 05 |

In order to obtain Ny, we must work out the coupled EOM using a Taylor expansion of the propagators as
in Eq. (2.64). We start by expanding the Zy propagator up to first order in the small LNV parameter M,
which leads to a result of order O (M TIM R)7 then we reinsert the result back into the second coupled

equation above in order to obtain Ny up to O (Mgz). We obtain
No ~ —(M%)~'M,M7! (YL&)WL n Y}{,EI?T@CL) — (M%) Mg (YLE)WL + Y}{,EIZT@CL) . (3.26)

The first term above yields the Weinberg operator in Eq. (2.48), leading to the light neutrino mass matrix
in Eq. (3.12),

2
=5 =y (M) MM Y EYSE Mg = 7%6#5 = M} (M%) MMM, (3.27)
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The unique dimension-six effective operator for the ISS case stems from the second term of Eq. (3.26).
We obtain
Lo—g = c45° (EE)) id @%L) | =0 = Y (M%) T MY (3.28)

After EWSB, the dimension-six operator essentially modifies the LH neutrinos kinetic term and its
coefficient will encode deviations from unitarity as in Eq. (3.18),
’U2 d= ’02 t d=
Li—s = i?cag%aﬁaym —n=7Vic =Svy. (3.29)
Note some important features of the ISS UV completion. First, the dimension-six operator above
is independent of the LNV parameter M,. Furthermore, it is suppressed by O(M 52) which is the

same suppression as in the dimension-five operator. Hence, both operators have the same high-energy

suppression in the ISS [121].

3.2 Maximally-restrictive Abelian flavour symmetries

This section, is divided in two parts. First, we proceed to identify the maximally-restrictive textures
for the set of matrices (Mg, Mp, Mg, M;) compatible with neutrino oscillation data within the mini-
mal ISS(2,2) framework, where two vg and two s fermion singlets are added to the SM particle content,
ie., ng = ny = 2 and ny = 7. By maximally restrictive we mean that no additional texture zero can
be placed into any of the mass matrices while keeping compatibility with the charged-lepton masses and
neutrino oscillation data. Secondly, we will determine which sets can be realised by imposing discrete or
continuous Abelian symmetries. This will be done by exploring the minimal scalar sector needed in order
to realise at least one of the texture sets. Then we apply the canonical and Smith normal form (SNF)
methods to obtain the minimal Abelian flavour symmetry groups that reproduce the given texture set

while forbidding unwanted coupling terms in the Lagrangian.

3.2.1 Maximally-restrictive textures for leptons

Our texture-zero analysis is performed assuming the seesaw approximation given in Eq. (3.12). Later on,
we will comment on the validity of this approximation when comparing with the results obtained with
the full neutrino mass matrix M. The identification of the compatible textures is based on a standard

x2-analysis, using the function

X () = Z M (3.30)

where z denotes the input parameters, i.e., the matrix elements of My, Mp, Mg and My; P;(x) is the
model prediction for a given observable with best-fit (b.f.) value O;, and o; denotes its 1o experimental
uncertainty. In our search for viable sets (M, M p, M, My), we require the charged-lepton masses to be
at their central values [89], such that the y?-function is minimised only with respect to the six neutrino
observables, namely the two neutrino mass-squared differences Am3;, Am3,, the three mixing angles

612, 623,013 and the Dirac CPV phase §, using the current data reported in Table 2.2 [8]. Notice that, in
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M, = 6" M, = 5¢ M, = 44, 45, 44

Mp Mg M, Mg Mp Mgrp M; M Mp Mg My Mes
Ty T4 Tos - T3 Ty Tas - Tio4  Tia  Tos 11
Ty Ty Tos - Tia T1a Tas 1 T1o5  Tia  Tos 71
Ts T Tos - T16 Tiqa  Tos 15 T34 Tia  Tos 76
Ty Ty Tas - T35 Tia T - Tizs  Tia  Taz 25
T1e Ty Tas - Tys T1a  Tos 1% Tias Tia Tog 27y
Tas T Taa - Tia6  Tia  Toz 273
Tos Ty Tos - Tis6  Tia Tos 19
T36 Ty Tos - T3a5  Tia Tos 16
Tys T Ta3 - Tus6  Tia  Tos )

Table 3.1: Maximally-restrictive texture sets for M, = 6° (left), 5{ (centre) and 4‘172,3 (right).

the ISS(2,2) framework, there is always a massless neutrino (m; = 0 for NO or m3 = 0 for 10).

For a given set of input matrices, we consider compatibility with data if the deviation of each neutrino
observable from its experimental value is at most 30 at the x?-minimum [65, 72, 128, 129]. If this is
the case, we also test the compatibility of the textures at 1o. For the sake of simplicity, we shall use
the following sequential notation to label the position of the matrix elements of a given 3 x 2 and 2 x 2

texture T, respectively,

1 2
1 2

3 4], ; (3.31)
3 4

5 6

where we denote the position of any vanishing element labelled ¢ with a subscript, i.e., T;. For instance,

in this notation, a matrix with vanishing 11 and 22 elements would be labelled as T14.

It is straightforward to show that the ISS formula in Eq. (3.12) is invariant under the weak-basis
permutations

Mp - MpPr , Mp = Py MgP, , M, = P M,P,, (3.32)

where P denote the 3 x 3 (or 2 X 2) permutation matrices. Furthermore, for a given pair (Mg, Meg), the
permutations

MZ — PzT MZ Pe ) Meﬁ — PgT Meff Pya (333)

leave the lepton mixing matrix in Eq. (3.15) invariant. Therefore, for each weak-basis permutation class,
only one representative set of textures needs to be identified. = The maximally-restrictive texture zero
sets (My, Mp, Mg, M;) compatible with neutrino oscillation data for NO are presented in Table 3.1. It
turns out that these sets of matrices are also viable for I0. Moreover, all the sets are compatible with
data at 1o. The labelling used for the charged-lepton mass matrix and the effective neutrino mass matrix

follows Ref. [130] and the corresponding textures are presented in Tables 3.2 and 3.3, respectively.
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Table 3.3: Textures for the effective neutrino mass matrix Meg.

3.2.2 Abelian symmetry realisation of compatible textures

We start this section by specifying the scalar sector of the model. As mentioned before, maximally-
restrictive texture zeros in Yukawa coupling matrices cannot be implemented in the SM with Abelian
symmetries, since all fermion fields couple to the same Higgs doublet. Hence, to realise such textures,
our minimal setup will require the presence of at least two Higgs doublets @, (a = 1,2). Furthermore, to
avoid bare mass terms in the Lagrangian, we also add two complex scalar fields S, (a = 1,2), so that M

and Mp are dynamically generated through couplings of S; and Sy with s7Cs and g s, respectively.

We parameterise ¢, and S, as

oF 1 V205 1 4
o, = = — , , So = —= (ua€™* + pato +iMat2) , a=1,2, (3.34)
Y V2 vaee + po + i, V2

where v, and u, are the VEVs of the neutral components of Higgs doublets ¢) and the scalar singlet
fields, respectively. Note that only the phase difference 6 = 5 — 6 is physical (a more detailed analysis

of the scalar sector can be found in Appendix A).

Given the minimal fermion and scalar contents described above, the Yukawa Lagrangian relevant for

our work is

—[«g}gk. = E (Y[}(I)l + Y?@g) ER + E (Yb(i)l + YzDég) VR
1_
+55 (Y211 +Y257) s+ R (YRS2 + Y3S53) s + He.. (3.35)
Upon SSB, the scalar fields acquire non-zero VEVs and the above Yukawa interactions yield the generic
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mass Lagrangian of Eq. (3.1) for the ISS(2,2). The corresponding mass matrices are given by

'1)72
V2
(Y! € 4 Y2 e7), Mp = "2 (Y e + Y% 7€)

V2

Yh+—=Y7 e ",

U1 1 V2 ;2 6 U1
M;=—Y}+—=Y2¢% Mp=—
TR R LN}

Ul

V2

(3.36)
M, =

Notice that there are other Yukawa interactions invariant under the SM gauge symmetry, beside the
ones in Eq. (3.35). In fact, there will be the additional terms displayed in Eq. (3.2) as well as bare mass

terms, which are given by

—£? =7 (Ybsél + Y,%Sci)2> e
1
2
— 1_

5°M%s + 530 (Y28, +Y155) s

1— — . 1— .
+ fVIC%MgRUR + -vg (Y}msl + YiRSl) VR + §UR (YiRSg + YﬁRSQ) VR

2
1
2

+7rMYs + 7R (Y5S1 + Y357) s+ He..

(3.37)
+

The above terms will be forbidden by the Abelian symmetries to be considered next.

To implement Abelian flavour symmetries, we require the full Lagrangian to be invariant under the

field transformations
(I)a - Xq;.a(pa, Sa — XSaSa 9

éL*)ngL, GR—)XGGR, (338)
vr — XRVR, § = X8,

where, for each field component F, X denotes a phase of the form e*#. This invariance requirement

yields the following constraints on the Yukawa matrices of Eq. (3.35):

Y¢ = X]YiX.Xs,, Y) =X YEXpX5 |
Y! =XIYIX,Xs,, Y2=XIYIX, X5, (3.39)

Yh = XLYRX Xs,, Y% = XLY2X X5,

which can be translated into relations among the various field-transformation phases xr. To implement a
texture-zero entry in one of the above Yukawa matrices we require that the corresponding phase relation
is not fulfilled.

We now proceed to identify which of the maximally-restrictive texture sets compatible with neutrino
data (see previous section) can be realised by imposing discrete or continuous Abelian symmetries. To
this end, we will apply two methods that complement each other, namely the canonical [131, 132] and
the Smith normal form (SNF) [133, 134] methods. Our methodology follows closely the one employed
in Refs. [72, 129]. We start with the canonical approach applied to the maximally-restrictive textures
presented in Table 3.1 to reduce the scope of realisable textures before employing the SNF method.
We recall that the charged-lepton textures 4f and 45 cannot be realised through Abelian symmetries in
the 2HDM [72]. For the remaining cases, we first write all possible decompositions of the mass matrix

textures into the corresponding two Yukawa matrices defined in Eq. (3.36). Afterwards, for a given

31



M( MD MR Ms Meff

5l Tas T4 Tas 1%
44 Tio4 T4 Ta3 71
Tys6 T4 Tas i
T136,1 T1a Tos s

T146,1 T14 T3 213

M, Y} Y? Mp Y, Y%
0 0 x 0 0 0 x 0 0 x

44 0 x 0 0 0 x Tys 0 0 x 0
x 0 0 0 x 0 0 x 0 O

0 0 x 0 0 0 0 0 0 0

501 0 0 0 0 x 0 T124 0 0 x 0
x 0 0 0 0 x x 0 0 x

0 0 x 0 0 O 0 x x 0

51 0 x 0 00 0 Tys6 x 0 0 0
x 0 0 0 0 x 0 0 0 0

0 0 0 x

Mpg Yr T136,1 0 x 0 O
0 0 x 0

. (0 X) 0 x 0 0
14 < 0 T136,11 0 0 0 x
0 0 x 0

0 x 0 0

M, Y Y: Tia6.1 0 0 x 0
x 0 0 0

Tos <X 0) (O 0) 0 x 0 0
00 0 x T1a6,11 x 0 0 0

0 0 x 0

Table 3.4: [Top] Maximally-restrictive texture-zero sets compatible with neutrino oscillation data and re-
alisable through Abelian symmetries. [Bottom] Decomposition of mass matrices into the Yukawa textures
according to Eq. (3.36).

(Mg, Mp,Mpg, M;) combination, and for all decompositions of its matrices, we solve the corresponding
system of algebraic relations for the field phases (or charges) stemming from Eq. (3.39). If a solution
exists for a set of charges, then that specific (M, M p, Mg, M) is realisable by Abelian symmetries with
the fields carrying those charges. Note we must also check if no term in Eq. (3.37) is allowed such that
we restrict our analysis to the ISS mass Lagrangian. In Table 3.4, we present the realisable mass matrix
textures and their corresponding Yukawa decompositions, respectively. Notice that although in some
cases two decompositions are possible for a given mass matrix, only one is realisable. We set the ordering
for Y, and Y3? as the one given in Table 3.4. Also, we use the notation Yz = Y}k [see Eq. (3.35)]
since Y% is forbidden by the symmetries as we shall see promptly. Hence, since for all realisable cases
Mg and M, are fixed by the textures T4 and Ta3, respectively, from now on we will refer to each case

just through the pair notation (M, Mp).

32



(511, Tus) (45, T124) (45, Tas6) (45, T136.1) (45, T146.1)
Fieldls  U(l) ZoxUL)p  ZoxU(l)r  ZexUL)p  ZixUL)p  Zy x UL)p

P, 0 (1,1) (0, -5) (1,1) (1,2) (0,1)
O, 0 (0,-1) (1,-3) (0,-1) (0,1) (3,0)
Sy 0 (0,2) (0, -2) (0, -2) (0, -2) (0, -2)
S 1 (0,0) (0,0) (1,0) (0,0) (0,0)
ley 1 (1,0) (0,0) (0,0) (2,0) (2,0)
oy 1 (0,2) (1,2) (1,-2) (1,-1) (1,-1)
- 1 (0, -2) (0,4) (0, —4) (0, -2) (0, -2)
er 1 (1,-3) (0,9) (1,-5) (3, —-4) (0, -3)
1R 1 (0,3) (1,7) (0,-3) (0,-3) (1,-2)
R 1 (0,-1) (0,5) (1,-1) (1,-2) (2,-1)
VR, 1 (0,1) (0, 1) (0, 1) (0,-1) (0, 1)
VR, 1 (1,-1) (1,1) (1,1) (2,1) (2,1)
51 0 (1,-1) (1,1) (0,1) (2,1) (2,1)
$2 0 (0,1) (0,-1) (1,-1) (0,-1) (0,-1)

Table 3.5: Maximally-restrictive texture sets realisable through an Abelian symmetry group. For each
texture pair, we provide the Z,, charges ¢, such that the transformation phases are e2™*=/"  The U(1)
and U(1)p charges are expressed as multiples of the arbitrary charges ¢; and g, respectively.

Applying the SNF method to the texture sets passing the canonical method test, we find that the

minimal Abelian symmetry group G realising such textures is
G=2,x[UQD)?, n=24. (3.40)

Irrespective of the type of Yukawa textures, the Lagrangian is invariant under the global continuous
symmetry U(1)y, Y being the SM hypercharge. Since, obviously, that U(1)y does not impose any

texture zero, the actual flavour symmetry group Gg = G/U(1)y is
Gr=2Z, x[UD)?, n=24. (3.41)
Furthermore, the Yukawa Lagrangian (3.35) is also invariant under the following U(1) global symmetry,
lp = e Dl e — e en, vp — P up, Sy — e Sy, (3.42)

with the other fields remaining invariant. Note that the term in Eq. (3.35) involving Y% is forbidden.
Furthermore, although this symmetry does not impose any texture zero on the mass matrices, it restricts
the possible coupling terms that can appear in the Lagrangian. In fact, all terms in Eq. (3.37) are
forbidden except for the bare Majorana mass term of the form s”Cs which is allowed by this symmetry.

Nevertheless, it can be shown that the remaining Abelian symmetries forbid such a bare term. The
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minimal group that discretises this U(1) symmetry is Z4, with ¢; = w/2. Thus, the actual flavour
symmetry group is

Gp=U(1)xZ, x UL)p, n=24. (3.43)

The maximally restrictive texture sets (5‘{}1, T 45) , (4%, T124) and (4{3,, T456) are realised by the flavour
symmetry for n = 2, while (45, T13671) and (4%, T14671) are realised by the Abelian symmetry group for
n = 4. The corresponding U(1)r charges can be determined through the canonical method, while the
discrete group charges are obtained resorting to the SNF method. We present in Table 3.5, for each
texture set, the Abelian symmetry group that realises the set and the associated transformation charges
for each field. In all cases, the full texture decomposition is imposed by the U(1)r symmetry alone. The
discrete groups, Zs or Z4, only preserve some of the texture zeros but ultimately fail in imposing them
totally. Yet, they are crucial in forbidding the bare Majorana mass term for sterile singlet fermions s. In
fact, the U(1)r charges alone only forbid the diagonal elements of the bare mass term, while the charges
of the discrete groups forbid the remaining off-diagonal elements. Therefore, the Yukawa Lagrangian
remains restricted to the form given in Eq. (3.35) where the term with Y% is forbidden and Yg = Y§.
As a final comment, let us note that for the realisable cases the U(1)r symmetry can be discretised into

a minimal set of charges corresponding to a Z5 symmetry.
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Chapter 4

Phenomenology

The previous chapter was aimed at building the model for this work. In fact, we showed that the
maximally-restrictive textures for the lepton mass and Yukawa matrices, compatible with neutrino oscil-
lation data, can be realised through Abelian symmetries in the context of the minimal ISS mechanism
for the sets shown in Table 3.5. For reasons that will become clear later (see Section 4.3), throughout
the rest of this thesis we restrict our phenomenological analysis to the combination (5?17 T45). Hence, in
this chapter, we study the phenomenological possibilities stemming from this case. Due to the extended
scalar content of our model, we start by showing the common origin of leptonic CPV (LCPV) lying in
spontaneous CPV (SCPV) coming from the complex phase of the VEV of the singlet S;. Next, we com-
ment on the validity of the ISS approximation and the impact of radiative corrections to light neutrino
masses. Additionally, we study lepton flavour violation (LFV) focusing on the constraints coming from
the charged LFV (cLFV) processes o, — €37y, Z — Eé‘ﬁg, l; — Egﬂjf‘ﬁg and coherent p — e conversion
in nuclei. Finally, we look at further constraints translated in terms of mass and active-sterile mixing,
namely the ones coming from beam-dump and collider experiments as well as EW precision data (EWPD).

We recall that, the analysis we perform in this chapter follows closely the one realised in Ref. [126].

4.1 Lepton masses, mixing and leptonic CPV

For the case under study (5{71, T45), the charged-lepton mass matrix can be parameterised as

2 2
my_ m
2 14 {4
0 0 a a1:7;23,m42<a2<mg3,
0 . _ 2
550 My=10 a3 0|, ) 0/ o ) (4.1)
2 2 2 (a2_mlg)(mé3 _a2)
azs 0 a4 a3 =My, 5 A4 = 2 )

where a; can always be made real by phase field redefinitions, and my, , , are the charged-lepton masses.

Note that the charged-lepton state ¢; is decoupled from the remaining ones. The unitary matrices V/
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and V’; that diagonalise the Hermitian matrices H; = MzM; and H) = M@Mz are given by

ab 0 aag c. 0 sg

Ho=| 0 ¢ 0 V=1 0 1 0 (4.2)
aiagy 0O a% + aZ —sr, 0 cp
a% 0 a0y cr 0 sp

H)=| 0 a 0 ,Ve=1l 0 1 o]. (4.3)
asay 0 a% + aZ —srp 0 cgr

Here, we have used the compact notation ¢ g = cosfr r and sy r = sinfr g with the angles 0 r given

by the following expressions

2m,mi, /(a3 —m?,)(m3, - a3) 2/ (a3 = m3,)(m?, — a3)
5 5 , tan (20R) =

tan (201) =
(201) a2(m§2 + m%3) — Qmimz3 m?z + m%?’ — 2a3

(4.4)

We consider the three distinct cases of 57" textures with £, = e, u, 7, labelled as 5. Since after the
diagonalisation of the charged-lepton mass matrix the unitary matrices Vi r are such that the correct

mass ordering is obtained as in Eq. (2.24), we have

5{: Vi r=V rPi2, 5 :Vpr=V]p 5]:Vyp=V] P, (4.5)
with
0 1 0 1 0 0
Po=|10 0|,Ps=]0 0 1] (4.6)
0 0 1 01 0

As seen in the previous section, for M, of the type 5¢, only the Mp, Mg and M, matrices of the type
Ty45, T14 and Tag, respectively, lead to maximally-restricted neutrino mass matrices. In terms of the
Yukawa matrices given in Eq. (3.35), those mass matrices are realised through Abelian symmetries for

the decompositions (see Table 3.4)

by 0 0 bseh
Ypo=|0 o] ,Yh=|0, o0 ,
0 b 0 0 (4.7)
0 d 0 0 0
YR - 2 ) Y; = f2 ’ Yf = .
d1 0 0 0 0 fl 61ﬁ2

Notice that we have rephased the fields to remove the unphysical phases such that b;, d; and f; are real

and only the phases (1 2 remain in all Yukawa couplings of Eq. (3.35).

From now on, instead of considering the general case of complex Yukawa couplings, we will consider
the scenario in which CP is imposed at the Lagrangian level and, thus, 31 2 = 0. As shown in Appendix A,

the scalar potential of the fields ® and S} 2, with the soft breaking of the U(1) x Zy x U(1) symmetry,
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allows for a CP-violating vacuum configuration with !

(@) =veos B, (69) =vsing, (S1) =we', (So) =z, tanf= 2. (48)

1

Together with Eqs. (4.7), these VEVs lead to the mass matrices
Mmp, Mpg )
0 M P pse's 0

MD = mp, 0 ) MR = ) MS = . ’ (49)

qM 0 0 useﬂg

0 mp,

being the matrix elements defined as

mp, , = bl,QUCOSB7 Mp3 4 = b3’4’l)SiIlﬂ7 M = d2u2u Hs = f1u1> q:dl/d27 b= f2/f17 (410)

where p and ¢ are rescaling adimensional parameters, which will be useful for later discussions. Taking
into account Eqgs. (3.12) and (4.9), the effective neutrino mass matrix in the original symmetry basis

reads

22 4
T ey ze?% _mbp, _ mp,mp,
x w x—usM2,y—,usT7
Mg = y T 0 , 9 (4.11)
pm e By e D
ze2i€ 0 we? ToM? ¢ M2 g2

with all parameters real. Performing the rotation to the charged-lepton mass basis with one of the unitary

matrices V, given in Eq. (4.5), we obtain for the 5¢ case:

T ycr Yysr
2 2 2 2 2 2
c zCr, — WS . sLc 2% —w*) spcp, + wz cos(260 )
VI MgV = | % yJ;L Jr( - w s e = ;LJF( ) LZ] : L)emg . (4.12)
2.2 2
% y ysL (wer + zsL) o2i€
T w

Since the matrix above is symmetric we mark with an ” x” the repeated elements. Note that for 5/ and
57 the permutations P12 and P13Pa3 of Eq. (4.6) have to be applied on the left and right. The above
matrix must be matched with the one defined in terms of the physical low-energy parameters according

to Egs. (3.13)-(3.15) and (2.36), for which the matrix elements are

NO: Mij = {U’*dlag <0, \/ Am%l? \/ Am%l) U/T:| s (413)
ij

10: M;; = {U’*diag <\/Am§1, \/Amgl + Am§1,0> U’T] , (4.14)

]

for both NO and IO neutrino masses [see Eqgs. (2.38) and (2.39)]. The lepton mixing matrix U’ is

parameterised as in Eq. (2.36), with only one physical Majorana phase « since, in our framework, one

1Spontaneous CP violation can also be successfully communicated to the lepton sector for the texture combinations
(45, T124) and (4%, T4s6). This is not the case for the pairs (45, T136,1) and (45, T146,1) for which Mp has one texture
zero per row (see Table 3.4) and the complex phase £ can be rephased away.
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neutrino is massless (see Section 3.2.1). It is clear from Eq. (4.12) that there are six relevant effective
parameters (z, y, z, w, £ and 05,) that determine neutrino masses and mixings. These are to be compared
with seven low-energy physical parameters which define M;;, namely three mixing angles 6;;, two neutrino
masses and two CPV phases (the Dirac and Majorana phases ¢ and «, respectively). Thus, there is a
relation among the elements of the effective neutrino mass matrix, which results in a correlation between

two low-energy parameters. It can be shown that, for the 5¢ case, the said relation is

Di2

D1z 4.15
Dos (4.15)

5{ : arg |:Mik12M123 } =0, Dij = My M;; — Mi2j7
while the corresponding ones for the 5) and 57 cases can be obtained by performing the index replacements
(11 — 12,13 — 23) and (11 — 13,13 — 33), respectively. For a given set of f;; and Am3, 3, values, the
above equations establish how the two CP-phases § and « are correlated. Moreover, we notice that all
parameters in Eq. (4.12) can be expressed in terms of low-energy neutrino observables. Indeed, for 5 we

have M
59 tanfy = |—2
! L ‘M12

. @=|Mu|, €=arg|MivDu
2
2 _ o [ VIDuslc} £ /[Dia[sE
|y| - |D23|£C )

|Di3|ci, — [Dialsy,
VID1slel F /[ Dia|s7
b
X

(|D13| — |D12|) sin(20L) F 2\/ |D13D12 COS(20L)
4z '

(4.16)

The equivalent expressions for 5, and 57 can be obtained performing the replacements (11 — 22,13 < 23)

and (11 — 33,13 — 23,12 — 13,23 — 12), respectively.

In order to establish numerically how 0 and « are related, we vary the mixing angles 6;; and the
neutrino mass-squared differences Am%1,31 within their experimental 1o and 30 ranges (see Table 2.2),
while changing ¢ from 0 to 27. Then, for both NO and IO cases, we compute M;; through Eqgs. (4.13)
and (4.14), respectively. The Majorana phase « is obtained by solving Eq. (4.15) for 5;*7, leading to the
results presented in Fig. 4.1, where in the left (right) column we show the allowed regions in the (J, @)
plane for the NO, , » (IO, ) corresponding to 57" with a NO (IO) neutrino mass spectrum. The
blue (magenta) regions were obtained taking the 1o (30) intervals for 6;; and Am3, 3, while the vertical
dark (light) grey band marks the current experimentally allowed region for the Dirac CP phase § at lo
(30). The results show that there is a strong correlation between o and §. For both NO and IO mass
ordering, the plots exhibit an approximate symmetry under the shift § — J 4+ w, which is due to the
fact that Eq. (4.15) is nearly invariant under that transformation at zeroth order in the smallest mixing
angle 013. Note that the absence of Dirac-type CP violation (§ = 0,) implies o = kn (k € Z). This
can be confirmed analytically by evaluating the Dirac and Majorana CP weak basis invariants, JSEM
and jﬁfj [135], which are both proportional to sin(2¢). Notice also that a future measurement of ¢ in
the intervals [45°,135°] and [135°,225°] would exclude the NO,, and NO, cases since, in these ranges,
Eq. (4.15) has no solution.
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Figure 4.1: Predictions for the Majorana phase « as function of the Dirac CP phase ¢ varying the neutrino
mixing angles 6;; and the neutrino mass-squared differences Am%, and Am3; in the 1o (blue) and 30
(magenta) allowed ranges given in Table 2.2. The dark (light) grey vertical band marks the 1o (30) range
for 0 shown in the same table, while the vertical dashed line is at the ¢ best-fit value. The left (right)
column corresponds to the cases with NO (IO) neutrino mass spectrum and a charged lepton mass matrix
of the 55 (top), 51 (middle) and 57 (bottom) type. Hereafter, these different possibilities will be labelled
as NO. , » and IO, ..
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Figure 4.2: Effective neutrino mass parameter mpgg as function of the Dirac CP-violating phase for the
5¢ (left), 57 (centre) and 5] (right) cases (the colour codes are the same as in Fig. 4.1). In each panel
we show the NO and IO results in the lower and upper fraction of the vertical scale, respectively. We
also show the upper bounds on mgg reported by the KamLAND-Zen [110], GERDA [111], CUORE [112]
and EX0-200 [113] collaborations (the height of the corresponding rectangles represent the uncertainty
in the upper bounds). On the right the sensitivity of several future experiments is shown (see Table 2.3).

The fact that the Majorana and Dirac CP-violating phases are related brings up an interesting con-
nection between neutrinoless double beta decay (85p,) and neutrino oscillations. With one massless
neutrino, the 58, widths are proportional to the effective neutrino mass parameter mgg that, in the
most general case, should only be sensitive to Majorana phases. Namely, for the NO and IO cases [136]

one has [see Egs. (2.41) and (2.42)]

NO: mgg = ‘\/Amgl i385 €72 ([ Am3, 83|, (4.17)
10: mgp =ciy \ |Am3, | ety + \V Am3, + |Am3, | 57, e (4.18)

Given that « is related to § through Eqs. (4.15), a dependence of mgg on § can be established, as shown
in Fig. 4.2 for the same cases treated in Fig. 4.1. We also show the present upper limits and future
sensitivities on mgg which are reported in Table 2.3 (the height of the bars reflects the uncertainties
in the nuclear matrix elements relevant for the computation of the decay rates). Our results show that,
although mgg is always below the current bounds (even taking the less conservative limits), several future
experiments will be able to probe the whole mgg for IO neutrino masses. In particular, for the current
best-fit values given in Table 2.2, we have mgg =~ 40 meV, which is on the upper 10 region. As usual,
future experiments with sensitivities of (1.0 - 4.5) meV will be needed to probe the NO regime (see e.g.

Refs. [137] and [138] for reviews on future prospects of 35y, experiments).

We will now study the properties of the sterile neutrino sector, particularly its spectrum and mixing
with active light neutrinos (heavy-light mixing). Although for our phenomenological analysis a full
numerical computation will be carried out, we first provide an analytical insight following the discussion
in Section 3.1 — see Egs. (3.16)-(3.20). According to the definition of the effective heavy neutrino mass
matrix Mhpeavy given in Eq. (3.9), and taking into account Mg and M from Eq. (4.9), we have for the
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4 x 4 unitary matrix Ug:

—icre 8/2 g eTiE/2 0 0
0 0 —2'62@"5/2 82€i£/2
U, = _ ' , (4.19)
0 0 iszeﬂE/Q 6267’5/2
isiet/? cre’é/? 0 0

where c¢1 2 = cos 1,2, 51,2 = sinq 2 and

2M 2qM
tan (201) = — , tan (2ps) = —— . (4.20)
Hs Pls

In the ISS approximation, ¢ ~ g =~ /4 leading to ¢; ~ s1 ~ cg =~ s9 =~ 1/\@, which characterises the

two pairs of pseudo-Dirac neutrinos with masses 2

’nN”L4’5 ~ M

oM oM 2qM 2qM

2 2
1+(“5)¢“51, g~ gM 1+<p“5)q:p“s 7 (4.21)

and mass differences ms — my = s , My — Mg = pus- As expected, the degree of degeneracy between
the masses is controlled by the small LNV parameter p;.
From Egs. (3.19), (4.5) and (4.19), we obtain for the heavy-light neutrino mixing defined in Eq. (3.20),

where for o« = e, u, 7 and j = 4,5,6,7, By, is given by the matrix,

iimz\?él s51€%/2 m]\?4 creé/? 0 0

m , m , mp.Cr, — Mp, S , mp.,Cr, — Mp,S ,

iDL iz DL e ;(mo, LqM Da5L)  ie/2 (mp, LqM D25L) . -it/2 (422)
.m : m : .(mp,sL +mp,c . mp.,Sr, +mp,cC .

j—2A s157,€%/2 Dy c1spet/? z( Ds LqM Do L)Sge_’5/2 (mp, LqM Do L)CQe_’5/2

for the 5§ case. The corresponding results for 5/ and 5] are obtained applying on the left of the above
matrix the permutation P15 and P12Po3 of Eq. (4.6), respectively. Notice that each neutrino in a quasi-
Dirac pair couples similarly to each lepton flavour «, i.e. Byy ~ Bys and Bys ~ B,7. Since we are
working in the charged-lepton mass basis, the above matrix provides an approximation to the mixing
among the charged lepton e, and the sterile neutrinos v4_7. It turns out that, due to the Abelian
symmetries imposed to realise the maximally-restricted textures, the CC flavour mixings for distinct
lepton flavours are related by low-energy neutrino parameters. Indeed, for the 5§ case,

B N B.s T B4 B, 5 B.s N B, Lz —wtanfy,

~ o~ ~ ~ tan6 ~ ~—
B B,s wycr' Bu B L B,s B,r wtztanfy

Be6 ~ Be7 ~ O7 (423)
n4

where all parameters involved depend on the neutrino observables as shown in Eq. (4.16). The corre-
sponding relations for the 5/ and 5] textures are obtained by performing the replacements (e <+ u) and
(e +» 7), respectively. In Table 4.1 we show the numerical values of some heavy-light mixing ratios using

the best-fit values for the low-energy neutrino parameters given in Table 2.2.

2The sterile neutrinos are labelled from 4 to 7 in increasing order of their mass. Thus, in the following equations the —
(+) sign refers to the lightest (heaviest) neutrino mass, labelled with indices 4 and 6 (5 and 7).
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NO. NO, NO, | 10, 10, IO,
B.i/Bui~Bes/B,s | 021 017 017 | 273 021 041
B,y/B, ~B,5/B,s | 027 088 087 | 051 1.09 124
B.4/Bea~B,s/Bes | 127 507 524 | 019 533  5.02

B.s/Bus ~ Ber/Br 0 - 0.36 0 — 4.96
BTG/BH6 >~ BT7/BH7 0.61 — 0 1.14 — 0
B.s/Bes ~ B.7/Ber — 1.64 0 — 0.23 0

Table 4.1: Predictions for ratios of heavy-light mixing parameters B,; computed using Eq. (4.23). The
results are shown for the NO. , r and IO, , » cases.

4.2 Radiative corrections to neutrino masses

The analysis presented in the previous section was based on the assumption that the (tree-level) ISS
approximation for the neutrino mass matrix given in Eq. (3.12) is valid, i.e., the parameters in Eq. (4.9)
are such that us,mp, < M. However, the presence of new fermions and scalars may induce relevant
corrections to the light-neutrino masses that should not be overlooked. This matter becomes even more
important when considering the high precision achieved in the determination of the oscillation parameters,
which is currently at the level of a few per cent for some of those observables (see Table 2.2). The one-loop
radiative corrections to neutrino masses have been computed in several works [139-142]. Here we revisit
the calculation of the one-loop corrections to the light neutrino mass matrix, and adapt it to our case
(the one-loop neutrino self-energy diagrams are succinctly presented in Fig. 4.3). We compute the 3 x 3
one-loop correction matrix M given by [139, 140]

ne—1
= ((Muw=)ij + (OMa=)is + Y (0Mgs)y;

a=1

no—1

+(OMz)ij + (6Meo)iy + Y (OMso)ij 1,5 =1,2,3,

a=1

(4.24)

where X(p) are the (active) neutrino self-energies, evaluated at p = 0 since the tree-level light neutrino
masses are extremely small. The number of neutral (charged) scalar mass eigenstates SO (S¥) is denoted
by ng — 1 and (n4 — 1), respectively. First, note that the W*-boson contribution vanishes since the self-
energies are evaluated at p = 0. Furthermore, by using the unitarity of the full ny X ny matrix U defined
in Eq. (3.6), it can be shown that the G* and S contributions to §M also vanish [141]. Thus, only
dMz, dMcgo and M go will be relevant. Performing the computation in the basis where the tree-level

neutrino mass matrix M given in Eq. (3.6) is diagonal, we obtain

(6Myz), = ——W c o f(TE (4.25)
Z)ij — 47rc%,vk < M\ Mz ) '
. m?
(5MG0 1677 E (m;Cir + miCl) (mjckj +kakj) f (]\é) , (4.26)
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Figure 4.3: Self-energy Feynman diagrams contributing to the radiative corrections to the neutrino
masses.

1 - a\* a\* mi
(6MSg)ij ) ;mk (A (AD)k; f <m%2> . (4.27)

The couplings C;; are defined in Eq. (3.20), my, are the tree-level neutrino masses, and mgo are the neutral
scalar masses. The Yukawa couplings matrices Af appear in the interaction terms between neutrinos
and neutral scalars S? — see Eq. (B.6) of Appendix B. The loop function in the above expressions is [see

Eq. (D.2) of Appendix D.1]
zlnx

flz) =— -1 (4.28)

1—2x

In our framework, the neutral scalar degrees of freedom originate from the two Higgs doublets ®;
and the two scalar singlets Sq 2 (see Table 3.5), which results in a total of seven scalar mass eigenstates
(S1—7) (see Appendix A for more details on the scalar sector). In the exact alignment limit with no
mixing among scalar doublets and singlets, and following the same argument as before regarding the
unitarity of U [141], it can be shown that the S§, and S, contributions, stemming from the neutral
singlets d.o.f., to M vanish. Hence, only the (SM Higgs boson) S¥ = H?, SY = R and S? = I will be

relevant, being their contributions given by

aw e mi « « m%
(5MHD)ij = _E Migv (mZCZk + kaZk) (ijkj + kakj) f (TT%) s (429)
k=1 ©
nf 2
(M =~ 52 (080 00 [0, + 000 7 (T) . aao)
nf 2
= QW N R gt *) f xy Mk
(M = S S T (N4 (NG04, + N0 5 (2). (431)

where the matrix N, is defined in Eq. (B.9). Notice that, assuming mp = my, the R and I contributions
cancel each other. This is what we will assume in our analysis (we refer the reader to Ref. [143] for a
model where these neutral scalar contributions are taken into account). As for divergences, those coming
from the G° and H? loops cancel each other, likewise for the R and I scalars. The Z-boson contribution

is finite by itself due to the first relation in Eq. (3.22).

We now wish to evaluate how the results of the previous section are affected when performing a
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numerical analysis to compute neutrino mass and mixing observables, including the loop corrections

discussed above. In particular, we are interested in

e Comparing the tree-level light neutrino parameters obtained using the seesaw-approximated Meg
of Eq. (3.12) with those stemming from the full neutrino mass matrix M in Eq. (3.3). This will not
only provide an insight about how the results are affected by neglecting higher-order terms in the
seesaw expansion, but will also set limits on the parameters, above which the approximation holds
up to a certain precision. As a reference observable we choose the neutrino mass-squared difference
AmZ,, which turns out to be the most sensitive one to such corrections. To quantify the effect of

considering the ISS approximation at lowest order, we define the parameter

= T?,,l ) Aﬁl%l = ﬁlg - ﬁzf, (4.32)
where the light-neutrino masses m; and m; are determined using Egs. (3.6) and (3.13), respectively.
For instance, Args = 0.1 indicates that the value of Am3; determined from M differs from that

computed with Mg by 10%.

e Evaluating the impact of the one-loop § M on the determination of low-energy neutrino parame-
ters. For that, we will consider the neutrino mass squared differences Am3; and Amj3,, since for
the mixing angles and CP phases the corrections are negligible when compared with the current
experimental precision. Likewise the previous case, we define the parameter

~ o 2
|Amij — Amg;

A 2.
1L 2 ’ ij
Amij

: (4.33)

where m; are the one-loop corrected neutrino masses and Amfj are the tree-level neutrino mass-
squared differences computed with the full M. Notice that, since we evaluate M in the basis
where M is diagonal, the light neutrino masses m, are determined diagonalising the matrix Mijgn, =
diag(mq,ma, m3) + dM,;, where §M,; is given by Eqs. (4.24)-(4.29) with ¢,j =1,2,3 and ny =7

(total number of neutrino mass eigenstates).

For numerical computations in the 57*" cases discussed in Sections 3.2.2 and 4.1, we consider a
benchmark scenario based on the following assumptions. We choose p = 1 and ¢ = 10 in Eq. (4.9),
implying me 7 ~ 10m4 5 and ms — my >~ m7 — mg = is. Regarding the scalar sector, we take tan 5 =1
[see Eq. (4.8)] and consider all physical neutral and charged scalar masses to be 1 TeV, except for the
SM Higgs boson with mass mgo = 125 GeV. Under these premises we span the parameter space in the

following way:

e The low-energy neutrino parameters are fixed to their best-fit values given in Table 2.2, and the
effective neutrino mass matrix elements M;; (defined in the ISS approximation) are computed
according to Egs. (4.13) and (4.14), for both NO and IO neutrino mass spectra. Relations (4.15)
are then solved to find the predicted value for the Majorana phase «, and the parameters in

Eq. (4.16) are determined. Notice that, although the values of z, y, z and w are set by low-energy
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neutrino parameters, the scales mp,, M and u, are not uniquely defined since Mg in Eq. (4.11)

is invariant under the rescalings

a
M —aM , ps — bus , mp, - —=mp

7 (4.34)

i

Choosing the initial values M = 100 GeV and ps = 10 eV, we determine mp, as shown in Eq. (4.11).
In order to probe a wide range of scales, we vary M and g, in the intervals [1,10%] GeV and
[1,10'] eV. For an arbitrary pair (M, us), we set the rescaling parameters with respect to the initial
values, namely a = M /100 and b = us/10. The corresponding mp, are obtained using Eq. (4.34).
This procedure leaves invariant the effective neutrino mass matrix (in the ISS approximation) and
guarantees that the low-energy parameters are always those corresponding to the experimental
best-fit values. Notice that such procedure may lead to very large Dirac masses mp,. Thus,
in order to ensure perturbativity of the Yukawa couplings b; in Eq. (4.7), we require ymax =
max{mp, ,/vi,Mp,,/v2} <5. It is important to stress that rescaling M, u, and mp, is the only
way to probe the parameter space of our model since ratios among different mp, are determined

by low-energy parameters which are fixed.

e For each set of (M, us,mp,), the full 7 x 7 neutrino mass matrix M is defined using Egs. (3.3)
and (4.9), and then diagonalised as indicated in Eq. (3.6) to determine U and m;_7. The active
neutrino mixing is characterised by the 3 x 3 (non-unitary) matrix U of Eq. (3.17), which is the
upper-left 3 x 3 block of U, in the physical charged-lepton basis. The non-unitarity effects are
parameterised by the matrix 1 of Eq. (3.17). Finally, we compute the one-loop corrections to the

light neutrino masses as explained above.

We remark that the CC mixing between the charged lepton with flavour a@ = e, i, 7 and the heavy
sterile neutrino v; (j = 4—7) is set by B,; as defined in Eq. (3.20)-see also Eq. (B.1). In practice, By; is
the (v, 7) element of U computed above and defined in the charged-lepton mass basis. Notice also that we
will be able to cover wide ranges of B,; since these elements scale as mp/M. Throughout the remaining
of this work, we will use as reference parameters the average mass of the lightest sterile neutrino pair

mys, a degeneracy parameter ry and the mixing of the electron with the lightest sterile neutrino V.,

defined as

my + ms mp,

mys = ZM, TN:727‘7 ‘/eN:|Be4|2

2 My4s mMy4s V2mys

(4.35)

In Fig. 4.4 we show the contour-level plots for A%l (left panels) and A3Z (right panels) defined in
Eq. (4.33) for the NO, (upper panels) and 10, (lower panels) cases. The contours of V4, rn and Ajgg are
also shown by solid, dash-dotted and dotted lines, respectively. Within the grey shaded region b;"** > 5.

From the inspection of these plots we conclude the following;:

e The validity of the (tree-level) inverse-seesaw approximation is verified at less than the percent

level for ps = 10 — 20 eV (region above the Args = 1% horizontal line). The reason why Args does

~
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Figure 4.4: Impact of one-loop corrections on Am3; (left panels) and Am#, (right panels) for the NO,
(upper panels) and 10, (lower panels) cases. The coloured contour levels are for the A}} parameter
defined in Eq. (4.33). For reference, we show the dashed contours with A, = 1%,10%. The solid,
dash-dotted and dotted lines correspond to V.y, rny and Argg contours, respectively. Within the grey
shaded region on the lower-right corner of each panel the largest Yukawa coupling of YBQ [see Eq. (4.7)]
obeys b** > 5.

not depend on mys for a given ug, can be understood taking into account that the next-to-leading-
order approximation of the inverse seesaw scales as i m‘}j /M* and, consequently, Args ~ mZD J/M? ~
m2 /m35. Thus, if p15 is kept constant [b = 1 in Eq. (4.34)], mp, scales as mys leaving Ajsg invariant.
Moreover, for a given mys, a rescaling of us; — bus leads to a rescaling of Args — Args/b, as can

be seen in Fig. 4.4.

e The chosen intervals for us and M allows us to swipe a wide range for the heavy-light mixing
parameter, namely V2, lies between 10712 (or even less) and 1073 in the parameter-space region
where the inverse seesaw approximation holds up to 1%. The VfN contours are approximate hori-
zontal lines since, as shown in Eq. (4.22), heavy-light mixing scales as mp, /mys and, consequently,
V2, remains invariant for constant s due to the same rescaling of mp, and mys. Notice that this
feature fails for pgs ~ mys (upper-left corner of the left panels in Fig. 4.4) since in this case the

leading-order ISS approximation for V. is no longer valid. For the degeneracy parameter ry, the
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contours follow the linear relation ry ~ ps/mys already shown in Eq. (4.35) (dash-dotted lines in

the right panels of Fig. 4.4).

e The nearly-vertical levels of A?L indicate that radiative corrections to neutrino masses depend
mainly on mys. For NO,, the one-loop corrected Am3, deviates from the tree-level result by less

700 GeV, while for Am%l that threshold is at mys < 20 GeV. Instead, the

~

than 1% for mys <
corresponding upper limits on mys for 10, are at 3 GeV and 100 GeV, respectively. Notice that,
being the one-loop corrections typically larger than the experimental uncertainty (see Table 2.2) for
mys above those values, this does not mean that the symmetry realisation presented in Section 3.2.2
is no longer valid. It just signals the fact that the tree-level relations (4.16) start failing. The take-

home message to learn from this analysis is that the scale invariance of the tree-level inverse-seesaw

approximation holds up to a certain level depending on the sterile neutrino mass.

4.3 Charged lepton flavour violation

Lepton flavour violating processes are in the front line of experimental searches for physics beyond the
SM [144]. The ISS model, being a paradigm for low-scale neutrino mass generation, provides a natural
scenario for the observation of flavour transitions beyond neutrino oscillations. The charged and neutral
current interactions with heavy sterile neutrinos induce new phenomena which are strongly suppressed
in the SM extended with light neutrinos only. Nevertheless, the predictive power of the general ISS is
limited by the arbitrariness of its parameter values. In the present framework, the symmetries discussed
in Section 3.2.2 provide the ground for a testable scenario in the light of present and future experimental
probes on LFV processes. Thus, we now study LFV in the context of the scenarios set in the previous
sections. Our attention will be focused on the cLFV processes listed in Table 4.2, where the present
experimental upper limits and future sensitivities for the BRs and CRs are shown. We have revisited the
computation of the rates taking into account the field content in our framework. The details are shown
in Appendices B-D.

As stated in Section 4.1, we focus our study on the case of the charged lepton matrix texture 5. To
justify this choice, let us look at the cLFV decay ¢, — €E€j€g, which is mediated at tree level by the
neutral scalars R and I coming from the two Higgs doublets (in the alignment limit). The corresponding

BR for this process reads [72]

BR({, — (50505) 1 2 2
o By "o _ cxﬁ,’yé’ aﬁ,’yé‘ 5
BR (la — lgravp)  16(1 + 555){ {g“ o] e )} (4.36)
—Re[g37 g5 |+ (Lo R},
where
wis _ oty (T (L] aBys 11
grr " = (ND)al E)M(@ - miﬁ)’ 9rr = (Ne)pa(Ne)sy (@ - miﬁ)’
(4.37)
1 1 1 1
af,yo _ NT N - = aB,yé = (N NT _ _—
97" = (NDaa(Nosr (7 +07)s 057 = (NsaNDin (1 + 7).

being mp, ; the neutral scalar masses. The matrix N, dictates the interactions between charged leptons
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cLFV process Present limit (90% CL) Future sensitivity

BR (1 — e7v) 4.2 x 1071 (MEG [34]) 6 x 10714 (MEG 1I [35])
T = ey) 3.3 x 105 (BaBar [145]) 3 x 1079 (Belle II [146))
BR(T — uv) 4.4 x 1078 (BaBar [145]) 1079 (Belle IT [146])
BR(u~ — e ete™) 1.0 x 1072 (SINDRUM [36]) 10716 (Mu3e [147])
BR(7~ — e~ete) 2.7 x 105 (Belle [148]) 5 x 10-10 (Belle IT [146

( [146])

) 2.7 x 108 (Belle [148]) 5 x 1010 (Belle II [146])
BR(r™ = etpu~p™) 1.7 x 1078 (Belle [148]) 3 x 10710 (Belle II [146))
BR(7~ — u~ete) 1.8 x 1078 (Belle [148]) 3 x 10710 (Belle II [146])
BR(t™ — utee) 1.5 x 1078 (Belle [148]) 3 x 10710 (Belle II [146])
BR(7™ = pu ™) 2.1 x 1078 (Belle [148]) 4 x 10710 (Belle IT [146])
CR(u — e, Al) - 3 x 10717 (Mu2e [149])

10-15 — 10~17 (COMET I-II [150))

CR(i — e, Ti) 4.3 x 10712 (SINDRUM II [37]) 10~'8 (PRISM/PRIME [151])
CR(p — e, Au) 7 x 10713 (SINDRUM II [39]) —
CR(u — e, Ph) 4.6 x 10~ (SINDRUM II [38]) -
cLFV process Present limit (95% CL) Future sensitivity
BR(Z — e pu*) 7.3 x 107 (CMS [152]) 105 — 101% (FCC-ee [153))
BR(Z — eFr¥) 9.8 x 106 (OPAL [154)) 102 (FCC-ee [153))
BR(Z — pFr%) 1.2 x 10-° (DELPHI [155]) 1079 (FCC-ee [153])

Table 4.2: Current experimental bounds and future sensitivities for the branching ratios (BRs) and
capture rates (CRs) of cLFV processes.

and the neutral scalars as shown in Eq. (B.13). For the 5{ case, the structure of N, is

x 0 0 x 0 x x x 0
5{:Ne~ |0 x x|, :Ne~ |0 x 0],5]:Ne~|x x 0] (4.38)
0 x X x 0 x 0 0 x

The presence of zeros in N, imposed by the flavour symmetry leads to a natural suppression of the above
BRs. In fact, considering the most constraining three-body decay p — 3e (see Table 4.2), the tree-level
contribution vanishes for the textures 57" (decoupled electron or muon) irrespective of mpg ;. Although
this does not hold for 57, in this case the BRs are strongly suppressed by the tiny couplings in the p —e
sector. The same conclusion cannot be drawn for the texture 4% since the flavour symmetry does not
yield the charged-lepton decoupling feature. To suppress the decay rates in this case, not only very large
mp,; masses are required but also they must be extremely fine tuned [72], as can be readily seen from
Eq. (4.37). Similarly, the analysis of the one-loop contribution of the neutral scalars R and I to the decay
Lo — Lg7y reveals that in the 45 case requires fine-tuned scalar masses. On the other hand, for 57 the

scalar contribution to the p — ey amplitude vanishes.

We now analyse the constraints imposed on the parameter space taking into account the present
limits and future sensitivities for the processes indicated in Table 4.2. We focus on u — ey, u — 3e
and g — e conversion in Au, Ti and Al since these are either the most constraining at present or the

ones for which the projected sensitivity is higher. Later on, we will comment on other LFV three-
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Figure 4.5: Constraints on the (mys, 11s) parameter space imposed by the MEG bound on BR(u — ev)
(yellow crosshatched region) and the SINDRUM II limit on CR(p — e, Au) (grey hatched region). The
contours corresponding to the future sensitivities of the MEG II (solid orange) and Mu3e (red dashed)
experiments are also given. The black and blue dash-dotted lines show the contours of CR(u — e, Al) and
CR(u — e, Ti), respectively, for values within the sensitivity of future experiments (see Table 4.2). In the
blue shaded region CR(u— e, Ti) < 10718, Limits on b"®* and Agg are also shown (grey, green and cyan
shaded regions). The results are shown for all cases found to be realisable through Abelian symmetries,
ie. for the 57" cases with NO (left panels) and IO (right panels) neutrino mass spectra.
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body and Z decays. The (mys, pus) parameter space is covered by means of a full numerical analysis as
described in the previous section, using the results given in Appendices B-D. For simplicity, we work in
the alignment limit for the two Higgs doublets and in the decoupling limit for the two neutral scalar
singlets, as explained in Appendix A. The interaction terms between fermions and scalar eigenstates
are those given in Section B.2. Since the analysis of textures and symmetries for the quark sector is
out of the scope of this work, the up-quark and down-quark mass matrices are taken to be diagonal,
ie., M, = diag(m.,, me, m¢) and My = diag(mg, ms, mp) [89]. Consequently, the CKM matrix V is the
identity matrix, and the flavour-changing matrices N4 and N,,, defined in Egs. (B.10) and (B.11), vanish.

The results of our numerical analysis are shown in Fig. 4.5 for the six cases NO. ,, - (left panels) and
I0,,,» (right panels). The colour codes in the legend of the upper-left panel apply to the whole figure.

By inspecting these results we conclude the following:

e The validity of the inverse-seesaw approximation up to 1% level, i.e. Arss < 1%, imposes lower
bounds on the LNV parameter ps > 10 — 20 eV (cyan shaded regions), which correspond to upper
bounds on the mixing V2, < 107* — 1073 (see Fig. 4.4). The light (dark) grey regions show that a
considerable fraction of the parameter space is excluded if one takes into account b"** < 1 (5) as a

perturbativity requirement.

e The MEG and SINDRUM II limits on BR(x — ey) and CR(u — e, Au) exclude mys 2 1 — 10 GeV
for Aigs = 1%. Moreover, the improvement on BR(yu — ey) foreseen by MEG II (solid orange
contour) would have a marginal impact in covering the parameter space in our framework. On
the other hand, reaching a sensitivity of BR(u — 3e) at the 1071 level would be more relevant in

constraining the parameter space, especially for heavier sterile neutrinos, i.e., for larger mys.

e The COMET and PRISM/PRIME projected sensitivities for CR(u — e, Al) and CR(p — e, Ti),
represented by black and blue dash-dotted contours, respectively, cover a considerable part of the
parameter space, leaving unprobed the regions in shaded blue where CR(p — e, Ti) < 10718, In the
best-case scenario (NO,), probing CR(u — e, Ti) down to 107!® would cover the whole parameter

space, as can be seen in the upper left panel.

The above results provide a general idea regarding how present experimental data constrain the min-
imal ISS with Abelian symmetries, and how future experiments would further probe its parameter space.
However, it is interesting to investigate possible relations among different processes and, in particular,
to ask whether the observation of a particular cLF'V decay would allow us to draw conclusions regarding
others. Notice that, in general, this is only possible when there is some relation among the LF'V param-
eters and/or masses, as it is our case (see Table 4.1). With this purpose, we compare BR(u — ey) with
BR(r — £,7), and CR(u — e, Ti) with BR(u — 3e). The results are shown in Figs. 4.6 and 4.7 for NO
and 10, respectively, where all points respect the present limits shown in Table 4.2. The colour of each
point is linked to the corresponding value of mys following the colour map shown in the middle of the
figure. Some important conclusions stand out from the observation of these results. Namely, it is clear
that any future observation of a radiative (or three-body) 7 decay with a BR down to 10~? would exclude

all scenarios presented in this work. In fact, for both 7 — py and 7 — ey the BRs are 107!! at most,
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well below the Belle II sensitivity (left panels). In general, the spreading of the scatter points is due to
variations in heavy-light mixing and heavy neutrino masses. However, in some cases, we observe a linear
relation between BR(7 — py) or BR(r — ey) and BR(p — e7). For instance, using Eqgs. (C.2) and (C.3)

together with the approximate results of Table 4.1, it can be shown that for NO, the relation
BR(T — B,y |?
(r=ey) ‘ 41 BR(T — vrei) ~ 0.013 (4.39)

BR(p—ey)  |Bu

holds for the whole range of mys5, in perfect agreement with the numerical results shown in the inner
plot of the upper-left panel in Fig. 4.6. From the comparison of CR(u — e, Ti) with BR(u — 3e) (right
panels of Figs. 4.6 and 4.7) we see that in all cases BR(u — 3e) is at most 10713, Notice also that, for
mys S 100 GeV, there is an approximate linear relation between CR(u—e, Ti) with BR(u — 3e), which is
no longer valid for higher masses due to cancellations among the various contributions to p— e conversion
amplitudes. We have also investigated whether our framework could lead to observable signals in LVF
Z decays by computing BR(Z — (,{5) with a # 8 = e, u, 7. We have concluded that, after imposing
the present constraints on p — ey and p — e conversion in nuclei, the Z — £,{g rates are well below the

future sensitivities given in Table 4.2.

4.4 Constraints on heavy sterile neutrinos and future prospects

In the previous section we have analysed the constraints imposed by LFV experimental searches on
the minimal inverse seesaw model with Abelian flavour symmetries, adopting as reference parameters the
LNV parameter p, and the average sterile neutrino mass mys. Although this provides a clear understand-
ing on how constrained the original scales in the Lagrangian are, it is convenient to look at the problem
from a perspective where p, is replaced by the active-sterile mixing parameters B,;. Notice that, in our
framework, we only need to consider one of these quantities since, as seen in Section 4.1 and summarised
in Table 4.1, they are all correlated. From now on, we will take as constrained parameters my5 and VeQN
defined in Eq. (4.35). For each of the scenarios analysed in this work, the correspondence between the
(mas, ps) and (mys, V.2;) parameter spaces is established by figures like Fig. 4.4 (left panels). Following
this approach, we will be able to compare the constraining power of the cLFV processes discussed in
the previous section with other experimental searches which are usually translated into constraints on
mass and mixing parameters (see e.g. Refs. [45, 51, 53, 156-159]). We are not interested in carrying out
an exhaustive analysis of all sensitivity studies performed so far. Instead, we will consider the following

searches:

¢ Beam-dump experiments: In a beam-dump experiment a primary beam strikes a high-density
target and produces a large number of secondary heavy mesons which, in the presence of active-
sterile mixing, can decay to final states with sterile neutrinos. Part of them fly towards a detector,
decaying inside its volume. The NA3 experiment used a 300 GeV 7~ beam incident on 2 meter

long beam dump to, among other purposes, look for the decays of heavy neutrinos N into /v and
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Figure 4.6: [Left] BR(r — pv) and BR(7 — ey) (inner plots) vs. BR(u — ey) for NO. , » from top to
bottom. The MEG bound BR(7 — ey) < 4.2 x 107!3 sets the vertical red exclusion band, while the
vertical dashed line corresponds to the MEG II projected sensitivity. [Right] CR(u—e, Ti) vs. BR(u — 3e)
for the same NO case as in the left panel. The vertical and horizontal red exclusion bands result from the
SINDRUM and SINDRUM II limits on BR(p — 3e) and CR(u — e, Ti), respectively (see Table 4.2). The
vertical dashed line corresponds to the Mu3e projected sensitivity for 1 — 3e. In all panels, the scatter
points obey all constraints shown in Table 4.2, being their colour linked to the value of my5 according to
the colourmap shown in the middle.

70~ (£ = e, p) final states. In such experiment, heavy neutrinos may originate from the rare 7
and K meson decays, or in semi-leptonic decays of charm D and F' or beauty B mesons. At NA3
the limit VA, < 107 has been set within a heavy neutrino mass region 1 — 2 GeV. The CHARM
experiment [160] has conducted similar N — £fv searches using a prompt neutrino beam produced

2, <1077 for 1 — 2 GeV heavy

by dumping 400 GeV protons on a copper beam dump, setting V.5, <

neutrinos. We will consider the NA3 and CHARM exclusion regions reported in Figs. 8a and 2 of
Refs. [161] and [160], respectively.
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Figure 4.7: The same

Future: The beam-dump experiment SHIP will use 400 GeV protons extracted from the CERN
Super Proton Synchrotron (SPS) accelerator, dumped on a high-density target. The experiment
will search for heavy neutrinos with mass up to ~ 6 GeV produced in the decays of D and B mesons.
As for active-sterile mixing, SHIP will be able to probe it down to V.2, ~ 1071 for 1.6 GeV heavy
neutrinos. In this work, we will consider the SHIP exclusion region given in Fig. 3 of Ref. [162].
Although designed to measure active neutrino oscillation parameters with high precision [163], the
DUNE experiment will also be able to search for heavy sterile neutrinos [164]. This will be achieved
by striking a target with a very high-energy proton beam (up to 120 GeV), leading to the production

of mainly pions and kaons which may produce sterile neutrinos in their decays. For illustration, we
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as in Fig. 4.6 for 10, 10, and 10

will consider the results presented in Fig. 2 of Ref. [164].
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e High-energy colliders: At the Large Electron-Positron (LEP) collider, the L3 and DELPHI
collaborations have looked for heavy neutrinos N produced via on-shell Z boson decays ete™ —
Z — Nv. Several N decay modes were considered, namely N — Z*v(Z* — ¢l vv,jj) and
N — W*¢(W* — lvy, jj"). The L3 results were able to probe V.4, down to 104 for ~ 20 GeV heavy
neutrinos, while the DELPHI collaboration conducted similar searches excluding V2, > 3 x 107°
for masses in the range 3 — 50 GeV. We will consider the L3 and DELPHI exclusion regions given
in Figs. 6 and 10 of Refs. [165] and [166], respectively.

At the LHC, the ATLAS and CMS collaborations are also looking for heavy neutrino signals.
Both collaborations search for N production in W+ — ¢+ N followed by subsequent decays N —
WHEF (W** — (1) with £ = e,u. ATLAS has explored event signatures consisting of three
charged leptons (electrons and muons) with same-sign dileptons of the same flavour (LNV mode).
CMS has extended the search to include events with lepton number conservation, thus being sensi-
tive to displaced decays. Overall, the ATLAS and CMS analyses on trilepton signatures excluded
V2 2 107* — 1075 for heavy neutrino masses in the 5 — 50 GeV range. Both collaborations have
also searched for the decays of heavy neutrinos produced in pp — W** — (*N into same-sign
dileptons and jets N — W* — ¢* (W* — jj'). For the ATLAS exclusion regions we will consider
the results given in Figs. 6 and 8 of Refs. [167] and [168], while for the CMS ones we take the re-
sults of Figs. 2 and 4 of Refs. [169] and [170], respectively. In the presence of active-sterile neutrino
mixing, new interactions of the SM Higgs boson may arise, opening the H® — Nv decay channel (if
kinematically allowed). The subsequent decays N — ¢W* (W* — fv) and N — £Z* (Z* — £107)
at the LHC have been studied in Ref. [171] to constrain the mixing-mass parameter space as shown

in Fig. 3 of that reference.

Future: Future high-energy colliders will play a crucial role in searching for heavy sterile neutrinos.
In particular, during the high-luminosity LHC phase (HL-LHC), ATLAS and CMS will be able to
cover masses up to 2 — 3 TeV. Sensitivity studies have also been performed for a Future Circular
Hadron Collider (FCC-hh) at a 100 TeV centre-of-mass energy [52, 172]. For the HL-LHC and FCC-
hh cases we will consider the exclusion regions given in Fig. 25 of Ref. [172] corresponding to LHC14
and LHC100 with integrated luminosities £ = 3 ab™! and 15 ab™!, respectively. Heavy-neutrino
searches performed at a future high-luminosity eTe™ storage ring collider (FCC-ee) can drastically
improve the limits on active-sterile mixing down to 107! for ~ 60 GeV neutrinos (Fig. 8 of Ref. [173]
). In a future eTe™ linear collider, as the International Linear Collider (ILC), the sensitivity on
heavy-light neutrino mixing can reach values down to 10~ for a 500 GeV centre-of-mass energy
and an integrated luminosity of 100fb~" (Fig. 15 of Ref. [174]). For a Compact Linear Collider
(CLIC) operating at 3 TeV and with £ = lab™ !, values of V. ~ 1079 — 10~ can be probed for a
600 GeV — 2.5 TeV mass range (Fig. 24 of Ref. [174]).

Detectors placed near LHC interaction points would allow for searches of heavy-sterile neutrinos
produced in pp collisions through the reconstruction of displaced vertices in a low-background en-

vironment. Several proposals have been been put forward to conduct this kind of analyses, namely
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the AL3X [175], CODEX-b [176], FASER2 [177], MATHUSLA [178] and MoEDAL [179] detectors.
The sensitivity improvement with respect to that achieved by the main detectors (ATLAS, CMS
and LHCD) could be of several orders of magnitude in the low-mass regime. In this work we will
consider the FASER2 and MATHUSLA exclusion regions given in Figs. 5 and 37 of Refs. [180] and
[178], respectively.

Given that we are dealing with nearly-degenerate sterile neutrinos due to the smallness of us, LNV
decay modes are expected to be suppressed as a result of the quasi-Dirac nature of the heavy sterile
neutrinos. This is, however, not the case if the average decay width is of the order of the mass
splitting, i.e. 'y = (Tn, + ', )/2 =~ Amy. This issue is especially relevant when looking for the
same-sign dilepton signatures discussed above. In order to provide an insight regarding whether
LNV decays are suppressed or not, we will use the same-sign to opposite-sign ratio [51, 181]

2
Amz;

Ry — 2N
i 2%, + Am3,’

(4.40)

such that Ry > 1/3 can be adopted as a criterion to identify the regions of the parameter space
where LNV decays are unsuppressed [182]. To compute I'y = (I'y + I's)/2 in terms of the sterile

neutrino masses and mixings we use the results of Ref. [156].

Electroweak precision data (EWPD): As already mentioned, in the presence of sterile neu-
trinos, the active neutrino mixing matrix U relevant for neutrino oscillations [cf. Eq. (3.17)] is no
longer unitary. Deviations from unitarity are constrained by neutrino oscillation data, electroweak
precision tests and lepton flavour violating decays [158, 183, 183-188]. In fact, the off-diagonal ele-
ments of 7,5 defined in Eq. (3.23) are mainly restricted by the LFV decays studied in the previous
section. On the other hand, n,, are restricted by SM gauge boson decays, namely W — ¢,v, and
Z — vv, and universality tests in W and 7 decays. We will use here the limits for |n,,| obtained

in Ref. [158], namely:
Meel <1.25x107%, |n,,| <22x107% || <28x1077°. (4.41)

Notice that, in our framework, the 7,4 are not independent since the B,,; are related to each other
as a result of the Abelian flavour symmetries. These relations are written in terms of low-energy
neutrino observables as shown in Eq. (4.22), implying that 1,5 can be expressed by a single mixing
parameter which, for convenience of our analysis, we choose to be VfN = |Bes|?. In this case, we
have

2

B..
= (4.42)

Be4

7
1
aal = 3 32 Bosl? = Vil + 00) 0|
1=4

where we have used Eq. (3.23) and the fact that |Bas| =~ |Bas| and |Bas| =~ |Bar|. It is then
possible to use the above equations together with Table 4.1 to compute the x,; factors and extract

upper bounds on V%, from the limits given in Eq. (4.41) for |n,,| (see Table 4.3).

55



Mee] ,,] -

NO, [I0.] | 1.25 x 1073[1.25 x 1073]  3.90 x 1076 [3.42 x 1074  1.97 x 10~4[4.01 x 10~3]

NO, [I0,] | 227x107%[2.44 x 107°]  6.58 x 1070[9.29 x 107%]  7.43 x 1077 [9.05 x 10~7]

NO, [10,] | 3.86 x 1074[7.64 x 107°]  4.17 x 107%[3.35 x 107°]  1.02 x 10~*[3.09 x 10~%]

Table 4.3: Upper bounds on V2, imposed by EWPD (see text for details) for NO, , , and 10, ,, ;.

e Neutrinoless double beta decay: In the presence of sterile neutrinos, the effective neutrino

mass parameter mgg, relevant for neutrinoless double beta decay, is [189]

mZ+Zp2B2 i el (4.43)

— m;

H'Mw

nf
mgs ~ Y BLpPo——
=1 p

where p? ~ —(100 MeV)? is the virtual momentum of the neutrinos and m; are the physical neutrino
masses. The first and second sums run over the number of light and heavy neutrinos which, in the
present case, is three and four, respectively. For the 1 GeV—10 TeV mass range studied in this work,
the contributions of the second term in Eq. (4.43) are negligible and, thus, the results in Fig. 4.2
remain valid (for neutrinoless double beta decay studies in the presence of sterile neutrinos see e.g.

Refs. [54, 190-195]).

In the left panels of Figs. 4.8 and 4.9 we present a summary of all the current constraints discussed
above, together with those stemming from p — ey (MEG) and p — e conversion in Au (SINDRUM)
searches (see Fig. 4.6), now shown in the (mgs, V%) plane. For the EWPD exclusion regions we consider
the most restrictive V% limits given in Table 4.3, i.e. those extracted from |77uu’ (third column). On
the right of the same figures, the projected sensitivities of the several experiments enumerated above are
shown, including the cLFV ones already presented in Fig. 4.6 in the (mys, us) plane. For all cases, the
overlap of the current exclusion regions (left panels) is shown in light yellow. By looking at these two

figures one can conclude that:

e For mys = 2 GeV, the strongest constraints are typically those imposed by the SINDRUM and
MEG limits on BR(p — ev) and CR(p — e, Au), respectively, and by EWPD (left panels). One
exception is the 10, case where, for 2GeV < mys < 50 GeV, the DELPHI, ATLAS and CMS
limits are stronger. In all situations, the CHARM exclusion region is more constraining when
mys = 1 — 2 GeV. Notice that the EWPD exclusion regions are not the same for the different NO
and IO scenarios since the U(1) flavour symmetries, together with present neutrino data, impose

different relations among the B,;. Thus, the limits on |n,,| cannot be directly translated into

limits of a single B,; by neglecting the remaining B with different £ # j.
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Figure 4.8: [Left] Constraints imposed on the (mys, V/%;) parameter space by the MEG and SINDRUM
limits on BR(u — ey) and CR(u—e, Au) (see Section 4.3), by the current searches conducted at colliders
and beam-dump experiments and by EWPD (see discussion in the main text where the sources of the
several exclusion regions are indicated). As in Figs. 4.6 and 4.7, b*®* > 5 within the grey-shaded region.
To the left of the solid brown line Ry > 1/3. [Right] Projected sensitivities for cLFV searches and other
experiments discussed in the main text. The yellow-shaded regions correspond to overlapping the current
constraints shown on the left panels. Inside the blue shaded region CR(u — e, Ti < 10718). The top
(middle) [bottom] panels correspond to the NO. (NO,) [NO,]| case.
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constraints from LFV searches and EWPD (see right panels). Therefore, in the context of the
present work, high-energy collider probes conducted at the FCC-ee and at experiments like SHIP,
MATHUSLA, DUNE and FASER2 turn out to be of utmost importance (obviously, taking into
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Figure 4.9: The same as in Fig. 4.8 for 10, 10, and 10.

ignal of sterile neutrinos with V3, > 10~* at future hadron or linear colliders (HL-LHC, FCC-

LIC and ILC regions) would not be compatible with the limits already imposed by current

nt the considered sensitivity studies).
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e While for NO, cLFV indirect searches are fully complementary to the aforementioned direct ones,
this is not the case for the remaining NO and IO scenarios. In particular, for inverted neutrino
masses, the region with V4, < 1072—1078 cannot be probed by future ;1—e conversion experiments.
In this case, such mixing regimes can be covered by displaced-vertex experiments and by a high-
luminosity Z factory like the FCC-ee. Notice that Ry > 1/3 within the sensitivity regions of those
searches (see the brown solid lines in the left panels), indicating that LNV sterile neutrino decays
are not suppressed by their quasi-Dirac nature. It should also be mentioned that in the absence of
a positive p — ey signal, the impact of MEG II data would be mild (compare the yellow regions
with the solid orange line in the right panels). Instead, if that decay is observed, ranges for mys
and V2, can be set in most of the cases, being the latter relatively narrow. As for u — 3e, future
probes conducted by the Mu3e collaboration will be able to cover V.2, down to 1076 — 10=7 for

wide ranges of sterile neutrino masses.

To conclude this section, we remark that although we have shown the results of our analysis in the
(mas, V2y) plane, it is relatively easy to infer how the obtained exclusion regions and sensitivity contours

would appear choosing a different mixing parameter by taking into account the relations in Table 4.1.
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Chapter 5

Conclusions

The success of the Standard Model of particle physics is by now well established. Nonetheless, numerous
phenomena remain unexplained within its framework. In particular, neutrino oscillations are an undeni-
able evidence of physics beyond the SM, since they imply that neutrinos are massive particles and that
there is mixing in the lepton sector. In order to account for the origin of the tiny neutrino masses, the
mixing patterns between leptons and the hierarchy among their masses, which constitute the so-called

flavour puzzle, we must work in extensions of the SM.

In Chapter 2, we briefly described the canonical seesaw mechanisms, based on the addition of new
particles to the SM in order to explain neutrino observables. We showed that several high and low-scale
models can be constructed. The former ones explain the smallness of neutrino masses through very
heavy extra particles or unnaturally tiny Dirac Yukawa couplings, as is the case of the Type-I seesaw.
The latter models, among which the Type-II seesaw, can generate the neutrino masses through natural

O(1) Yukawa couplings and masses of the new particles of the order of the EW scale.

The work developed in this thesis follows a low-scale seesaw approach, since it opens the possibility for
potential detection of direct new physics signals in future experiments. We have thoroughly investigated
the minimal inverse-seesaw mechanism with couplings constrained by U(1) flavour symmetries, and with
all fermion masses generated via spontaneous symmetry breaking through the vacuum expectation values
of scalar fields. In Chapter 3, we presented the low-scale inverse seesaw mechanism. After finding the
maximally-restrictive mass matrices compatible with current neutrino data, we identified all possible U(1)
symmetry realisations and concluded that at least two Higgs doublets and two complex scalar singlets

are required to successfully implement those symmetries.

Having established our model, we proceeded in Chapter 4 to study its most relevant phenomenological
implications for the realisable maximally-restrictive texture sets. The presence of scalar singlets in the
model opens up the possibility for spontaneous CP violation, which turns out to be successfully commu-
nicated to the lepton sector via their couplings to the new sterile fermions. In Section 4.1, we showed
that, as a result of SCPV and the Abelian symmetries, the Majorana and Dirac CP phases are related
to each other. Furthermore, in Section 4.2, it was shown that, including one-loop corrections to neutrino

masses and requiring them to be at the one-percent level, sterile-neutrino mass ranges can be established,
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within which the tree-level results are still valid in light of the present experimental precision in the
determination of the oscillation parameters. Due to the presence of flavour symmetries, the heavy-light
mixings are not independent, and their ratios are entirely determined by the values of the lepton masses,
mixing angles and CP-violating phases. This provides a very constrained setup for phenomenological
studies in the framework of current and future probes that are sensitive to sterile neutrino states.

In Section 4.3, we then studied several cLFV decays and obtained the exclusion regions set by the
experimental limits on the branching ratio BR(u — ev) and capture rate CR(u — e, Au). These results
establish upper bounds on the active-sterile mixing VfN of about 10~* — 107°. The prospects to further
explore the parameter space were discussed in view of the projected sensitivities of future LFV searches,
especially those dedicated to p — ey, 4 — 3e and u — e conversion in nuclei. After analysing the
constraining power of cLF'V processes, we focused our analysis on alternative probes, namely collider and
beam-dump experimental searches that are sensitive to the presence of sterile neutrinos. We concluded
in Section 4.4 that, in general, the HL-LHC, FCC-hh, ILC and CLIC sensitivity regions are already
excluded by current LFV and EWPD constraints for all possible U(1) symmetry realisations.

Searches at a high-luminosity Z factory as the FCC-ee and at experiments like SHIP, MATHUSLA
and FASER2 would be highly complementary to the Mu3e, Mu2e, COMET and PRISM/PRIME projects.
Although we have not explored all possible future scenarios which could arise from independent results of
different searches, it is clear that a single positive signal in any of those experiments would definitely put
at test the scenarios studied in this thesis. In this sense, further symmetry-motivated studies based on ex-
tensions of the Standard Model and performed in the context of sterile neutrino searches are undoubtedly

welcome.
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Appendix A

Scalar sector

A.1 Scalar potential with soft-breaking terms

The Abelian symmetries that realise some of the maximally-restrictive textures of Section 3.2.1 were
presented in Section 3.2.2, being the minimal scalar-field content required to implement those symmetry

realisations given in Eq. (3.34), i.e., two Higgs doublets ®; > and two complex singlets S o:

& 1 V267 1 , .
o, = = — _ , Sy = — (uaelfa + Pata + ma+2) ,a=1,2, (A.1)
00 ) V2 \wae + pg +in, V2
where v, and u, are the VEVs of the ®, neutral component and of S,, respectively. In the present
case, only the phase difference § = 6y — 0, is relevant. The above fields transform under the Abelian

symmetries as shown in Table 3.5. The most general potential invariant under those symmetries can be

written as,

Vua) = Voo + Vos + Vs, (A.2)

with
A 2 A 2
Voo = 42,01 ®) + 12,050, + 71 (CI)J{‘IH) + 72 (‘P;@z)

W (cb{cbl) (@3%) + M\ (cb{%) (q);@l) ,
t t 2 t t 2
Vg = ()\5<I>1<I>1 n )\6@2@2) 157 + ()\9@1@1 n /\10<I>2<I>2) 15]%,
A A
Vss =it 151 + i3 152" + 151" + 18] + A 1] [Sal

For reasons that will become clear later, we consider all parameters to be real. To avoid massless Goldstone
bosons, we add terms to the scalar potential, which break softly the Abelian flavour symmetries. Such
terms could, for instance, originate from the spontaneous breaking of a larger symmetry at very high-

energies. Possible soft-breaking terms are

Vot (s Sa) = N%Q ‘I)];‘I’z + /Jg 512 + pig |S1|2 S1 4 us |52|2 Ss + H.c., (A4)
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with all parameters real. This specific form of V. is chosen not only to avoid unwanted massless scalars,
but also to open up the possibility for SCPV coming from the complex VEV of the scalar singlet S, as
will be discussed later. The full scalar potential is then given by V(®,,S,) = Vo) + Veot-

As argued in Section 3.2.2, one of the motivations for adding two complex singlet scalars is to account
for the mass hierarchy in the inverse-seesaw approximation through wuy, vy, ve < ug. In order to simplify
the analysis, we will use that VEV hierarchy to consider the case in which Ss is decoupled from the
remaining scalars and, thus, the quartic term ~ |S5|* will dominate over the terms ~ ®!®,|S5|* and

~ |Sl\2 \SQ|2. The analysis is then simplified by taking
Ves (>\5(I)T(I)1 + A6 Py ‘132) 15117, Vss =~ pd [S1]? + 13 ]Sa + |Sl| + \S2| : (A.5)

In order to ensure vacuum stability, the scalar potential has to be bounded from below in any direction
of the field space as the fields become large. This can be guaranteed by requiring the Hessian matrix of
the quartic couplings in the potential to be copositive [196]. In the case under analysis, this is translated

into the following conditions among A;_g [197]:

>\1a)\2; A77A8 > Oa

A3+ VAA >0, A3+ M+ VA >0,

As + VAIAr >0, Ag+ VAA7 >0, (AG)

AsAr = Ashs /(A = A2) (Aadr — A2) > 0

(s + A0 A = Ashs + 1/ (M dr = A2) (hedy — A2) > 0.

A.2 Spontaneous CP violation

Since we considered all Yukawa and scalar parameters to be real, the full Lagrangian is CP-conserving.
Yet, CP can be spontaneously broken if some scalar field acquires a complex VEV. The main motivation
for studying this possibility is to provide a dynamical explanation of CPV in the lepton sector manifested
through non-trivial Dirac and Majorana phases 0 and «, respectively (see Section 4.1). To show that this

is indeed possible, we start by minimising

A
8

A » /\2 A3
R 8 2t 4
+ ﬂuf + &ug + 341 v cos ) + M—uz cos&s + Fa

2 2 V2 V2

2

A A A
va% + va% + fufvf + fufv% + uiL + v + %UQ

= A Ao M1
Vo = 4 2

i+
8 (A7)
T=uf cos & + p3us cos (2&),

with respect to vy, uq,0,&; and &. In particular, the extrema conditions for 6 and &; lead to 6,&; = 0, 7.

Two possible solutions for u?;, u3, and p3 can be then obtained from the minimisation equations of vy o
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and us, respectively. Namely,
_ L2 _1 2 2 2 V2 o
0=0,m: puy; = 5 [)\1”1 + (A3 + Ag) vy + /\5U1] + P
1

2
2 U2
E=0,m: u5 = —?<)\8u2 :|:3\/§u5) .

1 v
135 = —= [Mv3 + (A3 + M) of + Aeuf] F U—;ué : (A.8)

Instead, minimising with respect to &; leads to three solutions:

1
& =0,m: ,u% =-3 ()\51)% + )\61)% + )\7u% + 4,u§ + 3\/§u4u1) ,

AL9)
32M4 _ /JQUZ M2u2 1 (
&1 = arctan (ljﬂh“ Copd = ﬁg -3 ()\51)% + Aev3 + Aui — 4@%) .

Notice that the last solution in (A.9) is the only one which provides a non-trivial phase &1, leading to the

possibility for SCPV. Setting 0, £, = 0,7 in Vp, the value of the potential at each & minimum (Vi) is

3
51:0;771 Vmin:$/;i;j/§1 _V/7
(A.10)
&1 = arctan —32#31 ) Vigin = —Miu[i -V’
LLati1 . min 16/13 s
with
A A A A A A A A
V' = @11}‘11 + gvg + Z?’vag + fvag + fu%vf + fu%v% + gu‘ll + gug + —2%@; (A.11)

Therefore, the CPV solution with &; # 0, m corresponds to the deepest minimum if pyu; < F4v2 ui.

A.3 Scalar mass spectrum

We now briefly discuss the main features of the scalar mass spectrum of our model. In total we have two

charged complex scalar fields (bfz and four neutral ones, gb(l),Q and S 2. The mass matrix for the charged

scalars is
(%) ¥1
Ay £ 242 e
Mi __uive 42 Hi2 | vy v | (A.12)
FLo—
V2

where the upper (lower) sign corresponds to # = 0 (w). This matrix is diagonalised via the basis trans-

formation
R @ ) L (M) Zm (™), (A.13)
—sg  *cg Hy d,y
with
6510085:%, slgzsinﬁ:%, (A.14)



where v = /v? +v2 ~ 246 GeV. This leads to the SM massless Goldstone boson G* and massive

charged states H* with mass
m2. — _,UQE T 2135 (A.15)
HE 2 7 sin(28)° '

The above rotation brings ®; » into the Higgs basis with H; o [74] given by

1 V2GT 1 (V2H*
Hy = — . Hy= — , (A.16)
V2 \y 4 HO 40O V2 \ R4l

where (H{) = v/v/2, (H}) = 0. Here, H® coincides with the 125 GeV SM Higgs in the alignment limit,
G?* and G° are the charged and neutral Goldstone bosons, and H* is the physical charged Higgs field.
The neutral scalar mass matrix M3 is diagonalised through a unitary transformation T which relates

weak and mass eigenstates through

T T
(GO7S](_)7"'7S’(7)) :T(plap?ap37p4anl7n2an3a774) . (A17)

As mentioned before, we assume that the mixing of the complex singlet So with the remaining fields is
negligible and, thus, 74 and p4 are decoupled. Furthermore, the CP-odd scalars 1, 2 from ¢(1)72 also do
not mix with the other scalars. However, p; 2 3 and 73 do mix among themselves. For the SCPV solution
in Eq. (A.9), the mixing among 73, p3 and p1,2 will depend on the soft-breaking parameters ps 4 and
on VEV products u? and uyv, (a = 1,2). Moreover, since the naturally small soft-breaking parameters
must fulfil the SCPV condition pgu; < F4V/2 u%, and given that u; < vy, vs, it is reasonable to consider
that the mixing among the qﬁ(f,g and S7 will be small. In this limit, the neutral mass matrix can be recast
into a block-diagonal form composed of four 2 x 2 matrices: the CP-even M%p_even for pi 2, the CP-odd

MZp_oqq for 11,2, and the S; 5 mass matrices M3 and M, . The former is given by

2
v
) viA F % o102 (A3 + Ag) + pf

MCp_cven = 1 oy , (A.18)

+v1v2 ()\3 + )\4) + ,U%Q ’U%)\g F "

2

being diagonalised by
59 Cor— Sy — H° +02 (A3 + A\yg) sin(2 20

I | tan (20) = 20 (s T Aa) sin(@) + 2411y (A.19)

59 —Sa1—f  Ca;—B R vA(Arc — Aash) + 20 tan(25)

where, as before, the upper (lower) sign corresponds to § = 0 (7). The angle «; parameterises the mixing
in the (p1, p2) sector. Throughout this work we set 8 = a3 + /2, which is known as the alignment
limit [198]. In this case, there is no mixing between H° and R and, thus, SY = H? and S§ = R. As
already mentioned, this allows us to identify H? with the 125 GeV Higgs boson discovered at the LHC [4].
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For the CP-odd scalars we have

F— 1
MZpoaa = K12 e vy | (A.20)
1 ;U—
2

which is diagonalised through the rotation matrix defined in Eq. (A.13), leading to the massless Goldstone

boson GY and to the massive scalar SY = I with mass

A 202
2 2 2\ Hig
= = = . A21
= M Y 2 :Fsin(ZB) ( )
The S; mass matrix is
uipg Uy g
1 (ufAr — 1603) + 43 V3203 — piut (uidr — 843)
M2, = 32ud 32p3 5 5 , (A.22)
! Uy fig 3208 — 12u? (u2hr — 812) w2 (1= ujpy
32:“’% 3 491 1 3 1 32/,l,§

which is diagonalised by a rotation with an angle as given by,

U1 g 32M§ - Miu% (u%)\7 — 8M§)
- _ ) A.23
an (2as) 16M§ (4N§ - U%)ﬂ) + u%/ﬁl (u%)w - 8/1%) ( )

After diagonalising the mass matrix M?gl there remains a very small mixing in the (p3,n3) sector, which
depends on the soft-breaking couplings. The mass terms for the resulting physical fields, S ~ p3 and
SY ~ n3, are given by

\/324_722
&arctan(uswl 2

2 9,2 ui (pf — 2M7p13)
Lty Migg ™ Migg > 21y — ——— 35—

, A.24
4p3 (4.2

which are approximately degenerate for the SCPV solution. Notice that in the absence of soft-breaking
terms proportional to ps and p4, unwanted massless Goldstone bosons appear. SCPV originated from
the complex VEV of the singlet S is possible if the masses above are positive and the condition for the
global minimum is satisfied. Lastly, the matrix M232 is diagonal and the corresponding scalar masses for

S9 = py and S? = 9, are

H5U2 3ps
me::F Nk mi:u% ()\Bi\/ﬁu ), (A.25)
2

for & equal 0 or 7, respectively. Once again, if the soft-breaking term proportional to us vanishes, 7y
would be a massless Goldstone boson. Since uy can be naturally large, the scalar fields 74 and ps can

have a large mass, which further justifies the decoupling behaviour of the singlet Ss.
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Appendix B

Interactions in the mass-eigenstate

basis

In this appendix we collect the interactions relevant for our work in the mass-eigenstate basis of fermions,
scalars and gauge bosons. We consider an arbitrary number of Majorana neutrinos v; (i = 1,...,ny)
with masses m;, so that the results can be applied for scenarios with any number of sterile neutrinos. In
the ISS(2,2) considered in this work ny = 7, being v1 2 3 the three light active neutrinos, and v4_7 the

heavy sterile ones.

B.1 Charged-current and neutral-current interactions

In the Feynman-"t Hooft gauge and mass-eigenstate basis, the charged-current, weak neutral-current and

Goldstone-boson interactions read:

3 nyg
Lws = iW; z ZBaj ey Prv; + Hee, (B.1)
\/§ a=1 j=1
g s g ny
Lz = EZ“ 2 Ciy i Puy = MZ" > v (CiyPr —CPR) v, (B.2)
2,j=1 ij=1
3 ny
EG’:(: P g G~ Z ZBaj @(maPL - ijR) Vj + H.C., (B3)
V2Mw a=1j=1
Y ~o _
£Go =——— Z cijVi (PLmi — Pij) vj
2Myy = -
g 4 .
0 U *
= _4MWG Z v; [Cij (PLmi — Prmy) — C;; (Prm; — Pymy)| v,

ij=1

where we have followed closely the notation of Refs. [127, 199]. The B and C matrices have been
defined in Eq. (3.20). The last equalities in Eqgs. (B.2) and (B.4) result from the Majorana character of
neutrinos (v = v°). Therefore, for Majorana neutrinos, the coupling Z 7; v; is non-diagonal and involves

both chiralities.
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B.2 Scalar-fermion interactions

In this section we present the scalar-fermion interactions extracted from the Yukawa Lagrangian in
Eq. (3.35), using the notation for the scalar fields introduced in Section A.3. For charged and neutral

scalars S and S? we have:

(B.5)
+ Z d; [(Fd)d w. P —T%) 40 PR} Uj} +He.,
w;=u,c,t
di=d,s,b
3 ny
Loo =50 | Y e (AYapPres+ > 7 (AL)i;Pryy | +He., (B.6)
a,f=1 ij=1

respectively, where I' and A are general Yukawa matrices. In this work, the scalar sector contains
two Higgs doublets and two neutral scalar singlets, which we will consider to obey the alignment and
decoupling limits discussed in Appendix A. In such case, the Yukawa coupling matrices between the

fermions and the charged Higgs Si = H* are given by

g g
r-— NiB,r, = BN, ,
‘ \@MW ‘ \/§MW (B 7)
__ 9 tvi o plo 9 t '
Il = NVl 1l = 2 _VIN,,
T 2My Y V2My
where B is defined in Eq. (3.20) and
N, = VINOV,, NO = % (ssY¢ —csY3el?), (B.8)
3+ngr v 4
(Nu)ij = Z Z uZz (Ng)ak qu7 NB = ﬁ (SﬁYb - CBYvQDe_Za) > (BQ)
a=1 k=4
Ny = VINOVY, NO = % (s5YL — cgY3e), (B.10)
N, = VINOVY NO = (s5Y! — csY2e ) . (B.11)

V2

where the unitary matrices Vi g, V%’f}% and U are respectively defined in Egs. (2.24) and (3.6). Addition-
ally, the quark mixing matrix V is defined in Eq. (2.25). We explicitly present the interaction Lagrangian
involving the H* charged scalar since it has been extensively used, for instance, in the computation of

the cLFV amplitudes (see Appendices C and D). Namely,

3 ng

ﬁHi = \ﬁgM/V{ a%il Z,JZ:1a {(BNV)(xj Pr— (N:[‘B)O‘j PL} vi

(B.12)
+ D di {(VTN“)diuJ Pr = (NLVT)

u;=u,c,t

di=d,s,b

PL:| Uj}H + H.c..

di Uz
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The Yukawa matrices entering the interaction terms (B.6) among leptons and the the neutral scalars

Sy = H° S9 = R and S? = I (those stemming from the Higgs doublets) are

g *
(Ai)aﬁ 2M 5aﬁmo¢ ) (Alll)zj = _m (C”mj + CZ]mZ) 5

(B.13)
(Ag)aﬂ = ﬁ(Ne)aﬂ =i (Ag)aﬁ ) (A’%)ij = ﬁ [(Nu)z‘j + (NS)”} =1 (A?’)ij’

where the matrix C is defined in Eq. (3.20). We explicitly present the Lagrangians involving the above
neutral scalars and v; since they were useful in our calculations of the radiative corrections to light

neutrino masses performed in Section 4.2. We have,

Lo=—3 MW = H° ;1 Ci;Ti (PLmi + Prm;) v
4MWHO ;1 7 [Cij (Pymi + Prmy) + €5 (Prm; + Prmy)] vj, (B.14)
Lrn= 4MWR”21 7 [N+ (ND), | Pr+ [(ND),, + (N2) | P o, (B.15)
L= 4MW Py y{[ ., .,+(Nf)i]} Pr — [(Nl)ij—i—(N;j)ij} pL}yj. (B.16)

Lastly, the coupling matrices appearing in interaction terms between the neutrinos and the neutral

scalars S§ ~ p3, S§ ~ n3, S = ps and S? = 1, (coming from the complex scalar singlets S; o) are,

el (G COM e (GO COME

) (B.17)
1 i
4y~ T * N oY i *
(Av)ig = 2usy {(NR)@ * (NR)iJ} (A0); = 2us {(NR)@ + (NR)ij:| ’
where
nf u
(Ny)yj = Ui (NO) Uy, NO= — (YL +Y2), (B.18)
’ k l;n}? < )kl ! \/5 ( )
(No),; = Z Uy (N9 Uy, NO= 2L (Y1 -Y?), (B.19)
kJl=44ngr \/i
34+ngr nys s
(Ng), Z > Uy (N, Uy . N = VAL (B.20)
k=4 I=44ng 2

Note that, in order to obtain the Feynman rules using the interactions between v; and the Z-boson or

SO neutral scalars, one must multiply by a factor of 2 since Majorana neutrinos are self-conjugate fields.
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Appendix C

Charged-lepton flavour violation

In this appendix we present the amplitudes and decay rates for the cLF'V processes £, — lgy, Z — E?jég,
‘o — 656;%67 and coherent p — e conversion in heavy nuclei. The corresponding current experimental
bounds and future sensitivities are given in Table 4.2. We included in our calculations the W*-boson
and charged Higgs H* contributions. The one-loop Feynman diagrams are summarised in Figs. C.1, C.2
and C.3. Furthermore, the computations were performed in the Feynman-t Hooft gauge following the
interaction Lagrangians in the mass-eigenstate basis given in Appendix B. We provide the results for the

amplitudes and branching ratios in terms of the form factors collected in Appendix D.

C.1 The radiative decay (, — {(gy

In Fig. C.1 we show the diagrams contributing to the effective vertex £3f,y (8 # «) at one-loop level.

The transition amplitude can be written in the form

e aw

AP = — 13
v 8r M3,

0T (P — dan) (B2 P+ FSPR) — iowa” (GS P+ GS5Pr) | e (C1)

where ay = g2/ (47), et} is the photon polarisation four-vector and ¢ = p, —pp is the photon momentum.
F, is the local monopole contribution for an off-shell photon (¢ # 0), while G., stands for the non-local
dipole contribution for an on-shell photon (¢ = 0). The expressions for F;l[z( R) and szz( R) are given
in Section D.2. The former contributes to ¢, — EEE;LE(S_ and p — e conversion in nuclei, while the latter

encodes the only contribution to ¢, — ¢gy. In particular, for this process one has
_ _ 3ae a3 2 af 2 .
BR(G = (37) = 5y ‘G%L + ’G%R BR (£y — l5vaT5) (C.2)
where o, = €?/(4) and the values of BR (£, — ¢31,V5) are given by [89]

BR (¢ — ev,7e) ~ 1.0, BR(7 — ev;7) ~ 0.18 , BR (17 — pv,7,) ~ 0.17. (C.3)
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V.4 w- w- v.Z
Ly by Ly v; ] lo v; lg g
Y,z § v,z G- G- v, Z
Gy & GF ’ \ ’ \
L 1 L 1
! v, lg l l Vi lg l v, g Lg
gl Z§ x4 H- H- 4
Hy ~w H' / \ / \
> > > I L, oL V5, 2y
Lo Vi g Lo Lo 1z lg Lo v ls ls

Figure C.1: The y-penguin and Z-penguin diagrams that contribute to the effective vertices lglyy and
lglnZ, respectively.

In the limit where there is no charged scalar contribution, the branching ratio given in Eq. (C.2) is

consistent with the results of Refs. [19, 200-202].

C.2 The radiative decay Z — (,(}

The one-loop diagrams for the effective vertex ¢3l,Z (8 # ) are also shown in Fig. C.1. In this case,

the transition amplitude is

« gow 7 « [eY
Ay = LW 7 (FZFLWPL + FzﬁwPR) lo, (C.4)
w

where e/} is the Z-boson polarisation four-vector. The branching ratio for the LFV decay Z — E;f; +lEls
is

BR(Z (0% + 0ty = — W Mz (|pas® | pas |
R( — Ly ﬂ+ o ﬁ)imi ’FZ,L +‘FZ,R N (05)

where ng and Fgﬁz, are given in Section D.3 and the Z-boson total decay width is 'z = 2.4952 GeV [89].
Note that, in the limit where the scalar content coincides with the SM one, the above branching ratio is

consistent with the results of Refs. [203, 204].
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> T < > T T < > T T <

w= + H* G~ + + H* H~- + + Ht
] ]

< [ <

g vj ls g vj ls

~
=)

A
\
\
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Figure C.2: Leptonic box diagrams contributing to the three-body decay ¢, — 65@‘65_.

C.3 The three-body decay ¢, — 866 ly

The £, — (507 ¢35 amplitude receives contributions from the y-penguin, Z-penguin and leptonic box

diagrams shown in Figs. C.1 and C.2, which we write as

2

O[2 S
Azﬁvé =— 2‘/]‘\/42W {575 g [( L’Y;LPL + 1 R'Y#PR)
~ 0% (G5 PL+ GuPR) Jta Tt = (5. 9) . (C6)
2
AP = g (820 T (F5hnPr + FipPr) o Ts (o7 Pr + g5 Pr) £ — (B 42 6)| . (1)
w
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2

« R R c

A’ = —qarr > D BARY ANt GAYL, (C.8)
W X Y=LR A=S,V,T

where the Z-boson charged-lepton couplings are g¢ = s¥,—1/2 and g% = s%, [see Table 2.1 and Eq. (2.15)].

The Ai‘(’y are given by the following combinations of Dirac matrices and chiral projectors:
(A§7 A§7 A%/'v AXI;7 A’%"a A?) = (PL7 PRv FY/LPL7 ’Y,U.PR7 U/LVPLa UILIJPR) ) (Cg)

with ., = ¢ [y4,7] /2. From the generic leptonic box diagrams presented in Fig. C.2 we obtain the
transition amplitude (C.8) involving the form factor Bi‘f ;‘;,, written in terms of the spinorial structure
5N 1, EAX€§~ Since we are in the presence of Majorana neutrinos, LNV diagrams must be also consid-
ered, together with cross-diagrams with interchanged lepton indices (8 > 0). All these contributions can

be written in the form (C.8) by using Fierz transformations [205, 206]. In Section D.5, the form factors

BZB ;[}5, are presented. In particular, B%’BLV;; = B%B}g}j = 0, which can be readily seen from the identity
w5 = —1€uupr o /2.

The calculation of the decay rate for each process is done, whenever possible, assuming vanishing
masses for the final lepton states, since mg s < mq. However, an exception is made for terms involving
the photon amplitude, where light lepton masses must be treated with care. As well known, the three-
body phase space integrals for the photon contribution are singular in the limit ¢> — 0. Therefore, one
must first perform the phase space integration and only after take the limit mg s — 0 for non-divergent
terms. This will lead to the logarithmic term In(m? /m%m 5) appearing in the pure photonic dipole
contributions. Also, a symmetry factor of 1/2 has to be taken into account in the case of two identical
charged leptons in the final state. The branching ratio for the 3-body LFV decays can be written in the

general form:

BR({, — L505¢5) ki
BR (6, — lgraU5) 6472

2
8syy

1
{kz \FV,LL|2 + \FV,LR|2 + Z(|FS,LL|2 + |FS,LR|2> +12 \FT,LL\2

+ ks

Re [(k2Fv,or + Fv,LR) ny,R]

(e}

3254y, 2 m2

«

where the values for the branching ratios BR (¢, — {sv,73) are given in Eq. (C.3). The k; coefficients and
the form factors F' depend on the charged-lepton final states, for which three combinations are possible.

Namely,

(i) Two different flavours of leptons, where leptons with the same flavour have opposite charge (5 #
YA =7)
ki=ko=k3s=1, ky =3,
Fyrr =Bvir — 29t Fzr +2s%F 1, Fuur = Bv.or — 20%F 71 + 255 F, 1, (C.11)

Fsrr =DBsrr, Fsir = Bs,Lr, F'r,.. = Br,Lr;
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Nucleus 2N Dm;‘r’/2 S(p)m;w2 S(")m,f/2 V(p)7n;5/2 V(”)m;s/2 Teapt (10%s71)

27Al 0.0362 0.0155 0.0167 0.0161 0.0173 0.7054
48T 0.0864 0.0368 0.0435 0.0396 0.0468 2.59

197 Au 0.189 0.0614 0.0918 0.0974 0.146 13.07
205Ph 0.161 0.0488 0.0749 0.0834 0.128 13.45

Table C.1: Nuclear form factors and muon capture rate for the y — e conversion process [213].

(ii) Three leptons with the same flavour (6 =y = §)

ki =ks=1, ky=2, ky=11/4,

Fyrr = §BV¢LL ~ 295 Fz 1 +25% Fy 1, Fvir = Bvir — 295F71 + 253 F, 1, (C.12)

1 1
Fsrp = %BS,LL , Fstr=0, Frrr = EBT,LL§

(iii) Two distinct flavours, where leptons with same flavour have the same charge (6 £~y A S8 # )

by =1/2, ko =1, ks=hs =0,
(C.13)

IFvir=Bvir, F'viir=Bv,ir, Fsr = Bsrr, Fsor = Bs,tr s Frior = Brrr-

Our results agree with those obtained in Ref. [207, 208] (see also Refs. [209-212]). We have also checked
that the BRs match the well-known results in the limit of a SM scalar content [127].

C.4 Coherent i — e conversion in nuclei

Following Ref. [213], the operators relevant for coherent y — e conversion in nuclei have the general form

n—e GF (&

e = A e,q — — e,q — —
. = 5 3 Ghn Bonp PLp BP0+ awy > (Fg,Lq ePppgq + Fy " ey Prp qw)]

g=u,d,s

(C.14)
+(L+ R)+Hec.,

where G is the Fermi constant [89]. The form factors receive contributions from y-penguin and Z-penguin
diagrams as shown in Fig. C.1, the expression for their amplitudes are similar to the ones in Egs. (C.6)
and (C.7), respectively. The transition amplitude for the semi-leptonic box diagrams in Fig. C.3 is given

by,

2
€ « e - -
‘Ago()l(q = 4]\;‘/2 Z Z Bx,g(qY gﬁAi(ga qAXq7 (015)
W X Y=LR A=SV,T
leading to,
pe,q 2 pe T 2 pe L ( ppeqq reqq
Fy ¢ =Qeswh x + o Qqsw | Fz x + 1 (BV,XX + BV,XY) )

) (C.16)
Pt =1 (BUct + BESS, ) for XY =L, Rand X £,
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Figure C.3: Semi-leptonic u and d-type box diagrams contributing to the y — e conversion process, where

by =, lg =¢,uj =u,c,t and d;j =d,s,b.

with T# = —T¢ = 1/2, Q. = 2/3, Q4 = —1/3 (see Table 2.1) and the semi-leptonic box form factors

Baﬁqq

4w xy (@ =pand 8 =e) are given in Section D.4. From the Lagrangian (C.14) we obtain the coherent

14 — e conversion rate

CR(p — e,N) =

my,

Gragym),
872 Toapt(2)

are
2l <D> +4

2e

Z (S(p)GgLP) + S(”)Gg7")> P 2

q=u,d,s
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where the values for the nuclear form factors D, S® S V®) and V™ as well as the muon cap-
ture rates I'capt(Z) are reported in Table C.1 for the nuclei relevant to this work. The scalar-operator

coefficients Gg’ ) and Gg’ ) are [214]
u, d,n d, u,n s, s5,m

The above expressions are general and thus can be applied to several models in which p — e conversion
is studied. We have also verified that with only the SM Higgs doublet the above CR coincides with that
given in [199)].
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Appendix D

Form factors and loop functions

We now provide the form factors and loop functions entering the amplitudes for the cLFV observables
analysed in Appendix C. All contributions with W* and H* in the loops were included, being the form
factors given at leading order in the momenta and masses of the external charged leptons. Note that, we
have checked that in the limit where there are no charged-scalar contributions, i.e., for a scalar sector

matching the SM one, our results are in agreement with Refs. [127, 199] (see also [45, 49, 215]).

D.1 Passarino-Veltman integrals

In this section we collect explicit analytical expressions for the Passarino-Veltman integrals [216, 217],
relevant for our work. We will present the results stemming form the evaluation of the integrals, for van-
ishing external momenta, containing the two, three and four-point functions used during our calculations
of the self-energy, penguin and box-type diagrams, respectively. The notation for momenta and masses

in these diagrams is shown in Fig. D.1.

Two-point functions: The types of integrals we will need to evaluate for the two-point functions are

the following
i dk {1, k*}
_" {B..B" 2) — € )
1672 (0 B} ares) = / 2m)? [k* = mi] [(k +p)?> —mi]’

(D.1)

where the mass scale u provides the correct dimension to the integral in space-time dimensions d =4 — €
(dimensional regularisation). In the above (args) = (p?;m3,m?) containing invariant quantities. We
are interested in the case where p = 0. Hence, we evaluate the above integrals for the function B =

B(0;m3,m?). Using the mass ratio z = m2/m? we get

X

By = A, —bo(x), bo(z) = 1 Inz —1, (D.2)

A 1 — 4z + 322 — 22%Inz
Bi=-"+bi(), bi2) = ~ TERnE , (D.3)

2
where the divergence is A, = — — v + In4nr with v = 0.57721 being the Euler-Mascheroni constant.
€
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q=p2—p1 p1 k+p1 D2

p+k > >
mo
P P k
Ams  mYk+p —po
ma
% I Do P3 p3—k Pa

Figure D.1: Generic one-loop diagrams with two legs (self-energy) [Left], three legs (penguin) [Centre]
and four legs (box) [Right]. The arrow indicates the momentum orientation.

Three-point functions: The integrals of interest for the three-point functions are

1

1672

dik {1, kP, kPkv )}
(2m)® [(k + p2)? — mi] [k2 — m3] [(k + q)* —m3]’

{Co, O™, O} (args) = ¢ / (D.4)

where (args) = (p?, ¢2, p3; m3, m3,m3). We start with C = C(0, ¢, 0;m3, m?, m?) where two masses are

equal m; = my. Using the mass ratio = m2/m? we obtain the results up to O(¢?)

2 2 2 3 2
9 q l—z+zxzlnz ¢ 1—6x+32°+2x°> —6z°Inz
—m2C, = Z_A = - D.5
miCo CO(-T) + m% C()(LI?) (1 _ ;L‘)2 m% 12(1 — $)4 ’ ( )
1 —4x+ 322 - 222 Inx
ci(z) =miC, =miCy = 10— 2F , (D.6)
2 — 92 + 1822 — 1122 + 62° Inx
i1 (z) = =miChy (22) = —2miCip = 181 = o) , (D.7)
A q2 A q2 011(93)
—2Cyp = —— —A =——+b - . D.8
00 5 + coo(7) + m? coo(T) 5 + bi() mZ 2 (D.8)

Furthermore, we are interested in the case of C = C(0, 0, 0; m3, m?, m3) where all the masses are different.

For the mass ratios * = m?/m2 and y = m3/m3 we get

— 1 T Y
= _ 2 e —
co(z,y) = —mgCo p—y (1Ilnx lylny>7 (D.9)
__ A, A, 1 22 2 3

Four-point functions: The relevant integrals for the four-point functions are

i

{D07DN3 DMV}(argS) =

1672
/ d*k {1, k" kFE"} (D.11)
@m)* [(k +p1)? = mg] [(k + p1 — p2)* — m3] [(p3 — k)* — m3] [k2 — m3]’ '
where (args) = (p?,p3, (p1 — p2)?%,...;md, m?, m3, m3) with ”...” standing for invariant quantities con-

structed with the momenta p; 2 34. However, we will work in the limit of zero external momenta where
p1234 = 0 and therefore D = D(0;m3, m?, m3,m3). Hence, we only need to evaluate the following

integrals

i d*k 1
16720 / (2m)* k2 — m2] (k2 — m2] [k2 — m3] [k2 — m3]’ (D.12)
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i 1 d4l€ ki2
AP . D.1
T T 1 s (1

For the case where all the masses are distinct and with the notation = mg/m3, y = m?/m3 and

z =m3/m2, for the mass ratios, we obtain

Inx ylny zlnz
d =miD, = ’ D.14
ol 2) = = TG e —a T A -o -2 T-9G-ae-y O
~ 2Inz y?Iny 22Inz
= 4m2Dgo = i . (D1
Doy 2 =4mDo = G e T U0 -2 G-ae-aG-y P
Additionally, for two equal masses ms3 = mq, we have
1 1 T 1 Y
- _ Inz — — 1 D.1
o) =~ [+ e - e ] (D.16)
~ 1 1 x? 1 y?
_ Inz— _ Iny|. D.1
do(z,y) =) [1_x+ TR pvial sy 2 ny} (D.17)

Note that, we will express the upcoming loop functions in terms of the results presented in this section.

D.2 Photon form factors

The photon form factors coming from the y-penguin diagrams, generically presented in Fig. C.1, are
given by
af  _ poB(l) aB(2) af _ ap(l aB(2)

F = Fyiin + Eoniny o G = G5 + G5liiny (D.18)
where the superscript (1) and (2) correspond to the contributions stemming from W# and H¥, respec-
tively. Looking at the general form of the amplitude Aﬁ‘y‘ﬁ in Eq. (C.1), we notice that due to electromag-
netic gauge invariance these photon form factors vanish in the limit of zero external lepton momenta and

masses. Therefore, to obtain a non-vanishing result we must expand the loop integrals up to next order

in ¢2 [see Egs.(D.5) and (D.8)]. The W*-boson contribution yields

ZBmBZ‘”Fﬁl i) (D.19)
Fj"j;” =0, (D.20)
= mg ZBBZB* GO\, (D.21)

nf 2

aB(1) B* W\ M
G =ma > BB G (N), N = Mév : (D.22)

=1

where B has been defined in Eq. (3.20). The H* scalar contribution yields

ny

op2 _ _1

FLY = s 2o (BN, (NIBY), FiP(w), (D.28)
=1
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1 <

FOO® = 3" (NIB) g (BING), F (wy), (D.24)
A Ca
o 1
G%ﬁL(Q) - _m%i z—:l{ [mi (N;[B)ﬂi (NZBT)M T (BNV)[% (BTNG)M} ng) (wi)
a [m“ (N!B) Bi (BTNE)m +mg (BN,)g, (NIBT)m} G(f’) (wi)}’ (D.25)
ny
G = Z { [mi (NIB),, (NIBT),, +mi (BN, (B'N.), | G2 (wi)
2
_ [ma (BN,),,; (NIBY), +mp (NEB)M (BTNe)m} a® (wi)} Wy = mngi , (D.26)

where the scalar-lepton couplings N, and N, are given in Egs. (B.8) and (B.9). The loop functions F.gi)

and Gg,i) read

FM(2) = der (@) — enn(z) — 28Aco(x) + (6 + 2) Acgo(z) — g

B x(12+x—7x2) x? (12— 1Ox+x2)

ST TR —ap e—ai mT (D-27)

— xr — 1‘2 1‘3 nr

F®(2) = Acoo(z) = 232(1 a xi; - o L o (D.28)
G (x) = —weo(w) — (2 = 3x)er (w) — 2(2 +z)en (z) + g

o (1 —bx — 23:2) 323

10 —2) —2(1_x)41nx, (D.29)
@) B (I +2) rzlnx
Gy (z) = co(x) — 2¢1(2) = 30— 2) + e (D.30)
— oL — £E2 LEQ nx

GSYB) (;L') = 61(1') - gcll(x) = 112(51 — x2)3 _ 2(1 i x)4 . (D?)l)

The charged Higgs form factors and loop functions given above are consistent with the results of Refs. [218-

220].

D.3 Z-boson form factors

The Z-penguin diagrams displayed in Fig. C.1 lead to the form factors:

af _ pap(l) aB(2)
FZ,L(R) = FZ)(R) + FZ,L(R) , (D.32)
where the W*-boson contributions are
P = S Bam, (575 00) + €456 (i, Ay) + €5 HZ (i )] (D.33)
1,j=1
g =0, (D.34)
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with the matrix C defined in Eq. (3.20), while the H¥ scalar contribution is

nf

1 .
FELY = gz 30 (BN (NUBT), [€4 G2 (i) = €62 i) (D.35)
i,j=1
o 1 & \
Fgh® — W Y (NIB),, (BIN,),, [62-]-Fé2)(wi) +Cy G (wi w)) —cijG§>(wi7wj)} . (D.36)
i,j=1

The loop functions entering the above form factors are given by

D () = ~3hi(x) — aeo(a) — 5 = (15f 53 (15f PR (D.37)
xr x2 nr
FP (2) = *%bl(l’) = ii-a) i 133)2 + %, (D.38)
G(Zl)(xvy) = —%co(x,y) + coolz,y) + 2
_ 1 [20-y, - y-2)
= s e e ) (-39)
6 ) = Yy et = -5 (25 - (D40
G (x,y) = —%coo(ﬂc,y) = 4(3317 m [(xl ln;) - (yl myy)} + g (D.41)
Hz(z,y) = Vxy [200($>y) — coo(w,y) — i]
VoY [ -4z nx—y2_4yn
‘4uy>h1@1 uyﬂﬁ‘ (D-42)

The charged Higgs form factors and loop functions given above are consistent with the results of Ref. [219].

D.4 Semi-leptonic box form factors

Here we present the form factors and loop functions relevant for the amplitudes (C.15) corresponding to

the semi-leptonic u-type and d-type diagrams presented in Fig. C.3. We write !
By = By 4 Bri®), (D.43)

aﬂqq(l), while the H* loops produces all types of form factors

where W*-boson contributes only to B
in (C.15), including Baﬁ 94(2) We now present the various B AB 3, for the u and d-type diagrams shown

in Fig. C.3.

u-type diagrams: The only W*-boson contribution is

SﬁLullf(l Z Z Vud Vud BB%B* F]%?x()‘“ )‘dj)ﬂ (D~44)
i=1 dj=d,s,b

1 Although we use general a and § indices, for j — e conversion one obviously has o = p and 8 = e.
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while the diagrams with H* lead to 23

B - LSt % )oi (NIB) (VNG (NIVT) B (wiwa,)
’ MWmHii 1 dj=d,s,b “ ’ dju

x m%s H, (Ais Ady s )\i)}, (D.45)
« u 1
BV,ﬂLuR = 2 2 Z Z NT BT) (NLV)ud (VTNU) ) F]go)x(w%wdj)? (D46)
Myymigs dj=d,s,b ’ e
apuu 1
By = STERTE. Z Y (NIB),, (B'N.), (VNi),, (NZVT)dju F§) (wiswa,),  (DAT)
i=1 d;j=d,s,b
apuu 1
By = N Z > (NiB),, (B'N,),, (NIV),, (VIN,), , F(wiws) (D48
WHYHE =1 d;=d,s,b ' '
(NiB) (NTV) »
BgTY = Z > na, BaiH o iy My M)
i=1d;=d,s,b

(4)
FY (wi,wa,
dju mHi

1

: (D.49)

Baﬂuu _

SLR = N2 (NIB),, (NIBY), (VNo),g, (VINW), , Fioc(wiws,).  (D.50)

apuu 1
B§r = MEmE, Z Y. (BN,)y (BIN.),, (NLV),,. (NLVT) Fig(wi,wa,),  (D.51)

H*E =1 dj=d,s,b dju
" BN,). (VTN )
aBuu €)ia U diu
BSBRR = Z Z M2 - VuijBiH](go)x()\ia Adj7)‘:|:)
i=1 d;=d,s,b w
F(4) Wi, Wq
+(BN,),, (VN),,, oxlid) | (D.52)
L 3
B%ﬂ[fLu = M2 Z Z V ) i(NLV)udj H](30)x()‘iaAdj7)\i)7 (D53)
i=1 dj=d,s,b
Bgﬁ;‘;: Z > VB (BIN), (VTNu)dj HY (M A Ax) (D.54)

i=1 dj=d,s,b

where \g;, = mflj /M3, and wy, = mﬁj /m?% .. Ng and N, are defined in Eqs. (B.10) and (B.11), respec-
tively.

d-type diagrams: The form factor for the d-type diagrams coming from the W*-boson contribution is

By = Z 3" Vau, Vi, BaBLFS) (A A, (D.55)

i=1 wuj=u,c,t

2Note that the form factors B, pr(rR) do not contribute to the p — e conversion process.
3Since for our numerical analysis we have considered diagonal quark mass matrices and tan 8 = 1 we will have Ny qa=0
and, therefore, the semi-leptonic box form factors involving HE in the loop will not contribute to the rates in that case.
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while for the H* loops:

RO = S Y )i (NEBT), (VING) ,, (NLV), ) B (i u,)
MWmHi i=1 uj=u,c,t ! !

+ [VdujBfm- (BN,),; (NLV), ,+Bp:Vi,, (NJBT), (VTNu)duj]

x mgs Higo (A, /\uﬂ/\i)}, (D.56)
1 o
afdd 3
BVﬂLR M2 m2 Z Z (BNu)m (NLBT)W (NLVT) (VNd)ujd F]go))((wi7w“j)7 (D.57)
W HE = uj=u,c,t i
1 o
afdd 3
BV%?,L M2 m2 Z Z (NZB)[M (BTNe)za (VTN“)duj (NLV>ujd FE(BO)X(WUWU ) (D58)
W HE =1 uj=u,c,t
aBdd 1
By = VT Z > (NIB),, (B'N.),, (NLVT> (VNa),. 4 F§) (wi,w,),  (D.59)
WP HE =1 uj=u,c,t i
afdd 4
&Z—Wm S5 i) o (NIBT), (NEV) (NLV), ) B (i), (D60)
w i=1 uJ—u c,t i
VNd)

Vdu] B:;ZH(Q) (>\’La )\uj I >\:|:)

gosdd _
BgLr = Box

=1 uj=u,c,t

F(4)X(w-, W)
+ (NIB),, (VING),, Tl

i), (M)

ng
B =Y Y T

i=1 uj=u,c,t

* 2)
Vd’U,j BﬂlHéox()\7/7 Au; ) Ai)

JaiS) i W
+ (BNV)[% (sz) M

Ujd m ’

H*

By = . 2; 2 (BN (BN, (VING,, (VNa),, JFiwi o), (D.61)
1 Uj=1u,c,

with A, = mij /M, and w,, = mij /m.. The loop functions entering the semi-leptonic box form

factors are

$ ~
Fi) (x,y) = — (4 + *y) do(z,y) + 2zy do(x,y)

4
_ 1 xry 1 x? 1 y2
_a:—y{(4+4> L—x—i_(l—x)anx 1—y (1—y)21ny
1 T 1 Y
x
Féi)x(x,y) = (1 + Zy) do(x,y) — 2xy do(z,y)
1 Ty 1 x2 1 y?
=— 14+ — ny — — — ——1
m—y{( +4>[1—x+(1—x)2 ne -y (1-y)? Y
1 x 1 Y
-2 Ine — — — 1 D.
xy{lﬂer(lx)z Ty T a -y ny}} (-63)
3) do(z,y) 1 1 z? 1 y?
F = Inz — — 1 .64
box(T0) = = Sy [Toe T M T Ty G Y (D.64)
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\/ 1 1
F(w,y) = /oy dolw,y) = — xy[ R 1ny}v (D.65)

(z—y) [l-2 (1-1)? -y (1-y)?
. (9,2) = V22 [ado(ary,2) — o, )]
v (4 —xz)lnx y(4—y)lny 2(4—2)Inz
" l(l—mxm—y)(x—z) T—y-a-2  T-Gc-aG-g| %
H]E%Zo)x(x?yvz) = —(EE)(.’E,y,Z) +zy do(a:,y,z)

_ 2?2(1 —y)Inz y?(1 —2)Iny 2(z—ay)Inz
H]gi)x(x’yvz) = _W

1 2?Inx y?Iny 22Inz

K {(1 | C N Ry s 7 B G| s [ y)} - (D

D.5 Leptonic box form factors

Finally, we present the form factors in A%fz‘s of Eq. (C.8), corresponding to the leptonic one-loop box

diagrams generically presented in Fig. C.2. As explained in Appendix C, we consider all contributions,
including those stemming from LNV and cross diagrams (3 <+ §) with spinorial structure £¢ A% 159 EAXE%
and £5A ) Lo (gAY €S, respectively. The Fierz rearrangements [205, 206] we use to bring these contributions

into the canonical structure fgA% ¢, gAXE,CY in Eq. (C.8) are the following

Ce AT AT = —TaA P e AT,

GNP AP0 = =2 [gAG Ml CsAGTEE,

_ - 1 — 1 — ,

CE NG ATy = -3 CaAg ™l AT + 5 CaA7 0 T AL, (D.69)
e nL.Rjec 7~ AR.L 1— LR, —,LR

CaAg 0 GAG G = SEaAy " Lo TsAYES,

_ _ _ _ 1 — _
Ce AT ARG = —6 TG e, TAS e — 5 U Ap T, T AT,

and,
TALT G ToALRE = ToAL e, Tk,
CaAy o GAYTES = =2 GAG T, TaAT e,
ToAL T, ToALTS = 0 TALT e, TALTES — L TrARTe, ToAk TS, (0.70)
GALRE AR = L TG0, TAR

— LR, 5 ALR —+LR, 7 AL,R 1 — 1R, —\LR
CoNp o Ls A S = —6 LsAg Lo LgNg L + 3 Cs A o Lg AT LS,
where the different A% with A= S,V,T and X = L, R are defined in Eq. (C.9).

The form factor B‘O}ﬂgg has two types of contributions, coming from the W* boson and H* scalar.

The remaining form factors are due to box diagrams with H*. We write
By = By + By, (D.71)
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where the W= contribution is

n

f
BgﬁL’YLé(l) Z |:B21B71B5JB5J GBOX(/\“ >‘ ) B* B (BﬁiB‘sJ + BﬁJB&«) F

aiPyj
3,j=1

For the box form factors with HE we have:

2

Box

N 1 < 1
B = i 3 Lk (NI, BN (N, (B, P )

m
Wijl H=*

+

7@

(NIBT),, (NIBT) | [(BN,),; (BN, )y, + (8 & )] Fi)(wi,w;)

(Ais Ajy Ax)

+ [Bz;z- (NIBT), + (0 7)] [Ba; (BN,);, + (8  0)] ety

(i) | -

+ [Bl (NIBY), + (a & 7)] [Bai (BNL);, + (8 )] HE) (. Ay, m}

(NTB) (BTNE)W J](Slo)x()‘i7 /\j7 Ai)

1 <

afBvs

sty $ fou
1

HE) (M, A, Ax) 1

2

mHi

(4)
3 F OX(U}i,W')
(BN,),; (NIB),; F (wi, ;) + (BN,) 5, (NIB) , Pt

{ (B'N.),, (NIB) . | BsjBi T (his Ay, As)
7,7=1

HEZ (A, A, Ax) 1
mQ

- BsiB; B 2 (BTNe)ia (NLBT)J‘W

H*

(NIB),,, (BN, )5, F{\(wi.5) + (NIB) (BN, ), Thox(0:)
nf

2
Mg,me

I}

o 1
BV,ﬁlgl(; =52 .2 Z { (BTNe)m (NLB),gj (BTNG)W (NZB) F]éil(wiawj)

ij=1

+(BIN,),, (BIN,), [(NIB),; (NIB),, + (NIB),, (NIB), ] éil(wz,wj)}

o .
BSﬁL’YIfS - m Z { (NiBT)m (NZBT)M ( (N:EB)[% (NZB)M

ij=1

- % (NIB),, (NIB),, ) + (N/B'),, (NIB), (NIB), (NIB),,

(NIB),, (B'N.), 2J)

Box

1 X
aBvyo
BSBLA/R 5{/ Z {B5] (Ai, )‘Jv)‘:t)

()\iv >\]7 )\:I:)

OoxX

- (BIN.),, (NIB),, H

mHi

. Ly :
o S L DAL L e
ij=1
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(NIBT),, (B'N:),,

(BNV)&‘ (NZB)B]' QFéi)x(wi’ Wj) + (BNV)(Sj (NZB)Bi F]gi)x(wiij)‘| }’

4
F];;m,wn},

(D.72)

(D.73)

(D.74)

(D.75)

(D.76)

(D.77)

(D.78)



. 1
Bvang?X(Ai,Aj,Ai)] - —— (NfBf), (BN,

mHi J 2

(BN,); (NIB) ;250 (wi,w;) + (BN,),;; (NIB) Féil(wi,w»] } (D.79)

nys

1
afyd
BS,RVR**MI%sz Z{

HE j=1

(BN.),, (BIN.), ((BN,),, (BN,),,

i

-5 (BN,),, (BN,),, ) + (BN, (BN,); (BIN,), | (BN,),

4 @

Féil(ww)}, (D.80)
ny

apys 1
Byl = M, 2;1 { (NIBT),, (NIB),. [(NIBT)M (N!B),;

+

DO =

rY Wi, W;j
(NIBT), (N!B),,| %ﬂ) : (D.81)

o .
By = A > {(BTNe)m (BN,,),; [(BTNE)M (BN,),;

H* § j=1

+

N =

@)
(B'N.),, (BNV)M} W} (D.82)

where N, and N, have been defined in Egs. (B.8) and (B.9), respectively. The loop functions relevant

for the leptonic box form factors are

GBox(xay) = \/@ |:(4 + xy)do(x,y) - 2%(x7y)

_ VT x ! Y lnz-— L v
a xy{(4+ y){lﬂﬁJr(lﬂf)21 1—y (ly)Qly}
1 x? 1 y?

_2[1z+(1w)zlnm_ly_(ly)Zlny}}’ (D.83)
JE(ﬁlo)x(x,yvz) = _@ [d}(w,y,z) + 4d0(x,y,z)}

_ VW z(z+4)Inw y(y +4)Iny 2(z+4)Inz

T l@x)(xy)(zz) T o029 1-26-ac-n] O
J}gi)x(I,y,Z) = _dNO(xayvz) —TY do(I,y,Z)

_ 22(1+y)Inx yv?’(1+ ) Iny 2(z+zy)Inz

- [(1—”5)(%—9)(%—2) 1=y (y—=z)(y—2) (1—2)(z—x)(z—y)]' (D-85)

The contributions to the box form factors stemming from H* in the loop are consistent with the
derivation performed in Ref. [219]. We refer the reader to Refs. [207, 211] where charged-Higgs contri-
butions were considered in the context of low-scale seesaw SUSY. This enabled us to check the types of
loop functions and of matrix and chiral structures that enter the resulting form factors. However, to the
best of our knowledge, the box form factors and loop functions presented in a compact form in this work

within the framework of a seesaw type model and 2HDM scalar sector have not been presented elsewhere.
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