
Towards a Style-driven Music Generator

Hélder Duarte, Instituto Superior Técnico

Abstract

Music composition has always been subject to several innovative approaches throughout history. A possible approach
would be to try to resemble a given style that we like from a deceased composer or an old band. We aim with this work
to create an agent that is capable of creating songs or pieces that would resemble those specific styles. With the aid of
some state of the art models, a model was selected and optimized, with its generated output being surveyed to a set of
respondents to perceive how well it performed. Although this process of selection and optimization has shown that the
obtained model works for certain styles, further research and development needs to be done. We hope with this work
to establish a baseline to help future works on this matter, either for creating related applications or further improving
the proposed model.

1. Introduction

From immemorial times, humans have been creating art
to express their different fields of mind in the most various
ways; and being one of these ways music itself, one could
argue that one of the most complex tasks associated with
it would exactly be composing music.

Some composers, throughout history, have found nu-
merous ways of composing and even created some sort
of algorithms, like using cards with fragments of music
written on and rearranging them allowing thousands of
different pieces, as in John Clinton’s Combinatorial Music
Machine, used to generate Quadrilles Braguinski (2019) or
using dice, as with Mozart’s dice game.

1.1. Objectives

In order to attain some sort of resemblance with the
works we are going to get inspiration on, Artificial Intelli-
gence and Machine Learning may help us reaching our goal
of trying to recreate, up to some extent, the human capa-
bility of music composition, by replacing the human agent
with a computational entity, more specifically, a trained
neural network Graves (2014).

We can then set up a set of experiments to be able to
test our approach and try to achieve satisfying results.
The results may be tested by human listeners, preferably
with different musical backgrounds. The main focus of this
work is to recreate and mimic the original style by feeding
a given model a set of musical references in MIDI format.
This task can be summed up as:

• Capturing the style of the reference datasets with the
help of a set of models.

• Picking the best model capable of consistently pro-
ducing an output that can best suit the given refer-
ences.

• Checking if the resulting output (or alternatively a de-
rived hand-picked set) can be recognized by the gen-
eral public as being of those given styles.

We hope with this work to formulate a deep learning
model that can comprehend the style of the dataset that
has been trained on to later replicate that style as a means
of recreating its respective key features. This model shall
be robust as in it can always generate music of a given
style, regardless of what that style may be.

It is to be noted that motifs and other musical structures
can appear in the output up to some variation, since artists
usually reuse some of their own motifs among different
themes, as a part of ”sticking to their own style”.

1.2. Document structure

This work can be structured into its theoretical Back-
ground and Related Work, where we explain both the con-
cepts that we will be exploring and the models that arise
from the current state of the art; the Methodology used,
where we can prepare what to expect from our results and
all the scientific considerations involved; the Results and
Discussion, where we evaluate our output and how it fits in
the methodology defined; and the Conclusions and Future
Work, where we analyze how successful were the results
of this work, and where incomplete or unaddressed topics
will be given the spotlight.

2. Background and Related Work

In this section we will look at how we can define style to
better comprehend how our model shall work and which
models we have available to work with.

1



2.1. Musical considerations and Dataset Choice

As defined in Shlomo Argamon and (Eds.), musical
style can be associated to several different aspects of music,
like:

• Historical periods (e.g. Classical, Baroque, etc.);

• Particular composers (e.g. Beethoven, Mozart, Vi-
valdi, etc.);

• Performers (e.g. Itzhak Perlman, Miles Davis, Jimi
Hendrix, etc.);

• As a synonym for texture, as in arrangements (in-
strumental choice), melodic patterns, rhythmic pat-
terns, harmonic patterns and chord progressions, and
cadences. On a more general aspect: orchestral,
big band, marching band and other sorts of musical
groups;

• Emotional associations (sad, exciting, soothing, calm,
scary, etc.);

• As a synonym for genre, from the association to a
given artist to a set of cultural and social influences,
such as traditional music, for example (such as Pop,
Rock, Jazz, etc.).

Western music has obeyed, throughout history, to prac-
tically the same set of rules, as previously defined, fixed in
the same scales, the same chords and the same underlying
rhythmic and harmonic structures. For instance, we can
look at Jazz as being the peak of using overly complex
rhythms and harmonies, with the style specificities relying
strongly on the performer as improvisation is a known key
feature of Jazz.

On the other end, we can look at Pop, with a pre-defined
structure of pre-choruses, choruses and bridges, being very
directional, with an associated rhythmic and harmonic
structure directly associated to each of the sections. Since
human beings are creatures of habit, repetitive structures
have a tendency for becoming more catchy because we get
used to them faster.

We can also identify, as an example for Pop, the struc-
ture as a letter code. This way, the structure of: [Intro,
Verse 1, Pre-chorus 1, Chorus 1, Verse 2, Pre-chorus 2,
Chorus 2, Pre-chorus 3, Chorus 3, Outro] may become [A
B C A B C A C A A], for example. The idea here is
to simplify the structure into more generic sections of a
song/piece.

To make our stylistic choices, we need to find datasets
that both vary in size and in specificity, for instance, Pop
is much more generic than Mozart which in turn may be
a smaller dataset. This variation is needed in order to
guarantee that the model is robust and that the optimiza-
tions made to it are independent of the dataset type or the
amount of data that the model is fed.

As a part of the music writing process, our model will
need references to learn from and write music alike. Thus,

the creation of stylistically consistent datasets is important
to achieve a reliable agent. A dataset with NES (Nintendo
Entertainment System) videogames, a dataset with Power
Metal music, specifically Dragonforce, a dataset with Pop
songs, a dataset with Rock music, specifically Queen and
a dataset with piano compositions from Mozart, establish
our baseline of datasets to train on.

A first dataset with Bach chorales was chosen as the
baseline to compare our models, since it is relatively sim-
ple, being widely used in similar works, and with it we can
obtain a more clear view of the path we may take and how
we can create (or as seen later, optimize) a model to suit
our needs of generating music in these styles.

2.2. State of the Art

In order to generate music automatically, we need to
check on what technology we currently have, not only to
make our job easier, but also to check if our goal has al-
ready been accomplished in some way or another. For the
sake of simplicity, drum models will not be considered al-
though they do serve a purpose in style, it is still possible
to distinguish different styles with the drum tracks being
absent. Only Jukebox, AIVA and the Magenta models for
drums, use drum tracks as part of the composition process.

2.2.1. AIVA

AIVA is capable of producing songs with a strong sense
of structure, i.e. a beginning, a climax and an ending, in
other words, it appears to be capable of capturing cadence.
Although these key features are important in many musical
styles, capturing chord structure and stylistic nuances such
as voicings and instrument choices, are as important as
the cadence itself, rendering this model as a quite limited
choice for achieving our goal. Technologies (2020)

Another limitation is associated to the output of the
model, that can be further changed in a pianoroll but
it only allows for moving the timestamps of where each
part/instrument comes in, making it very limited from the
standpoint of MIDI editing.

2.2.2. OpenAI’s Jukebox

Next up, we have Jukebox Dhariwal et al. (2020), part
of the OpenAI project, in the words of its creators: ”We’re
introducing Jukebox, a neural net that generates music, in-
cluding rudimentary singing, as raw audio in a variety of
genres and artist styles. We’re releasing the model weights
and code, along with a tool to explore the generated sam-
ples.”, which means that we can not only explore their
original code to help us achieving our goal, but also try to
improve it to better suit our needs.

Jukebox directly deals with sound waves, which helps
it with the task of combining styles. This approach, al-
though being more memory expensive, is better for per-
ceiving nuances, and the online version displays written
songs with lyrics, something that may be important for
capturing some stylistic details.

2



Although this tool is great to capture style from single
songs, it does it in a way that is not the fastest nor the
most granular, since we cannot separate the tracks into
individual instruments (whereas we can in MIDI) and one
of our primary goals is to make the training fast and flex-
ible, allowing for swapping each of the instruments that
make up the track, and therefore this will not be our first
option. We also cannot rely on the output lyrics and the
sound itself has way too many artifacts.

”For example, while the generated songs show local
musical coherence, follow traditional chord patterns, and
can even feature impressive solos, we do not hear famil-
iar larger musical structures such as choruses that repeat.
Our downsampling and upsampling process introduces dis-
cernible noise. Improving the VQ-VAE so its codes capture
more musical information would help reduce this.”

2.2.3. Google Brain’s Magenta

We can now consider Magenta Git Magenta (2020),
from the Google Brain team, publicly available on GitHub.
Magenta comprises a set of models that aim to enable
music composition and music generation, from drums to
melody to harmony.

Searching a bit deeper in our available models, a partic-
ularly interesting one is Polyphony RNN, that by training
on MIDI data can generate polyphonic MIDI files. This
model is a sequence to sequence model, meaning that it di-
rectly tries to predict the next step (note) given the previ-
ous sequence, using an RNN optimized with LSTM nodes,
instead of regular nodes, capable of being trained. Graves
(2014)

2.2.4. DeepBach

Another model that uses MIDI is DeepBach Hadjeres
et al. (2017), which consists of an architecture using two
separate Deep Neural Networks and computes results with
the help of a third Neural Network 1.

Although similar to Polyphony RNN, DeepBach instead
”looks ahead”, considering the next steps altogether with
the previous steps, predicting the current one. DeepBach
also uses MIDI processing in both training and output
generation. This model includes an altered form of Gibbs
sampling in order to harmonize the soprano pre-generated
voice.

2.2.5. Composer

This model consists of a convoluted auto-encoder, Hack-
erPoet (2018) that first converts the MIDI file, as a pi-
anoroll, into each of its measures to a frame of 96 pitches
per 96 steps, and each of the coordinates (step, pitch) cor-
responds to a different pixel on an image.

There were chosen 96 steps per measure as it evenly
divides all the most common time signatures. A third
dimension is added to account for each and every measure
of both the generated and training songs.

Figure 1: DeepBach’s architecture

A dense network encodes each measure into a feature
vector, which are in turn fed to a dense auto-encoder, out-
putting another feature vector, that gets back-converted to
measures, like shown in figure 2. This network also allows
for the use of embeddings.

Figure 2: Network diagram

We have now collected a set of models that we can use
as a baseline for our model, providing ideas to optimize
the best fitting model, having this choice better analyzed
at section 3.2. This also enables us to efficiently create a
model based in models known to have worked and fulfilled
their purpose.

3



Figure 3: Composer interface

3. Methodology

In order to achieve our goal of obtaining a reliable model
to capture various dimensions of style, we needed to sieve
through different models, as presented in our State of the
Art, finding Polyphony RNN and Composer as possible
models to solve our problem.

After testing with these models, we concluded that
Composer can consistently produce an output that nei-
ther lacks structure nor overly repeats itself, making it
our ideal choice to optimize, as better explained in section
3.2.

3.1. Setup and approach

With this work, we hope to not only better understand
how style can be perceived in terms of purely melodic,
harmonic, and rhythmic structure but also how we can
devise a model to perform this task. The chosen models,
having worked with the datasets that they were originally
intended to work with, we now want to know if they are
suited for generating music in other styles. We also hope to
understand possible ways of, either creating a new model
or to optimize one of the pre-selected models, to consis-
tently generate music on the styles given by our datasets
that each model trains on.

3.1.1. Model training

The first training optimizations that this model received
were related to hyperparameter tuning, as shown in the
tables below, in order to have the model converging faster:

With the results shown at table 1, we can deduct that
for our model, to a given dataset, we can get, on average,
a better loss value if we choose a 0.99 batch momentum.
Since our learning rate will be adaptive, as inspired by Xu
and Metz (2019), we can consider that a learning rate, at
most twice the minimum proposed (0.0015), may suffice.

Batch momentum

Learning rate

0.9 0.99 0.999
0.002 21 23 21.3333
0.0025 20.6667 22.3333 20
0.003 20.6667 17 17
0.0035 22.6667 21.6667 24

Table 1: Training epochs for certain combinations of learning rate
and batch momentum to obtain a given loss value (0.0015), lower is
better

An adaptive learning rate is simply a small decrement
in the value itself, every time the loss value increases, until
we hit a pre-established minimum, in hopes of driving our
model in the right direction.

Batch size

Learning rate

5% 10% 25%
0.0025 18.6667 19.6667 33.3333
0.00275 21.3333 20.3333 30.3333
0.003 23.3333 28 28.33333

Table 2: Mini batch experimental confirmation, for a fixed loss
(0.0015) and batch momentum values (0.99), lower is better

From table 2 we can conclude that lower batch sizes,
along with smaller learning rate starting values allow for
better convergence. However, for larger datasets, a smaller
learning rate may lead to very large training times and
thus, we may benefit from using larger batch sizes, up to
10 per cent, for similar convergence while spending less
time.

3.1.2. Model optimizations to the interface

Since there is room for improvement on not only the
model itself but also on the interface that we use to gener-
ate music, shown in figure 3, we can first look at how the
model behaves. Aside from the hyperparameter optimiza-
tions, we have an interface where we can operate with the
obtained latent vector by moving a set of knobs to change
the factors for each of the values. Below we can see the
relative importance of each of the multipliers/knobs on the
produced output:

Our interface was also optimized in a way that allows us
to change the key of the track by multiplying or dividing
every pitch by 12

√
2, as this value represents the smallest

interval ratio in western music, the semitone. With the
associated keybindings we can freely change the key of the
track, semitone by semitone.

A waveform similar to the one of a piano was also added,
using numPy to encode a function generator, by adding the
first sine Fourier components of a piano sound wave.

3.1.3. Output generation

In order to generate our output, we can rely on our
interface to extract the results. By varying the knobs, or

4



Figure 4: Weight distribution of the latent vector for the NES
videogames dataset (left) Tuning knob for the interface (right)

by randomizing their values, we can start obtaining our
outputs as we hear it since the model works in real-time,
with a set of waveforms we can choose from.

We can now either export our files as MIDI to be sam-
pled in a sampler or directly as WAV files for generation.
For some models, like the videogames one, since NES’ au-
dio relied in waveforms that require lower encoding, it may
make sense for us to use the directly generated WAV files.
We can then, for each dataset, have an associated sampler
to recreate our outputs.

3.1.4. Experimental data collection

Now that we have generated our outputs, we can gener-
ate our results for the general public to help us understand
how well the model performs. Therefore, to fix some met-
rics, we need to categorize our output into:

• Suitable for outputs that can be seen as possible
songs/sections of songs of the style of the training
set.

• Sample suitable for outputs with motifs that can be
considered of being of the style of the training set.

• Unsuitable for outputs that have no relation to the
style of the dataset, making dissonant tracks or tracks
endlessly repeating a single motif, be a part of this set
as well.

With our now defined metrics in mind, we need to pro-
duce an experiment where we can categorize the output
accordingly. For that, we will generate a form for pub-
lic data collection where a selection of handpicked outputs
will be listened by the respondents for each of the styles
(NES videogames, Pop, Dragonforce, Queen and Mozart),
in sets of 3 tracks each, answering:

• Which of the songs is the most enjoyable, to try to
pick a best track.

• How good the main voice sounds at the picked track,
since the melody standing out is usually important -

if the answer is negative, the model for that style may
be deemed sample suitable.

• If the track could belong to that style as is, and in
what degree - separating even further suitable from
sample suitable songs.

It is also asked the musical background and the famil-
iarity with each of the styles for each of the respondents
to better categorize the answers. With this setup in mind,
we need to finally generate our outputs in order to fully
implement our experiment.

3.2. Initial model testing and experiments

We can prove why Composer was chosen over Ma-
genta in a comprehensive comparison of both models, with
their functioning and their generated outputs for a same
dataset, in this case Bach, to test both models under the
same conditions.

First off, the dataset was prepared in a way that the
models recognize it. Magenta does this with a note se-
quence file, converting all the MIDI files into a single file
that can then be read by the model for it to be trained.
By contrast, Composer takes groups of 16 measures and
then treats each group as a single batch, with the com-
plete samples in a numPy file and their respective lengths
in another file.

Then, during training, Polyphony RNN trains over the
sequence, note by note, calculating a value for accuracy
and loss. For Composer, the model generates three files
for the final latent values, with an associated loss value,
that combined with the previous two files will be part of
the output generator.

The model for Composer has been optimized with an
adaptive learning rate, meaning that this value decreases
every time the loss value increases between different train-
ing epochs. This allows to speed up training at the earlier
stages. Other hyperparameters have been tested in order
to help further optimizing the model. The full process,
from dataset collection to music generation is summarized
at 5.

For Polyphony RNN, the training was performed with
a relatively low accuracy, reaching 75 per cent on the best
cases and with a loss very close to 1, meaning that the
dimension of the errors is relatively high, being reflected on
the outputs. These outputs were either unstructured songs
without a defined chord progression nor relevant melodic
evolution, or very structured songs always repeating the
same motifs. Since none of these extremes is of interest to
us, the direct usability of this model is questionable.

Composer was tried afterwards, with the training per-
forming with very low loss values (under 0.002) and the
produced outputs, although having a few dissonances, are
much more diverse while maintaining a chord structure.
However, phrase/motif terminations (also known as ca-
dences) may not exist, and when they do, they appear
more frequently somewhere in the middle of the generated

5



Figure 5: Magenta vs Composer logic

32 measures, instead of the end. This sole difference in
first results is what, due to our time constraints, led to
picking the Composer model over Polyphony RNN.

With these choices in mind, and with the Composer
model fully optimized as described, we can now proceed
to collecting results from respondents. These results will
also help reflecting how well the model performs its task.

4. Results and discussion

In this section we provide some insight over our obtained
results to further extract conclusions.

4.1. Experimental observation

Aside from the presented output generation method, of
randomizing parameters, some fine tuning with the knobs
and smaller randomization intervals have been tried. We
chose the smaller randomization interval for pop style to
check how different the output generation would perform,
and, for the remaining styles, we chose the regular default
randomization intervals.

Starting with the NES videogames dataset, after listen-
ing to the generated results, the style fits, just as ex-
pected, and, despite not having a notion of ending, it
can loop on itself, making it ideal for the desired envi-
ronment of videogame soundtracks. Being this what our
model was originally designed to do, we can consider that
this style has been successfully captured, being suitable
for videogame music generation.

Next up, with Pop songs, the model does not sound as
good as the videogames’ dataset. This may be due to the
instrument diversity of this dataset, making it harder for
our model to capture some basic arrangement features of

this style. This trained model may be therefore classified
as being sample suitable due to how diverse Pop is.

With the outputs generated with the piano pieces from
Mozart, the captured style resembles Mozart a lot if we
ignore the constant pauses that appear in the middle of the
track, classifying this version of the model as being sample
suitable. The reason why it is not classified as suitable
is mostly due to only some motifs being identifiable as
possible sections for a Mozart piece.

With Queen, the same problems that Pop suffered also
appear due to the instrumental variety. However, we con-
sistently have the same instruments so the range of the
tracks does not vary as much. Another problem arises
relating to how variable the section sizes are between dif-
ferent songs. These features can render the model sample
suitable but, just like with Pop, also need to be carefully
selected.

Finally, with the model trained over the Dragonforce
dataset, since we have faster notes being played, although
this may be a key feature of the style, it makes perceiv-
ing the style more complicated. Beyond this issue we can
listen to the main voicings of the song and sometimes un-
derstand what would be a solo. This makes this model
sample suitable but, for some outputs may produce un-
suitable results.

4.2. Results obtained from form answers

Bearing in mind some basic notions from the previous
output analysis over how our model is expected to behave,
we can analyze what our population of thirty one respon-
dents has to say in this matter and check if the statistics
are coherent with what we are upholding.

First off, we need to check how trustworthy are the ob-
tained answers. In order to do this, it was asked, in a scale
of 1 to 5 how familiar they were with each of the styles,
and respondents that were not as familiar with a certain
style could skip the section relating to that style, to help
us produce more reliable results. It was also asked the
level of music theory knowledge in order to further help
us legitimize results, according to the average percentages
shown below:

It was then asked which of the tracks was the most enjoy-
able. If a certain track has a greater bias than the others,
it can be further analyzed why it is more successful than
the others.

• Videogames - Slight bias towards track 3.

• Pop - Bias towards track 3.

• Mozart - Hard bias towards track 1.

• Queen - Bias towards track 2.

• Dragonforce - Hard bias towards track 3.

It is to be noted that most of the population of our
experiment are students from Instituto Superior Técnico,

6



Figure 6: Relative familiarity of respondents with the different styles

having a different insight from the one that would be pro-
vided by professional musicians. And some of the answers
may have been obtained with the people only listening to
one of the tracks of the dataset since we have no way to
ensure that.

Figure 7: Level of musical theory knowledge of the respondents

We can now look at which style has the best/most catchy
main voicing. This rating suffers a penalization if the re-
spondents who did not answer to certain styles are ac-
counted. The style that suffered the most with this was
Dragonforce where 54,8% of the respondents did not an-
swer to this style, due to their low familiarity. Therefore,
the graph shown below does not account for the respon-
dents that did not answer in order to help to even things
out.

Finally, we can check the suitability for each of the
trained neural networks in four distinct categories:

• As proposed by our methodology, an unsuitable out-
put.

• For sample suitable outputs, checking if either a lot
or a few changes need to be made, in order to help
further separating suitable from unsuitable outputs
and how close those outputs are from being considered
suitable.

• And finally, the outputs that are suitable.

Figure 8: Most catchy main voice for each of the styles, according to
respondents

4.3. Critique and Discussion

4.3.1. Discussion of Form Results

We can now look at the results and compare them to
the expected results. This way, we can establish where
the model performed better and worse and see if the ideas
of structure and harmony comply with these results.

First off, with the NES Videogames dataset, we obtained
what could be considered a suitable output, since none
of the respondents said that the output was unsuitable
and 54,8% claimed that only a few changes would be re-
quired for them to consider the tracks as being part of
a videogame soundtrack. The output for this style was
also the one that best performed in terms of a melodic
line, meaning that some themes may be good enough to
be catchy.

For the Pop style, the outputs were sample suitable,
with answers claiming that changes need to be made, but
how far the model is from being suitable, is harder to tell,
since both options of requiring a lot of changes or a few
changes have close results (32,3% versus 29,0%). The third
track was chosen as being the favorite, probably because it
is the one with a structure that may more closely resemble
what would be expected from the Pop style. It performed
average in terms of its melodic line, probably due to having
a track of a style that lives from the instrumental diversity
being performed on a single instrument.

With Mozart, the outputs also got to be sample suitable
but this time 45,2% of the respondents said that the model
needs a lot of changes. A possible problem relating to this
is the fact that all the notes that have been produced by
the model have the same duration and are relatively short,
creating pauses in many places that would have longer
notes in a regular composition. The track that performed
better was the first one most likely due to its more melodic
main line. Despite this, it was still deemed as being the
worst dataset in terms of its lead line.

Every respondent listened to the tracks corresponding
to the output of the Queen dataset, and both the second

7



and third track got the most votes (38,7% and 35,5% re-
spectively). More than a fifth of the respondents (22,6%)
claimed that the output is unsuitable even though two
thirds of the population claimed that the model is, in a
way or another, sample suitable. This may be due to the
previously referred problem that this dataset has of hav-
ing variable amounts of sections and section sizes, making
it very hard for our model to grasp its structure. Despite
this, the lead melodic line was the second best.

Last but not least, for the Dragonforce dataset, the one
that least respondents answered to (only 45,2% of the re-
spondents), the majority of the respondents claimed that
it required a lot of changes, probably having to do, just
like with the Pop style, with the instrumental variety being
poorly portrayed here. The third track was the most pop-
ular one, possibly due to having a more melodic bass line
contrasting with what may be perceived as a lead guitar
as this model also performed average on its lead melodic
line.

In general, the model performed as expected, with the
NES Videogames style being the best performing one as it
stands for what this model, prior to its optimizations, had
been originally designed for. For the other styles, some
improvements need to be made, with some solutions sug-
gested in our critique.

4.3.2. Critique to the model and posed problems

The model has performed reasonably and along what
was expected. However, it is still missing some features
that would better capture style. For the model to be
ideal, all the generated tracks should hit the suitable
mark, which checks to be true for most of the generated
videogame soundtracks, but lack, in a way or another, on
the remaining styles.

Our first possible problem to be tackled would be the
capturing of the batches of the datasets, which ends up di-
viding them in batches of sixteen measures. To solve this,
we would need to have the several sections marked, hav-
ing, for example, an ”A” section with the measure where it
occurs marked and a distinct ”B” section marked as well,
in order to help producing better results. This approach
would also solve the problem of the songs not having a
structured ending.

Some problems that are expected to arise for the cre-
ation of this proposed solution have to do with:

• Allowing a variable batch size, separating batches into
different sections and a batch for each of the songs in
the dataset, making each of these batches also vary in
size.

• Having a separate trained neural network for each of
the sections.

• Joining both these neural network structures in a new
architecture to help creating coherent outputs.

On top of that, having each of these sections trained sep-
arately could help further improve our outputs. This has

shown to be particularly an issue with the Queen dataset
where each of the sections’ size varies a lot, with the output
not having any particularly distinguishable or memorable
sections.

Another problem is about the separation of tracks for
multi-instrument datasets while allowing for training of
them at the same time. For instance, if the model could
perceive the different instruments, even reproducing them
at the output, a different level of style could be perceived
by our model: the arrangement. A problem that is also
associated with this is the fact that all the notes have the
same duration, regardless of what that should be, impact-
ing the output too and aspects associated with arrange-
ment could also help solve this.

Both of the previously proposed solutions would to-
gether allow for outputs that have both a coherent struc-
ture, due to section separation, and an arrangement that
would now be more bound to the style, due to permitting
the capturing of the respective instrumental variety.

The last problem that needs to be analyzed is how the
outputs are generated. Although ideally the outputs, be-
ing randomly generated, should always produce suitable
results, assuming the prior solutions have been applied,
they could still not always be suitable. Even though we
have tried using a smaller randomization interval for the
Pop style, the results do not seem to be any different from
the other datasets and thus it may be worth looking at a
different approach.

It could, for a possible solution, either be tried an in-
crease on the size of the latent vector, since with the cur-
rent size a lot of its values have an high impact, being
heavily correlated, making it hard to perceive what each
one does; or a classifier to perceive what musical aspect
each of the positions of the vector may correspond to.
This may not be as defining as the other problems but
it is something worth considering nonetheless.

Our results, with the author and the respondents hav-
ing similar opinions over the same outputs for the same
datasets, prove our initial ideas and consequent problems
that arise from the behaviour of the model. Thus, our
critiques can be validated in terms of hypothesizing the
problems that our model has. With this in mind, we can
now extract conclusions from this work and provide some
insight over possible future works.

5. Conclusions and Future Work

5.1. Conclusions

With this work we have optimized a model in order to
partially fulfil our goal of capturing style and reproducing
it in new outputs. This model was successful with:

• Generating composition ideas to a given style. This
could help later create a tool for musicians/producers
to extract ideas from other works and help with in-
spiring new works.

8



• Capturing some styles. The model behaved better
for styles with a more coherent structure both at the
songs themselves and across the different elements of
the explored datasets.

• Creating a baseline for better models. The critiques
explored in 4.3.2 settle a baseline for possible future
models to be worked from here on, as an upgraded
version of our model.

This model was not successful with:

• Instrumental arrangements, as these were proven to
be a crucial part of perceiving style, even for the most
trained ears, requiring the usage of external samplers.

• Coherent outputs, as a random generation should,
ideally, always allow for good results (or at least at
the majority of cases), requiring hand-picking the out-
puts.

• Structure capturing, where varying section sizes were
not captured by the model, compromising directly
how well some of the results ended up capturing style.

We hope with the baselines born with this work, better
models may arise bearing these ideas in mind.

5.2. Future Work

Some possible implementations or optimizations of this
work may arise, namely:

• An application for musicians and producers to tinker
with, in order to speed up the creative process.

• As a follow-up of the previous topic, an application
to blend different styles for generating new musical
ideas.

• A version of this model that preserves both the orig-
inal section types, intrinsic to the style to be cap-
tured, and the original arrangements, providing dif-
ferent possible arrangements on a given musical style.

• A more fine hyperparameter selection, or perhaps a
better architecture for the neural network behind the
model.

Being the instrumental arrangement and structuring of
sections a core concept of understanding musical style, this
optimization can be considered to be the most relevant to
be performed.

As for creating an application, we can look at the base-
line from the current interface of the model to create a
conceptual view of what a possible interface for this appli-
cation could look like. This interface should make the pro-
cess of training a neural network completely hidden from
the end user, by further optimizing our model. It is to be
accounted that these preoccupations may vary, according
to who the end-users of the application may be.

References

Braguinski, N. (2019). “428 millions of quadrilles for
5s. 6d.”: John clinton’s combinatorial music machine.
https://doi.org/10.1525/ncm.2019.43.2.86.

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., and
Sutskever, I. (2020). Jukebox: A generative model for music.
arXiv preprint arXiv:2005.00341.

Git Magenta (2020). Tf magenta.
https://github.com/tensorflow/magenta/.

Graves, A. (2014). Generating sequences with recurrent neural net-
works. http://arxiv.org/abs/1308.0850.

HackerPoet (2018).
Hadjeres, G., Pachet, F., and Nielsen, F. (2017). DeepBach: a

steerable model for Bach chorales generation. In Precup, D. and
Teh, Y. W., editors, Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 1362–1371, International Conven-
tion Centre, Sydney, Australia. PMLR.

Shlomo Argamon, K. B. and (Eds.), S. D. (2010). The structure
of style: Algorithmic approaches to understanding manner and
meaning. pages 45–58, Berlin: Springer-Verlag.

Technologies, A. (2020).
Xu, Zhen, A. M. D. J. K. and Metz, L. (2019). Learning an adaptive

learning rate schedule. http://arxiv.org/abs/1909.09712.

9


