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Abstract

This work proposes a non-destructive method for the identification of material properties of compos-
ite materials. This method takes advantage of the simulation capabilities of ANSYS® software, using
ANSYS® Parametric Design Language (APDL) to perform modal analyses and extract natural frequen-
cies of the specimens. ANSYS® and MATLAB® are integrated to solve several optimisation problems.
The proposed optimisation problems have for design variables the material elastic constants and make
use of Nature-inspired metaheuristic optimisation algorithms to evaluate an objective function using a
derivative-free method. These objective functions relate experimental natural frequencies, which are ex-
tracted from numerous studies carried out in the past by other authors, with computationally obtained
ones. The Nature-inspired metaheuristic optimisation algorithms tested are the Genetic algorithm, the
Particle Swarm Optimisation algorithm, the Grey Wolf Optimisation algorithm, the Firefly Algorithm and
Cuckoo Search algorithm. The different search agents population generated by the algorithms search
the available space looking for the global minimum of the objective function, independently of the initial
population position in the search space. The proposed method is applied to several specimens of dif-
ferent materials either they are constructed with synthetic fibres, such as glass fibres, or natural fibres,
such as wood fibres and plywood. This method proved to obtain the material elastic constants within an
acceptable range compared to other methods, provided that enough natural frequencies are accurately
measured and provided.

Keywords:Composite Materials, Green composites, Material Properties, Elastic constants, Nature-
inspired optimisation

1. Introduction
The automotive and aerospace industries’ urge to develop

new lighter vehicles with a smaller biological blueprint boosted
the development of new materials. These new materials have
better mechanical properties than the existing ones. To achieve
this, engineers developed what is known as composite materi-
als.

These new composite materials are tailored to the specific
need of each project. The most common used materials in
composites are carbon fibres, glass fibres and aramid fibres
obtained from non-renewable sources. Therefore, searching for
renewable materials sources is essential; materials like wood,
jute straw and flax can easily be processed into natural fibres
that are transformed in what is called green composites.

Green composites or natural fibre composites combine natu-
ral fibres with a polymeric matrix; this allows the use of several
combinations of materials to achieve the desired properties.

During the design of structures or structural components,
materials with specific properties are needed. Therefore, new
composite materials are created in order to meet design re-
quirements. As a consequence, it is imperative to assess the
mechanical properties of these composite materials. Consid-
ering that composite materials are heterogeneous by nature,
to fully determine all the mechanical properties, it is neces-
sary to perform a vast number of tests, which have a cost. In
this work, a non-destructive method for properties identification

is developed. It relies on commercial software to easily esti-
mate the mechanical properties of the specimen in the study.
Meta-heuristic nature-inspired optimisation algorithms are used
to minimise an error function relating experimental and compu-
tational modal parameters.

This work focuses on studying laminated composite materi-
als, whether they are synthetic fibre reinforced, such as glass fi-
bres reinforced composites, or they are natural fibres reinforced
like wooden fibres reinforced composites and plywood. How-
ever, a specimen of aluminium is also analysed to establish a
baseline and test the proposed method.

2. Background
2.1. Historical Overview

The first use of the metaheuristic method and metaheuris-
tic algorithms is difficult to pinpoint in history, although its im-
portance is well established in the scientific community nowa-
days. The development of more powerful computers drives the
development of new, more efficient algorithms. One hundred
and ninety-two metaheuristic algorithms are listed in M. Almufti
[1] and seventy four nature-inspired metaheuristic algorithms in
Fister et al. [2].

Nature-inspired algorithms gained popularity in the scientific
community due to their efficiency to evaluate an objective func-
tion. They use stochastic ideas and random numbers, given the
design variables and constraints, to evaluate an objective func-
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tion. These algorithms evaluate the function using a derivative-
free method, thus not requiring the calculation of analytical or
numerical derivatives of the objective function. Another char-
acteristic that makes these methods so attractive is that they
can be applied to any function because they only evaluate the
function values.

Despite the benefits described above, nature-inspired algo-
rithms also have some drawbacks. These algorithms may re-
quire a large sample of objective function evaluations in order
to solve the problem. This implies that a large amount of com-
putational power may be necessary to process the data. Addi-
tionally, there is no guarantee that a global minimum is obtained,
having the possibility instead of finding a local minimum.

2.2. Overview of methods for materials characterisation
Materials are characterised by their engineering constant,

also known as elastic constants. Different elastic constants rep-
resent different characteristics of the structure. The elastic con-
stants analysed are Young’s modulus, E, which relates exten-
sional strain in the direction of loading to stress in the direction
of loading; the Poisson’s ratio, ν, relates extensional strain in
the loading direction to extensional strain in another direction;
and the shear modulus, G, relates shear strain in the plane of
shear loading to that shear stress [3].

Most of the times, the material properties are determined in a
laboratory in terms of engineering constants. These constants
are measured using tests like uniaxial tension test. Due to their
physical meaning, the engineering constants are used in place
of more abstract stiffness coefficients and compliance coeffi-
cients, thus the relation between strains and stresses can be
written as a function of the engineering constants according to:
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where E1, E2, E3 are the Young’s modulus in 1, 2, and 3 ma-
terial directions, respectively, νij is the Poisson’s ratio defined
as the ratio of the transverse strain in the jth direction to the
axial strain in the ith direction when stressed in the ith direction
and G23, G13, G12 are the shear moduli in the 2-3, 1-3 and 1-2
plane, respectively [4].

The methods for material properties identification can be di-
vided into two classes: methods that use destructive techniques
and non-destructive ones, as can be seen in Figure 1.

Figure 1: Overview of composite material properties identifica-
tion methodologies [5].

Non-destructive techniques involve two parts, an experimen-
tal and a numerical part, being these techniques most of the
times referred to as experimental-numerical techniques [5].

In the experimental part significant parameters are measured
and extracted to be later used in the numerical part. Two ap-
proaches are considered, the static and the dynamic approach.
In the static approach a specimen is subjected to a transverse
quasi-static load. The dynamic approach can be divided into
the wave propagation method and the vibrational method. The
wave propagation method uses an ultrasonic wave travelling
through a specimen. The vibrational method makes use of ex-
ternal excitations in order to obtain a frequency response func-
tion and extract modal parameters, in particular natural frequen-
cies and mode shapes. The natural frequencies are the fre-
quencies at which a physical structure will tend to vibrate. Nat-
ural frequencies depend on the way mass and stiffness are dis-
tributed within the structure. Each structure posses its unique
set of natural frequencies and mode shapes, which describes
how a structure moves at a particular natural frequency.

To fully determine the material properties of a specimens
the numerical part of this method can be a direct evaluation,
in which the direct identification of elastic properties of a mate-
rial is obtained from a derived inverse equation with the exper-
imental resonant frequencies as data. Alternatively, it can be
a non-direct evaluation, in which the objective is the minimisa-
tion or maximisation of objective functions. This last approach
involves both forward methods and inverse methods in order to
determine the material properties of the composite material.

Soares et al. [6] used the non-direct method to predict ma-
terial properties of composite plates. In this case, experimen-
tally determined eigenfrequencies of the plate in the study are
compared to the corresponding numerical eigenvalues through
the use of an objective function and an optimisation technique
is applied. The generalisation of this method is presented by
Araújo et al. [7], where experimental values of material param-
eters are determined. The numerical part is replaced by a fi-
nite element method to determine the corresponding numerical
eigenfrequencies. After that, an optimisation technique com-
prised of the minimisation of an error function, which estimates
the deviation between experimental and numerical values.

Based on these previous articles, Lopes et al. [8] presented a
method for the identification of material constants of laminated
composite plates. The optimisation process makes use of an
objective function that relates experimental and numerical fre-
quencies to determine the elastic constants of the plate. The
algorithms Particle Swarm, Genetic and Pattern Search were
used in the optimisation process to estimate the material elastic
constants.

2.3. Algorithms for optimisation
A generic optimisation problem can be written in the following

way [9]:
Find an n-vector x = (x1, x2, ..., xn) of design variables to

minimise an objective function:

f(x) = f(x1, x2, ..., xn) (2a)

subject to the p equality constraints:

hj(x) = hj(x1, x2, ..., xn) = 0; j = 1 to p (2b)

and the m inequality constraints:

gi(x) = gi(x1, x2, ..., xn) ≤ 0; i = 1 to m (2c)

To fully define an optimisation problem it is fundamental to
know what are the design variables, the objective function and
any constraints that might influence the optimisation solution.
One other aspect that has strong influence is the optimisation
method. The use of nature-inspired metaheuristic algorithms
raises some questions when the complexity and diversity of
real-world problems are taken into consideration. Since most
algorithms are tested against benchmark functions it is impos-
sible to say that to solve a real-world problem algorithm A is
better than algorithm B, as stated by the No-free-lunch Theo-
rem [10].

2.3.1. Description of algorithms
In this section, the algorithms selected are presented and

briefly described.
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2.3.1.1 Genetic algorithm
The Genetic algorithm (GA) was developed by Holland [11].

In essence, a genetic algorithm is a search method based on
the abstraction of Darwinian evolution and natural selection of
biological systems [12]. Using biological operators, such as
crossover, mutation, and selection of the fittest, to generate the
successive generations and evaluate the best values.

2.3.1.2 Particle Swarm Optimisation algorithm
The Particle Swarm Optimisation (PSO) algorithm takes in-

spiration from the group behaviour of animals, such as swarm
intelligence of fishes, birds and even by human behaviour [13].
The multiple search agents called particles, p1, .., pn, move
around the search space starting from an initial random guess.
The feasible solutions are called ”swarm”, P = {p1, ..., pn}.
The swarm communicates the current best and shares the
global best in order to focus on the best solution found. To solve
most of the problems the number of particles used varies from
twenty to fifty [10].

2.3.1.3 Grey Wolf Optimisation algorithm
The Grey Wolf Optimisation (GWO) algorithm takes inspira-

tion from the social hierarchy and hunting behaviours of grey
wolves as they are apex predators, meaning they are in the top
of the food chain with a strict social dominant hierarchy. This
social hierarchy is well defined and the grey wolf leaders are
denominated as alphas, α. The next level in the hierarchy are
the betas, β, followed by the omegas, ω, and the deltas, δ, in
the bottom of the pyramid. The hunting behaviour has different
stages starting with encircling prey, followed by hunting, attack-
ing prey and search for prey [14].

2.3.1.4 Firefly algorithm
The Firefly algorithm (FA) takes inspiration from the biolu-

minescence flashes of fireflies. The primary function of these
flashes is to attract matting partners and to attract potential prey.
The pattern of flashes is specific to each one of the two thou-
sand species of fireflies. The FA was developed and imple-
mented by Yang in 2009 [15]. This algorithm is based on three
idealised rules: the first is that all fireflies are unisex, meaning
that one firefly will be attracted to the others regardless of their
sex; the second one is that the attractiveness is proportional to
the brightness and these two factors reduce as the distance be-
tween fireflies increase; and the last one is that the less bright
firefly will move towards the brighter ones, the fireflies randomly
move towards the brightness.

2.3.1.5 Cuckoo Search algorithm
The Cuckoo Search (CS) is inspired by the brood parasitism

of some cuckoo species and makes use of the Lévy flights, a
behaviour of flight of many birds and insects characterised by
straight flights punctuated by sudden 90◦ turn used to explore
new terrain. This algorithm was developed by Yang and Deb in
2010 [16]. The CS can be described by three rules: The first
rule is that each cuckoo lays one egg at a time in a randomly
chosen nest; the second rule says that the best nest with the
high-quality eggs being carried over to the next generations;
and the last rule is that the number of host nests is fixed, and
there is a probability, pa ∈ [0, 1], that the host bird discovers the
cuckoo’s egg. In this case, the host bird can get rid of the egg
or abandon the nest, creating new locations.

3. Methodology
The present method for properties identification is included

in the non-direct evaluation methods as it uses a metaheuristic
optimisation approach for the identification of material proper-
ties.

3.1. Specimens selection
To apply this method, it is fundamental to measure natural

frequencies using experimental techniques. Data from previ-
ously performed measurements, taking into consideration sev-
eral aspects regarding boundary conditions, material properties
and specimens characteristics, will be used.

To accurately measure natural frequencies, the specimen
should be suspended so that it would approximate a free con-
dition. This condition is the one that leads to the best de-
sired measurements. These specimens are rectangular plates
with constant thickness. There are a large number of exam-
ples in the literature presenting data required to implement this
method. However, the selected specimens were chosen as they
represent some of the most used materials in composite mate-
rials, as well as some green composites. Table 1 lists the se-
lected specimens references, Table 2 lists the specimens ma-
terials and their geometric characteristics and Table 3 lists their
mechanical properties

Table 1: Specimens references
Specimen Author Year Reference

SP-1 Soares et al. 1993 [6]
SP-2 Lopes et al. 2019 [8]
SP-3 Araújo et al. 1996 [7]
SP-4 Larsson 1997 [17]
SP-5 Igea and Cicirello 2020 [18]

Table 2: Type of material and geometric characteristics of se-
lected specimens

Specimen Material a x b x h (mm) N. of Plies Fiber Orientation
SP-1 Aluminium 193 x 281 x 1.94 1 –
SP-2 Glass-Epoxy 299.26 x 93.71 x 2.3 14 [0014]T )
SP-3 Glass-Epoxy 203 x 136 x 14 - [00]
SP-4 OSB* 2440 x 1220 x 10 - all align
SP-5 Plywood panel 350 x 350 x 5.50 3 all align

*OSB - composite material composed of adhesive and wooden strands.

Table 3: Mechanical properties of selected specimens as re-
ported in the references

Specimens Density(Kg/m3) E1(GPa) E2(GPa) G12(GPa) G13(GPa) G23(GPa) ν12

SP-1 2688 68.7 68.1 24.6 24.6 26.9 0.34
SP-2 1978.3 31.28 27.17 6.46 - - 0.1659
SP-3 1886.9 42.8 12.2 4.8 4.2 4.9 0.301
SP-4 649.691 7.12 3.45 1.96 - - 0.28
SP-5 568 8.180 4.357 0.6954 - - 0.1216

3.2. Mesh convergence study
Since this method relies on FEM analysis, a mesh study is

carried out for all the selected specimens. A model for each
specimen is created and the simulations required to perform
the convergence study are requested in APDL®.

The process to obtain the requested data is as follows:
MATLAB® generates an input file which contains ANSYS® script
commands. In this file, the specimen plate in question is mod-
elled and a modal analysis is requested to ANSYS®. From the
general Equation of motion, the particular case of the free vi-
bration is deduced, assuming all applied loads and the in-plane
forces are set to zero:

[M ]{∆̈}+ [K]{∆} = 0 (3)

where [M] is the mass matrix, [K] is the stiffness matrix, ∆ is the
displacement and ∆̈ is the second-order time derivative of the
displacement.

In free vibration analysis the structure’s behaviour is as-
sumed to be linear, and the response can be assumed har-
monic:

{∆} = {φi}cos(ωit) (4)

where φi is the mode shape (eigenvector) and ωi is the natural
circular frequency for mode i. By replacing this last equation in
equation (3) yields an eigenvalue problem:

([K]− ω2
i [M ]){φi} = 0 (5)

which is solved in ANSYS® [19].
For comparison purposes and to avoid distorted elements,

the finite element dimensions were defined so that elements
are approximately square. The elements used are SHELL63
and element SHELL181.

For the convergence study a convergence index is used to
check the mesh and help in the decision of which mesh to use
for the rest of the analysis.

MCI = 100×
∑10
i=1 firef −

∑10
i=1 fi∑10

i=1 firef
(6)

3



where the mesh convergence index (MCI) is related to the sum
of the 10 modal frequencies requested, fi, and the sum of the
10 modal frequencies of a reference mesh with approximately
10000 elements ,firef .

Table 4 presents the selected meshes that will be used in the
upcoming analysis.

Table 4: Number of elements for determined Convergence In-
dex for SHELL63 element-using 10 modal frequencies

Specimen MCI # elements ae(mm) ae/a

SP-1 MCI < 0.5% 176 (11×16) 17,55 0,09091
MCI < 0.3% 315 (15×21) 12,87 0.0667

SP-2 MCI < 0.5% 252(28×9) 10.69 0.03571
MCI < 0.3% 1725 (75×23) 3.99 0.0133

SP-3 MCI < 0.5% 54 (9×6) 22.56 0.1111
MCI < 0.3% 117 (13×9) 15.62 0.07692

SP-4 MCI < 0.02% 392 (28×14 ) 87,14 0.08714
SP-5 MCI < 0.02% 168 (14×14 ) 25 0.07143

After analysing the results above, the SHELL63 element
graphs convergence was rapid, resulting in the lowest MCI
produced from the elements tested. Thus, meshes with MCI
< 0.5% are used from now on, except for specimen SP-2. For
this specimen, the mesh used presents an MCI < 0.3%, corre-
sponding to the mesh presented in the article [8] for comparison
purposes.

3.3. Optimisation problems
In this section, the optimisation problems are defined. In

the present optimisation problems, the design variables are the
elastic constants of the different materials.

The optimisation problems defined for the four different spec-
imen material elastic constants can be represented as follows:

Isotropic materials

Min Φ(E, ν) (7a)

Transversely isotropic materials

Min Φ(E1, E2, G12, ν12) (7b)

Orthotropic materials

Min Φ(E1, E2, G12, ν12) (7c)

Anisotropic materials

Min Φ(E1, E2, G12, G13, G23, ν12) (7d)

The computation of the objective function is represented in
the flowchart of Figure 2.

Figure 2: Flowchart of the objective function computation

The first objective function is presented in Equation (8) [8].
The objective is to minimise the sum of the absolute difference

between the circular natural frequencies obtained experimen-
tally, ω̃i, and the circular natural frequencies obtained computa-
tionally, ωi:

Φ =

nf∑
i=1

|ω̃i − ωi| (8)

where nf are the total number of frequencies considered.
One other objective function relates experimental circular

natural frequencies, ω̃i, and computational circular natural fre-
quencies, ωi, according to the Equation (9) [6]:

Φ =

nf∑
i=1

(ω̃i
2 − C × ω2

i )2

ω̃i
4

(9)

where C = ω̃1
2

ω2
1

and nf are the total number of frequencies

considered for each of the specimen analysis.
The last step to have a fully defined optimisation problem is to

apply the necessary constraints to the design variables. There-
fore for each specimen, a set of lower and upper constraints
are defined for each one of the design variables. If the refer-
ence presents the constraints for the design variables these are
used, if not, the constraints are defined accordingly to each spe-
cific case. Table 5 lists the constraints for each specimen. The

Table 5: Constraints applied to each design variable
Specimen Constraint E1(GPa) E2(GPa) G12(GPa) G13(GPa) G23(GPa) ν12

SP-1 Upper 100 - - - - 0.4
Lower 50 - - - - 0.2

SP-2 Upper 50 50 20 - - 0.4
Lower 10 10 1 - - 0.05

SP-3 Upper 70 25 15 15 15 0.4
Lower 20 1 1 1 1 0.1

SP-4 Upper 15 10 5 - - 0.4
Lower 4 1 0.1 - - 0.1

SP-5 Upper 15 10 5 - - 0.2
Lower 4 1 0.1 - - 0.05

termination criteria are the tolerance and the maximum number
of iterations. The tolerance is set to 10−6 or 10−9 depend-
ing on the specimen and objective function. This ensures that
the optimisation ends when the relative difference of succes-
sive function values reaches this value. The maximum number
of iterations is set to one thousand for all optimisation problems.
This is needed so that, if the tolerance is not met, the algorithms
will stop when they reach the one-thousandth iteration.

4. Results and discussion
4.1. Comparison of results obtained with different algo-

rithms
In this section, the optimisations are used to verify the appli-

cability of this method for properties identification. With this aim
the specimens SP-1 and SP-2 extracted from [6, 8] are used.
For each specimen, optimisations using the five different algo-
rithms proposed are performed. This is done so that the more
suitable algorithm can be selected to be used in the next sec-
tions. The optimisation problems analysed in this section are
summarised in Table 6 and the constraints applied to the de-
sign variables listed in Table 5.

Table 6: Optimisation problems’ parameters
Specimen SP-1 SP-2
Parameter Value Value

Objective function Equation (9) Equation (8)
nf 9 14

Number of search agents 100 100
Tolerance 10−9 10−6

Max. number of iterations 1000 1000

4.1.1. Specimen SP-1
For SP-1, the design variables areE and ν ,and it is expected

to obtain values similar to the ones reported in [6].
The elastic constants computed and the relative difference

to the reference values [6] calculated are shown in Table 7. All
the algorithms have the same values for the Poisson’s ratio, ν.
Only for Young’s modulus, E, is it possible to draw any conclu-
sions. In this set of optimisations, this design variable presents
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distinct values for each of the algorithms. Table 8 lists the func-
tion values (Fval), the number of iterations (Niter), the number
of function evaluations (NFEs), and the relative computational
time (RCTime) taken by each algorithm.

Table 7: Elastic constants computed with each of the algorithm
and relative difference for SP-1

E (GPa) ν 100 ∗ |E−Eref |
E

100 ∗ |ν−νref |
ν

Reference [6] 68.7 0.34 - -
GA 71.09 0.37 3.4 7.9
PSO 69.14 0.37 0.6 7.9
GWO 87.41 0.37 21.4 7.9
FA 78.68 0.37 12.7 7.9
CS 99.62 0.37 31.0 7.9

Table 8: Function values (Fval), number of iterations (Niter),
number of function evaluations (NFEs) and relative computa-
tional time (RCTime) for each algorithm for SP-1

Fval Niter NFEs RCTime
GA 0.001041 65 6600 1.72
PSO 0.001041 35 3600 1.00
GWO 0.001041 996 99700 54.76
FA 0.001041 82 8200 2.65
CS 0.001041 118 11800 1.04

Analysing Table 7 the best result is obtained for the PSO
algorithm, presenting a relative error of zero point six per cent.
All other algorithms present relative differences above ten per
cent, making them unsuitable for solving this kind of problems.

In conclusion, to solve this optimisation problem the most
suitable algorithm is the PSO, which manages to obtain values
for the design variables close to the reference values while us-
ing fewer iterations and time when compared to all others algo-
rithms used.

4.1.2. Specimen SP-2
For SP-2, the design variables are E1, E2, G12 and ν12.
The elastic constants computed using each algorithm for this

specimen are listed in Table 9. The elastic constants computed
using the different algorithms are in the vicinity of the reference
values.

From Table 10, it is observed that the GWO and the FA al-
gorithms have the greatest differences. The relative differences
observed in all algorithms are due to the type of element used.
Although the same number of elements is being used, the finite
element used is different from the one used in reference [8]. In
this article, the Kirchoff non-conforming element of four nodes
and three degrees of freedom per node was used, while in this
method, the shell element SHELL63 is used.

Table 9: Elastic constants computed with each of the algo-
rithms for SP-2

E1(GPa) E2(GPa) G12(GPa) ν12
Reference [8] 31.28 27.17 6.46 0.1659
GA 30.57 27.16 6.38 0.1609
PSO 30.51 27.15 6.38 0.1673
GWO 30.98 27.34 6.50 0.0885
FA 27.17 30.59 6.4 0.1579
CS 30.51 27.15 6.38 0.1676

Table 10: Relative difference of computed elastic constants of
each algorithm

100 ∗
|E1−E1ref

|
E1

100 ∗
|E2−E2ref

|
E2

100 ∗
|G12−G12ref

|
G12

100 ∗
|ν12−ν12ref |

ν12
GA 2.32 0.037 1.25 3.11
PSO 2.52 0.074 1.25 0.84
GWO 0.97 0.62 0.61 87.46
FA 15.13 11.18 0.94 5.07
CS 2.52 0.074 1.25 1.01

Analysing Table 11, it is possible to see that the function val-
ues for most of the algorithms do not vary much. However,
for the GWO algorithm, the function value obtained is around
three times greater than any other. The algorithm that took the
longest was the FA, taking almost eight times more than the
fastest one, the GA.

After analysing both of these sets of optimisations, it is pos-
sible to see that the most efficient algorithms are the GA and

Table 11: Function values (Fval), number of iterations (Niter),
number of function evaluations (NFEs) and relative computa-
tional time (RCTime) for each algorithm for SP-2

Fval Niter NFEs RCTime
GA 47.76 145 14600 1.00
PSO 45.66 101 10100 1.08
GWO 148.87 1000 100000 3.41
FA 48.70 916 91600 7.73
CS 45.75 622 31100 4.51

the PSO. For both specimens, these algorithms are the ones
that present the most relevant results, with the lowest amount
of time and iteration spent to obtain it.

4.1.2.1 Comparison of results with different sets of experi-
mental natural frequencies

In this analysis the algorithm used is the PSO algorithm for
both cases. The presented method is applied to the modelled
plate of this specimen, changing the input experimental fre-
quencies for each case. Since in the more recent measure-
ments of the natural frequencies, only ten frequencies were
measured. In the present analyses, the number of frequencies
used, nf , is set to ten for both cases. The set of natural fre-
quencies presented in the article [8] is denoted as f̃ ia) and the
more recent set is denoted as f̃ ib).

Table 12 lists the elastic constants computed for each case
and the best function value obtained in the optimisation process.

Table 12: Elastic constants and function value obtained for
each one of the cases a) and b)

E1(GPa) E2(GPa) G12(GPa) ν12 Fval
a) 30.61 27.18 6.41 0.1555 10.21
b) 30.14 27.74 6.08 0.2000 19.15

Here it can be observed that for the Young’s moduli, E1 and
E2, the values obtained are very similar and within the accept-
able values for this constant. This is also observed for the
shear modulus. The Poisson’s ratio is the elastic constant that
presents the most significant variation, presenting a relative dif-
ference of around twenty per cent from the reference [8], for
case b).

All things considered, the elastic constants computed with
each set of experimental frequencies present similar values, ex-
cept for the Poisson’s ratio, which is proven to be more sensitive
to the changes in frequency than the other elastic constants.
The high sensitivity of the Poisson’s ratio was also verified in [7]
.

4.2. Comparison of results obtained with different sets of
search agents

The present method is based on meta-heuristics, so there is
a need to validate this method. For that, in this section, one of
the most used validation tests discussed in [20] is going to be
performed.

In this section, fifty optimisations are performed for SP-1 and
thirty optimisations for SP-2. The optimisation problems anal-
ysed in this section are summarised in Table 13 and the con-
straints applied to the design variables listed in Table 5.

Table 13: Optimisation problems’ parameters
Specimen SP-1 SP-2
Parameter Value Value

Objective function Equation (8) Equation (8)
nf 9 14

Number of search agents 50 100
Tolerance 10−6 10−9

Max. number of iterations 1000 1000

The computer used for this analysis has an Intel® CoreTM

i7-9750H CPU @2.60 GHz processor with 16 GB of RAM. It
was also used the software AMD® RadeonTM RAMDISK which
allows allocating part of the computers RAM memory into a vir-
tual disc.
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4.2.1. SP-1
The next set of fifty optimisations are performed for the spec-

imen SP-1.
After gathering the necessary data from all the fifty optimi-

sations the averages and standard deviations of all the design
variables, the objective function value and computational time
are calculated and displayed in Table 14.

The average values obtained for both elastic constants, E
and ν, are close to the values showcased in the reference [6].
For the standard deviations, it presents values with a magnitude
of 10−14 for E, and 10−16 for ν which demonstrates the relia-
bility of this method determining the material elastic constants
of the material.
Table 14: Average and standard deviation of fifty optimisation
runs for the elastic constants, function value and computational
time

E (GPa) ν Fval Computational time (h)
Average 66.8 0.38 72.75 1.052

Standard deviation 0.0000 0.0000 0.0000 0.1049

The objective function values presented in all the optimisa-
tions have approximately the same value and showcasing a
standard deviation with magnitude of 10−14. To examine in
detail the influence of each of the initial populations of search
agents the computational time is studied. The best-case sce-
nario took approximately zero point eighty-four hours, and the
worst-case scenario which took approximately one point thirty
three hours. The time difference between the best and the
worst-case is around zero point forty-nine hours, correspond-
ing to approximately thirty minutes. Both optimisations used dif-
ferent numbers of iterations, the worst-case used seventy-two
iterations, and the best case used forty-six iterations. To anal-
yse each case, the dispersion of the search agents throughout
the optimisation process are represented in Figure 3.

(a) Best case (b) Worst case
Figure 3: Dispersion of the design variable throughout the op-
timisation process for the best and the worst case

The iterations represented in the figures correspond to the
initial iteration, followed by the iteration corresponding to the
one-quarter of the optimisation process, the next corresponds
to half of the optimisation process and finally, the last iteration of
the optimisations. For both cases, the initial population seems
to explore the search space evenly, with the worst case pop-
ulation grouped into small swarms through the search space
whereas the best case population is more scattered through the
search space.

The extreme cases are computed as well making the initial
population agents placed at the upper bounds and the lower
bounds for the design variables. In these extreme cases, it is
possible to denote that even with the initial populations at the
constraints bounds, this method is capable of obtaining the cor-
rect elastic constants, without major variances in computational
time and iterations.

4.2.2. SP-2
In this section, the optimisations are performed for specimen

SP-2.
The elastic constants computed in each run, as well as the

objective function value and computational time, are gathered
from the performed optimisation. Table 15 lists the averages
and standard deviations of these parameters. As it happened in
the subsection 4.2.1, the elastic constants average values are
very close to the values produced in the reference [8] and with
reduced standard deviations. In this case, the shear modulus,
G12, and the Young’s modulus E1 showcase standard devia-
tions with the same order of magnitude. The Young’s modu-

Table 15: Average and standard deviation of thirty optimisation
runs for the elastic constants, function value and computational
time for SP-2

E1 (GPa) E2 (GPa) G12 (GPa) ν12 Fval Computational time (h)
Average 30.51 27.15 6.38 0.1673 45.66 11.15

Standard deviation 0.0020 1.534E-05 0.0067 6.187E-05 0.0112 3.702

lus E2 and the Poisson’s ratio, ν12, present standard deviations
with the same order of magnitude smaller than for the other two
design variables with a magnitude of 10−5. The function value
presents a small variation proving that despite the different ini-
tial populations, the global function minimum is determined with
some certainty.

The effect of the different initial population is more noticeable
in the computation time each optimisation took than in these
last parameters. The computation time presents an average of
around eleven hours and a standard deviation of around three
point seven hours, which is significant corresponding to almost
one-third of the average computational time. The high standard
deviation of the computation time is noticeable with the com-
putational time varying from around six hours to as much as
twenty hours.

In the best-case scenario, the PSO algorithm performed the
optimisation process in a bit more of six hours using one hun-
dred and thirty-four iterations. For the worst case, the PSO used
more than twenty hours performing three hundred and seventy-
four iteration.

In the next figure, Figure 4, are represented the evolution of
the best values for the design variables in each iteration.

(a) E1 (b) E2

(c) G12 (d) ν12
Figure 4: Evolution of the design variables (E1, E2, G12 and
ν12 ) values throughout iterations for both the best and worst
case

For the graphs from Figure 4, it is visible that the worst case
scenario has a broader exploration of the search space. This
stands out in the v12 graph, where the search particles cover
more than half of the search space before stabilising in the final
value. While for the best case graphs from Figure 4, all the
initial elastic constants are within a close range of the final value
achieving this value around the fortieth iteration.

These specific optimisations, best case scenario and worst
case scenario together with the data gathered from the thirty
other optimisations demonstrate that the time each optimisation
uses may vary from the different set of search agent. Despite
that, the validity of this method for properties identification is
verified regardless of the initial set of search agents.

With the data from these two studies using SP-1 and SP-2, it
was possible to demonstrate the independence to achieve the
correct elastic constants independently of the initial population
of search agents.

4.3. Comparison of results obtained with different objec-
tive functions

In this section, the objective is to study the influence of the
objective function used. The optimisations are performed us-
ing the PSO algorithm, changing only the objective function. In
this set of optimisations the specimen used is the SP-2, the
constraints applied to the design variables are listed in Table
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5. These optimisation problems are defined in Table 13 using
different objective functions.

The objective functions used in this analysis are the ones
used in section 4.1, Equation (8), Φ1, and (9), Φ2, and a new
objective function, Φ3 [21]:

Φ3 =

nf∑
i=1

(fri − ˜fri)
2 (10)

where fri and ˜fri are the computational and experimental fre-
quencies, respectively, and nf the number of frequencies con-
sidered for each analysis.

These objective functions were created in order to solve or
overtake problems presented in other types of property identifi-
cation methods. This is implemented either to escape second
derivatives, which can be challenging to compute, for example,
Φ1, or to deal with gradient-based methods. Functions like Φ2

and Φ3 are known as the sum of squares and were developed to
be used by gradient-based methods. Since the present method
is a gradient-free method, the objective function used should
have a small influence on the method. The values obtained for
the design variables, the computational time, the number of it-
erations each optimisation took, and the final objective function
value obtained for each one of the objective functions are pre-
sented in Table 16.
Table 16: Elastic constants computed, relative computational
time (RCTime), number of iterations (Niter) and function values
(Fval) obtained for SP-2 using different objective functions

Objective function E1(GPa) E2(GPa) G12(GPa) ν12 RCTime Niter Fval
Φ1 30.51 27.15 6.38 0.1674 2.10 101 45.65960
Φ2 49.99 44.48 10.53 0.1699 1.00 57 0.000068
Φ3 30.48 27.16 6.38 0.1656 2.11 107 6.145190
Reference [8] 31.28 27.17 6.46 0.1659 - - -

The objective functions Φ1 and Φ3 obtained the best results
for the computed elastic constants. The elastic constant com-
puted with these two functions are similar and closer to the ref-
erence values than the ones obtained using Φ2. Thus Φ2 does
not seem to be suited to solve this optimisation problem when
compared to the other objective function analysed. When com-
paring the Φ1 and Φ3 values, the difference between the values
obtained are minimal, and the most significant difference is in
the function values.

Φ1 uses slightly less time than Φ3, therefore Φ1 is more suit-
able to be used to solve this type of optimisation problems.

4.4. Influence of the number of natural frequencies
In this section, the objective is to analyse the influence of

the number of natural frequencies in the optimisation using the
PSO algorithm. The optimisations problems used are defined
in Table 17 and the constraints for the different design variables
are presented in Table 5.

Table 17: Optimisation problems’ parameters
Specimen SP-1 SP-2 SP-3
Parameter Value Value Value

Objective function Equation (8) Equation (8) Equation (8)
nf 9 14 12

Number of search agents 50 50 100
Tolerance 10−6 10−6 10−6

Max. number of iterations 1000 1000 1000

4.4.1. SP-1
For SP-1 [6], two design variables are considered.
In Table 18 the elastic constants computed using the different

number of frequencies, the average, the standard deviation of
the design variables, and the reference values are presented.
The design variables have a small deviation for the different
number of frequencies. The average design variables values
obtained for this set of optimisations have a relative error to the
reference values of around two per cent.

For this specimen, nine frequencies are used. However, with
the analysis of the Table 18, the optimisation that came closer
to the reference value of this specimen are the one that uses
five frequencies.

Table 18: Elastic constants computed, average and standard
deviation while using PSO for each number of frequencies for
SP-1

nf E(GPa) ν
1 68.1 0.40
2 67.9 0.39
3 67.2 0.40
4 66.7 0.38
5 67.0 0.37
6 67.5 0.34
7 66.4 0.36
8 66.4 0.36
9 66.8 0.38

Average 67.1 0.37
Standard Deviation 0.5655 0.0194

Reference [6] 68.7 0.34

4.4.2. SP-2
For these optimisation problems four design variables were

used, and the number of frequencies is the variable analysed.
Table 19 lists the elastic constants computed for each number
of frequencies used in the optimisation process. This table also
presents the average and the standard deviation of each one of
the design variables.

The highest deviation observed for the E1 is presented in the
optimisations with four and five frequencies. The values for this
design variable are approximately half of what is expected to be
obtained.
Table 19: Elastic constants computed and its average and stan-
dard deviation, while using PSO for each number of frequencies
for SP-2

nf E1(GPa) E2(GPa) G12(GPa) ν12
1 33.42 26.95 8.08 0.3422
2 33.08 27.10 6.44 0.1380
3 41.16 27.04 6.43 0.3005
4 13.48 27.03 6.46 0.1328
5 14.49 27.04 6.45 0.1388
6 25.83 27.09 6.41 0.1728
7 38.90 27.20 6.39 0.1696
8 28.82 27.11 6.40 0.1805
9 30.61 27.18 6.41 0.1550

10 30.61 27.17 6.41 0.1559
11 30.67 27.17 6.42 0.1464
12 30.60 27.15 6.41 0.1566
13 30.48 27.12 6.40 0.1705
14 30.51 27.15 6.40 0.1672

Average 29.48 27.11 6.54 0.1805
Standard Deviation 7.346 0.06847 0.4293 0.05964

Reference [8] 31.28 27.17 6.46 0.1659

The design variables computed using fourteen frequencies
presents values are in good agreement to the reference[8].
However, with less frequencies similar results can be obtained
namely with nine frequencies.

The abnormal results for three, four and five frequencies,
might have been the result of less accurate measurements dur-
ing the experimental modal analysis. These less accurate mea-
surements might also have been caused by the poor-quality sig-
nal captured by the laser vibrometer described in [8].

When comparing both these sets of optimisations, it is pos-
sible to observe that for the SP-2, a higher dispersion of the
elastic constants is presented than for the SP-1. However, the
complexity of each case is very different. The SP-1 only has
two design variables, in comparison to the SP-2 that has four
design variables, making it a much more complex problem to
solve.
4.4.3. SP-2 with weight factor

In this subsection, a new objective function is formulated
based on Equation (8) to improve the results of this last set
of optimisations and to better understand the influence of the
number of frequencies and modes used. This new objective
function is represented as the weighted difference of frequen-
cies for each number of frequencies used.

Φ =

nf∑
i=1

Wi × |ω̃i − ωi| (11)
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where ω̃i and ωi are experimentally and computationally ob-
tained circular frequencies, respectively. Wi is the weight factor,
and nf are the total number of frequencies considered.

The weight factor in this first approach is set as zero or one.
To define this factor, the relative differences between each ex-
perimentally determined frequencies, from [8], and computa-
tionally determined ones, from the optimisation using nf = 14
from subsection 4.4.2, are calculated. If this relative difference
exceeds five percent the weight factor is set as zero otherwise
it is set as one.

The modes that exceed the threshold are the first, the third,
the eighth, the ninth, and the thirteenth frequencies, and so
the weight factor for these modes are set to zero. Therefore
the maximum effective number of frequencies used in this set
of optimisations is nine. Table 20 exhibits the effective num-
ber of frequencies used, the elastic constants computed, and
the weight factor vector considered for each case. This set of
elastic constants presents an higher variation with the increase
of the effective number of frequencies, for all constants when
compared to the set obtained in Subsection 4.4.2.

Table 20: Effective number of frequencies considered, elastic
constants computed and weight factor vector for Equation (11),
for each number of frequencies for SP-2

Effective nf E1(GPa) E2(GPa) G12(GPa) ν12 Weight factor vector
1 14.28 46.45 6.31 0.1204 [0,1]
2 44.12 24.26 6.45 0.3551 [0,1,0,1]
3 32.57 26.62 6.35 0.3535 [0,1,0,1,1]
4 50.00 10.24 20.00 0.4000 [0,1,0,1,1,1]
5 47.71 27.25 6.38 0.1570 [0,1,0,1,1,1,1]
6 30.81 27.22 6.44 0.1304 [0,1,0,1,1,1,1,0,0,1]
7 30.29 27.05 6.44 0.1304 [0,1,0,1,1,1,1,0,0,1,1]
8 30.29 27.05 6.39 0.1888 [0,1,0,1,1,1,1,0,0,1,1,1]
9 30.69 27.20 6.42 0.1414 [0,1,0,1,1,1,1,0,0,1,1,1,0,1]

Average 34.67 28.57 7.44 0.2055 -
Standard Deviation 11.63 8.83 3.63 0.0931 -

Reference [8] 31.28 27.17 6.46 0.1659 -

With the increase of the number of frequencies used, the
elastic constants computed get close to the values presented in
the reference article [8]. With eight and nine frequencies used,
the values computed for the elastic constants are similar to the
reference.

To better understand the influence of the frequencies used
and the number needed to determine the elastic constants ac-
curately, the elastic constants computed using nf equal four-
teen from Table 19 and the elastic constants computed for nf
equals nine are compared in Table 21.

Table 21: Comparison of the computed elastic constants for nf
equals fourteen and for effective nf equals nine

Effective nf E1(GPa) E2(GPa) G12(GPa) ν12
- Reference [8] 31.28 27.17 6.46 0.1659

14

Computational 30.51 27.15 6.40 0.1672
Average 29.48 27.11 6.54 0.1805

Computational relative difference (%) 2.462 0.07361 0.9288 0.7836
Average relative difference (%) 5.766 0.2343 1.181 8.798

9

Computational 30.69 27.20 6.42 0.1414
Average 34.53 27.04 6.42 0.2197

Computational relative difference (%) 1.886 0.1104 0.6192 14.77
Average relative difference (%) 10.84 5.135 15.10 23.85

Comparing the average values and its relative differences
between both cases, it is observed that the case with nf = 9
displays greater relative differences when compared to the case
with nf = 14. Despite that, the optimisation with effective
nf = 9 presents better results for Young’s modulus E1 and
for the shear modulus G12 than the optimisation which uses all
fourteen frequencies. The Young’s modulus E2 obtained with
nf = 14 displays a relative difference smaller than for the shear
modulus computed in the other optimisation. For the Poisson’s
ratio ν12, the same behaviour is displayed. However, in this
case, the difference is more significant. With nf = 14, the rel-
ative difference displayed is around zero point eight per cent,
whereas in this case, with nf = 9, the relative difference is
around fifteen per cent. This behaviour the Poisson’s ratio was
already studied by Frederiksen which carried out a sensitivity
analysis of the Poisson’s ratio.

With this new proposed objective function, the elastic con-
stants computed are within the acceptable range except for the
Poisson’s ratio, which demonstrates being more sensitive to nat-
ural frequencies used to estimate this elastic constant.

4.4.4. SP-3
For SP-3, the optimisation problem presents six design vari-

ables.
With the optimisation problem fully defined, the optimisations

can be solved. The number of frequencies used, the elastic
constants computed are listed in Table 22.

Table 22: Computed elastic constants and its average and stan-
dard deviation while using PSO for each number of frequencies
for SP-3

nf E1(GPa) E2(GPa) G12(GPa) G13(GPa) G23(GPa) ν12
1 57.8 3.6 7.9 8.6 6.4 0.275
2 39.3 19.1 4.2 7.7 9.5 0.149
3 58.6 7.8 4.3 10.0 5.9 0.159
4 49.0 9.8 3.9 3.9 1.7 0.100
5 49.7 9.4 3.7 8.6 9.1 0.244
6 49.0 9.8 3.6 6.0 11.9 0.100
7 58.7 6.4 4.0 4.1 8.9 0.157
8 44.7 8.8 4.4 1.6 4.0 0.312
9 40.7 7.9 4.7 12.6 8.9 0.251
10 35.7 15.2 2.9 9.1 11.7 0.100
11 50.6 6.0 4.6 7.9 6.3 0.225
12 49.5 6.4 4.8 5.2 10.3 0.100

Average 48.6 9.2 4.4 7.1 7.9 0.181
S. Deviation 7.2 4.0 1.2 2.9 2.9 0.074

Reference [7] 42.8 12.2 4.8 4.2 4.9 0.301

As the number of design variables increases, so does the
complexity of these optimisations increases as well. The re-
sults obtained in this set of optimisations are further from the
reference than in the first two sets of optimisations with fewer
design variables.

In this case, analysing the average values for the design vari-
ables some discrepancies are found. Namely for the transverse
shear moduli,G13 andG23, and for the Poisson’s ratio, ν12. The
discrepancies in the G13 and G23 are mainly because trans-
verse shear deformations are only noticed for thick plates. As
these plates are relatively thin, these moduli have low sensitivity.
The discrepancies in the ν12 can be explained by the small sen-
sitivity when compared to other in-plane elastic constants. This
is more pronounced for anisotropic plates, which is the case of
this plate [7].

From the number of frequencies used, a rule of thumb can
be verified by the first specimen that uses two design variables
and needs at least four frequencies, by the second specimen
that uses four design variables and needs at least eight frequen-
cies. The last specimen, which uses six design variables needs
at least twelve frequencies to obtain valid results. This means
that twice as many frequencies are needed than the number of
design variables.

4.5. Comparison of results with different number of search
agents

In this section is studied the influence of the number of
search agents for the PSO algorithm. For this analysis the spec-
imen used is SP-2 and the number of search agents is incre-
mented, starting with ten agents, increasing ten agents each
time until it reaches a hundred search agents. Table 23 sum-
marises this optimisation problem and the constraints for this
specimen design variables are listed in Table 5.

Table 23: Optimisation problem’s parameters
Parameter Value

Objective function Equation (8)
nf 14

Tolerance 10−6

Max. number of iterations 1000

Table 24 lists the elastic constants computed using the dif-
ferent number of search agents, the function values and the
relative time for the PSO algorithm.

It is possible to observe that as the number of search agents
increases, the function values decrease, tending to around
forty-five.

From Table 24, it is possible to observe that as the number
of search agents increases, the differences between the com-
puted values and the results from[8] decrease, staying approxi-
mately constant for more than fifty agents.
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Table 24: Elastic constants computed, function values (Fval)
and relative computational time (RCTime) for different numbers
of search agents for PSO algorithm

Number of search agents E1(GPa) E2(GPa) G12(GPa) ν12 Fval RCTime
Reference [8] 31.28 27.17 6.46 0.1659 - -

10 37.40 10.00 20.00 0.0500 2099.55 1.00
20 37.40 10.11 20.00 0.0500 2070.54 2.75
30 30.51 27.15 6.38 0.1673 45.67 17.05
40 37.40 10.11 19.73 0.0500 2039.11 4.42
50 30.51 27.15 6.40 0.1672 45.69 11.81
60 30.51 27.15 6.40 0.1672 45.68 11.92
70 30.51 27.15 6.37 0.1674 45.65 22.24
80 30.51 27.15 6.40 0.1672 45.69 22.43
90 30.51 27.15 6.38 0.1673 45.67 17.18

100 30.51 27.15 6.38 0.1673 45.65 17.50

The number of search agents that present the best results
are thirty search agents and for more than fifty search agents.
These search agents present the lowest function values and the
lowest relative differences.

In view of the above results, the PSO algorithm should be
used with fifty search agents.

4.6. Green composites
In this section, the objective is to verify the applicability of this

method to green composites and wood specimens.
The two specimens of green composites are one of wooden

strands bonded with adhesive and another of plywood of birch
panels are studied. The specimens were studied by Larsson
[17] and by Igea and Cicirello [18], by using respectively a dy-
namic test based on modal analysis and calculated numerical
eigenvalues [17]; and numerical optimisation for the estimation
of elastic constants using experimental data from the Chladni
patterns and experimental modal analysis [18]. The optimisa-
tion problems analysed in this section are summarised in Table
25 and the design variable constraints are displayed in Table 5.

Table 25: Optimisation problems’ parameters
Specimen SP-4 SP-5
Parameter Value Value

Objective function Equation (8) Equation (8)
nf 7 5

Number of search agents 50 50
Tolerance 10−6 10−6

Max. number of iterations 1000 1000

4.6.1. Specimen SP-4 using objective function Equation (8)
For SP-4 [17], the optimisation problem presents four design

variables, which are E1, E2, G12, and ν12.
Table 26 lists the elastic constants computed with each one

of the optimisation algorithms, and Table 27 lists the relative
differences of each one of the computed elastic constants.
Table 26: Elastic constants computed with each of the algo-
rithm for SP-4 using objective function in Eq. (8)

E1(GPa) E2(GPa) G12(GPa) ν12
Reference [17] 7.12 3.45 1.96 0.28
GA 7.42 2.47 2.98 0.35
PSO 7.40 2.45 2.97 0.38
GWO 7.42 2.47 2.98 0.34
FA 7.46 2.51 2.99 0.27
CS 7.39 2.44 2.97 0.40

Table 27: Relative difference of computed elastic constants of
each algorithm using objective Function Eq. (8) for SP-4

100 ∗
|E1−E1ref

|
E1

100 ∗
|E2−E2ref

|
E2

100 ∗
|G12−G12ref

|
G12

100 ∗
|ν12−ν12ref |

ν12
GA 4.05 39.96 34.22 19.77
PSO 3.78 40.91 34.04 26.63
GWO 4.09 39.87 34.25 18.72
FA 4.51 37.64 34.42 3.81
CS 3.63 41.47 33.95 29.88

The Young’s modulus, E1, is the elastic constant that
presents the closest values to the reference one across all algo-
rithms, presenting a relative difference of around four per cent.
The E2 presents a much higher relative difference around forty
per cent, performing all algorithms similarly. For the shear mod-
ulus, G12, the optimisation presents values lower than the ref-
erence value, with a relative difference of around thirty-four per
cent. The FA algorithms stands out when looking to Poisson’s
ratio, presenting a closer value to the reference among all the

algorithms, presenting the lower difference only around four per
cent.

Table 28 presents the function value, the number of itera-
tions, the number of function evaluations and the relative com-
putational time obtained for each algorithm. All the algorithms
reach around the same value for the function value. However,
the GWO used one thousand iterations, reaching the maximum
number of iterations allowed. The algorithm that took the least
iterations was the PSO, needing only ninety-eight iterations.
The one that took the longest time was the GWO with five hun-
dred thousand objective function evaluations.
Table 28: Function values (Fval), number of iterations (Niter),
number of function evaluations (NFEs) and relative computa-
tional time (RCTime) for each algorithm for SP-4 using objective
function in Eq. (8)

Fval Niter NFEs RCTime
GA 120.31 111 5600 1
PSO 120.25 98 4950 1.07
GWO 120.32 1000 50000 12.94
FA 120.87 344 17200 3.65
CS 120.22 644 32200 8.97

For this specimen, this method was able to estimate the elas-
tic constants within acceptable accuracy. However, if more fre-
quencies were presented in the reference [17], a better estimate
could be obtained. According to the thumb rule, at least twice
as many frequencies are needed as the number of elastic con-
stants, so at least eight natural frequencies would be needed.
From this set of optimisations, the algorithm that had the best
values computed for the design variables is the FA. Showing
that depending on the optimisation problem, the most suited al-
gorithm to be used with this method can change.

4.6.2. Specimen SP-5 using objective function Equation (8)
For SP-5 [18], the optimisation problem has four design vari-

ables, which are E1, E2, G12, and ν12.
Table 29 lists the computed elastic constants and Table 30

lists the relative differences of the elastic constants computed
with the reference from [18].
Table 29: Elastic constants computed with each of the algo-
rithm for SP-5 using objective function Eq. (8)

E1(GPa) E2(GPa) G12(GPa) ν12
Reference [18] 8.180 4.357 0.6954 0.1216
GA 7.388 4.507 0.7288 0.1805
PSO 7.271 4.537 0.7168 0.2000
GWO 7.256 4.537 0.717 0.2000
FA 7.896 4.399 0.736 0.0878
CS 7.271 4.537 0.7168 0.2000

The elastic constants present approximately the same values
for the E1. However, the values obtained for ν12, in the PSO,
the GWO, and the CS correspond to the upper bound of the
constraints applied to this design variable. The largest relative
differences are observed in these cases. The lowest values
for the relative differences are presented for the GA algorithm,
followed next for the FA algorithm.
Table 30: Relative difference of computed elastic constants of
each algorithm using objective Function Eq. (8) for SP-5

100 ∗
|E1−E1ref

|
E1

100 ∗
|E2−E2ref

|
E2

100 ∗
|G12−G12ref

|
G12

100 ∗
|ν12−ν12ref |

ν12
GA 10.72 3.32 4.59 32.63
PSO 12.51 3.96 2.99 39.20
GWO 3.98 12.74 2.98 39.20
FA 0.95 3.60 5.49 38.47
CS 12.51 3.96 2.99 39.20

Table 31: Function values (Fval), number of iterations (Niter),
number of function evaluations (NFEs) and relative computa-
tional time (RCTime) for each algorithm for SP-5 using Objec-
tive Function Eq. (8)

Fval Niter NFEs RCTime
GA 142.04 196 9850 8.37
PSO 136.20 82 4150 1.00
GWO 136.41 1000 50000 18.52
FA 176.77 1000 50000 17.87
CS 136.20 968 48400 15.90
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In Table 31, the function values, number of iterations, num-
ber of function evaluations, and relative computational time for
each of the optimisations are listed, using the different algo-
rithms. The PSO and the CS present the lowest function value.
However, these algorithms present the most significant relative
difference when comparing to the reference. The GWO and the
FA algorithms reach the maximum number of iterations, thus
not meeting the desired tolerance as a termination criterion.
Despite that, the FA algorithm is the one that obtained better
results for the E1 and E2.

For this specimen, the presented method did not achieve
the desired results, mainly due to the low number of frequen-
cies presented in the reference article [18]. For the presented
method, at least eight natural frequencies are needed. Never-
theless, the GA algorithm was able to obtain elastic constants
with the lowest overall differences.

5. Conclusions
In this work, the main achievement was the development

of a computational method for material proprieties identifica-
tion in composite structures using commercial software, which
was achieved. The presented method uses a derivative-free
approach based on metaheuristic algorithms.

This method presents several advantages in comparison to
other methods for material properties identification. One of the
major advantages of this method is that it does not require an
initial guess of the elastic constants to be computed, only re-
quiring that the upper and lower constraints for the elastic con-
stants are correctly defined. One other advantage is not re-
quiring the determination of gradients to evaluate the objective
function. Another advantage is that it can be easily adapted to
obtain the desired elastic constants of different materials and
different construction methods not requiring an extensive study
of the numerical methods to estimate the material elastic con-
stants accurately.

The most significant disadvantage is the computation time
needed to generate the necessary data required so that the al-
gorithm can evaluate the objective function and determine the
function minimum, while other numerical and analytical meth-
ods require less time to estimate the elastic constants of the
materials.

In a nutshell, this method has proven to be precise in com-
puting the elastic constants of the specimens studied, as long
as that enough experimental natural frequencies are provided.

The future work includes optimisation of the search algo-
rithm used in order to reduce the computational time even more.
However, not excluding the search for more efficient meta-
heuristic nature-inspired optimisation algorithms or any other
non-derivative optimisation methods.

For further studies, it would be interesting to have more sets
of experimental natural frequencies of the same specimen to be
able to, in more detail, analyse the influence of the differences
in the measure of these frequencies. As well as search for more
specimens with other material and geometric characteristics to
apply this method. Exploring new green composites materials
like the emerging flax fibres reinforced composites.
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