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Resumo

Esta tese de mestrado propõe um método não destrutivo para a identificação de propriedades de

materiais compósitos utilizando softwares comerciais, nomeadamente ANSYS® e MATLAB®.

O método proposto tira partido das capacidades de simulação do ANSYS®, usando ANSYS® Para-

metric Design Languague (APDL), para a realização de análises modais e extrair frequências natu-

rais dos espécimes. O ANSYS® e o MATLAB® são integrados para resolverem os vários problemas

de otimização. Os problemas de otimização propostos têm como variáveis de design as constantes

elásticas do material e usam algoritmos de otimização meta heurı́sticos inspirados na Natureza. Estes

avaliam uma função objetivo, cujo intuito é relacionar frequências naturais experimentais, extraı́das de

alguns estudos realizados por outros autores, com frequências naturais obtidas computacionalmente, e

sem necessidade do cálculo de derivadas.

Os algoritmos meta heurı́sticos de otimização inspirados na Natureza testados foram o Genetic

Algorithm, o Particle Swarm Optimisation Algorithm, o Grey Wolf Optimisation Algorithm, o Firefly Algo-

rithm e o Cuckoo Search Algorithm. As diferentes populações de agentes de pesquisa gerados pelos

algoritmos percorrem o espaço de procura de modo a localizarem o mı́nimo global da função, inde-

pendentemente da distribuição da população no espaço de pesquisa. O método proposto é aplicado

a vários espécimes de diferentes materiais, quer eles sejam construı́dos com fibras sintéticas, como

fibras de vidro, ou fibras naturais, como fibras de madeira e contraplacado.

Em suma, este método demonstrou obter as constantes elásticas dos materiais dentro num intervalo

aceitável quando comparado com métodos alternativos, desde que sejam medidas com precisão e

fornecidas frequências naturais suficientes.

Palavras-chave: Materiais compósitos, Compósitos verdes, Propriedades dos materais,

Constantes elásticas, Optimização inspirada na Natureza
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Abstract

This master thesis proposes a non-destructive method for the identification of material properties of

composite materials. This method takes advantage of the simulation capabilities of ANSYS® software,

using ANSYS®Parametric Design Language (APDL) to perform modal analyses and extract natural fre-

quencies of the specimens.

ANSYS® and MATLAB® are integrated to solve several optimisation problems. The proposed optimi-

sation problems have for design variables the material elastic constants and make use of Nature-inspired

metaheuristic optimisation algorithms to evaluate an objective function using a derivative-free method.

These objective functions relate experimental natural frequencies, which are extracted from numerous

studies carried out in the past by other authors, with computationally obtained ones. The Nature-inspired

metaheuristic optimisation algorithms tested are the Genetic algorithm, the Particle Swarm Optimisation

algorithm, the Grey Wolf Optimisation algorithm, the Firefly Algorithm and Cuckoo Search algorithm.

The different search agents population generated by the algorithms search the available space looking

for the global minimum of the objective function, independently of the initial population position in the

search space.

The proposed method is applied to several specimens of different materials either they are con-

structed with synthetic fibres, such as glass fibres, or natural fibres, such as wood fibres and plywood.

This method proved to obtain the material elastic constants within an acceptable range, compared to

other methods, provided that enough natural frequencies are accurately measured and provided.

Keywords: Composite Materials, Green composites, Material Properties, Elastic constants,

Nature-inspired optimisation
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Chapter 1

Introduction

The urge of the automotive and aerospace industries to develop new lighter vehicles with a smaller

biological blueprint boosted the development of new materials. The search for new materials has been

one of the major focus points of engineers over the last years. These new materials have better mechan-

ical properties than the existing ones. To achieve this, engineers developed what is known as composite

materials.

These new composite materials are tailored to the specific need of each project. The most common

used materials in composites are carbon fibres, glass fibres and aramid fibres, that are obtained from

non-renewable sources. Therefore, searching for sources of renewable materials is essential; materials

like wood, jute straw and flax can easily be processed into natural fibres that are transformed in what is

called green composites.

Green composites or natural fibre composites are the combination of natural fibres with a polymeric

matrix; this allows the use of several combinations of materials to achieve the desired properties.

In a case study presented in 2010, Alves et al. investigated in a case study the replacement of

glass fibres for natural jute fibres, producing a structural front bonnet of an off-road vehicle [1]. This

replacement has proven to enhance the environmental performance of the vehicle, reducing weight and

therefore, fuel consumption. More recently, several automotive companies, in the motorsports industry,

have replaced some body components with natural fibres composites. The first example of the replace-

ment of carbon fibres with natural fibres in serial production for motorsports was performed by Porsche®,

which replaced doors with balsa wood as the core of a composite sandwich material and in collabo-

ration with Composites Evolution Ltd and KW Special Projects Ltd replaced the rear wing, previously

constructed with carbon fibres, with flax fibres impregnated with epoxy resin (Figure 1.1) [2].

More recently, the automotive industries are starting to integrate these materials in components,

such as in car seat backs using a hybrid carbon and wood fibre to develop a lightweight carbon fibre

prepreg and wood fibre composite part, obtaining a forty percent reduction of the weight compared to

the standard injection moulded plastic, resulting in a significant improvement in the CO2 footprint [3]. At

the Nürburgring 24-hour race, Porsche® presented a complete body kit made of natural fibre composite

materials for the first time, Figure 1.2(a). Not only the doors and rear wing materials were replaced, but

1



Figure 1.1: Rear wing constructed with flax fibres and epoxy resin [2]

also, for the first time, the front and rear aprons, Figure 1.2(b), the front spoiler, the front and rear lids,

the mudguards and the diffuser materials were replaced with natural fibre composites. This composite is

composed of flax fibres, farmed without conflicting with food crops, layered up with a polymeric matrix to

ensure the precise adjustment to specific purposes and load scenarios [4]. These natural fibre composite

((a)) Porsche 718 Cayman GT4 Clubsport MR natural fibres body

((b)) Flax fibres epoxy resin rear apron

Figure 1.2: Images extracted from Porsche’s newsroom [4]

materials have proven to be particularly suited to areas that are not part of the main vehicle structure.

Moreover, the damping of vibrations improves fivefold and, in the case of an accident, splinter into larger

and less sharp pieces [4].

2



1.1 Topic Overview

The use of composite materials in these last decades has grown exponentially, mainly in the transport

industries, such as aircraft, aerospace, automotive, naval and much more. This is due to the possibility of

having materials engineered to a specification, including requested mechanical properties and complex

shapes.

Composite materials are the result of the combination of two or more different materials, as they can

be the combination of metals and ceramics, metals and polymers or even ceramics and polymers, as

represented in Figure 1.3. These can be natural or man-made regarding their origin. Natural composite

Figure 1.3: Representative diagram with the 3 basic materials and the composite materials [5]

materials such as bones and wood are materials that appear in nature. Bones are a naturally occurring

composite material having within its structure calcium phosphate (mineral) embedded in a collagen

(protein) matrix. The same goes for wood having within its structure cellulose fibres bonded with a

polymeric substance (lignin).

Man-made composite materials are developed, in order to obtain stronger, lighter, heat resistant or

electric insulating materials. These materials have new properties that could not be achieved by the

constituent materials themselves. One of the earliest records of a Man-made composite is mud bricks.

These bricks are the combination of straw and mud, having been used for construction since primitive

times.

The characteristic structure of a Man-made composite material is formed by a matrix (binder material)

and a reinforcement material. The reinforcement material can be added to the structure in different

forms such as powder, short fibres (discontinuous fibres) and long fibres (continuous fibres). The most

commonly used reinforcement in composite materials is fibre reinforcement. Reinforcement fibres can

be characterised based on their origin, being synthetic fibres or natural fibres. Nowadays, in the industry,

the use of synthetic fibres is generalised, with the most used being carbon fibres, glass fibres and aramid
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fibres.

Natural fibre-reinforced polymer composites have attracted more and more research interests owing

to their potential as an alternative for synthetic fibre composites. Natural fibre composites possess

advantages such as easy availability, renewability of raw materials, low cost, lightweight, high specific

strength and stiffness.

Application of natural fibres, from sustainable sources, has substantially increased in recent years.

The use of natural fibres in composites was investigated and analysed by Saxena et al. [6]. The natural

fibres investigated were flax, hemp, jute straw, wood, rice husk, wheat, barley, oats, rye, cane (sugar

and bamboo), grass reeds, kenaf, ramie, oil palm, sisal, coir, water hyacinth, pennywort, kapok, paper

mulberry, banana fibre, pineapple leaf fibre and papyrus. The use of natural fibre reinforced composite

materials for the automotive industries has been studied and reviewed by Koronis et al. [7], defining

them as green composites. Green composites are composite materials derived from renewable and

sustainable sources, being the combination, most of the times, of a polymeric matrix and natural fibre

as reinforcement. The benefit of using natural fibre composite materials revolve around environmental

sustainability, which includes reduced carbon footprint, biodegradability and renewability. However, there

are other direct benefits to such as light weight, high specific properties, good thermal insulation and

vibration damping.

The most used structure of a Man-made composite material is a layered internal structure, being

characterised as laminated composite, where the layered material is arranged in different directions to

obtain the desired properties. In this case, the reinforced material is used in a weaved form, making

the construction of the final composite material simpler, allowing for a uniform fibre arrangement in the

desired direction.

1.2 Objectives

During the design of structures or structural components, materials with specific properties are

needed. Therefore, new composite materials are created in order to meet design requirements. As

a consequence, it is imperative to assess the mechanical properties of these composite materials. Tak-

ing into account that composite materials are heterogeneous by nature, in order to fully determine all the

mechanical properties, it is necessary to perform a vast number of tests, which have a cost. In this the-

sis, a non-destructive method for properties identification is developed. It relies on commercial software

to easily obtain an estimation of the mechanical properties of the specimen in the study. Nature-inspired

optimisation algorithms are used in order to minimise an error function relating experimental and com-

putational modal parameters.

This thesis focuses on the study of laminated composite materials, whether they are synthetic fibre

reinforced, such as glass fibres reinforced specimens, or they are natural fibres reinforced like wooden

fibres reinforced composites and plywood. However, a specimen of aluminium is also analysed to es-

tablish a baseline and test the proposed method.
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1.3 Thesis Outline

In chapter two is presented a brief overview of metaheuristic optimisation algorithms, in particular,

nature-inspired optimisation algorithms. Also presented are methodologies for material properties iden-

tification, using non destructive testing methods. In this chapter, are also introduced and described

the selected optimisation algorithms that will be tested in the present method for material properties

identification.

Chapter three introduces the proposed method for material properties identification. It starts with the

presentation of the specimen selected to test and analyse the method, followed by the selection of the

models of each specimen, including the mesh needed for the Finite Element Method (FEM) analysis.

Then, the optimisation problems are presented, where the material elastic constants correspond to the

design variables of these problems. Here the proposed optimisation problems are fully defined being

presented the objective function of the problems, the design variables constraints and the termination

criteria.

In the next section, section 3.4, are presented the optimisation problems results and analysis of the

different tests performed with this method. Firstly, the most appropriate nature-inspired optimisation

algorithm to solve the problem is selected, comparing the results with those found in the literature [8, 9].

Next, a validation test is performed comparing several runs of the same problem. The next subsection

is comprised of the study of several factors that influence the performance of the method, such as the

objective function, the number of experimental natural frequencies and the number of search agents. In

subsection 3.4.6, the proposed method for properties identification is applied to two specimens of green

composites. Chapter four presents the conclusions and recommendations for future works.
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Chapter 2

Theoretical and Applications

Background

2.1 Historical Overview

An interesting and simple way to describe heuristic and metaheuristic methods is presented by Yang

in 2010 [10].

”Throughout history, especially at early periods of human history, we humans’ approach

to problem-solving has always been heuristic or meta-heuristic – by trial and error. Many

important discoveries were done by ’thinking outside the box’, and often by accident; that is

heuristics. Archimedes’s Eureka moment was a heuristic triumph. In fact, our daily learning

experience (at least as a child) is dominantly heuristic.”

The first use of the metaheuristic method is difficult to pinpoint in history, although its importance is

well established in the scientific community nowadays. The first documented use of heuristic algorithms

was by Alan Turing during the Second World War at Bletchley Park. He developed a method that later

would be called heuristic search [11]. Although there was no guarantee that the correct solution could

be obtained it changed the course of the War. Alan Turing continued his work being recruited for the

National Physics Laboratory (NPL), in the UK in 1945. There, he developed his Automatic Computing

Engine. In 1948, in an NPL report on Intelligent machinery [11], Alan Turing summarised his innovative

ideas of what is now known as machine intelligence and learning, neural networks and evolutionary

algorithms.

The 1960s and the 1970s was the time for the development of metaheuristic methods. The first

metaheuristic algorithm presented was called Pattern Search presented in 1961 by Hooke and Jeeves

in Pittsburgh, Pennsylvania [12]. Around the same period, in 1963/1965, Rechenberg and Schwefel,

at the Technical University of Berlin, developed a search technique for solving optimisation problems

in aerospace engineering, named evolutionary strategy [13]. Then, in 1966, Fogel alongside Owen

and Walsh developed the evolutionary programming technique, representing solutions as a finite-state
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machine and randomly mutating one of these machines. These innovative ideas and methods have

grown into the field of evolutionary algorithms and/or evolutionary computation [14]. In these decades,

Holland and his collaborators at the University of Michigan developed the genetic algorithms. In 1962,

Holland started the study of an adaptive system using crossover and recombination manipulations for

modelling this system, publishing the book that summarises the development of Genetic algorithms

(GA) in 1975 [15]. In 1977, Glover developed the Scatter Search algorithm [16]. During this time and

the following decades, the focus was mostly in heuristic optimisation techniques such as artificial neural

networks, support vector machines and other machine learning techniques.

The golden age of metaheuristic techniques development happened during the 1980s and 1990s.

Initially, in 1983, Kirkpatrick, Gellat and Vecchi developed the Simulated Annealing algorithm, which

is inspired by the annealing process of metals. It is a trajectory-based search algorithm, starting with

an initial guess solution at a high temperature and gradually cooling the system [17]. In 1986, Glover

developed the Tabu search [18]. This algorithm uses adaptative memory programming for the first time

in modern metaheuristics. It uses memories of past searches to guide future search. In this same year,

Farmer, Packard and Perelson presented the artificial immune systems algorithm [19]. At the end of

the decade, in 1989, Bishop presented the Stochastic Diffusion Search algorithm [20], and Moscato

presented Memetic algorithm [21].

In 1992, Colorni, Dorigo and Maniezzo presented a paper on optimisation and natural algorithms,

describing the Ant Colony Optimisation [22]. This method is a search technique inspired by the swarm

intelligence of social ants using the pheromone as a chemical messenger. During this time, several

papers and books were published setting the foundations for genetic programming, originating the basis

of machine learning as they are used today. In 1993, Dueck developed the Great Deluge algorithm,

this algorithm resembles the simulated annealing algorithm in structure, being the main difference the

acceptance rule for worse intermediate solution [23].

Later in 1995, Particle Swarm optimisation (PSO) was developed by the american social psychologist

Kennedy and the engineer Eberhart. PSO is inspired by swarm intelligence of fish and birds and even

by human behaviour [24]. Since the development of PSO, there have been more than twenty variants of

this technique, applied to almost all areas to solve optimisation problems. From 1997 until 1998, Storn

and Price developed their vector-based evolutionary algorithm, called differential evolution [25], proving

to be, in some cases, better than Genetic algorithms. During the same time, Murase and Wadano

presented the Photosynthetic Learning algorithm [26].

With the development of more powerful computers, more algorithms were developed. One hundred

and ninety-two metaheuristic algorithms are listed by M. Almufti [55] and seventy four Nature-inspired

metaheuristic algorithms by Fister et al. [56]. Some of the most peculiar algorithms presented are the

Social Spider algorithm [57], the Shark smell optimisation algorithm [58], Krill Herd algorithm [49], the

Shuffled Frog Leaping algorithm [59], the Farmland fertility algorithm [60], and the Great Salmon Run

algorithm [61]. By focusing on Nature-inspired metaheuristic algorithms, it is possible to list some of the

most cited algorithms, which are presented in Table 2.1.

Nature-inspired algorithms gained popularity in the scientific community due to their efficiency and
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Table 2.1: List of most cited optimisation algorithms [27]

Algorithm Author Year Reference Citations
Genetic Holland 1975 [15] 60000
Particle Swarm Optimisation Eberhart and Kennedy 1995 [24] 50000
Harmony Search Geem et al. 2001 [28] 4000
Honey-bees Mating Optimisation Abbass 2001 [29] 400
Bacterial Foraging Passino 2002 [30] 2500
Shuffled Frog Leaping Eusuff and Lansey 2003 [31] 1000
Society and Civilization Ray and Liew 2003 [32] 300
Artificial Bee Colony Karaboga 2005 [33] 4500
Glowworm Swarm Optimisation Kaipa and Ghose 2005 [34] 600
Big Bang-Big Crunch Erol and Eksin 2006 [35] 600
Cat Swarm Optimisation Chu et al. 2006 [36] 300
Invasive Weed Optimisation Mehrabian and Lucas 2006 [37] 750
Imperialist Competitive Atashpaz-Gargari and Lucas 2007 [38] 1500
Biogeography-Based Optimiser Simon 2008 [39] 2000
Group Search Optimiser He et al. 2009 [40] 500
Firefly Yang 2009 [41] 2000
Water Cycle Shah-Hosseini 2009 [42] 250
Cuckoo Search Yang and Deb 2010 [43] 500
Fireworks Tan and Zhu 2010 [44] 300
Teaching-Learning Based Optimisation Rao et al. 2011 [45] 1000
Bat Algorithm Yang and Gandomi 2012 [46] 600
Flower Pollination Yang 2012 [47] 500
Fruit Fly Optimisation Pan 2012 [48] 600
Krill Herd Gandomi and Alavi 2012 [49] 600
Grey Wolf Optimiser Mirjalili et al. 2014 [50] 1000
Ant Lion Mirjalili 2015 [51] 300
Brain Storm Optimisation Xue et al. 2012 [52] 300
Moth-flame Optimisation Mirjalili 2015 [53] 250
Whale Optimisation Mirjalili and Lewis 2016 [54] 250

are classified according to the criteria used. Fister et al. [56] claim that Nature-inspired algorithms can

be grouped into four categories, based on where the inspiration comes from. Most of the algorithms are

based on a successful characteristic of a biological system. The majority of the algorithms are biology-

inspired, like the Genetic, Evolutionary and the Flower Pollination algorithms. These biology-inspired

algorithms have a particular class within the algorithms that take inspiration from swarm intelligence,

such as Particle Swarm optimisation, Cuckoo Search, Firefly algorithm and Ant Colony optimisation. Not

all Nature-inspired algorithms have biological inspiration. Many other algorithms have been developed by

using physical and chemical systems as inspiration, such as the Big Bang-Big Crunch and the Simulated

Annealing algorithms.

Despite the benefits described above, Nature-inspired algorithms also have some drawbacks. These

algorithms may require a large sample of objective function evaluations in order to solve the problem.

This implies that a large amount of computational power may be necessary to process the data. Addi-

tionally, there is no guarantee that a global minimum is obtained, having the possibility instead of finding

a local minimum.
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2.2 Overview of methods for materials characterisation

Materials are characterised by their engineering constant, also known as elastic constants. Different

elastic constants represent different characteristics of the structure. In this thesis, the elastic constants

analysed are Young’s modulus, E, which relates extensional strain in the direction of loading to stress

in the direction of loading, the Poisson’s ratio, ν, relates extensional strain in the loading direction to

extensional strain in another direction. The shear modulus, G, relates shear strain in the plane of shear

loading to that shear stress. However, there are others like the coefficient of mutual influence, which

relates the shear strain due to shear stress in the plane to extensional strain, or the Chentsov coefficient

which relates shear strain due to shear stress in that plane to shear strain in another plane [62].

For example for an orthotropic material, the stress-strain relations take the form:

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





ε1

ε2

ε3

ε4

ε5

ε6


(2.1)

where Cij are the stiffness coefficients, σi are stresses and εi are strains.

Since most of the experimental tests are performed knowing the load or stress applied to a structure

is convenient to write the inverse relation. In this case, the strain-stress relations for an orthotropic

material takes the form:

⇒



ε1

ε2

ε3

ε4

ε5

ε6


=



S11 S12 S13 0 0 0

S12 S22 S23 0 0 0

S13 S23 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66





σ1

σ2

σ3

σ4

σ5

σ6


(2.2)

where Sij are the compliance coefficients, εi are strains and σi are stresses.

Most of the times, the material properties are determined in a laboratory in terms of engineering

constants such as Young’s modulus, shear modulus and Poisson’s ratio. These constants are measured

using simple tests like uniaxial tension test. Due to their physical meaning, the engineering constants

are used in place of more abstract stiffness coefficients and compliance coefficients. Thus the relation

between strains and stresses can be written as a function of the engineering constants according to:
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

ε1

ε2

ε3

ε4

ε5

ε6


=



1
E1

−ν21E2
−ν31E3

0 0 0

−ν12E1

1
E2

−ν32E3
0 0 0

−ν13E1
−ν23E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12





σ1

σ2

σ3

σ4

σ5

σ6


(2.3)

where E1, E2, E3 are the Young’s modulus in 1, 2, and 3 material directions, respectively, νij is the

Poisson’s ratio, defined as the ratio of the transverse strain in the jth direction to the axial strain in the

ith direction when stressed in the ith direction, and G23, G13, G12 are the shear moduli in the 2-3, 1-3,

and 1-2 plane respectively [63].

The methods for material properties identification, and therefore engineering constants identification,

can be divided into two classes: methods that use destructive techniques and non-destructive ones, as

can be seen in Figure 2.1.

Figure 2.1: Overview of composite material properties identification methodologies [64].

The destructive techniques involve static mechanical tests, such as tensile tests, compression tests,

bending tests and torsion tests. With these experimental tests one obtains the strains and stresses of
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the specimen and then, using the stress-strain theory, the material elastic constants are determined.

On the other hand, non-destructive techniques involve two parts, an experimental and a numerical

part, being these techniques most of the times referred to as experimental-numerical techniques [64].

In the experimental part, significant parameters are measured and extracted to be later used in the

numerical part. Two approaches are considered, namely the static and the dynamic approaches. In

the static approach, a specimen is subjected to a transverse quasi-static load, taking into consideration

not to exceed an induced strain over 0.5%. Thus the deflection experienced during the test can fully

be recovered at the end. The dynamic approach can be divided into the wave propagation method

and the vibrational method. The wave propagation method uses an ultrasonic wave travelling through

a specimen. This method is based on the time that the wave takes between the transducer and the

receiving transducer. It presents several disadvantages, namely the formation of several waveforms

in single frequency waves and the complex experimental procedure. The vibrational method makes

use of external excitations in order to obtain a frequency response function and to extract from them

modal parameters, in particular natural frequencies and mode shapes. The natural frequencies are the

frequencies at which a physical structure will tend to vibrate. Natural frequencies are dependent on

the way mass and stiffness are distributed within the structure. Each structure posses its unique set of

natural frequencies and mode shapes. A mode shape describes how a structure moves at a particular

natural frequency.

To fully determine the material properties of the specimens in study, the numerical part of this method

can be a direct evaluation, in which the direct identification of elastic properties of a material is obtained

from a derived inverse equation with the experimental resonant frequencies as data. Alternatively, it

can be a non-direct evaluation, in which the objective is the minimisation or maximisation of objective

functions. This last approach involves both forward methods and inverse methods in order to determine

the material properties of the composite material in the study, as can be seen in Figure 2.2.

In the forward methods, parameters, such as natural frequencies or mode shapes, are evaluated us-

ing inputs of elastic properties of the material depending on the approach taken. In the inverse methods,

the main objective is the minimisation of an error function that is written as a difference between experi-

mental and evaluated constructive parameters. In the diagram (Figure 2.2), it is possible to observe the

relation between the two methods.

Soares et al. [8] used the indirect method to predict material properties of composite plates. In this

case, experimentally determined eigenfrequencies of the plate in the study are compared to the corre-

sponding numerical eigenvalues through the use of an objective function, and an optimisation technique

is applied. The generalisation of this method is presented by Araújo et al. [65], where experimental

values of material parameters are determined, and in this case, the numerical part consists in a finite

element analysis to determine the corresponding numerical eigenfrequencies. After that, it is used an

optimisation technique comprised of the minimisation of an error function that estimates the deviation

between experimental and numerical values.

Some years later, based on these previous articles, Lopes et al. [9] presented a method for the

identification of material constants of laminated composite plates. The optimisation process makes use
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Figure 2.2: Flow chart of numerical evaluation of elastic properties [64]

of an objective function that relates experimental and numerical frequencies to determine the elastic

constants of the plate. The algorithms Particle Swarm, Genetic and Pattern Search were used in the

optimisation process to estimate the material elastic constants.

2.3 Algorithms for optimisation

A generic optimisation problem can be written in the following way, as presented in [66]:

Find an n-vector x = (x1, x2, ..., xn) of design variables to minimise an objective function:

f(x) = f(x1, x2, ..., xn) (2.4a)

subject to the p equality constraints:

hj(x) = hj(x1, x2, ..., xn) = 0; j = 1 to p (2.4b)

and the m inequality constraints:

gi(x) = gi(x1, x2, ..., xn) ≤ 0; i = 1 to m (2.4c)

To fully define an optimisation problem it is fundamental to know what are the design variables, the

objective function and any constraints that might influence the optimisation solution. One other aspect

that has strong influence is the optimisation method. This thesis will be focused on Nature-inspired

metaheuristic algorithms. The use of these algorithms raise some questions when the complexity and

diversity of real-world problems are taken into consideration. Since most algorithms are tested against

benchmark functions it is impossible to say that to solve a real-world problem algorithm A is better than

algorithm B, as stated by the No-free-lunch Theorem [67]. Therefore, in this section, the algorithms

selected are presented, and a more in-depth analysis is taken in order to understand how they work.
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2.3.1 Description of algorithms

Nature-inspired algorithms are inspired by natural phenomena. They make use of stochastic ideas

and random numbers, given an objective function, design variables and constraints. This approach

is also referred to as Nature-inspired metaheuristic methods, as they start from an initial guess when

solving the optimisation problem and can search very large spaces for potential solutions [66]. These

algorithms were chosen because they are derivative-free, thus not requiring the calculation of analytical

or numerical derivatives of the objective function. Another characteristic that makes these methods so

attractive is that they can be applied to any kind of function because they only evaluate the function

values. The algorithms selected to solve the proposed optimisation problem are the Genetic algorithm,

the Particle Swarm Optimisation, the Grey Wolf Optimiser, the Firefly algorithm and the Cuckoo Search

algorithm. These algorithms are described below.

2.3.1.1 Genetic algorithm

The Genetic algorithm (GA) is one of the most cited algorithms of all times, this algorithm was devel-

oped by Holland [15]. In essence, a genetic algorithm is a search method based on the abstraction of

Figure 2.3: Flow Chart of Genetic algorithm

14



Darwinian evolution and natural selection of biological systems [10].

This algorithm is a population-based algorithm. It starts with a set of designs (population) that are

randomly generated within boundaries for each design variable, as well as the fitness value. From

this initial population, a random set is selected converging towards the more fit members of the set.

A new generation is created using biological operators, such as crossover, mutation, and selection of

the fittest. Crossover is a process that consists of swapping parts of the solutions with other solution

representations. This process role is to mix the solutions and convergence in a subspace. The mutation

changes a part of one solution increasing the diversity of the population, allowing to escape local minima.

The last operator is the selection of the fittest. This operator uses solutions with the best fitness to pass

to on to future generations.

This process of selecting the more fit solution is repeated throughout the generations (iterations) until

a termination criterion is met or the maximum number of generation is met. The flowchart of this process

is represented in Figure 2.3.

The source code used for this algorithm is presented in the Optimization Toolbox of MATLAB® [68].

2.3.1.2 Particle Swarm Optimisation algorithm

Figure 2.4: Flowchart of Particle Swarm [69]
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The Particle Swarm Optimisation (PSO) algorithm takes inspiration from the group behaviour of

animals, such as swarm intelligence of fishes and birds and even by human behaviour [24].

The multiple search agents, called particles, p1, .., pn, move around the search space starting from

an initial random guess. The feasible solutions are called ”swarm” , P = {p1, ..., pn}. The swarm

communicates the current best and shares the global best in order to focus on the best solution found.

To solve most of the problems, the number of particles used varies from twenty to fifty [67].

In Figure 2.4, it is possible to understand how the PSO works throughout the optimisation process.

The particles are initialised with their position in the search space, within the boundaries defined, rep-

resenting the generation zero. After determining the fitness function for this first particle values, the

solution is analysed, the best solution is determined and stored. Since this is the first best, the algorithm

termination is not met, and so velocity vectors are generated for each search agent. Their position is

updated, and new fitness values computed. The algorithm evaluates the new fitness values and deter-

mines the new best fitness. The new best fitness is then compared to the global best, and if it is better

than the global best, it replaces it. The termination criteria are then evaluated, and if the termination

criteria are met, the optimisation process ends returning the optimum values. If not, the iterative process

will continue until the desired termination criteria are met.

The source code used for this algorithm is presented in the Optimization Toolbox of MATLAB® [68].

2.3.1.3 Grey Wolf Optimisation algorithm

The Grey Wolf Optimisation (GWO) algorithm takes inspiration from the social hierarchy and hunting

behaviours of grey wolves, as they are apex predators, meaning they are in the top of the food chain,

with a strict social dominant hierarchy. This social hierarchy is well defined, and the grey wolf leaders

are denominated as alphas, α, the next level in the hierarchy are the betas, β, followed by the omegas,

ω, and the deltas, δ, in the bottom of the pyramid. The hunting behaviour has different stages starting

with encircling prey, followed by hunting, attacking prey and search for prey [50].

Figure 2.5 describes the GWO algorithm. This algorithm starts with the grey wolf population initial-

isation, xi(i = 1, 2, ..., n), consisting of random values for the position of each wolf. Also initialised are

some algorithm-specific parameters. The fitness of each search agent is calculated, and the best search

agents are selected. The termination criteria are tested, and if not met the position of the search agents

are updated.

The fitness of each updated search agents is calculated. If this fitness is better than the existing best

search agents (α, β and δ), then they will be replaced for the best existing solution. If it is not better than

the existing best solution, the position of the current search agents is then updated. The termination

criteria are tested again, and the algorithm will continue until the termination criteria are met, or the

maximum number of iterations is reached.

The source code used for this algorithm is presented by Mirjalili in the MATLAB Central File Exchange

[70].
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Figure 2.5: Flowchart of the Grey Wolf algorithm

2.3.1.4 Firefly algorithm

The Firefly algorithm (FA) takes inspiration from the bioluminescence flashes of fireflies. The primary

function of these flashes is to attract matting partners and to attract potential prey. The pattern of flashes

is specific to each one of the two thousand species of fireflies.

The FA was developed and implemented by Yang in 2009 [41]. This algorithm is based on three

idealised rules: the first is that all fireflies are unisex, meaning that one firefly will be attracted to the

others regardless of their sex; the second one is that the attractiveness is proportional to the brightness

and these two factors reduce as the distance between fireflies increase, and the last one is that the less

bright firefly will move towards the brighter ones, the fireflies randomly move towards the brightness.

In Figure 2.6, it is presented a flowchart of this algorithm. It starts with the initialisation of the firefly

population and the evaluation of the fitness values, then the termination criteria are checked. If the

termination criteria are not met, then relative distances between the fireflies are calculated and based

on each firefly light brightness, the less bright fireflies will move towards the brightest ones. After that,

the fitness value is evaluated, and if the fitness has improved, the new values will replace the old; if not,

these new values will be discarded.

The best solution so far is found, and the termination criteria are rechecked. The optimisation process
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Figure 2.6: Flowchart of the Firefly algorithm [69]

will end when the termination criteria are met, and the algorithm will return as output the best solution

found.

The source code used for this algorithm is presented by Yang in the MATLAB Central File Exchange

[71].

2.3.1.5 Cuckoo Search algorithm

The Cuckoo Search (CS) is inspired by the brood parasitism of some cuckoo species and makes

use of the Lévy flights, a behaviour of flight of many birds and insects characterised by straight flights

punctuated by sudden 90◦ turn used to explore new terrain. This algorithm was developed by Yang and

Deb in 2010 [43].

The CS can be described by three rules. The first rule is that each cuckoo lays one egg at a time

in a randomly chosen nest. The second rule says that the best nest with the high-quality eggs being

carried over to the next generations. The last rule is that the number of host nests is fixed, and there is

a probability, pa ∈ [0, 1], that the host bird discovers the cuckoo’s egg. In this case, the host bird can get

rid of the egg or abandon the nest, creating new locations.

The flowchart in Figure 2.7 describes the CS algorithm. It starts with the initialisation of the host nest
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Figure 2.7: Flowchart of the Cuckoo Search algorithm [69]

population, followed by the evaluation of the fitness values. The termination criteria are checked and if

not satisfied a new set of solutions are generated using Lévy flights. The fitness values are evaluated,

and a random host is chosen. The new fitness value is compared with the old one, and if the new fitness

value is better than the old solution, it is replaced by the new, if not, the new solution is discarded, and

the old solution is kept.

After a fraction of the worst nests are abandoned, and new nests created again using Lévy flights.

The solution is updated, and the current best is determined. The termination criteria are rechecked until

the termination criteria are met, and the best solution is achieved terminating the algorithm.

Yang presents the source code used for this algorithm in the MATLAB Central File Exchange [72].
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Chapter 3

Properties Identification

The present method for properties identification is included in the non-direct evaluation methods as

it uses a metaheuristic optimisation approach for the identification of material properties. It is closely

related to the work presented by Soares et al. [8], generalised by Araújo et al. [65] and further explored

more recently by Lopes et al. [9].

A model of the specimen is created and natural frequencies are determined using ANSYS® Para-

metric Design Language (APDL). An objective function is formulated, in order to use Nature-inspired

optimisation algorithms to determine the mechanical properties of specimens. This objective function

relates the experimental natural frequencies ([8, 9, 65, 73, 74]) and computational natural frequencies.

3.1 Specimens selection

To apply this method, it is fundamental to measure natural frequencies using experimental tech-

niques. In this thesis, data from previously performed measurements, taking into consideration several

aspects regarding boundary conditions, material properties and specimens characteristics, will be used.

To accurately measure natural frequencies, the specimen should be suspended so that it would

approximate a free condition. This condition is the one that leads to the best desired measurements.

This method is applied to isotropic, transversely isotropic, orthotropic and anisotropic specimens. These

specimens are rectangular plates with constant thickness. There are a large number of examples in the

literature presenting data required to implement this method. However, the selected specimens were

chosen as they represent some of the most used materials in composite materials, as well as some

Green composites. Table 3.1 lists the selected specimens references, Table 3.2 lists the specimens

materials and their geometric characteristics, and Table 3.3 lists their mechanical properties.
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Table 3.1: Specimens references

Specimen Author Year Reference
SP-1 Soares et al. 1993 [8]
SP-2 Lopes et al. 2019 [9]
SP-3 Araújo et al. 1996 [65]
SP-4 Larsson 1997 [73]
SP-5 Igea and Cicirello 2020 [74]

Table 3.2: Type of material and geometric characteristics of selected specimens

Specimen Material a x b x h (mm) N. of Plies Fiber Orientation
SP-1 Aluminium 193 x 281 x 1.94 1 –
SP-2 Glass-Epoxy 299.26 x 93.71 x 2.3 14 [0014]T
SP-3 Glass-Epoxy 203 x 136 x 14 - [00]
SP-4 OSB* 2440 x 1220 x 10 - all align
SP-5 Plywood panel 350 x 350 x 5.50 3 all align

*OSB - composite material composed of adhesive and wooden strands.

Table 3.3: Mechanical properties of selected specimens as reported in the references

Specimens Density(Kg/m3) E1(GPa) E2(GPa) G12(GPa) G13(GPa) G23(GPa) ν12

SP-1 2688 68.7 68.1 24.6 24.6 26.9 0.34
SP-2 1978.3 31.28 27.17 6.46 - - 0.1659
SP-3 1886.9 42.8 12.2 4.8 4.2 4.9 0.301
SP-4 649.691 7.12 3.45 1.96 - - 0.28
SP-5 568 8.180 4.357 0.6954 - - 0.1216

3.2 Mesh convergence study

Since the present method relies on FEM analysis, a mesh study is carried out for all the selected

specimens. Table 3.3 lists the mechanical properties extracted from references [8, 9, 65, 73, 74]. Relying

on the characteristics on Table 3.2 and the mechanical properties from Table 3.3 a model for each

specimen is created taking advantage of APDL®. An example of an input file is presented in Appendix

A. To perform these analyses are used MATLAB® and ANSYS® to model each specimen and run the

simulations required for the convergence study.

The process to obtain the requested data is as follows: MATLAB® generates an input file which

contains ANSYS® script commands. In this file, the specimen plate in question is modelled and a modal

analysis, also known as free vibration analysis, is requested to ANSYS®. This analysis is performed to

obtain the natural frequencies and mode shapes of the plate. From the general Equation of motion, the

particular case of the free vibration is deduced, assuming all applied loads and the in-plane forces are

set to zero:

[M ]{∆̈}+ [K]{∆} = 0 (3.1)

where [M] is the mass matrix, [K] is the stiffness matrix, ∆ is the displacement and ∆̈ is the second-order

time derivative of the displacement.

In free vibration analysis the structure’s behaviour is assumed to be linear, and the response can be
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assumed harmonic:

{∆} = {φi}cos(ωit) (3.2)

where φi is the mode shape (eigenvector) and ωi is the natural circular frequency for mode i. By

replacing this last equation in equation (3.1) yields an eigenvalue problem:

([K]− ω2
i [M ]){φi} = 0 (3.3)

which is solved in ANSYS® [75].

The modal analysis is requested using the APDL command ANTYPE,MODAL, and the arguments

needed to extract the desired modal parameters. In this case are requested the number of modes, which

is set using APDL argument nmodes. In the present work, this argument is set to ten modes. The other

major option to take into account is the type of solver used, either it can be ”Direct” or ”Iterative”. In this

thesis, it is used the ”Direct” or ”Program Controlled” option, which results in the Block Lanczos eigen-

value extraction method with the sparse direct equation solver (MODOPT,LAMB )[76]. After ANSYS®

finishes the calculations requested, an output file containing the final results is produced. The first ten

natural frequencies are extracted from the output file.

For comparison purposes and to avoid distorted elements, the finite element dimensions were de-

fined so that elements are approximately square. The elements used are SHELL63 (Figure 3.1) and

element SHELL181 (Figure 3.2). The element SHELL63 is a four nodes quadrilateral elastic shell, and

Figure 3.1: SHELL63 Geometry

Figure 3.2: SHELL181 Geometry
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so is defined by four nodes and six degrees of freedom (translations in the x, y and z directions and

rotations about the nodal x, y and z axes). The element SHELL181 is a four nodes quadrilateral finite

strain shell, defined by four nodes with six degrees of freedom at each node (translations in the x, y and

z directions and rotations about the x, y and z axes).

For the convergence study a convergence index is used to check the mesh and help in the decision

of which mesh to use for the rest of the analysis.

MCI = 100×
∑10
i=1 firef −

∑10
i=1 fi∑10

i=1 firef
(3.4)

In Equation (3.4), the mesh convergence index (MCI) is related to the sum of the 10 natural frequencies

requested, fi, and the sum of the 10 natural frequencies of a reference mesh with approximately 10000

elements ,firef . In Figure 3.3, it is possible to see the convergence plots for the various specimens for

SHELL63. For SHELL181 the plots can be found in Appendix B.

Analysing each case and taking into consideration the mesh convergence index, it is possible to

observe that all the graphs presented in Figure 3.3 converge very quickly. The MCI is low for most of

the cases, never exceeding the value of one point six per cent presented in the graph 3.3(b). All graphs

converge to low values, and the highest value for the mesh convergence index for 4000 elements is

obtained for graph 3.3(a). However, it is possible to see that the values have not varied more than point

eight per cent. The SHELL181 convergence graphs present higher MCI than SHELL63 convergence

graphs in general. The maximum MCI obtained in these graphs is around fourteen per cent converging

to around one per cent.

The next tables present the selected meshes that will be used in the upcoming analysis in this thesis.

Table 3.4: Number of elements for determined Convergence Index for SHELL63 element-using 10 nat-
ural frequencies

SP-1
MCI # elements ae(mm) ae/a

MCI < 0.5% 176 (11×16) 17,55 0,09091
MCI < 0.3% 315 (15×21) 12,87 0.0667

SP-2
MCI # elements ae(mm) ae/a

MCI < 0.5% 252(28×9) 10.69 0.03571
MCI < 0.3% 1725 (75×23) 3.99 0.0133

SP-3
MCI # elements ae(mm) ae/a

MCI < 0.5% 54 (9×6) 22.56 0.1111
MCI < 0.3% 117 (13×9) 15.62 0.07692

SP-4
MCI # elements ae(mm) ae/a

MCI < 0.02% 392 (28×14 ) 87,14 0.08714
SP-5
MCI # elements ae(mm) ae/a

MCI < 0.02% 168 (14×14 ) 25 0.07143

In Table 3.4 are present the selected meshes that have the same MCI throughout the several spec-
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((a)) SP-1 ((b)) SP-2

((c)) SP-3

((d)) SP-4 ((e)) SP-5

Figure 3.3: Convergence for element type SHELL63

imens, the MCIs selected for the study using SHELL63 are MCI < 0.5%, MCI < 0.3% and for some

specimens MCI < 0.02% as can be seen in Table 3.4. Table 3.5 presents the meshes selected using

SHELL181. The MCIs selected in this case are 0.5%, 1% and 1.5% since the graphs present higher

values for the MCI.

For both of these cases, it is possible to observe that for the same MCI the adimensional dimension

of the elements of each specimen stays approximately the same, or within the same order of magnitude,

between all specimens . For example using SHELL63, for MCI < 0.5%, SP-1 presents ae/a = 0.091,

SP-2 presents for ae/a = 0.036 and SP-3 presents ae/a = 0.111. In the next figure (Figure 3.4) are
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Table 3.5: Number of elements for determined Convergence Index for SHELL181 element

SP-1
MCI # elements a (mm) ae/a

MCI < 1% 630 (21×30) 9,19 0,04762
MCI < 0.5% 2772 (44×63) 4,39 0,02273

SP-3
MCI # elements ae(mm) ae/a

MCI < 1.5% 315 (21×15) 9,67 0,04762
MCI < 1% 468 (26×18) 7,82 0,03846
MCI < 0.5% 950 (38×25) 5,34 0,02632

presented the mesh for this last specimens.

((a)) SP-1 ((b)) SP-4

((c)) SP-5

Figure 3.4: Mesh selected using SHELL63 for SP-1, SP-4 and SP-5

After analysing the results above, the SHELL63 element graphs convergence was rapid, resulting in
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the lowest MCI produced from the elements tested. Thus, meshes with MCI < 0.5% are used from now

on, except for specimen SP-2. For this specimen, the mesh used presents an MCI < 0.3%, correspond-

ing to the mesh presented in the article [9] for comparison purposes.

3.3 Optimisation problems

In this section, the optimisation problems, the objective functions and the constraints applied for each

specimen are presented. As seen previously in the generic optimisation problem described in section

2.3, it is necessary first to define the design variables for optimisation. In the present optimisation prob-

lems, design variables are the elastic constants of the different materials. Materials are characterised

as isotropic, transversely isotropic, orthotropic or anisotropic. The Table in Figure 3.5 lists the number of

elastic constants for each type of material.

Figure 3.5: Summary of number of elastic constants for different materials [77]

In this thesis, isotropic, transversely isotropic, orthotropic and anisotropic materials are analysed.

Hence, focusing on the 2D case, the number of independent elastic constants in Table 3.5 will be the

same as the number of variables. The optimisation problems defined for the four different specimen

material elastic constants can be represented as follows:

Isotropic materials

Min Φ(E, ν) (3.5a)

Transversely isotropic materials

Min Φ(E1, E2, G12, ν12) (3.5b)

Orthotropic materials

Min Φ(E1, E2, G12, ν12) (3.5c)

Anisotropic materials

Min Φ(E1, E2, G12, G13, G23, ν12) (3.5d)
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The computation of the objective function is represented in the flowchart of Figure 3.6. The function

inputs are the material elastic properties values that are used to perform a modal analysis in order to

obtain the natural frequencies. These natural frequencies are then compared with experimental natural

frequencies, through the use of an objective function.

Figure 3.6: Flowchart of the objective function computation

The first objective function is presented in Equation (3.6). The objective is to minimise the sum of

the absolute difference between the circular natural frequencies obtained experimentally, ω̃i, and the

circular natural frequencies obtained computationally, ωi:

Φ =

nf∑
i=1

|ω̃i − ωi| (3.6)

where nf are the total number of frequencies considered. This Equation (3.6) is defined in Lopes et al.

[9]. One other objective function relates experimental circular natural frequencies, ω̃i, and computational

circular natural frequencies, ωi, according to the Equation (3.7).

Φ =

nf∑
i=1

(ω̃i
2 − C × ω2

i )2

ω̃i
4 (3.7)

where C = ω̃1
2

ω2
1

and nf are the total number of frequencies considered for each of the specimen analysis.

This objective function is presented in Soares et al. [8].

Depending on the reference article and specimen studied, the number of natural frequencies varies

from five to fourteen.
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The last step to have a fully defined optimisation problem is to apply the necessary constraints to

the design variables. Therefore, for each specimen, a set of lower and upper constraints are defined

for each one of the design variables. If the reference presents the constraints for the design variables,

these are used, if not, the constraints are defined accordingly to each specific case. In Table 3.6 lists

the constraints for each specimen.

Table 3.6: Constraints applied to each design variable

Specimen Constraint E1(GPa) E2(GPa) G12(GPa) G13(GPa) G23(GPa) ν12

SP-1 Upper 100 - - - - 0.4
Lower 50 - - - - 0.2

SP-2 Upper 50 50 20 - - 0.4
Lower 10 10 1 - - 0.05

SP-3 Upper 70 25 15 15 15 0.4
Lower 20 1 1 1 1 0.1

SP-4 Upper 15 10 5 - - 0.4
Lower 4 1 0.1 - - 0.1

SP-5 Upper 15 10 5 - - 0.2
Lower 4 1 0.1 - - 0.05

The termination criteria are the tolerance and the maximum number of iterations. The main termi-

nation criterion is tolerance. For comparison purposes, this criterion is set to 10−6 or 10−9 depending

on the specimen and objective function. The tolerance is set to 10−6 for the other optimisation prob-

lems. This ensures that the optimisation ends when the relative difference of successive function values

reaches this value. The maximum number of iterations is set to one thousand for all optimisation prob-

lems. This is needed so that, if the tolerance is not met, the algorithms will stop when they reach the

one-thousandth iteration. Otherwise, the algorithm would continue indefinitely.

To solve the proposed optimisation problems needed to implement this method, the Nature-inspired

metaheuristic optimisation algorithms used are the GA, the PSO, the GWO, the FA and the CS, which

are described in section 2.3.1.

3.4 Optimisation problems results and analysis

3.4.1 Comparison of results obtained with different algorithms

In this section, the first set of optimisations performed are presented. These optimisations are used

to verify the applicability of this method for properties identification. With this aim, the specimens SP-

1 and SP-2 extracted from [8, 9] are used. For each specimen, optimisations using the five different

algorithms proposed are performed. This is done so that the more suitable algorithm can be selected to

be used in the next sections.

3.4.1.1 Specimen SP-1

The first optimisations are performed using specimen SP-1. The material of this specimen is isotropic.

Therefore it has E and ν as design variables. It is expected to obtain values similar to the ones reported
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in [8], which are listed in Table 3.3. For the presented optimisation problem, the objective function used

is Equation (3.7), where nf equals nine [8]. The termination criteria are defined by a tolerance set to

10−9, and the maximum number of iterations is one thousand. The design variables constraints are

listed in Table 3.6. For these optimisations, the number of search agents is set to one hundred.

Table 3.7 presents the elastic constants computed, and the relative difference to the reference values

[8]. All the algorithms obtain the same values for the Poisson’s ratio, ν. Therefore the relative error for

this design variable is the same for all algorithm. Only when analysing the values obtained for Young’s

modulus, E, is it possible to draw any conclusions. In this set of optimisations, this design variable

presents distinct values for each of the algorithms. The best result is obtained for the PSO algorithm,

presenting a relative error of zero point six per cent, followed by the GA algorithm, with a relative error

of three-point four per cent. All other algorithms present relative differences above ten per cent, making

them unsuitable for solving this kind of problems. These differences from the reference values are mainly

due to the different method used in the optimisation process, the different finite element used to model

the specimen, and the number of elements used.

Table 3.7: Elastic constants computed with each of the algorithm and relative difference for SP-1

E (GPa) ν 100 ∗ |E−Eref |
E 100 ∗ |ν−νref |ν

Reference [8] 68.7 0.34 - -
GA 71.09 0.37 3.4 7.9
PSO 69.14 0.37 0.6 7.9
GWO 87.41 0.37 21.4 7.9
FA 78.68 0.37 12.7 7.9
CS 99.62 0.37 31.0 7.9

Table 3.8: Function values (Fval), number of iterations (Niter), number of function evaluations (NFEs)
and relative computational time (RCTime) for each algorithm for SP-1

Fval Niter NFEs RCTime
GA 0.001041 65 6600 1.72
PSO 0.001041 35 3600 1.00
GWO 0.001041 996 99700 54.76
FA 0.001041 82 8200 2.65
CS 0.001041 118 11800 1.04

The function values (Fval), the number of iterations (Niter), the number of function evaluations

(NFEs), and the relative computational time (RCTime) taken by each algorithm are listed in Table 3.8.

The function values are equal in all algorithms. The number of iterations and the number of function

evaluations have the same behaviour. The lowest number of iterations and the number of function eval-

uations is observed in the PSO algorithm. The lowest time is also obtained with the PSO algorithm

followed by the CS algorithm, taking only a bit more than one and a half times the computation time

of the PSO. However, the CS algorithm is the one that presents the highest relative difference for the

design variables. The algorithm that uses more computation time is the GWO, taking more than fifty-four

times the time computation of the PSO and consequently, it presents the higher number of iterations.

Figure 3.7 shows the objective function values behaviour of each of the algorithms used to solve this

problem. All the algorithms tend to the same value of 0.001041. The PSO and CS algorithms are the
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Figure 3.7: Convergence of GA, PSO, GWO, FA and CS for SP-1

fastest to reach the final function values followed closely by the FA algorithm. The PSO reached this

value around the fourth iteration and the FA around the thirteenth iteration.

The dispersion of the search agents throughout the iterations for each algorithm is presented in

Figure 3.8. In these graphs, the different populations of search agents created by each algorithm in

the optimisation process are represented. From these graphs stands out the large number of particles

presented by the GWO, 3.8(c), the FA, 3.8(d), and the CS, 3.8(e). This is not odd since these algorithms

needed more iterations in order to end the optimisation process. In the GWO graph, 3.8(c), a large

number of particles are present in the borders of the space, corresponding to the upper and lower

bounds of the design variables, which is not desirable when solving optimisation problems.

Figure 3.8(a) presents the lowest number of particles and populations. However, most of the particles

and even some populations are overlapping, not providing a good exploration of the search space.

In fact, as presented in Table 3.8, the algorithm that took the lowest amount of iterations is the PSO

algorithm. However, the PSO (Figure 3.8(b)) presents a good exploration of the search space with some

particles in the limits of this space. Despite that, this algorithm manages to solve this problem in the

lowest amount of time and iterations.

To better understand how the PSO and GWO algorithms behave throughout the iterations, four dis-

tinct populations were selected, representative of the optimisation process for each algorithm. These

two algorithms correspond to the best and worst case results. The populations selected are initial pop-

ulation, the second population that corresponds to twenty-five per cent of the total number of iterations,

the third one corresponding to fifty per cent of the iterations, and the last populations obtained. These

populations are presented in Figure 3.9. The initial population in both cases has good dispersion and
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((a)) GA ((b)) PSO

((c)) GWO

((d)) FA ((e)) CS

Figure 3.8: Dispersion of the search agents throughout the iterations for each algorithm

are scattered throughout the search space. With the increase of iterations, each algorithm is behaving

differently, with the second population presented corresponding to one-quarter of the total iterations. In

the PSO case, this population corresponds to the ninth iteration. At this point, the population is mostly

in the upper half of the graph. The opposite can be seen for the GWO population, which is scattered

through the search space and along the upper and left border of the graph. This population corresponds

to the two hundred and forty-ninth iteration. At the half-point, the PSO is in the eighteenth iteration, and

the GWO is in the five hundred and ninety-eighth iteration. The population of the PSO is distributed

along a line in the vicinity of the reference which corresponds to the values of the elastic constants

reported in the literature. The GWO population has approximately the same dispersion as before, still

presenting a large number of particles in the limits of the graph. At the end of the optimisations for both

cases, the populations are condensed in one small area, with the PSO population presenting a bit more
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((a)) PSO

((b)) GWO

Figure 3.9: Optimisation process for the PSO and GWO algorithms: Representation of populations in
the initial iteration, at 25% of the total iterations, at 50% of the total iterations and the final iteration

dispersion than the GWO population. However, the PSO population is closer to the reference value at

the thirty-fifth iteration, while the GWO stops at the nine hundred and ninety-sixth iteration.

In conclusion, to solve this optimisation problem the most suitable algorithm is the PSO, which man-

ages to obtain values for the design variables close to the reference values while using fewer iterations

and time when compared to all others algorithms used.

3.4.1.2 Specimen SP-2

These second sets of optimisations are performed using the specimen SP-2. This specimen material

is transversely isotropic, therefore the design variables are E1, E2, G12 and ν12. The expected values are

listed in Table 3.3. For this optimisation problem the objective function (Equation (3.6)), the constraints,

and the search agents are the same as in reference [9]. The tolerance is set to 10−6, and the number of

search agents is set to one hundred. For this optimisation, nf is equal to fourteen.

Table 3.9 lists the elastic constants computed using each algorithm for this specimen. The elastic
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Table 3.9: Elastic constants computed with each of the algorithms for SP-2

E1(GPa) E2(GPa) G12(GPa) ν12
Reference [9] 31.28 27.17 6.46 0.1659
GA 30.57 27.16 6.38 0.1609
PSO 30.51 27.15 6.38 0.1673
GWO 30.98 27.34 6.50 0.0885
FA 27.17 30.59 6.4 0.1579
CS 30.51 27.15 6.38 0.1676

constants computed using the different algorithms are in the vicinity of the reference values. The GWO

algorithm gives the most significant variation. This last fact can be verified in Table 3.10, which presents

the relative difference of the computed elastic constants with the reference values. The GWO and the

FA algorithms have the greatest differences. The relative differences observed in all algorithms are due

to the type of element used. Although the same number of elements is being used, the finite element

used is different from the one used in reference [9]. In this article, the Kirchoff non-conforming element

of four nodes and three degrees of freedom per node was used, while in this method, the shell element

SHELL63 is used.

Table 3.10: Relative difference of computed elastic constants of each algorithm

100 ∗ |E1−E1ref
|

E1
100 ∗ |E2−E2ref

|
E2

100 ∗ |G12−G12ref
|

G12
100 ∗ |ν12−ν12ref |ν12

GA 2.32 0.037 1.25 3.11
PSO 2.52 0.074 1.25 0.84
GWO 0.97 0.62 0.61 87.46
FA 15.13 11.18 0.94 5.07
CS 2.52 0.074 1.25 1.01

The function values, the number of iterations, the number of function evaluations and relative time

are listed in Table 3.11. The function values for most of the algorithms do not vary much. However,

for the GWO algorithm, the function value obtained is around three times greater than any other. This

was expected since the relative difference of this algorithm is the highest. This algorithm reaches the

termination criteria of maximum numbers of iterations, reaching the one-thousandth iteration, which

means that the stopping criteria of tolerance were not meet. The algorithm that took the longest was the

FA, taking almost eight times more than the fastest one, the GA.

Table 3.11: Function values, number of iterations, number of function evaluations and relative computa-
tional time for each algorithm for SP-2

Fval Niter NFEs RCTime
GA 47.76 145 14600 1.00
PSO 45.66 101 10100 1.08
GWO 148.87 1000 100000 3.41
FA 48.70 916 91600 7.73
CS 45.75 622 31100 4.51

In Figure 3.10, it is possible to observe the convergence of each algorithm throughout the iterations.

It is also possible to distinguish the GWO since it presents the highest function values throughout the

iterations. The GA and PSO algorithms converge more quickly at almost the same rate.

34



Figure 3.10: Convergence of GA, PSO, GWO, FA and CS for SP-2

All algorithms, except the GWO, tend to function values of around forty-seven. The fastest algorithm

to achieve the final function value is the PSO, around the fortieth iteration.

After analysing both of these sets of optimisations, it is possible to see that the most efficient algo-

rithms are the GA and the PSO. For both specimens, these algorithms are the ones that present the

most significant results, with the lowest amount of time and iteration spent to obtain it. On the other

hand are the GWO and the FA, which present the worst results while taking the largest amount of time

and iterations.

3.4.1.2.1 Comparison of results with different sets of experimental natural frequencies

This specimen was presented in the article [9]. Here the authors measured experimental natural

frequencies and presented a set of natural frequencies. More recently, new experimental measurements

were performed in a similar plate as the one studied in [9]. In this analysis the algorithm used is the PSO

algorithm for both cases. The presented method is applied to the modelled plate of this specimen,

changing the input experimental frequencies for each case. Since in the more recent measurements of

the natural frequencies, only ten frequencies were measured, in the present analyses, the number of

frequencies used, nf , is set to ten for both cases. The set of natural frequencies presented in the article

[9] is denoted as f̃ ia) and the more recent set is denoted as f̃ ib). For both cases the design variables

constraints are kept constant, as well as the number of search agents, which are set to one hundred,

and the termination criteria, with the tolerance being set to 10−9 and the maximum number of iterations

set to one thousand. Table 3.12 lists the elastic constants computed for each case and the best function

value obtained in the optimisation process.

Here it can be observed that for the Young’s moduli, E1 and E2, the values obtained are very similar

and within the acceptable values for this constant. This is also observed for the shear modulus. The
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Table 3.12: Elastic constants and function value obtained for each one of the cases a) and b)

E1(GPa) E2(GPa) G12(GPa) ν12 Fval
a) 30.61 27.18 6.41 0.1555 10.21
b) 30.14 27.74 6.08 0.2000 19.15

Poisson’s ratio is the elastic constant that presents the most significant variation, presenting a relative

difference of around twenty per cent from the reference [9], for case b).

Table 3.13: Comparison of natural experimental frequencies and computational frequencies computed
for case a) and b)

a) b)
Mode f̃a) (Hz) fa) (Hz) Relative difference (%) f̃b) (Hz) fb) (Hz) Relative difference (%)
1 97.75 103.94 -5.9518 104.00 103.18 0.7929
2 151.75 151.71 0.0280 148.10 147.93 0.1182
3 270.25 286.98 -5.8288 285.20 285.14 0.0203
4 324.75 327.73 -0.9078 320.50 320.59 -0.0291
5 530.25 551.23 -3.8054 540.80 541.52 -0.1333
6 541.50 563.18 -3.8489 559.20 559.92 -0.1279
7 819.75 842.19 -2.6648 831.20 830.71 0.0590
8 875.75 928.27 -5.6577 922.20 922.22 -0.0025
9 1068.00 1009.31 5.8147 1026.70 1026.70 0.0004
10 1113.75 1060.42 5.0287 1076.90 1076.92 -0.0022

A modal analysis is performed next, using the elastic constants computed with both sets of experi-

mental frequencies, and new computational natural frequencies computed corresponding to each of the

sets. Table 3.13 presents the experimental frequencies used and computational frequencies computed

for each of the cases. Overall, the differences between both sets of experimental frequencies are small,

presenting the set b) values for the frequencies above the original set in the worst-case. The difference

does not exceed fifty hertz. The biggest differences from these two measurements appear to be focused

in the bending modes, such as in the first, the third, the sixth and the eighth mode. When comparing

the experimental frequencies and the computational frequencies for each case, it stands out that for

case a) the relative differences present greater values than in case b). In case a), the more significant

differences are presented mainly in the modes corresponding to bending modes, such as the first, the

third, the eighth and ninth mode. In case b), the differences between experimental and computational

frequencies are drastically reduced, here the first mode presents the highest difference, presenting a

value of around point eight per cent.

Figure 3.11 represents the mode shapes obtained in the modal analysis performed in ANSYS®. In

this figure, the first and the eighth modes are represented: Figures 3.11(a) and 3.11(b), which are

bending modes in the x direction, the ninth mode; Figure 3.11(c), which is a bending mode in the y

direction, and the fourteenth mode; Figure 3.11(d), which is a mixed bending mode, with bending in

the x and y direction. This last mode is obtained to compare with the ones presented in Figure 3.18.

Here, this mode presents the same behaviour as in the reference [9]. However, the value of the natural

frequency for this mode is closer to the one obtained in the Section 3.4.4.3 than the one presented in

the reference [9].
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((a)) First mode ((b)) Eighth mode

((c)) Ninth mode ((d)) Fourteenth mode

Figure 3.11: Mode shape obtained using the elastic constants determined in the optimisation process
using the ten natural experimental frequencies f̃ ib)

All things considered, the elastic constants computed with each set of experimental frequencies

present similar values, except for the Poisson’s ratio, which is proven to be more sensitive to the changes

in frequency than the other elastic constants. The high sensitivity of the Poisson’s ratio was also ob-

served in [65] .

3.4.2 Comparison of results obtained with different sets of search agents

The present method is based on meta-heuristics, so there is a need to validate this method. For that,

in this section, one of the most used validation tests discussed in [78] is going to be performed. This test

consists of performing a specific number of runs and evaluate the values of the objective function, the

design variables and the computational time. In this section, fifty optimisations are performed for SP-1

and thirty optimisations for SP-2. The objective function presented in Equation (3.6) is used for both of

these optimisation problems.

The computer used in this analysis was entirely dedicated to this study while performing the optimi-

sation process. The computer has an Intel® CoreTM i7-9750H CPU @2.60 GHz processor with 16 GB

of RAM. It was also used the software AMD® RadeonTM RAMDISK which allows allocating part of the

computers RAM memory into a virtual disc where ANSYS® and MATLAB® can more quickly read and

write the required files, thus boosting the computational performance.

3.4.2.1 SP-1

The next set of fifty optimisations are preformed for the specimen SP-1. This specimen represents the

least complex problem to be solved, presenting only two design variables. For this set of optimisations,
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the PSO algorithm parameters are kept constant, such as the number of search agents which is set to

fifty agents per population. For the termination criteria, the tolerance is set to 10−6, and the maximum

number of iterations is set to one thousand iterations.

After gathering the necessary data from all the fifty optimisations, Appendix C, the averages and

standard deviations of all the design variables, the objective function value and computational time are

calculated and displayed in Table 3.14. The average values obtained for both elastic constants, E and

ν, are close to the values showcased in the reference [8]. For the standard deviations, it presents values

close to zero, with a magnitude of 10−14 for E, and 10−16 for ν which demonstrates the reliability of this

method determining the material elastic constants of the material.

Table 3.14: Average and standard deviation of fifty optimisation runs for the elastic constants, function
value and computational time

E (GPa) ν Fval Computational time (h)
Average 66.8 0.38 72.75 1.052

Standard deviation 0.0000 0.0000 0.0000 0.1049

The objective function values presented in all the optimisations have approximately the same value

and showcasing a standard deviation with magnitude of 10−14. To examine in detail the influence of

each of the initial populations of search agents the computational time is studied and identified the best

and worst case scenario. Figure 3.12 exhibits the computational time each optimisation process took,

it is possible to see that all the optimisations took around one hour, with some peaks and dips. The

optimisation which performed worst is located at a peak and the one with the best performance at a dip.

Figure 3.12: Distribution of the computational time spent by each one of the fifty optimisations with
different initial population for SP-1

The best-case scenario corresponds to the twenty-eighth optimisation, which took approximately

point eighty-four hours, and the worst-case scenario corresponds to the fifteenth optimisation, which

took approximately one point thirty-three hours. The time difference between the best and the worst-
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case is around zero point forty-nine hours, corresponding to approximately thirty minutes. The time

difference between the two cases is significant, and so to understand this time difference the behaviour

of the populations of the search agents are analysed for both cases. Both optimisations used different

numbers of iterations, the worst-case used seventy-two iterations, and the best case used forty-six

iterations. Hence, it is relevant to understand the reason for this difference. To analyse each case, the

dispersions of the search agents throughout the optimisation process are represented in Figure 3.13.

((a)) Best case ((b)) Worst case

Figure 3.13: Dispersion of the design variable throughout the optimisation process for the best and the
worst case

The iterations represented in the figures correspond to the initial iteration, followed by the iteration

corresponding to the one-quarter of the optimisation process, the next corresponds to half of the opti-

misation process and finally, the last iteration of the optimisations. For both cases, the initial population

seams to explore evenly the search space, with the worst case population grouped into small swarms

through the search space whereas the best case population is more scattered through the search space.

The next populations represented are for the best case the population of iteration twelve which has

swarmed around the final position, with some particles at the bounds. For the worst case, the population

of iteration eighteen where the search agents are still scattered through the search space with a large

number of agents in the bounds. At half point of both optimisations, iteration twenty-three for the best

case and iteration thirty-six for the worst case, all the search agents have swarmed around the final po-

sition, which is verified by the population dispersion of the last iteration for both cases. In the best case,

the optimisation termination occurred at the forty-sixth iteration, and in the worst case, the optimisation

termination occurred at the seventy-second iteration. The worst case populations could not efficiently

search the search space in the first quarter of the iterations. In contrast, the best case populations in

the first quarter of the iterations have successfully searched the space and swarmed around the final

position.

The extreme cases are computed as well making the initial population agents placed at the upper

bounds and the lower bounds for the design variables. Figure 3.14 represent the dispersion of the

search agents in the initial iteration, the iteration one, the one-quarter of the total number of iterations, at

half of the total number of iterations and the final iterations. In these last cases, it is possible to denote

that even in these extreme cases, initial populations at the constraints bounds, this method is capable

of obtaining the correct elastic constants, without major variances in computational time and iterations.
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((a)) Upper bounds case ((b)) Lower bounds case

Figure 3.14: Dispersion of the design variable throughout the optimisation process for the lower bounds
and the upper case

For the case of the upper bound, the termination of the optimisation process took place at the sixty-

eighth iteration. The lower bounds case the termination of this optimisation occurred at the sixty-ninth

iteration, both of these optimisations used fewer iterations than the worst case, Figure 3.13(b), verifying

and demonstrating the independence of this method on the initial random population.

3.4.2.2 SP-2

In this section, the optimisations are performed for specimen SP-2. As described before, the problem

defined with this specimen presents four design variables making it a rather complex problem to be

solved.

For this analysis, the present method for properties identification is applied thirty times, and the data

gathered is analysed. The algorithm parameters, such as the number of search agents, is set to one

hundred for all the runs. The termination criteria are kept constant, the tolerance is set to 10−9, and the

maximum number of iterations is set to one thousand iterations.

The elastic constants computed in each run, as well as the objective function value and computa-

tional time, are gathered from the performed optimisation and listed in Appendix C. Table 3.15 lists the

averages and standard deviations of these parameters. As it happened in the last subsection, the elas-

tic constants average values are very close to the values produced in the specimen reference article

[9] and with reduced standard deviations. In this case, the elastic constant which presents the highest

variability is the shear modulus, G12, with a standard deviation of 0.0067, Young’s modulus E1 show-

cases a standard deviation with the same order of magnitude as the shear modulus of around 0.002.

The Young’s modulus E2 and the Poisson’s ratio, ν12, present standard deviations with the same order

of magnitude smaller than for the other two design variables, for the E2 obtaining a standard deviation

of 1.53 × 10−5 and for the ν12 a standard deviation of 6.19 × 10−5. The function value presents a small

variation proving that despite the different initial populations, the global function minimum is determined

with some certainty.

The effect of the different initial population is more noticeable in the computation time each optimi-

sation took than in these last parameters. The computation time presents an average of around eleven

hours and a standard deviation of around three point seven hours, which is significative correspond-

ing to almost one-third of the average computational time. The computation time spent by each one
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Table 3.15: Average and standard deviation of thirty optimisation runs for the elastic constants, function
value and computational time for SP-2

E1 (GPa) E2 (GPa) G12 (GPa) ν12 Fval Computational time (h)
Average 30.51 27.15 6.38 0.1673 45.66 11.15

Standard deviation 0.0020 0.00001 0.0067 0.00006 0.0112 3.702

of the different optimisations is plotted in Figure 3.15. The high standard deviation of the computation

time is noticeable in this figure, with the computational time varying from around six hours to as much as

twenty hours. These two scenarios are the best-case scenario and the worst-case scenario, respectively

corresponding to the twenty-fifth optimisation and to the twenty-first optimisation.

Figure 3.15: Distribution of the time spent by each one of the thirty optimisations for SP-2

In the best-case scenario, the PSO algorithm performed the optimisation process in a bit more of six

hours using one hundred and thirty-four iterations. For the worst case, the PSO used more than twenty

hours performing three hundred and seventy-four iteration.

In the next figure, Figure 3.16, are represented the evolution of the best values for the design vari-

ables in each iteration, side by side.

For the graphs from Figure 3.16, it is visible that the worst case scenario has a broader exploration

of the search space, with its best search particles covering more scattered positions than in the best

case scenario. This stands out in the v12 graph, Graph 3.16(h), where the search particles cover more

than half of the search space before stabilising in the final value. While for the best case graphs from

Figure 3.16, all the initial elastic constants are within a close range of the final value achieving this value

around the fortieth iteration. Despite that, for both cases, all the design variables reached the same

values when the optimisation processes ended. This is even visible in the extreme cases presented in

Figure 3.17, in these cases, all the initial search agents are positioned at lower bound and upper bound

of the constraints applied to the design variables. Both of these cases are extremes, all the initial search

agents are positioned at the same point, and they do not randomly search all the space as all the above

cases these two extremes performed better than the worst case scenario which started from a random

initial population guess.
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((a)) E1 ((b)) E1

((c)) E2 ((d)) E2

((e)) G12 ((f)) G12

((g)) ν12 ((h)) ν12

Best case Worst case

Figure 3.16: Evolution of the design variables (E1, E2, G12 and ν12 ) values throughout iterations for both
the best and worst case

These four specific optimisations, best case scenario, worst case scenario, Upper and Lower bounds

cases together with the data gathered from the thirty other optimisations demonstrate that the time each

optimisation uses may vary from the different set of search agent. Despite that, the validity of this method

for properties identification is verified regardless of the initial set of search agents.

With the data from these two studies using SP-1 and SP-2 at least for these two kinds of optimisation

problems, since each different case with different numbers of design variables represents a different opti-

misation problem, demonstrate the independence to achieve the correct elastic constants independently

of the initial population of search agents.
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((a)) E1 ((b)) E1

((c)) E2 ((d)) E2

((e)) G12 ((f)) G12

((g)) ν12 ((h)) ν12

Upper bounds case Lower bounds case

Figure 3.17: Evolution of the design variables (E1, E2, G12 and ν12 ) values throughout iterations for both
the upper bounds case and lower bounds case

3.4.3 Comparison of results obtained with different objective functions

In this section, the objective is to study the influence of the objective function used. The optimisations

are performed using the PSO algorithm, changing only the objective function. All other parameters, such

as the termination criteria, are kept constant. The tolerance is set to 10−9 and the maximum number of

iterations to one thousand. The number of search agents is set to one hundred, and the initial population

is kept constant, allowing to evaluate the behaviour of the optimisation and to compare the results with

the ones obtained for the same specimen with different objective functions.

In this set of optimisations the specimen used is the SP-2. The constraints for the design variables

are constant. The objective functions used in this analysis are the ones used in the last section, Equation
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(3.6) and (3.7) , and a new objective function:

Φ =

nf∑
i=1

(fri − ˜fri)
2 (3.8)

where fri and ˜fri are the computational and experimental frequencies, respectively, and nf the number

of frequencies considered for each analysis. This objective function is presented by Tam in a review

article [77].

To identify the different objective functions, in this section, the objective function in Equation (3.6)

is going to be named as Φ1, the objective function in Equation (3.7) as Φ2 and the objective functions

in Equation (3.8) as Φ3 In the objective function Φ1, the presence of the absolute operator serves to

ensure the positivity of the objective function values. This is also achieved with the square operator

seen in the objective functions Φ2 and Φ3. These objective functions were created in order to solve

or overtake problems presented in other types of property identification methods. This is implemented

either to escape second derivatives, which can be challenging to compute, for example, Φ1, or to deal

with gradient-based methods. Functions like Φ2 and Φ3 are known as the sum of squares and were

developed to be used by gradient-based methods. Since the present method is a gradient-free method,

the objective function used should have a small influence on the method. However, the functions might

have a more significant influence than the expected or even just not suitable to solve the proposed kind of

optimisation problem. The values obtained for the design variables, the computational time, the number

of iterations each optimisation took, and the final objective function value obtained for each one of the

objective functions are presented in Table 3.16.

Table 3.16: Elastic constants computed, relative computational time, number of iterations and function
values obtained for SP-2 using different objective functions

Objective function E1(GPa) E2(GPa) G12(GPa) ν12 RCTime Niter Fval
Φ1 30.51 27.15 6.38 0.1674 2.10 101 45.65960
Φ2 49.99 44.48 10.53 0.1699 1.00 57 0.000068
Φ3 30.48 27.16 6.38 0.1656 2.11 107 6.145190
Reference [9] 31.28 27.17 6.46 0.1659 - - -

The objective functions Φ1 and Φ3 obtained the best results for the computed elastic constants. The

elastic constant computed with these two functions are similar and closer to the reference values than

the ones obtained using Φ2. Thus Φ2 does not seem to be suited to solve this optimisation problem

when compared to the other objective function analysed. When comparing the Φ1 and Φ3 values, the

difference between the values obtained are minimal, and the most significant difference is in the function

values.

Since Φ1 uses slightly less time than Φ3, thus Φ1 is more suitable to be used to solve this type of

optimisation problems.
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3.4.4 Influence of the number of natural frequencies

In this section, the objective is to analyse the influence of the number of natural frequencies in the

optimisation using the PSO algorithm. The algorithm parameters, such as the termination criteria, are

kept constant. In the termination criteria, the tolerance is set to 10−6, and the maximum number of

iterations is set to one thousand.

3.4.4.1 SP-1

The specimen used in this analysis is SP-1. This specimen is presented in the article [8], where nine

experimentally obtained natural frequencies are presented. For this optimisation problem, the objective

function used is presented in Equation (3.6), with nf equal to nine. The number of search agents is set

to fifty.

For this specimen, the design variables are Young’s modulus and the Poisson’s ratio. The bounds for

the design variables are presented in the next Table, Table 3.17.

Table 3.17: Constraints applied to each design variable for SP-1

Specimen Constraint E1(GPa) ν12

Sp-1 Upper 100 0.4
Lower 50 0.2

The optimisation problem is now fully defined, and it is possible to solve it. In Table 3.18 the elastic

constants computed using the different number of frequencies, the average, the standard deviation of

the design variables, and the reference values are presented.

Table 3.18: Elastic constants computed, average and standard deviation while using PSO for each
number of frequencies for SP-1

nf E(GPa) ν
1 68.1 0.40
2 67.9 0.39
3 67.2 0.40
4 66.7 0.38
5 67.0 0.37
6 67.5 0.34
7 66.4 0.36
8 66.4 0.36
9 66.8 0.38

Average 67.1 0.37
Standard Deviation 0.5655 0.0194

Reference [8] 68.7 0.34

The design variables have a small deviation for the different number of frequencies. The average

design variables values obtained for this set of optimisations have a relative error to the reference values

of around two per cent.

For this specimen, nine frequencies are used. However, with the analysis of the Table 3.18, the opti-

misation that came closer to the reference value of this specimen are the ones that use five frequencies.
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3.4.4.2 SP-2

The next specimen used in this analysis is SP-2. In the reference article [9], fourteen natural fre-

quencies are presented. For this optimisation problem the objective function is presented in Equation

(3.6), wherein this case nf equals fourteen. The number of search agents is set to fifty, and the initial

population is the same for all the optimisations.

For this set of optimisations, there are four design variables. The upper and lower bounds of the

constraints for the design variables are presented in Table 3.19 and are kept constant throughout the

optimisations.

Table 3.19: Constraints applied to each design variable

Specimen Constraint E1(GPa) E2(GPa) G12(GPa) ν12

SP-2 Upper 50 50 20 0.4
Lower 10 10 1 0.05

For these optimisations, the only variable is the different number of frequencies used in each of the

optimisations. Table 3.20 lists the elastic constants computed for each number of frequencies used in

the optimisation process. This Table also presents the average and the standard deviation of each one

of the design variables.

The highest deviation observed for the E1 is presented in the optimisations with four and five fre-

quencies. The values for this design variable are approximately half of what is expected to be obtained.

Table 3.20: Elastic constants computed and its average and standard deviation, while using PSO for
each number of frequencies for SP-2

nf E1(GPa) E2(GPa) G12(GPa) ν12
1 33.42 26.95 8.08 0.3422
2 33.08 27.10 6.44 0.1380
3 41.16 27.04 6.43 0.3005
4 13.48 27.03 6.46 0.1328
5 14.49 27.04 6.45 0.1388
6 25.83 27.09 6.41 0.1728
7 38.90 27.20 6.39 0.1696
8 28.82 27.11 6.40 0.1805
9 30.61 27.18 6.41 0.1550

10 30.61 27.17 6.41 0.1559
11 30.67 27.17 6.42 0.1464
12 30.60 27.15 6.41 0.1566
13 30.48 27.12 6.40 0.1705
14 30.51 27.15 6.40 0.1672

Average 29.48 27.11 6.54 0.1805
Standard Deviation 7.346 0.06847 0.4293 0.05964

Reference [9] 31.28 27.17 6.46 0.1659

The optimisation that uses fourteen frequencies presents values for the design variables very similar

to the ones presented in the reference article. However, with less frequencies similar results can be

obtained. The number of frequencies needed to obtain similar results is around nine frequencies.

This method uses experimentally obtained natural frequencies in order to determine the material

elastic constants. In this case, these experimental natural frequencies are extracted from [9]. The
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abnormal results for three, four and five frequencies, might have been the result of less accurate mea-

surements during the experimental modal analysis. These less accurate measurements might also have

been caused by the poor-quality signal captured by the laser vibrometer described in [9].

When comparing the mode shapes obtained in [9] with the ones obtained using the elastic constants

obtained in the optimisation using fourteen frequencies for this plate, it is possible to observe the sim-

ilarity between the three displacement modes presented. In Figure 3.18, the modes of first, ninth and

fourteenth natural frequencies with displacements in the z direction are presented. For the mode shapes

presented, it can be seen that the first mode, bending mode, is very sensitive to the plate elastic proper-

ties, namely in the x direction to the E1. In contrast, the ninth mode, bending mode in the y direction, is

sensitive to elastic constants E2.

((a)) Obtained using the elastic constants obtained in the optimisation process using fourteen frequen-
cies

((b)) Presented in [9]

Figure 3.18: Comparison of modes of first, ninth and fourteenth natural frequencies in the z direction

When comparing both these sets of optimisations, it is possible to observe that for the SP-2, a

transversely isotropic material, higher dispersion of the elastic constants is presented than for the SP-1,

isotropic material. However, the complexity of each case is very different. The SP-1 only has two design

variables, in comparison to the SP-2 that has four design variables, making it a much more complex

problem to solve.

3.4.4.3 SP-2 with weight factor

In this subsection, a new objective function is therefore formulated based on Equation (3.6) to im-

prove the results of this last set of optimisations and understand the influence of the number of fre-

quencies and modes used. This new objective function is represented as the weighted difference of

frequencies for each number of frequencies used.

Φ =

nf∑
i=1

Wi × |ω̃i − ωi| (3.9)
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where ω̃i and ωi are experimentally and computationally obtained circular frequencies, respectively.

Wi is the weight factor, and nf are the total number of frequencies considered. In this case, nf equals

fourteen. The optimisation algorithm used here is the PSO algorithm, and the algorithm’s parameters are

set to be the same as in last section 3.4.4.2. The initial population of search agents is set to fifty agents

with their position being the same for each optimisation. The algorithm terminates the optimisation

process when the tolerance reaches 10−6 or when it reaches the maximum number of iteration set to

one thousand.

The weight factor in this first approach is set as zero or one, to define this factor, the experimentally

determined frequencies and the computationally determined ones are compared. In this case, the com-

putationally determined frequencies, which are obtained in the optimisation using fourteen frequencies,

nf = 14, for the SP-2 specimen in subsection 3.4.4.2, are compared to experimental natural frequencies

extracted from the article [9]. The relative difference between theses natural frequencies mode by mode

is calculated, and a threshold is defined. If the threshold is met, the weight factor is set as zero, if not, it

is set as one. In this case, the threshold is set to five per cent for the relative differences of frequencies.

Table 3.21 lists the experimentally obtained frequencies, the computationally obtained ones, the relative

differences between each frequency, and the defined weight factor.

Table 3.21: Experimentally and computationally obtained natural frequencies, relative differences calcu-
lated and weight factor defined for each mode for SP-2

Mode f̃ (Hz) f (Hz) Relative difference (%) Wi

1 97.75 103.78 6.17 0
2 151.75 151.60 0.10 1
3 270.25 286.62 6.06 0
4 324.75 327.55 0.86 1
5 530.25 551.02 3.92 1
6 541.50 562.56 3.89 1
7 819.75 841.99 2.71 1
8 875.75 926.96 5.85 0
9 1068.00 1010.70 5.37 0

10 1113.75 1062.30 4.62 1
11 1170.75 1193.60 1.95 1
12 1234.75 1214.10 1.67 1
13 1322.25 1399.90 5.87 0
14 1453.50 1421.70 2.19 1

The modes that present a relative difference superior to the defined threshold are the first, the third,

the eighth, the ninth, and the thirteenth frequencies, and so the weight factor for these modes are set

to zero. The correspondent modes shapes associated with these natural frequencies correspond to the

bending modes, which are plotted in the different figures in Figure 3.19. The modes from the first, the

third, the eighth and the thirteenth frequencies, Graphs 3.19(a), 3.19(b), 3.19(c) and 3.19(e), correspond

to bending modes in the x direction and the mode from the ninth frequency, Graph 3.19(d), is a bending

mode in the y direction.

With the weight factor set to zero these frequencies and therefore modes shapes are not considered

when preforming the proposed optimisations. Therefore the maximum effective number of frequencies

used in this set of optimisations is nine. Table 3.22 exhibits the effective number of frequencies used, the
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((a)) First mode ((b)) Third mode ((c)) Eighth mode

((d)) Ninth mode ((e)) Thirteenth mode

Figure 3.19: Bending modes with weight factor set to zero

elastic constants computed, and the weight factor vector considered for each case. This set of elastic

constants presents an higher variation with the increase of the effective number of frequencies, for all

constants when compared to the set obtained in Subsection 3.4.4.2.

Table 3.22: Effective number of frequencies considered, elastic constants computed and weight factor
vector for Equation (3.9), for each number of frequencies for SP-2

Effective nf E1(GPa) E2(GPa) G12(GPa) ν12 Weight factor vector
1 14.28 46.45 6.31 0.1204 [0,1]
2 44.12 24.26 6.45 0.3551 [0,1,0,1]
3 32.57 26.62 6.35 0.3535 [0,1,0,1,1]
4 50.00 10.24 20.00 0.4000 [0,1,0,1,1,1]
5 47.71 27.25 6.38 0.1570 [0,1,0,1,1,1,1]
6 30.81 27.22 6.44 0.1304 [0,1,0,1,1,1,1,0,0,1]
7 30.29 27.05 6.44 0.1304 [0,1,0,1,1,1,1,0,0,1,1]
8 30.29 27.05 6.39 0.1888 [0,1,0,1,1,1,1,0,0,1,1,1]
9 30.69 27.20 6.42 0.1414 [0,1,0,1,1,1,1,0,0,1,1,1,0,1]

Average 34.67 28.57 7.44 0.2055 -
Standard Deviation 11.63 8.83 3.63 0.0931 -

Reference [9] 31.28 27.17 6.46 0.1659 -

Analysing this table, it is possible to observe that the for optimisation with four effective frequencies,

the elastic constants obtained are equal to the upper bounds of the constraints applied to the design

variables. Thus, this optimisation does not present valid results. With the increase of the number of

frequencies used, the elastic constants computed get close to the values presented in the reference

article [9]. With eight and nine frequencies used, the values computed for the elastic constants are

similar to the reference.

In order to verify if this change in the objective function, and so experimental frequencies used, is

enough to reduce the relative differences between the frequencies and therefore obtain better values

for the elastic constants. The natural frequencies obtained using nine effective frequencies and the
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experimental values are compared. Table 3.23 lists the new computational natural frequencies, the

experimental natural frequencies and the relative difference between the two frequencies, mode by

mode.

Table 3.23: Experimentally and computationally obtained natural frequencies and relative differences
calculated for each mode for SP-2

Mode f̃ (Hz) f (Hz) Relative difference (%)
1 97,75 104,06 6,46
2 151,75 151,81 0,04
3 270,25 287,22 6,28
4 324,75 327,85 0,95
5 530,25 551,27 3,96
6 541,50 563,55 4,07
7 819,75 842,04 2,72
8 875,75 929,28 6,11
9 1068,00 1007,8 5,64
10 1113,75 1058,2 4,99
11 1170,75 1190,9 1,72
12 1234,75 1213,9 1,69
13 1322,25 1399,2 5,82
14 1453,50 1416,9 2,52

When comparing these relative differences with the ones obtained in Table 3.21, it is possible to

see that the same pattern observed in the first comparison is observed here as well. The modes that

present the higher values for the relative difference are still the same modes presenting an increase of

the relative difference in the majority of the disregarded modes.

To better understand the influence of the frequencies used and the number needed to determine the

elastic constants accurately, the elastic constants computed using nf equal fourteen from Table 3.20

and the elastic constants computed for nf equals nine are compared in Table 3.24. This table lists the

elastic constants computed for both cases as well the relative differences of the elastic constants to the

reference article [9]. For each case is presented computational values obtained using the corresponding

number of frequencies and the average values of the elastic constants computed for each one of the

analysis, Tables 3.20 and 3.22.

Table 3.24: Comparison of the computed elastic constants for nf equals fourteen and for effective nf
equals nine

Effective nf E1(GPa) E2(GPa) G12(GPa) ν12
- Reference [9] 31.28 27.17 6.46 0.1659

14

Computational 30.51 27.15 6.40 0.1672
Average 29.48 27.11 6.54 0.1805

Computational relative difference (%) 2.462 0.07361 0.9288 0.7836
Average relative difference (%) 5.766 0.2343 1.181 8.798

9

Computational 30.69 27.20 6.42 0.1414
Average 34.53 27.04 6.42 0.2197

Computational relative difference (%) 1.886 0.1104 0.6192 14.77
Average relative difference (%) 10.84 5.135 15.10 23.85

Comparing the average values and its relative differences between both cases, it is observed that the

case with nf equals nine displays greater relative differences when compared to the case with nf equals
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fourteen. Despite that, the optimisation with effective nf equals nine presents better results for Young’s

modulus E1 and for the shear modulus G12 than the optimisation which uses all fourteen frequencies.

The Young’s modulus E2 obtained with fourteen frequencies displays a relative difference smaller than

for the shear modulus computed in the other optimisation. For the Poisson’s ratio ν12, the same be-

haviour is displayed; however, in this case, the difference is more significant. With fourteen frequencies,

the relative difference displayed is around zero point eight per cent, whereas in this case, which uses

nine frequencies, the relative difference is around fifteen per cent. This behaviour the Poisson’s ratio was

already studied by Frederiksen which carried out a sensitivity analysis of the Poisson’s ratio, according

to which the sensitivity of the Poisson’s ratio is very small when compared to the sensitivity of the other

in-plane elastic constants [79].

With this new proposed objective function, the elastic constants computed are within the acceptable

range except for the Poisson’s ratio, which demonstrates being more sensitive to natural frequencies

used to estimate this elastic constant.

3.4.4.4 SP-3

In this next set of optimisations, the specimen used is SP-3. This specimen is presented in the

article [65], and twelve experimentally obtained natural frequencies are presented. The material of

specimen SP-3 presents six independent elastic constants. This specimen represents one of the most

complex problems here presented. The objective function used in this set of optimisations is presented

in Equation (3.6).

For this set of optimisations, six design variables are considered. The constraints applied to each

design variable are presented in Table 3.25.

Table 3.25: Constraints applied to each design variable

Specimen Constraint E1(GPa) E2(GPa) G12(GPa) G13(GPa) G23(GPa) ν12

Sp-3 Upper 70 25 15 15 15 0.4
Lower 20 1 1 1 1 0.1

With the optimisation problem fully defined, the optimisations can be solved. The number of frequen-

cies used, the elastic constants computed are listed in Table 3.26. In this table, the average values, and

standard deviation for each one of the design variables are also presented.

As the number of design variables increases, so does the complexity of these optimisations increases

as well. The results obtained in this set of optimisations are further from the reference than in the first

two sets of optimisations with fewer design variables.

In this case, analysing the average values for the design variables some discrepancies are found.

Namely for the transverse shear moduli, G13 and G23, and for the Poisson’s ratio, ν12. The discrepancies

in the G13 and G23 are mainly because transverse shear deformations are only noticed for thick plates.

As these plates are relatively thin, these moduli have low sensitivity. The discrepancies in the ν12 can

be explained by the small sensitivity when compared to other in-plane elastic constants. This is more

pronounced for anisotropic plates, which is the case of this plate [65].
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Table 3.26: Computed elastic constants and its average and standard deviation while using PSO for
each number of frequencies for SP-3

nf E1(GPa) E2(GPa) G12(GPa) G13(GPa) G23(GPa) ν12
1 57.8 3.6 7.9 8.6 6.4 0.275
2 39.3 19.1 4.2 7.7 9.5 0.149
3 58.6 7.8 4.3 10.0 5.9 0.159
4 49.0 9.8 3.9 3.9 1.7 0.100
5 49.7 9.4 3.7 8.6 9.1 0.244
6 49.0 9.8 3.6 6.0 11.9 0.100
7 58.7 6.4 4.0 4.1 8.9 0.157
8 44.7 8.8 4.4 1.6 4.0 0.312
9 40.7 7.9 4.7 12.6 8.9 0.251

10 35.7 15.2 2.9 9.1 11.7 0.100
11 50.6 6.0 4.6 7.9 6.3 0.225
12 49.5 6.4 4.8 5.2 10.3 0.100

Average 48.6 9.2 4.4 7.1 7.9 0.181
S. Deviation 7.2 4.0 1.2 2.9 2.9 0.074

Reference [65] 42.8 12.2 4.8 4.2 4.9 0.301

Overall, with the increased number of design variables (2, 4, 6) the complexity of each optimisa-

tion problem increases exponentially. As the number of design variables increases, the discrepancies

between the results of the optimisations and the reference values increases as well. However, the ma-

jor motive for the discrepancies in the computed elastic constants to the references ones are still the

difference in the finite elements used and their elasticity theories.

From the number of frequencies used, a rule of thumb can be verified by the first specimen that uses

two design variables and needs at least four frequencies, by the second specimen that uses four design

variables needs at least eight frequencies. The last specimen, which uses six design variables needs at

least twelve frequencies to obtain valid results. This means that twice as many frequencies are needed

than the number of design variables.

3.4.5 Comparison of results with different number of search agents

Several optimisations are performed to study the influence of the number of search agents for the

PSO algorithm, keeping constant all other parameters, including the initial position of all the search

agents for all the optimisations.

The specimen used in these optimisations is the SP-2, and the objective function used is Equation

(3.6), where nf equals fourteen. The constraints and the termination criteria are kept constant for all

optimisations, only varying the number of search agents. The tolerance is set to 10−6 and the maximum

number of iterations set to one thousand. In this study, the number of search agents is incremented,

starting with ten agents, increasing ten agents each time until it reaches a hundred search agents.

Table 3.27 lists the elastic constants computed using the different number of search agents, the

function values and the relative time for the PSO algorithm. It is possible to observe that as the number

of search agents increases, the function values decrease, tending to around forty-five. For ten, twenty

and forty search agents, the function values are around two thousand. The values of the Poisson’s ratio,

ν12, for these three numbers of search agents are equal to the lower bound of the constraints applied.
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Table 3.27: Elastic constants, function values and relative computational time computed for different
numbers of search agents for PSO algorithm

Number of search agents E1(GPa) E2(GPa) G12(GPa) ν12 Fval RCTime
Reference [9] 31.28 27.17 6.46 0.1659 - -

10 37.40 10.00 20.00 0.0500 2099.55 1.00
20 37.40 10.11 20.00 0.0500 2070.54 2.75
30 30.51 27.15 6.38 0.1673 45.67 17.05
40 37.40 10.11 19.73 0.0500 2039.11 4.42
50 30.51 27.15 6.40 0.1672 45.69 11.81
60 30.51 27.15 6.40 0.1672 45.68 11.92
70 30.51 27.15 6.37 0.1674 45.65 22.24
80 30.51 27.15 6.40 0.1672 45.69 22.43
90 30.51 27.15 6.38 0.1673 45.67 17.18
100 30.51 27.15 6.38 0.1673 45.65 17.50

Figure 3.20: Relative time for the different number of search agents for the PSO algorithm

In the optimisation with thirty search agents, the function value has the same approximate value as

the optimisation with more than fifty search agents. In Figure 3.20, it is possible to see the relative time

taken by each optimisation. It presents a peak with thirty search agents and then with seventy and eighty

search agents. Despite the optimisation with thirty search agents presenting good results, the time it

takes is more than seventeen times the time of the optimisation with ten search agents. The optimisation

with fifty search agents, when compared with the one that uses thirty, presents approximately the same

results, but only uses almost twelve times the time of the optimisation with ten search agents.

To compare these results with the results presented in the article [9], the relative differences are

calculated. Table 3.28 presents these relative differences of the elastic constants for each number of

search agents.

As the number of search agents increases, the relative differences decrease, staying approximately

constant for more than fifty agents. This is possible to observe in Figure 3.21. The largest relative

differences are presented for ten, twenty, and forty search agents, in particular for E1 and ν12.

This figure presents relative differences for the design variables with the increase of search agents.

The number of search agents that present the best results is thirty search agents and more than fifty
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Table 3.28: Relative difference of elastic constants computed for different numbers of search agents for
PSO algorithm

Number of search agents 100 ∗ |E1−E1ref
|

E1
100 ∗ |E2−E2ref

|
E2

100 ∗ |G12−G12ref
|

G12
100 ∗ |ν12−ν12ref |ν12

10 212.80 27.35 67.70 231.8
20 209.50 27.35 67.70 231.8
30 15.21 10.95 1.19 0.846
40 209.49 27.35 67.26 231.8
50 15.21 10.94 0.99 0.776
60 15.21 10.94 1.04 0.793
70 15.21 10.96 1.34 0.898
80 15.21 10.94 1.01 0.787
90 15.21 10.95 1.17 0.841

100 15.21 10.95 1.25 0.868

Figure 3.21: Relative difference of computed elastic constants for the different number of search agents
for the PSO algorithm

search agents. These search agents present the lowest function values and the lowest relative differ-

ences.

In view of the above results, the PSO algorithm should be used with fifty search agents.

3.4.6 Green composites

In this section, the objective is to verify the applicability of this method to green composites and

wood specimens. Flax fibres reinforced composites have demonstrated to be versatile in its application

and with mechanical properties that could easily replace glass fibres and many others synthetic fibres.

However, it was not found enough data in the literature to be able to test these flax fibres composites.

Despite that, the two specimens of green composites are studied; one of wooden strands bonded

with adhesive and another of plywood of birch panels. The specimens were previously studied by Lars-

son and by Igea and Cicirello by using respectively a dynamic test based on modal analysis and calcu-

lated numerical eigenvalues [73]; and numerical optimisation for the estimation of elastic constants using

experimental data from the Chladni patterns and experimental modal analysis [74]. These methods are

introduced and their estimation of elastic constants compared to the ones computed with the present
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method.

3.4.6.1 Specimen SP-4 using objective function Equation (3.6)

The specimen used in this next set of optimisations is the SP-4, which is presented in [73]. In this

article, the authors proposed a method for the estimation of elastic constants based on modal analysis

for a specimen of wooden strands bonded with adhesive.

This proposed method is developed for thin orthotropic rectangular plates. It is proposed that Young’s

moduli, E1 and E2, and the shear modulus, G12, are estimated from the plate bending modes in the x

direction, in the y direction and the first torsion mode. The Poisson’s ratio is estimated from an in-plane

compression mode. In this method, the author describes the in-plane free vibration problem of a plate

by the coupled differential equations derived from the two-dimensional state of stress-strain equilibrium

for orthotropic plates:

E1

1− ν12ν21
∂2u

∂x2
+

E2ν21
1− ν12ν21

∂2v

∂x∂y
+G12

(
∂2v

∂x∂y
+
∂2u

∂y2

)
= ρ

∂2u

∂t2
(3.10a)

E2

1− ν12ν21
∂2v

∂y2
+

E1ν21
1− ν12ν21

∂2u

∂x∂y
+G12

(
∂2u

∂x∂y
+
∂2v

∂x2

)
= ρ

∂2v

∂t2
(3.10b)

where u = u(x, y, t) and u = u(x, y, t) are the displacement in the x direction and the y direction

respectively. The density of the material is ρ and t time. These equations can be rewritten as a function

of the mode shape function, here denoted as φ, u = u(x, y, t) = φC,x(x, y)U(t) and v = v(x, y, t) =

φC,y(x, y)V (t). From these equations, the mode shape of the first mode of compression, denoted as

φC , is determined and the eigenvalue solution calculated. From the mode shape functions for the first

compression mode, the value of the Poisson’s ratio is estimated:

ν12 ≈
∣∣∣∣φC,y(x, y)

φC,x(x, y)

∣∣∣∣ (3.11)

For that, the first step in this method is to preform an experimental modal analysis. In this analysis,

complex frequency response functions are obtained, yielding four modal parameters such as response

frequency, mode shape function, modal relative damping, and modal mass for each of the mode shapes

identified. With the compression mode identified the Poisson’s ratio is then estimated from mode shape

values, as it is presented in Equation (3.11).

The next step is to identify the bending modes and the corresponding frequencies, so that the initial

values of the elastic constants, E1, E2 and G12, can be estimated using the next set of equations [73].

E1 ≈ ˜fBx
2
ρ

19a4

2π2h2
(3.12a)

E2 ≈ ˜fBy
2
ρ

19b4

2π2h2
(3.12b)

G12 ≈ f̃T
2
ρ

(
ab

h

)2

(3.12c)
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where ˜fBx, ˜fBy and f̃T are the experimental frequencies corresponding to the bending in the x direction,

bending in the y direction and the first torsion mode, respectively, of a plate with dimensions a × b × h.

Afterwards, a finite element analysis is performed with this estimate of the elastic constant as input. The

initial estimates of these elastic constants are updated as presented in the following equation for Young’s

modulus [73]:

|fBx − ˜fBx|
˜fBx

> 0.01⇒ E1(N) = E1(N − 1)

(
˜fBx
fBx

)2

(3.13)

where fBx is the natural frequency value computed using the finite element analysis, ˜fBx is the experi-

mentally obtained natural frequency, and N the number of iterations. In order to verify that the evaluated

parameters have reasonable values, the author uses Equation (3.12b), and to verify the assumed thin-

plate theory uses Equation (3.12c). The last step is to determine the Poisson’s ratio using the expression

that originates from the Hooke’s generalised law [80]:

ν12 = ν21
E2

E1
(3.14)

In the end, four estimations of the elastic constants determined are obtained. With this method, a

reasonable estimate for the elastic constants of thin orthotropic plates is obtained. However, this method

presents a limitation in the validation part, where the use of small-sized specimens is not representative

of the average elastic properties of full-sized OSB panels [73]. Despite that, values for Young’s moduli

were obtained, which average, approximately ten per cent higher while using this test than using the

static approach.

This specimen, SP-5, material and geometric characteristics are listed in Table 3.2. For the present

study, seven natural frequencies are extracted from [73].

In this set of optimisations, the number of search agents is set to fifty. In the termination criteria,

the tolerance is set to 10−6 and the maximum number of iteration set to one thousand iterations. Table

3.29 lists the elastic constants computed with each one of the optimisation algorithms using the objective

function (3.6), and Table 3.30 lists the relative differences of each one of the computed elastic constants.

Table 3.29: Elastic constants computed with each of the algorithm for SP-4 using objective function in
Eq. (3.6)

E1(GPa) E2(GPa) G12(GPa) ν12
Reference [73] 7.12 3.45 1.96 0.28
GA 7.42 2.47 2.98 0.35
PSO 7.40 2.45 2.97 0.38
GWO 7.42 2.47 2.98 0.34
FA 7.46 2.51 2.99 0.27
CS 7.39 2.44 2.97 0.40

It is possible to observe that the Young’s modulus in the x direction, E1, is the elastic constant that

presents the closest values to the reference one across all algorithms, presenting a relative difference

around four per cent higher than the reference value. The Young’s modulus in the y direction, E2,

presents a much higher relative difference around forty per cent lower than the actual value, performing
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Table 3.30: Relative difference of computed elastic constants of each algorithm using objective Function
Eq. (3.6) for SP-4

100 ∗ |E1−E1ref
|

E1
100 ∗ |E2−E2ref

|
E2

100 ∗ |G12−G12ref
|

G12
100 ∗ |ν12−ν12ref |ν12

GA 4.05 39.96 34.22 19.77
PSO 3.78 40.91 34.04 26.63
GWO 4.09 39.87 34.25 18.72
FA 4.51 37.64 34.42 3.81
CS 3.63 41.47 33.95 29.88

all algorithms similarly. For the shear modulus, G12, the optimisation presents values lower than the

reference value, presenting across all algorithms an error around thirty-four per cent. The FA algorithms

stands out when looking to Poisson’s ratio, presenting a closer value to the reference among all the

algorithms, presenting the lower difference only around four per cent. Table 3.31 presents the function

value obtained for each algorithm. It presents the iterations and objective function count and the relative

computational time spent as well for each one of the algorithms. All the algorithms reach around the

same value for the function value. However, the GWO used one thousand iterations, reaching the max-

imum number of iterations allowed. The algorithm that took the least iterations was the PSO, needing

only ninety eight iterations. Despite that, it was not the fastest one to reach the termination criteria, with

the fastest being the GA algorithm. The one that took the longest time was the GWO with five hundred

thousand objective function evaluations.

Table 3.31: Function value, the number of iterations, the number of function evaluations and relative
computational time for each algorithm for SP-4 using objective function in Eq. (3.6)

Fval Niter NFEs RCTime
GA 120.31 111 5600 1
PSO 120.25 98 4950 1.07
GWO 120.32 1000 50000 12.94
FA 120.87 344 17200 3.65
CS 120.22 644 32200 8.97

For this specimen, this method was able to estimate the elastic constants within acceptable accuracy.

However, if more frequencies were presented in the reference [73], a better estimate could be obtained.

According to the thumb rule, at least twice as many frequencies are needed as the number of elastic

constants, so at least eight natural frequencies would be needed. From this set of optimisations, the

algorithm that had the best values computed for the design variables is the FA. Showing that depending

on the optimisation problem, the most suited algorithm to be used with this method can change.

3.4.6.2 Specimen SP-5 using objective function Equation (3.6)

For this next optimisation problem, the specimen used is the SP-5. This specimen material is or-

thotropic, therefore the design variables are the elastic constants, E1, E2, G12, and ν12.

This specimen is presented in [74].In this article, a procedure for the evaluation of elastic constants

for thin orthotropic rectangular panels is presented. The authors propose an approach that combines

frequency response functions obtained via experimental modal analysis and the frequencies obtained

via modal analysis to obtain the Chladni patterns. In this procedure, the operational mode shapes are
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obtained with a Chladni setup. This method consists on determine four elastic constants, namely Young’s

moduli in the x and y directions, the in-plane shear modulus, and the Poisson’s ratio. To calculate these

four independent elastic constants, five natural frequencies, corresponding to the pure twisting mode,

bending mode in the x and y directions, and the X and ring (O) operational mode shapes, are used. The

X and ring (O) mode shapes appear due to the Poisson’s ratio coupling effect [81].

The first step in this approach is to perform several experimental modal analysis and identify the

resonant frequencies without evaluating the mode shapes. The next step is the Chladni setup, where

the Chladni patterns are obtained. The Chladni pattern is obtained via the Chladni experimental setup

where the main objective is to evaluate operational mode shapes. This experimental setup makes use

of a function generator combined with an audio power amplifier connected to a loudspeaker placed on

a flat horizontal surface. The test plate is positioned above the loudspeaker supported by small foam

blocks which are resting in the flat surface. A fine powder, such as salt or tea leaves, is then placed

on top of the plate. The speaker is used to apply a sinusoidal acoustic input and exploring a broad

range of frequencies. When the driving frequency matches the panel’s natural frequency, the out-of-

plane vibration pattern will correspond to the operational mode shape at that frequency. As a result,

the powder will move from the panel’s vibrating areas to the nodal lines where no movement occurs,

forming the so-called Chladni patterns showcased in Figures 3.22. These patterns are identified by the

((a)) Modal shapes (+, L, H) and nodal lines obtained with the Chladni setup

((b)) Modal shapes (X, O) and nodal lines obtained with the Chladni setup

Figure 3.22: Chaldni pattern from from the proposed method [74]
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shape of the powder in the plate, being identified and known the ring (O), X and cross (+) operational

modal shapes. Here the frequency search is guided by the frequencies obtained in the Experimental

Modal Analysis. The frequencies extracted from this method, ω, are then related with the out-of-plane

harmonic response of the plate, here denoted as $(x, y) [81]:

ρω2$ = h2
[
D1

∂4$

∂x4
+ (D2 +D4)

∂4$

∂x2∂y2
+D3

∂4$

∂y4

]
(3.15)

where ρ is the density, h is the thickness and the Ds are elastic constants which are related to E1, E2,

G12, ν12 and ν21 through:

D1 =
E1

12(1− ν12ν21)
;D2 =

ν12E2

6(1− ν12ν21)
=

ν21E1

6(1− ν12ν21)
;D3 =

E2

12(1− ν12ν21)
;D4 =

G12

3
; (3.16)

with the Poisson’s ratios related by the general reciprocal theorem [82]:

ν21
E2

=
ν12
E1

From this equations the closed-form expressions are obtained and used to evaluate the constants D1,

D3 and D4:

D4 ≈ 0.274
a2b2ρ

h2
f̃2+ (3.17a)

E1 = 0.0789
12ρa4

h2
f̃2H ≈ 12D1 (3.17b)

E2 =
12ρb4

(4.73004)4h2
f̃2L = 0.0789

12ρb4

h2
f̃2L ≈ 12D3 (3.17c)

where a, b and h are dimensions of the plate being analysed, and f̃+, f̃H , and f̃L are the frequencies at

which the cross mode, the higher bending mode and the lower bending mode occur, respectively. In the

next step the aspect ratio (a/b) is computed using Equation (3.18). The plate is cut so that the O and X

operational mode shape can be displayed.

a

b
=

(
D1

D3

)(1/4)

(3.18)

The Chladni test is performed again combined with the Experimental Modal Analysis and the frequencies

of the O and X are recorded, and then using Equation (3.19) the constant D2 is determined.

(f̃2O − f̃2X) ≈ D2

0.104a
2b2ρ
h2

(3.19)

where f̃O and f̃X are the frequency of the O and X mode respectively.

The initial values of the elastic constants are used to determine the mode shapes and the natural fre-

quencies, using the Gram-Schmidt method to construct orthogonal polynomials used as trial functions

in the Rayleigh-Ritz method. The final step in this approach is to refine the values of the Ds constants as

they are related directly with the elastic constants through Equations (3.16). This refinement uses an it-
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erative method adjusted to minimise the difference between the predicted frequencies and the measured

ones.

The present optimisation problem uses Equation 3.6, with nf equals five, to relate the experimental

frequencies from [74] with the computed by this method and the constraints for the design variables

as displayed in Table3.6. For this set of optimisations, the number of search agents is set to fifty. For

the termination criteria, the tolerance is set to 10−6, and the maximum number of iteration set to one

thousand. Table 3.32 lists the computed elastic constants and Table 3.33 lists the relative differences of

the elastic constants computed with the reference from [74]. The elastic constants present approximately

the same values for the E1. However, the values obtained for ν12, in the PSO, the GWO, and the CS

correspond to the upper bound of the constraints applied to this design variable. The largest relative

differences are observed in these cases. The lowest values for the relative differences are presented for

the GA algorithm, followed next for the FA algorithm.

Table 3.32: Elastic constants computed with each of the algorithm for SP-5 using objective function Eq.
(3.6)

E1(GPa) E2(GPa) G12(GPa) ν12
Reference [74] 8.180 4.357 0.6954 0.1216
GA 7.388 4.507 0.7288 0.1805
PSO 7.271 4.537 0.7168 0.2000
GWO 7.256 4.537 0.717 0.2000
FA 7.896 4.399 0.736 0.0878
CS 7.271 4.537 0.7168 0.2000

Table 3.33: Relative difference of computed elastic constants of each algorithm using objective function
Eq. (3.6) for SP-5

100 ∗ |E1−E1ref
|

E1
100 ∗ |E2−E2ref

|
E2

100 ∗ |G12−G12ref
|

G12
100 ∗ |ν12−ν12ref |ν12

GA 10.72 3.32 4.59 32.63
PSO 12.51 3.96 2.99 39.20
GWO 3.98 12.74 2.98 39.20
FA 0.95 3.60 5.49 38.47
CS 12.51 3.96 2.99 39.20

Table 3.34: Function values, number of iterations, number of function evaluations and relative computa-
tional time for each algorithm for SP-5 using objective function Eq. (3.6)

Fval Niter NFEs RCTime
GA 142.04 196 9850 8.37
PSO 136.20 82 4150 1.00
GWO 136.41 1000 50000 18.52
FA 176.77 1000 50000 17.87
CS 136.20 968 48400 15.90

In Table 3.34, the function values, number of iterations, number of function evaluations, and relative

computational time for each of the optimisations are listed, using the different algorithms. The PSO and

the CS present the lowest function value. However, these algorithms present the most significant relative

difference when comparing to the reference. The GWO and the FA algorithms reach the maximum
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number of iterations, thus not meeting the desired tolerance as a termination criterion. Despite that, the

FA algorithm is the one that obtained better results for the E1 and E2.

For this specimen, the presented method did not achieve the desired results, mainly due to the

low number of frequencies presented in the reference article [74]. For the presented method, at least

eight natural frequencies are needed. However, the GA algorithm was able to provide some acceptable

results.
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Chapter 4

Conclusions

In this thesis, the main achievement was the development of a computational method for material

proprieties identification in composite structures using the commercial software MATLAB® and ANSYS®.

The presented method uses a derivative-free approach based on metaheuristic algorithms. This method

evaluates an objective function, which relates experimental natural frequencies with computational de-

termined natural frequencies while minimising the objective function value computed.

During this thesis were carried out several studies in which are evaluated the design variables com-

puted for the several specimens evaluating different factors. In the first study, the objective is to select

the optimisation algorithm more suited to solve the proposed optimisations problems. The algorithm that

demonstrates to be more effective in obtaining the best estimative for the elastic constants is the PSO

algorithm. From the tested algorithms, the PSO was the algorithm that presented best computed elastic

constants while spending the least amount of computational time. It presented a relative difference of

0.6% for Young’s modulus and 7.9% for the Poisson’s ratio for the isotropic case. For the transversely

isotropic case, SP-2, the maximum relative difference for the PSO was verified by E2 with only 2.52%.

The next study performed was the influence of the set of experimental natural frequencies. Here,

were compared the elastic constants computed with two different sets of experimental natural frequen-

cies, verifying the high sensitivity of the Poisson’s ratio, which had already been observed in [65], while

obtaining good results for the other elastic constants studied. This leads to conclude that this method is

moderately sensitive to the experimental frequencies. However, if the frequencies are measured within

some degree of rigour and validated through multiple measurements a close estimative of elastic con-

stants can be computed.

Since the proposed method is based on metaheuristics, the next study is a validation test. This was

performed for the isotropic problem with two design variables, and the transversely isotropic problem

with four design variables. Here, the method was applied multiple times for each optimisation problem

with different initial populations of search agents to verify the independence of the initial position of the

search agents to obtain valid values for the elastic constants which were verified for both specimens

analysed. For the first specimen analysed (SP-1), was performed fifty runs of the optimisation process,

the elastic constants obtained are within acceptable range with both elastic constants obtaining standard
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deviations with a magnitude of 10−14 for the E and 10−16 for the ν. For the more complex case with four

design variables (SP-2), was performed thirty runs of the optimisation process. In this case, the elastic

constants are also within the acceptable range; the elastic constant which presented the most significant

standard deviation was the shear modulus G12 showcasing a standard deviation of 0.0067. The data

gathered from these two sets of optimisations lead to conclude that this kind of optimisation problems

are independent of the initial populations generated by the algorithm to explore the search space.

The next analysis studied the influence of the number of natural frequencies used. Here, the pro-

posed method is applied to the specimens SP-1, SP-2 and SP-3, using a different number of experimen-

tal natural frequencies to determine the material elastic constants and evaluate the differences between

each case. Thus, concluding that for an accurate determination of elastic constants using this method

are needed at least twice as many natural frequencies as independent elastic constants. It was also

concluded that an increase of the number of experimental natural frequencies minimises the overhaul

relative differences of the elastic constants with the reference. The number of search agents used in

the optimisation processes is one of the parameters that influence most the efficiency of the method

since more search agents explore more search space. This implies that more computational power is

needed to perform more evaluations of the objective function. For this method, in the SP-2 case, the

PSO algorithm should be used with fifty search agents.

One other objective of this thesis was to verify if this method for material properties identification could

be applicable to green composites. This study was carried out in the last section. There, are presented

two methods for the estimation of the elastic constants closely related and presented two specimens of

green composites. The results obtained were close to the values presented in the references [73, 74].

However, for both cases, the number of experimental natural frequencies presented in the reference

were not enough to accurately obtain the elastic constant. Nevertheless, the values obtained for the

elastic constants of these specimens were in the vicinity of the values presented in the reference articles.

This method presents several advantages in comparison to other methods for material properties

identification. One of the major advantages of this method is that it does not require an initial guess of

the elastic constants to be computed, only requiring that the upper and lower constraints for the elastic

constants are correctly defined. One other advantage is not requiring the determination of gradients to

evaluate the objective function. Another advantage is that it can be easily adapted to obtain the desired

elastic constants of different materials and different construction methods not requiring an extensive

study of the numerical methods to estimate the material elastic constants accurately.

The most significant disadvantage is the computation time needed to generate the necessary data

required so that the algorithm can evaluate the objective function and determine the function minimum,

while other numerical and analytical methods require less time to estimate the elastic constants of the

materials.

In a nutshell, this method has proven to be precise in computing the elastic constants of the speci-

mens studied, as long as that enough experimental natural frequencies are provided.

The future work includes optimisation of the search algorithm used in order to reduce the com-

putational time even more. The search for more efficient metaheuristic Nature-inspired optimisation
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algorithms or any other non-derivative optimisation methods can also be considered.

For further studies, it would be interesting to have more sets of experimental natural frequencies of

the same specimen to be able to, in more detail, analyse the influence of the differences in the measure

of these frequencies. The analysis of more specimens with other materials and geometric characteristics

using the present method is also possible. Exploring new green composites materials like the emerging

flax fibres reinforced composites is also an important topic.
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Appendix A

APDL input file (example)

/CLEAR,START

!********************************Preprocessor**************************

/PREP7

!**********************************************************************

!**********************************************************************

!DimData

Xm = 0.193

Ym = 0.281

thickness = 0.00194

Density = 2688

Nply = 1

plythick = thickness/Nply

!------------------------------

!Elastic constants!!

EXX = 68.7e9 ! E1

!EYY = 68.1e9 ! E2

!GXY = 24.6e9 ! G12

!GYZ = 26.9e9 ! G23

!GXZ = 26.9e9 ! G13 = G23

vXY = 0.34 ! v12

!----------------

!Numberdivisions

NdivY= 13

NdivX= 9

!----------------------------

Nmodes =20

!!!!!!!!!!!!!!!!!!!!IF NEEDED

!FBlow =20 ! Frequency Boundary Low (Hz)

!FBhigh =1050 ! Frequency Boundary Hight (Hz)
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!********************************Element Type ***********************

ET,1,SHELL63

!*

KEYOPT,1,1,0

KEYOPT,1,3,0

KEYOPT,1,5,0

KEYOPT,1,8,0

KEYOPT,1,9,0

KEYOPT,1,10,0

KEYOPT,1,11,0

!*

!*************************Material Properties**************************

!*

R,1,thickness

MPTEMP,1,0

MPDATA,EX,1,,EXX

!MPDATA,EY,1,,EYY

!MPDARA,GXY,1,,GXY

!MPDARA,GYZ,1,,GYZ

!MPDARA,GXZ,1,,GXZ

MPDATA,PRXY,1,,vXY

MPTEMP,1,0

MPDATA,DENS,1,,Density

!*********************************Section******************************

sect,1,shell,,sp1

secdata, plythick,1,0.0,3

secoffset,MID

seccontrol,,,, , , ,

SECPLOT, 1,,,

!******************************modelling*******************************

!**********************keypoints*****************************

K, ,,,,

K, ,Xm,,,

K, ,Xm,Ym,,

K, ,,Ym,,

!*********************lines**********************

L, 1, 2

L, 2, 3

L, 3, 4
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L, 4, 1

!*************************************Area******************************

FLST,2,4,4

FITEM,2,1

FITEM,2,2

FITEM,2,3

FITEM,2,4

AL,P51X

!******************************************Meshing********************

FLST,5,2,4,ORDE,2

FITEM,5,2

FITEM,5,4

CM,_Y,LINE

LSEL, , , ,P51X

CM,_Y1,LINE

CMSEL,,_Y

!*

LESIZE,_Y1, , ,NdivY, , , , ,1 !Ndivisions yaxis

!*

FLST,5,2,4,ORDE,2

FITEM,5,1

FITEM,5,3

CM,_Y,LINE

LSEL, , , ,P51X

CM,_Y1,LINE

CMSEL,,_Y

!*

LESIZE,_Y1, , ,NdivX, , , , ,1 !Ndivisions Xaxis

!*

MSHAPE,0,2D

MSHKEY,1

!*

CM,_Y,AREA

ASEL, , , , 1

CM,_Y1,AREA

CHKMSH,’AREA’

CMSEL,S,_Y

!*

AMESH,_Y1
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!*

CMDELE,_Y

CMDELE,_Y1

CMDELE,_Y2

!***************************************Solution****************

FINISH

/SOL

!********************************Analysis Type*********

ANTYPE,2 !MODAL analysis

!****************Options*****************

MODOPT,LANB,Nmodes !# modes

EQSLV,SPAR

MXPAND,Nmodes, , ,0

LUMPM,0

PSTRES,0

!*

!MODOPT,LANB,FBlow,0,FBhigh, ,OFF !frequency boundaries

/STATUS,SOLU

! SOLVE

/STATUS,SOLU

SOLVE

FINISH

/POST1

SET,LIST
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Appendix B

Convergence of element SHELL181

(a) SP-1 (b) SP-3

(c) SP-5

Figure B.1: Convergence for element type SHELL181
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Appendix C

Results computed with different sets of search agents
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Table C.1: Computational time, objective function function value, the elastic constants computed and the
iteration for each one of the fifty runs and the extreme cases (initial populations at the bounds for the
design variables) performed for the SP-1

Optimisation number Computational time (h) Function value E(GPa) ν Iterations
1 1.094 72.75 66.82 0.3759 60
2 1.025 72.75 66.82 0.3759 56
3 0.969 72.75 66.82 0.3759 53
4 0.883 72.75 66.82 0.3759 48
5 0.908 72.75 66.82 0.3759 49
6 1.082 72.75 66.82 0.3759 59
7 1.285 72.75 66.82 0.3759 48
8 0.898 72.75 66.82 0.3759 49
9 1.097 72.75 66.82 0.3759 59
10 1.011 72.75 66.82 0.3759 54
11 1.040 72.75 66.82 0.3759 57
12 0.841 72.75 66.82 0.3759 46
13 1.090 72.75 66.82 0.3759 60
14 0.892 72.75 66.82 0.3759 49
15 1.074 72.75 66.82 0.3759 59
16 1.147 72.75 66.82 0.3759 63
17 1.016 72.75 66.82 0.3759 56
18 1.111 72.75 66.82 0.3759 61
19 1.001 72.75 66.82 0.3759 55
20 1.149 72.75 66.82 0.3759 63
21 1.061 72.75 66.82 0.3759 58
22 1.046 72.75 66.82 0.3759 57
23 0.877 72.75 66.82 0.3759 48
24 0.904 72.75 66.82 0.3759 49
25 1.083 72.75 66.82 0.3759 59
26 0.990 72.75 66.82 0.3759 54
27 1.039 72.75 66.82 0.3759 57
28 0.836 72.75 66.82 0.3759 46
29 1.094 72.75 66.82 0.3759 60
30 0.892 72.75 66.82 0.3759 49
31 1.080 72.75 66.82 0.3759 59
32 1.149 72.75 66.82 0.3759 63
33 1.023 72.75 66.82 0.3759 56
34 1.114 72.75 66.82 0.3759 61
35 1.004 72.75 66.82 0.3759 55
36 1.152 72.75 66.82 0.3759 63
37 1.060 72.75 66.82 0.3759 58
38 1.041 72.75 66.82 0.3759 57
39 1.006 72.75 66.82 0.3759 55
40 1.227 72.75 66.82 0.3759 67
41 1.048 72.75 66.82 0.3759 57
42 1.330 72.75 66.82 0.3759 72
43 1.118 72.75 66.82 0.3759 61
44 1.061 72.75 66.82 0.3759 58
45 1.128 72.75 66.82 0.3759 62
46 1.078 72.75 66.82 0.3759 59
47 1.080 72.75 66.82 0.3759 59
48 1.182 72.75 66.82 0.3759 65
49 1.135 72.75 66.82 0.3759 62
50 1.128 72.75 66.82 0.3759 61
51* 1.268 72.75 66.82 0.3759 69
52** 1.233 72.75 66.82 0.3759 68

*Initial population at the lower bounds of the design variables; **Initial population at the upper bounds of
the design variables.
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Table C.2: Time, function value, iteration and elastic constants computed in each one of the thirty runs
performed for the SP-2

Optimisation number Computational time (h) Function value E1(GPa) E2(GPa) G12(GPa) ν12 Iterations
1 6.863 45.66 30.51 27.15 6.38 0.1674 139
2 11.614 45.69 30.51 27.15 6.40 0.1672 213
3 12.103 45.67 30.51 27.15 6.38 0.1673 215
4 9.989 45.65 30.51 27.15 6.38 0.1674 183
5 15.139 45.67 30.51 27.15 6.38 0.1673 258
6 7.544 45.65 30.51 27.15 6.38 0.1674 140
7 8.203 45.68 30.51 27.15 6.39 0.1672 165
8 9.366 45.68 30.51 27.15 6.39 0.1672 185
9 13.551 45.67 30.51 27.15 6.39 0.1673 261
10 13.376 45.64 30.52 27.15 6.37 0.1674 228
11 11.117 45.67 30.51 27.15 6.39 0.1673 210
12 18.267 45.65 30.51 27.15 6.37 0.1674 324
13 12.787 45.65 30.51 27.15 6.37 0.1674 234
14 8.096 45.66 30.51 27.15 6.38 0.1674 162
15 12.040 45.66 30.51 27.15 6.38 0.1674 227
16 8.250 45.66 30.51 27.15 6.38 0.1673 166
17 11.708 45.66 30.51 27.15 6.38 0.1674 222
18 6.638 45.65 30.51 27.15 6.38 0.1674 138
19 11.928 45.66 30.51 27.15 6.38 0.1673 226
20 20.761 45.65 30.51 27.15 6.37 0.1674 374
21 6.712 45.65 30.51 27.15 6.38 0.1674 143
22 13.403 45.67 30.51 27.15 6.38 0.1673 243
23 16.426 45.65 30.52 27.15 6.37 0.1674 290
24 6.131 45.66 30.51 27.15 6.38 0.1674 134
25 8.293 45.66 30.51 27.15 6.38 0.1674 174
26 13.964 45.68 30.51 27.15 6.39 0.1673 255
27 7.045 45.66 30.51 27.15 6.38 0.1673 146
28 6.285 45.68 30.51 27.15 6.39 0.1673 141
29 11.291 45.66 30.51 27.15 6.38 0.1674 227
30 11.291 45.66 30.51 27.15 6.38 0.1674 227
31* 7.514 45.65 30.51 27.15 6.37 0.1674 145
32** 9.769 45.66 30.51 27.15 6.38 0.1674 181

*Initial population at the lower bounds of the design variables; **Initial population at the upper bounds of
the design variables.
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