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Abstract

Current generative-based dialogue systems are data-hungry and fail to adapt to new unseen domains

when only a small amount of target data is available. Additionally, in real-world applications, most

domains are underrepresented, so there is a need to create a system capable of generalizing to these

domains using minimal data. There has been some notorious effort to surpass the problem of data

scarcity in machine learning, however, there have only been a few attempts to solve this problem in

generative-based dialogue systems.

In this thesis, we analyze existing state-of-the-art approaches that aim to solve the problems men-

tioned above and propose a novel model to surpass previous models’ limitations by combining transfer-

learning with meta-learning. Our approach relies on the belief that in order to successfully generalize to

new domains using minimal data, the model needs to: 1. learn a general dialogue representation from a

larger data source, and then fine-tune with few examples from the unseen domain; 2. improve how the

model learns by simulating low-resource fine-tuning in the source domains.

We evaluate both baselines and our model on the MultiWOZ dataset and report BLEU and Entity

F1. Results show that our model achieves higher performance in terms of accuracy and data-efficiency

when compared to previous state-of-the-art approaches.
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Resumo

Os sistemas de diálogo atuais baseados em geração dependem demasiado da quantidade de da-

dos e têm dificuldade em adaptarem-se a novos domı́nios quando apenas uma quantidade mı́nima de

dados desse domı́nio está disponı́vel. Além disso, no mundo real, a maioria dos domı́nios está sub-

representada, portanto, existe a necessidade de criar um sistema que seja capaz de generalizar para

estes domı́nios utilizando o mı́nimo de dados possı́vel. Tem havido algum esforço para superar o prob-

lema da escassez de dados na inteligência artifical, no entanto, houve poucas tentativas em resolver

esse problema em sistemas de diálogo baseados em geração.

Nesta tese analisamos as abordagens estado-da-arte existentes que visam resolver os problemas

mencionados acima e propomos um modelo que tenta superar as limitações dos modelos anteriores,

combinando aprendizagem por transferência com meta-aprendizagem. A nossa abordagem baseia-

se na crença de que, para generalizar para novos domı́nios utilizando o mı́nimo de dados possı́vel, o

modelo precisa de: 1. aprender uma representação geral do diálogo de uma grande fonte de dados e,

em seguida, ajustar o modelo com apenas alguns exemplos do domı́nio sub-representado; 2. melhorar

a maneira como o modelo aprende, simulando pequenos ajustes na fase de treino.

Avaliamos as abordagens existentes e o nosso modelo no conjunto de dados MultiWOZ e relata-

mos as medidas BLEU e a Entity F1. Os resultados mostram que o nosso modelo alcança um desem-

penho superior em termos de precisão e de eficiência de dados quando comparado com as abordagens

estado-da-arte anteriores.

Palavras Chave

Sistemas de diálogo; Adaptação de domı́nio; Aprendizagem por transferência; Meta-aprendizagem
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1.1 Problem and Motivation

With the appearance of chatbots like Siri and Alexa capable of having fluent and consistent conversa-

tions, dialogue systems have become very popular these days. Additionally, the emergence of deep

learning techniques in natural language processing contributes to this popularity and various new mod-

els were created in order to surpass previous rule-based models. However, these generative-based

models are data-hungry, they need large amounts of training data in order to obtain good results, they

produce dull responses and fail to adapt to new unseen domains when only a few examples of data

are available. Besides, in real-world applications, most of domains are underrepresented, so there is a

need to create a model capable of generalizing to these domains using the minimum amount of data as

possible.

Deep learning models pretrained on large-scale datasets have proven to generalize to unseen do-

mains better than randomly initialized ones [5]. Following this idea, in order to successfully adapt to

new domains, the system needs to learn the general dialogue structure and only has to obtain domain-

specific knowledge from the unseen domain. For instance, using the analogy from [6], if a person is

hired to work in the shoe department and after a few months is transferred to the clothing department,

the worker only needs to learn some specific information about the new domain such as clothing sizes

and types, and does not need to relearn how to converse with the customer. As this may seem simple in

the human world, in the dialogue systems’ setting this task is very difficult to succeed and even harder

when only a few data is available.

1.2 Current Approaches and their Limitations

The reduced amount of available data has always been a problem in domain adaptation tasks. Methods

as meta-learning [7], transfer learning [8–10] and few-shot learning [11–13] were introduced to solve this

problem in machine learning. However, there were only a few attempts to solve the problem of domain

adaptation in end-to-end dialogue systems.

Perhaps, the first study to pursue this direction was the work from Zero-Shot Dialogue Generation

(ZSDG) [6], where the authors performed zero-shot dialogue generation using minimal data in the form of

seed responses. The authors do not use complete dialogues and describe it as ”zero-shot”, however, the

model still depends on human annotated data. As this approach seems promising, ZSDG relies on these

annotations for seed responses, and in the real-world scenario, if collecting data for underrepresented

domains is difficult enough, the access to annotated data becomes infeasible.

More recent studies attempt to perform domain adaption without the need of human annotated data

and adopt the methods presented above: Domain Adaptive Dialogue Generation via Meta Learning

(DAML) [14] incorporates meta-learning into the sequicity [15] model to train a dialogue system able to

2



generalize to unseen domains. This approach seems promising, yet DAML was evaluated on a synthetic

dataset and should ideally be tested in real data for more realistic results. Another approach to solve the

data-efficiency problem is Dialogue Knowledge Transfer Network (DiKTNet) [3], which applies transfer

learning by leveraging general latent representations from a large data-source and incorporating them

into a Hierarchical Recurrent Encoder-Decoder (HRED). We will describe this model in detail in the

following sections as it represents a key feature for our solution.

1.3 Proposed Approach

In this work, we study the importance of generalizing to unseen domains using minimal data and aim

to design a novel model to surpass this problem. We believe that for successful adaptation to new

domains, two key features are essential for improving the overall performance of a dialogue system:

better representation learning and better learning techniques. Following this belief, we are concerned

with the exploration of a method able to learn a more general dialogue representation from a large

data-source and able to incorporate this information into a dialogue system.

We follow this reasoning and introduce Domain Adaptation using Transfer Meta-Learning (DATML),

a dialogue system that combines both transfer-learning with meta-learning for the purpose of adapting

to unseen domains. Our model improves the approach from DiKTNet by enhancing its learning method

while keeping the strong representation learning present in both ELMo [16] contextual embeddings and

latent representations. For that, we divide the training method into three training stages: a pre-training

phase where the latent variables are leveraged from a domain-agnostic dataset; instead of performing

joint training as in original work, we divide this stage into source training with all data except dialogues

from the unseen domain and fine-tune using only a few examples from the target domain. We incorpo-

rate meta-learning in source training as this method proved to be promising at capturing domain-agnostic

dialogue representations [14]. However, instead of using Model-Agnostic Metal-Learning (MAML) [7]

algorithm, we use a first-order optimization-based method, Reptile [17], which has shown to achieve

similar or even better results than MAML while being more lightweight in terms of memory consump-

tion [18].

We evaluate our model in the MultiWOZ dataset [19] and compare our approach with both ZSDG and

DiKTNet. As the code for both baselines is openly available online, we adapt and evaluate their imple-

mentations on the MultiWOZ corpus. Our model outperforms both ZSDG and state-of-the-art DiKTNet

when the same amount of data is available. Furthermore, DATML achieves superior performance with

3% of available target data in comparison to DiKTNet with 10%, which shows that DATML surpasses

DiKTNet in terms of both performance and data-efficiency.

3



1.4 Structure of the Document

This document is organized as follows. In section 2.1 and 2.2, we present some background necessary

to follow this work and in section 2.3, we give an overview of typical dialogue systems. In section

2.4, we present some relevant datasets used to train these models, and in section 2.5, we analyze

typical measures used to evaluate dialogue systems. In chapter 3, we detail the architecture of the

domain adaptive models described above and analyze their limitations. In chapter 4, we describe our

solution and detail the meta-learning algorithm employed in our model and in chapter 5, we show how

we evaluated and compared DAML with both baselines. In chapter 6, we briefly summarize what we

discussed in this thesis and propose some future work.
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2.1 Machine Learning Foundations

2.1.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [20] are a class of neural networks that receive an input x =

(x1, x2, ..., xT ) and maintain an internal hidden state h. Unlike Feed-forward Neural Networks [21],

RNNs take into account historical information by preserving an internal state that depends on previous

hidden states. This allows RNNs to process sequences of inputs. More formally, the RNN updates its

recurrent hidden state ht, at each time step t, by:

ht = f (xt,ht−1) , (2.1)

where f is a non-linear activation or gating function such as a simple logistic sigmoid function or more

complex functions, e.g., Gated Recurrent Unit (GRU) [22] or its generalization, Long-Short Term Memory

Unit (LSTM) [23]. These complex functions were introduced to overcome the vanishing/exploding gradi-

ent problem [24], where the multiplicative gradient can exponentially decrease/increase with respect to

the number of layers and cause RNNs to fail at capturing long term dependencies. Optionally, the RNN

may have an output y of variable size.

A generative RNN can describe a probability distribution over sequences of inputs by being trained to

predict the next output from the sequence. Thus, the probability of a sequence of size T can be modeled

as:

p(x) =

T∏
t=1

p(xt|xt−1, ..., x1), (2.2)

and each conditional probability can be described as:

p(xt|xt−1, ..., x1) = softmax(ht), (2.3)

where ht is from Eq. 2.1. If we consider x as being a sentence and xn being the n’th word processed

so far from that sentence, we can use a generative RNN to predict the next word xn+1 of that sentence

(see Fig. 2.1).

Convolutional Neural Networks (CNNs) [25] are another popular class of neural networks and have

achieved impressive results in dialogue act classification [26] and emotion recognition [27]. However, as

there has been little work using CNNs at domain adaptation in dialogue systems and the models that

we base our work on all use RNNs, we chose to describe RNNs in more detail.

7



Figure 2.1: An example of a generative RNN predicting the next word from a sentence. Here, the RNN already
processed “How are you” and predicts the next word “doing”. The input vector is the word representation
and can be a one-hot vector or a word embedding, e.g., word2vec [1] or gloVe [2].

2.2 Encoder-Decoder Models

As presented above, neural networks are powerful machine learning models and have achieved re-

markable results in domains such as acoustic modeling in speech recognition [28] and image classifica-

tion [29, 30]. However, in settings such as dialogue generation and machine translation, the input and

output from the model are better expressed as sequences of inputs and outputs, respectively.

2.2.1 Sequence-to-Sequence Model

To surpass this, [31] introduced the Sequence-to-Sequence (SEQ2SEQ) framework and proved that

RNNs could be adapted to map complex structures to other structures instead of just resolve classifica-

tion problems. These models enable to encode the whole sequence into one vector and to decode a vec-

tor representation back into a sequence. This architecture calculates the conditional probability of an out-

put sequence y = (y1, y2, ..., yL) given the input sequence x = (x1, x2, ..., xT ), e.g p(y1, ..., yL|x1, ..., xT ),

where the lengths of the sequences L and T may differ.

The encoder processes the input sequence word by word, updating the recurrent hidden state ac-

cording to Eq. 2.1. After processing the whole sentence, the last hidden state contains all information

about the input sequence, represented as the context c.

8



Figure 2.2: An application of the encoder-decoder model. Here, the encoder processes the sequence “How are
you doing” and the decoder generates the output sequence “I’m ok”. The decoder takes as input the
last hidden state from the encoder, the context c, and the last generated output.

Both encoder and decoder generate the output sequence given the last hidden state. However, in

contrast with the encoder, the output word yt and ht from the decoder depend from the last generated

symbol yt−1 and from the context c from the encoder. More formally, the hidden state from the decoder

is updated by:

ht = f (yt−1,ht−1, c) , (2.4)

and the probability for the next generated word can be described as:

p(yt|yt−1, ..., y1, c) = softmax(yt−1,ht). (2.5)

In Fig. 2.2, we provide an application of the SEQ2SEQ model, where the framework encodes a

question and generates an appropriate response. This framework is essential to our project as it is

adopted in all our baseline models and also in our proposed solution.
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2.2.2 Hierarchical Recurrent Encoder-Decoder

HRED [32,33] generalizes the encoder-decoder framework to the dialogue environment. This improved

framework aims to capture the word-level and utterance-level structure, as dialogue can be modeled

as a sequence of utterances and the utterances as a sequence of word tokens. More formally, HRED

model is a two-level hierarchy representation where the probability of dialogue d can be described as:

p(d) =

N∏
n=1

p(dn|dn−1, ...,d1) =

N∏
n=1

Mn∏
m=1

p(wn,m|wn,<m,d<n), (2.6)

where dn is the n’th utterance in the dialogue d, wn,m is the m’th word of the n’th utterance, and Mn is

the size of the n’th utterance.

In addition to the encoder RNN and the decoder RNN from the encoder-decoder model, HRED

framework also includes a context RNN. In this model, each utterance is mapped by the encoder and

the last hidden state of the encoder is the input of the context RNN, which updates its internal state

with the complete utterance encoding and maintains all the information until that utterance. The decoder

now takes as input the hidden state from the context RNN and acts as the module that generates the

response.

As mentioned above, this framework was introduced to extend the encoder-decoder model to the

dialogue setup and is important to our work for that reason. Additionally, it is also applied by some of

our baseline systems and will be employed in our architecture as well.

2.3 Dialogue Systems Overview

In this section, we provide an overview of dialogue systems and review relevant applications of these

models. We structure this analysis with the work from [34].

2.3.1 Frame-based Dialogue Systems

These dialogue systems, also known as pipeline-based dialogue systems, are one of the most important

and successful models used in goal-oriented systems. These systems aim to solve tasks where the goal,

for instance, is to book a flight: the agent needs to understand the user’s intent and converse with him

until it collects all the necessary information to successfully make the reservation. Typically, frame-based

dialogue systems are divided into three main components as shown in Fig. 2.3:

1. Natural Language Understanding (NLU). In this module, the system maps utterances into pre-

defined semantic frames. See table 2.1 for an example of a NLU representation.
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2. Dialogue Manager (DM). This module is divided into two sub-modules: the dialogue state tracking

that manages the input and outputs the current dialogue state, and the policy learning where the

next action is decided.

3. Natural Language Generation (NLG). NLG generates the response given the action decided by

the DM.

Figure 2.3: A typical pipeline for goal-oriented dialogue systems.

This dialogue system was first introduced in 1977 for GUS [35], a virtual agent designed to help

customers making flight reservations. Despite performing well at booking flights, the system could not

adapt to other types of reservations and could only deal with a particular set of questions.

When parsing dialogue utterances, it is necessary to represent the input sentences in a consistent

and informative way. Typically, in the NLU module, the utterance is described using two representations,

an utterance-level and a word-level semantic representation. The intent of the user and the utterance’s

domain are adopted to describe utterances, and their accurate retrieval is fundamental for the system

to contextualize and guide the conversation. For word-level representation, methods as named en-

tity recognition and slot-filing are used to describe utterances: named entity recognition locates and

classifies named entities from unstructured text into predefined categories, such as person names, or-

ganizations, and locations; slot-filing seeks to tag words that carry meaning into predefined slot-values.

In table 2.1, we present an example of a possible representation for a message where the user requests

a taxi.
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Table 2.1: An example of a NLU representation on the taxi domain.

Utterance I want a taxi from Rossio to Alameda
Slots - - - - - Departure - Destination
Intent Request Taxi

Domain Taxi

2.3.2 Retrieval-based Dialogue Systems

The idea in these dialogue systems is to select a response from a database containing dialogue contexts

and responses using a ranking algorithm that retrieves the best candidate responses. The earliest

studies have focused on single-turn response matching [36–38], which only use the current utterance

from the user to retrieve the most adequate answer. In most cases, the candidate response and the

context utterance are encoded as vectors and their matching score is calculated based on those two

vectors, using some matching function such as bi-linear matching. As only the last utterance from the

user is employed to retrieve the best match, these models do not consider the previous context, which

may be a limitation in multi-turn conversation. To overtake this problem, recent studies have focused on

multi-turn response matching [39], where all past utterances are taken into consideration when selecting

the best response. This results in a more consistent and contextualized response. [40] applied deep

learning models in retrieval-based systems by training a neural context encoder to rank the correct

response with higher probability.

These systems have various limitations due to the requirement of having a large database in order

to achieve good results. In most cases, as the database becomes bigger, the time needed to select the

best response grows, slowing down the test speed. Another limitation is that as the system selects utter-

ances from existing responses in the database, it doesn’t possess the capability of creating innovative

responses, becoming unsuitable to generalize to unseen domains.

2.3.3 Neural Generative-based Dialogue Systems

Typically, generative-based dialogue systems employ the SEQ2SEQ framework, described in section

2.2, that encodes the dialogue history and generates an appropriate response. These dialogue systems,

unlike the systems described above, require little to no domain knowledge or hand-crafted rules to learn

meaningful semantic representations. This characteristic provides flexibility to the system as it is capable

of generating novel responses that are not included in the training data.

The encoder-decoder model has been applied in various domains: [41] leveraged a large amount

of one-round conversation from a micro-blogging service and trained an encoder-decoder framework to

generate grammatically correct and meaningful responses; [42] applied the encoder-decoder to gener-

ate captions for videos, where the input was sequences of frames and the output was sequences of
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words; [43] addressed problems of text summarization, as modeling keywords and generating rare or

unseen words in the training data, using the SEQ2SEQ framework.

However, current generative dialog models rely on large and complete dialogue datasets in order

to achieve great performance. As collecting large amounts of training data becomes a difficulty, this

method proves to be a limitation for underrepresented domains.

2.3.4 Hybrid Dialogue Systems

Both neural generative-based and retrieval-based dialogue systems are still far from achieving perfect

results, so there has been some effort to combine both methods. The AliMe Chat system [44] integrates

information retrieval and encoder-decoder models: given a query, the system will find the best candi-

date responses from both the retrieval-based and the generation-based systems, merge the selected

responses from both systems and output the best response from the list.

2.4 Datasets

In this section, we present some relevant datasets used to train and evaluate task-oriented dialogue sys-

tems. Here we describe MultiWOZ and MetalWOZ datasets, which are used to evaluate both baselines

and our model.

2.4.1 MetalWOZ

MetalWOZ [45] is a dataset specifically constructed for the task of generalizing to unseen domains and

is designed to help developing meta-learning models.

This dataset contains about 37k task-oriented dialogues in 47 domains, such as schedules, apart-

ment search, alarm setting, and banking. The data was collected in a Wizard-of-Oz fashion where a

person acted like a robot/system and another acted as the user. The participants were instructed to

converse until the user query was satisfied. In table 2.2, we present an excerpt of a dialogue between

a user and a robot where the user’s task was to “Ask how to win at the text adventure Zork” and the

robot’s task was to “Tell the user that you are programmed to help them play games, not win them”.

2.4.2 MultiWOZ

Multi-Domain Wizard-of-Oz dataset [19] is a large-scale multi-domain corpus containing human-to-

human conversations with rich semantic labels (dialogue acts and domain-specific slot-values) from

various domains and topics, and, like MetalWOZ, was collected in a Wizard-of-Oz fashion.
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Table 2.2: An excert of a conversation between a user and a robot from MetalWOZ dataset.

System Hello how may I help you?

User I want to know how I can win playing Zork?

System I am programmed to help you play games, not win them

User What games can you help me with?

System Any game.

Table 2.3: An example of a dialogue utterance and respective annotation from MultiWOZ dataset.

System I have two restaurants. They are Pizza Hut Cherry Hinton and Restaurant Ali-
mentum.

User What type of food do each of them serve?

Domain Restaurant

Slot-Value (Name) Pizza Hut Cherry Hinton, Restaurant Alimentum

This dataset has more or less 10k dialogues, where the data is split into 1k dialogues for each

validation and testing tasks. Around 70% of dialogues have more than 10 turns which shows how

complex is the corpus. The average number of turns are 8.93 and 15.39 for single and multi-domain

dialogues respectively with more or less 115k turns in total. This amount of available training data is

favorable for generative-based systems as they tend to be data-hungry. MultiWOZ also comes with a

large Knowledge-Base (KB) information for each domain/task, which approximates to real-world appli-

cations as goal-oriented systems have to access database information to generate an informative and

appropriate response to the user.

As various task-oriented dialogue systems are not only specific to one domain and may share various

domains, MultiWOZ proves to be suitable to these systems as it contains approximately 70% multi-

domain dialogues, from 2 to 5 shared domains.

The original dataset had substantial amount of noise in the dialogue utterances and respective an-

notations. MultiWOZ 2.1 [46] improves MultiWOZ dataset by reducing noise in over 32% of state anno-

tations across 40% of dialogue turns from the original dataset. MultiWOZ 2.2 [47] improved annotation

errors and ontology issues present in it’s previous versions.

2.4.3 SimDial Data

SimDial dataset was introduced in [6] to evaluate the ZSDG framework and was also used to evaluate

DAML and compare it to ZSDG. SimDial is a synthetic dialogue generator that generates multi-domain

dialogues in restaurant, movie, bus, weather, restaurant-style and restaurant-slot domains. This dataset

simulates communication noise and is composed of long multi-turn dialogues, which challenges dialogue
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systems’ performance.

As this seems useful for both ZSDG and DAML setups taking into account that these models depend

on annotations, it would be more interesting to use real data instead of a synthetic one in order to eval-

uate the models’ ability to adapt to real-world applications, and that is why we choose to use MultiWOZ

as our test dataset.

2.4.4 Stanford Multi-Domain

Stanford Multi-Domain dialogue dataset from [48] contains human-to-human dialogues from 3 different

domains: navigation, weather and schedule. This dataset was used to evaluate ZSDG, Few-Shot Dia-

logue Generation (FSDG) and DiKTNet. In each dialogue the system has to accomplish a specific task

and has associated some KB information to complete that specific task.

When generalizing to unseen domains, it is important to evaluate the system by training and testing

in different domains. This dataset proves to be a challenge for domain transfer as the dialogue struc-

ture differs between domains. However, all dialogues are single domain and the dataset and average

dialogue length is considerably smaller than MultiWOZ, which makes MultiWOZ a more realistic and

challenging corpus. The dataset’s statistics are presented in table 2.4.

Table 2.4: Stanford Multi-Domain dataset information [3].

hhhhhhhhhhhhhhhStatistic
Domain Navigation Weather Schedule

Dialogues 800 797 828

Utterances 5248 4314 3170

Avg. dialogue length 6.56 5.41 3.83

2.5 Evaluation Metrics

In this section, we present the most relevant metrics used to evaluate models in natural language pro-

cessing applications, such as machine-translation and dialogue systems.

2.5.1 Bilingual Evaluation Understudy

Bilingual Evaluation Understudy (BLEU) score [49] evaluates the quality of the generated responses by

comparing how many words in the machine-generated response appeared in the real gold response.

Scores are calculated for individual generated responses and then averaged over the whole corpus to
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estimate the overall quality of the system. BLEU outputs a number between 0 and 1, where values near

0 represent considerable different responses and near 1 represent more similar responses.

2.5.2 Entity F1

Entity F1 is a measure used to calculate a test’s accuracy by considering both precision and recall.

Usually, in dialogue systems, this metric is used to evaluate the model’s ability to generate relevant

entities from the underlying KB.

2.5.3 Recall-Oriented Understudy for Gisting Evaluation

Recall-Oriented Understudy for Gisting Evaluation (ROUGUE) [50] metric also evaluates the quality of

the generated responses as BLEU, however, ROUGUE compares how many words in the real response

appeared in the machine-generated response.

2.5.4 Metric for Evaluation of Translation with Explicit Ordering

Metric for Evaluation of Translation with Explicit ORdering (METEOR) [51] is a metric introduced for

machine translation that is also adopted to evaluate dialogue systems. It contains several features that

are not found in other evaluation metrics, such as synonymy matching and stemming, along with the

standard exact word matching present in BLEU and ROUGUE.

16



3
Related Work

Contents

3.1 Zero-Shot Dialogue Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Few-Shot Dialogue Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Dialogue Knowledge Transfer Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Domain Adaptive Dialogue Generation via Meta Learning . . . . . . . . . . . . . . . . 23

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

17



18



3.1 Zero-Shot Dialogue Generation

ZSDG [6] discusses the importance of obtaining dialogue knowledge from domains, learning descrip-

tions that are able to obtain domain-specific information and generalize to new domains. This proves to

be an interesting approach because instead of describing domains as a set of example dialogues (that,

in fact, share various domains), the domain descriptors allow focusing on the unique characteristics of a

domain.

ZSDG is introduced in order to generalize to unseen situations using minimal data and is described

as a learning problem where:

• The training data contains dialogue data from source domains and domain descriptions from both

the source and target domains;

• The model is evaluated on the target domain in a “zero-shot” fashion (without using any full dia-

logues from the target domain and only these domain descriptions).

ZSDG assumes that every domain has its own domain description and the goal is to correlate the

unseen target domain descriptions with the seen source descriptions. The model F should perform at

least as well at the target domain as a model trained specifically to that target domain. The authors

describe the problem as follows:

Train Data: {c,x, d} ∼ psource(c,x, d)

{φ(d)}, d ∈ D

Test Data: {c,x, d} ∼ ptarget(c,x, d)

Goal: F : C ×D → X

where c and x are the context and the next response, respectively, d is the domain and φ is the descriptor

of the respective domain.

The configuration of domain descriptions is fundamental to achieve a strong performance in the

target domain. The authors propose seed responses as a representation that can be applied to different

domains. Seed responses assume that the model can discover similarities between responses from

different domains and that behavior learned in source domains can be reused in the target domains.

The domain description for domain d is now described as:

{x,a, d}seed, (3.1)
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where x is a seed response and a is its annotation. Annotations allow inferring the relationship between

responses from different domains. For instance, a domain description for the flight domain could be:

• x: The plain departs from Lisbon at 6pm.

• a: [Inform, loc=Lisbon, leaveAt=18:00], where Inform is a general dialogue act and Lisbon and

18:00 are slot values.

As the number of seed responses is quite smaller compared to the number of potential responses

from a domain, the seed responses should cover more utterances that are unique to domains. With this,

ZSDG is assuming that different domains share the same dialogue structure and that the system only

needs sentence-level information to adapt to new domains.

The architecture of the base model for the ZSDG is called the Action Matching Encoder-Decoder and

is essentially a HRED with an attention-based Pointer-Sentinel Mixture copying mechanism [52] F that

aims to learn a cross-domain representation for all source domains and embody the knowledge from the

domain descriptions to generate novel responses in the target domain. With this, the model receives two

types of data in the training phase: 1. dialogue batches containing available dialogue from the source

domains in the form of {c,x, d}; 2. domain descriptions from either source and target domains described

in equation 3.1.

For the first type of data, the parameters are updated by minimizing the following loss function:

Ldialog(F ,R) = − log pFd(x|Fe(c, d)) + λD(R(x, d) ‖ Fe(c, d)), (3.2)

where Fe and Fd are, respectively, the encoder and decoder of the model, R is the recognition encoder

that shares the latent space from both utterances and domain descriptions of all domains, λ is a constant

hyper parameter and D is a distance function that calculates the distance of the two vectors.

For the second type of data, the parameters of Fd and R are updated by minimizing the following

loss function:

Ldd(Fd,R) = − log pFd(x|R(a, d)) + λD(R(x, d) ‖ R(a, d)). (3.3)

By optimizing both loss functions, the model enforces 1. dialogue utterances with similar annotations

are closer in the latent space and 2. responses are also closer to their contexts in the same latent space.

Following this, the model is capable of generalizing to the target domain using only minimal data that is

the domain description of the target domain.

This model achieved state-of-the-art in domain adaptation for end-to-end dialogue systems, however,

it relies on annotated data to achieve better performance, and maintaining a consistent annotation for

all source and target domains proves to be a difficult task. In underrepresented domains, besides not
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existing any annotated data for those domains, typically the data is minimal and unorganized, so the

effort to collect and annotate that data grows exponentially.

The following models present methods to overcome these limitations by not considering any anno-

tated data and only using raw dialogue data.

3.2 Few-Shot Dialogue Generation

Based on the ZSDG framework presented above, [53] introduces the FSDG model to adapt to unseen

domains. However, unlike ZSDG, FSDG uses unannotated data to train the model and acts in a few-shot

setup, as it uses full in-domain dialogues instead of domain descriptions.

As discussed in chapter 1, a worker being transferred from the shoe department to the clothing

department only needs to obtain domain-specific knowledge from the clothing domain to successfully

serve the customers, as the general way of approaching a customer was already learned in the shoe

department. With this, the model needs to learn a domain-agnostic representation of dialogue in order

to generalize to unseen domains, by leveraging from a greater data source.

In order to achieve that, the authors consider the Latent Action Encoder-Decoder (LAED) frame-

work [54]. LAED is, in essence, a Variational Auto-Encoder (VAE) representation method that allows

discovering interpretable meaningful representations of utterances into discrete latent variables. LAED

introduces a recognition network R that maps an utterance to a latent variable z and a generation

network G that will be used to train z’s representation. The goal is to represent the latent variable

z independently of the context c, so it can capture general dialogue semantics. LAED is a HRED

framework and the authors have introduced two versions of the model: Discrete Information Variational

Auto-Encoder (DI-VAE) and Discrete Information Variational Skip-Thought (DI-VST).

DI-VAE works as a typical VAE by reconstructing the input x and minimizing the error between the

generated and the original data. The loss function that optimizes the DI-VAE model can be described

as:

LDI−V AE = EqR(z|x)p(x)[log pG(x|z)]−KL(q(z) ‖ p(z)), (3.4)

where p(z) and q(z) are respectively the prior and posterior distributions of z.

DI-VAE model aims to capture utterance representations by reconstructing each word of the utter-

ance. However, it is also possible to capture the meaning by inferring from the surrounding context,

as dialogue meaning is very context-dependent. With this, the authors propose another version, the

DI-VST, which is inspired by the Skip-Thought representation [55]. DI-VST uses the same recognition

network from DI-VAE to output the posterior distribution q(z), however, two generators are now used to

predict both previous xp and following xn utterances. The loss function that optimizes DI-VST can now
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be described as:

LDI−V ST = EqR(z|x)p(x)[log p
n
G(xn|z) log p

p
G(xp|z)]−KL(q(z) ‖ p(z)). (3.5)

As already discussed in the beginning of this section, FSDG is essentially ZSDG but without the

domain descriptions and instead these domain-agnostic latent variables. The training is performed

using only dialogue batches, but now in the form of {c,x,k, d}, where k is the KB information. First, the

two LAED models are pre-trained in a domain-agnostic dataset in order to capture reusable dialogue

representations. Then, when training with minimal data of the unseen domain, both LAED models are

incorporated with the FSDG mentioned above, and the new encoding function can be described as:

Fe(c,k, d)) = FeDI−V AE(c,k, d))

⊕FeDI−V ST (c,k, d))

⊕FeFSDG(c,k, d)),

(3.6)

where the resulting Fe will be optimized according to loss function from Eq. 3.2.

The general idea of pre-training in a large and more domain-agnostic dataset to infer general dialogue

semantics and then fine-tuning using minimal data from the unseen domain proves to be an interesting

idea when adapting to unseen domains. However, in FSDG, the method to incorporate the pre-training

information with the data from the target domains seems to be inefficient as the final encoder is a

concatenation between the LAED and FSDG encoders, and the FSDG model is not conditioned on the

representations learned from pre-training both the LAED models. Bellow, we present an approach by

the same authors introduced to surpass these limitations.

3.3 Dialogue Knowledge Transfer Network

The basic idea from DiKTNet [3] is the same as FSDG: learning from a large dataset of source domains

and fine-tuning using minimal data from the target domains. DiKTNet base model follows the approach

from ZSDG, an HRED with an attention-based copying mechanism.

KB information is extremely important in task-oriented systems. For instance, if a user requests a

restaurant near his location, the system has to query from a database the possible candidate restaurants

and incorporate this information when answering to the user. Additionally, it is not expected for the model

to recognize some of the KB information as it may contain unseen words, especially in the unseen

domains. DiKTNet incorporates this information by concatenating it to the dialogue and using the copy

mechanism mentioned above.

More formally, the base model’s HRED F is optimized according to the following loss function:
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LHRED = log pFd(xsys|Fe(c,xusr)), (3.7)

where xusr is the user’s request and xsys is the system’s respective response.

Although each domain has its specific dialogue structure, every domain still shares a general rep-

resentation. Thus, DiKTNet learns this domain-agnostic representation from a large data-source and

uses the same LAED models from FSDG to perform that task. However, now DiKTNet uses the DI-VAE

model to obtain a latent representation of the user’s request zusr = DI-VAE(xusr). As for the system’s

response, the model also wants to predict a latent representation zsys. In order to achieve that, DiKTNet

uses the DI-VST model together with a context-aware hierarchical encoder-decoder that takes as input

the user’s request xusr and the context c. This encoder-decoder is different from the DI-VST for the

reason that this new model, instead of predicting the previous and the following utterances, is interested

in only predicting the following utterance that, in fact, is the system’s response. The authors argue that

DI-VAE captures the user utterance representation and that DI-VST predicts the system’s action. When

training with minimal data from the target domain, and after learning the latent representations zusr and

zsys, these variables are incorporated into the HRED F by an updated version of the loss function from

equation 3.7:

LHRED = Ep(xusr,c)p(zusr,xusr)p(zsys|xusr,c)[log pFd(xsys|{Fe(c,xusr), zusr, zsys})], (3.8)

where { } is the concatenation operator. With this, the authors ensure that the decoder is conditioned on

the latent representations inferred in the pre-training phase and can now fine-tune in the target domain by

taking into account that domain-agnostic representations. DiKTNet is also augmented with ELMo’s [16]

deep contextualized representations as word embeddings.

This model surpasses previous state-of-the-art results from ZSDG and will be the base model of our

work. Bellow, we will present another promising method to overcome the problem of generalizing to

underrepresented domains.

3.4 Domain Adaptive Dialogue Generation via Meta Learning

As mentioned in chapter 1, there has been a lot of effort to solve the problem of data scarcity in machine

learning and new meta-learning algorithms have emerged. One of them was the MAML algorithm [7],

which was introduced for few-shot learning. This method was designed to quickly adapt to new tasks

using only a few training examples. To achieve this, MAML builds an internal representation across

multiple domains by focusing on learning common representations instead of the distinctive features of
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each domain.

DAML [14] incorporates this algorithm into the sequicity model [4], as MAML can be adopted in any

gradient descent based model. The sequicity is a variation of the SEQ2SEQ framework with the addition

of belief spans, which are text spans that track the belief at each turn. Essentially, the sequicity model

decodes a belief span to facilitate KB search and then decodes a system response depending on the

result of the query and the belief span (see table 3.1).

Table 3.1: An example of a dialogue where the user requests information on the restaurant domain. In essence,
belief spans save the belief state at each turn with informative slot-values [4].

User: Can I have some Italian food please?

Belief Span: <Inf>Italian</Inf><Req></Req>

System: What price range are you looking for?

User: I want cheap ones.

Belief Span: <Inf>Italian;cheap</Inf><Req></Req>

System: Jamie’s Italian is a cheap restaurant serving western food.

More formally, the sequicity modelM can be described using the following equations:

ht = Encoder(Bt−1, Rt−1, Ut)

Bt = BeliefSpanDecoder(ht)

Rt = ResponeDecoder(h,Bt,mt),

where Bt is the belief span at time step t, ht is the hidden state at time step t and Rt is the generated

response at time step t. mt is a label that checks the availability of the information in the database, and

can take the values “no match”, “exact match” and “multiple matches”.

The authors incorporate MAML into the sequicity model by changing the gradient update at the

training phase. In MAML, there are two gradient update steps instead of one: (1) First, the modelM is

combined with the training data from each source domain separately. Then, (2) for each domain, the loss

L is calculated and (3) a new temporary modelM′ for each domain is updated with the respective loss.

After that, (4) the training data and the temporary modelM′ from each domain are used to calculate a

new loss L′. Finally, (5) all the losses calculated from each domain are summed and (6) the resulting loss

is used to update the original modelM. The purpose of this update method is that the loss calculated

from the updated model allows inferring the common dialogue structure from each domain instead of

describing the different representations between domains.

This approach achieves promising results when compared to ZSDG, however, it is dependent on
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dialogue annotation to construct it’s belief spans and, as we discussed in ZSDG, the effort to collect

and annotate data may be a difficulty in underrepresented domains. Additionally, this model was only

evaluated in a synthetic dataset and needs to be tested in real human-to-human corpora to prove it’s

efficiency.

3.5 Summary

In chapter 3, we described the most relevant approaches to the problem of domain adaptation in end-

to-end dialogue systems. DiKTNet will be employed in our solution as the base model architecture.

The code for all approaches was openly available online, and we make use of their implementation to

evaluate ZSDG and DiKTNet on MultiWOZ corpus (see chapter 5 for more details). Tables 3.2 and

3.3 present a summarized comparison between these models in terms of base architecture, usage of

annotated data and adopted datasets for both training and evaluation.

Table 3.2: Summarized comparison between the models described in the previous sections. Additionally to the aug-
mentation with ELMo embeddings, FSDG and DiKTNet also differ in the way the latent representations
are incorporated into their model (see sections 3.2 and 3.3 for more details).

Models Needs annotation Seed responses Latent representations Belief spans ELMo embeddings

ZSDG [6] 3 3 7 7 7

FSDG [53] 7 7 3 7 7

DiKTNet [3] 7 7 3 7 3

DAML [14] 3 7 7 3 7

Table 3.3: Continuation of table 3.2

Models HRED Sequicity Uses MetalWOZ Evaluates on Stanford Multi-Domain Evaluates on SimDial

ZSDG [6] 3 7 7 3 3

FSDG [53] 3 7 3 3 7

DiKTNet [3] 3 7 3 3 7

DAML [14] 7 3 7 7 3

In the following section, we present our solution to the problem of generalizing to unseen domains

using minimal data and demonstrate how we improved the DiKTNet model by updating its learning

method.
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4.1 Adapting MultiWOZ dataset

In order to compare the approaches described in chapter 3, we choose to use MultiWOZ dataset as

our testing dataset. As presented in section 2.4, this corpus contains human-annotated information for

each turn that is relevant for the models we want to compare: span annotations and user intent for each

turn. It also keeps a large and complete KB and multi-domain dialogues, which make the task more

realistic as task-oriented dialogue systems are not restricted to one domain and may share knowledge

from distinct domains. However, some adjustments are needed in order to successfully evaluate both

baselines and our model. In the following sections, we describe how we adapted the MultiWOZ for our

setting.

4.1.1 Merging MultiWOZ 2.1 with 2.2

MultiWOZ 2.2 [47] was introduced to improve and identify annotation errors, inconsistencies and ontol-

ogy issues present in its previous version. Additionally, slot span annotations were introduced for user

and system utterances and the user intent was annotated for each turn. However, in order to follow the

setting for ZSDG and DiKTNet, and to make the comparison as fair as possible, we need to preserve

some representations that were abolished or simplified in the most recent version of MultiWOZ and are

insufficient to build informative seed responses.

The authors improve the structure of the dataset’s ontology by incorporating a new representation

called schema that divides the different slots into categorical and non-categorical slots, which essentially

are labelled according to the size of possible values: categorical are slots that can be fulfilled with a

set of small finite values, typically less than fifty. For instance, the slot hotel-internet, which describes

whether the hotel has internet, is categorical due to its possible values being free, yes and no; non-

categorical have large or dynamic set of possible slot values and are retrieved from the dialogue history.

Restaurant-name and attraction-address are examples of non-categorical slots, as they can take an

enormous amount of possible values.

As this becomes an improvement in the overall structure of the dataset, this version lacks KB infor-

mation and incorporates it directly into the dialogue history. Yet, all models presented above depend

from a KB that serve as queries for each system utterance and so we keep that knowledge and merge

it with MultiWOZ 2.2. The same applies for ontology and user intent: as in the newest version the intent

is simplified and in order to be consistent with the authors, we keep the ontology from MultiWOZ 2.1.

4.1.2 Generating seed responses for ZSDG

As presented in chapter 3, ZSDG uses seed responses from both source and target domains in order

to adapt to the new unseen domain. Here, experts annotated about 500 utterances for the 3 domains
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present in Stanford Multi-Domain dataset. An example of a seed response used in their setting could

be:

• System: The fastest route is 4 miles away with no traffic noted and sent to you navigation.

• Seed response: inform #distance 4 miles #traffic no

To be consistent with the author’s original work, we also annotate 500 utterances using only the

information present in MultiWOZ without the need for additional annotation. In order to achieve this,

we use the dialogue acts present in MultiWOZ which describe the speakers’s intent and slot values

for each utterance. We only consider system utterances as user’s dialogue acts in MultiWOZ are not

very informative. We discard utterances without any intent or slot information. An example of a seed

response in our setting could be:

• System: We have 11 guest houses which are moderately priced, but no hotels.

• Seed response: hotel-inform #choice 11 #price moderately priced #type guest house

4.1.3 Building KB for each dialogue

These models incorporate KB information into dialogue, simulating a database search for system’s ut-

terances. In Stanford Multi-Domain dataset, an average of 5 queries are provided for each dialogue.

However, in MultiWOZ, a large KB is provided for the entire dataset, and as it becomes infeasible to

incorporate the whole database into dialogues, we select a maximum of 7 KB entries for each dialogue.

In order to attain this, for each dialogue we go through each utterance and with string matching we

retrieve the correct query with another possible candidates. For instance, if the user asks for “cheap

restaurants in the south”, we select all the queries present in the KB that match with the values cheap

and south. When the system answers, for example, “I have the Restaurant Alimentum that serves

modern european food in the south,” we then select from the KB the ones that match with the values

restaurant alimentum and modern european food, and append them to the previous queries. We do this

for all utterances from dialogue and if we get more than 7 candidates, we randomly select 6 of them and

maintain the correct KB query.

This information is useful in these models as they learn to identify the entities present in the dialogue

and to choose which query satisfies the user’s request.

4.2 Domain Adaptation using Transfer Meta-Learning

In this section, we propose our solution and describe how we merged transfer learning with meta-

learning in order to generalize to unseen domains.
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4.2.1 Base Model

Our base model architecture is the same as DiKTNet which, as presented in section 3.3, learns a more

general representation that can be reused in any SEQ2SEQ model. For each turn, latent variables are

generated using two different adaptations of the VAE model: DI-VAE, which learns meaningful latent

representations based on the current response and DI-VST, that learns from the surrounding context.

These learned variables are integrated into a HRED with an attention-based copying mechanism, by

concatenating them with the last hidden states from the context encoder. The result is then combined

into the decoder’s initial state. We believe that representation learning is a key for domain adaptation,

and that is why the combination of these latent variables with ELMo’s [16] deep contextualized repre-

sentations as word embeddings fits our purpose.

Instead of performing joint training as in original work, we first train the model with only source

domains and then fine-tune it using a few example dialogues from the target domain. Below, we present

how we enhanced our base model performance using an improved training strategy.

4.2.2 Meta-learning

As we referenced in chapter 1, better training techniques improve the overall system performance when

adapting to new unseen domains using minimal data. In the following sections, we present our chosen

meta-learning algorithm and describe how we adapted this algorithm into our base model.

4.2.2.A Model-Agnostic Meta-Learning

In section 3.4, we described DAML [14] which incorporates the MAML [7] algorithm into the sequicity

model in end-to-end dialogue systems. This optimization-based meta-learning technique aims to learn

a good initialization for the model on source domains that can be efficiently adapted to target domains

using minimum fine-tuning.

More formally, in each iteration of MAML, two batches of the training corpus are sampled from a

source domain d: Dds and Ddq which are named, respectively, the source and the query set. Instead

of calculating the gradient step and updating the model, in each episode low-resource fine-tuning is

simulated: the model’s parameters θ are preserved and for each domain d in source domains, new

temporary parameters are calculated according to:

θd = θ − β∇θL(θ,Dds ), (4.1)

where β is the inner learning rate. We could update the model’s original parameters with the sum of

the losses from all source domains, however, we choose to update the parameters after each domain

iteration as this method performs better as presented by [56].
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After each episode, the model’s parameters are updated using the temporary ones calculated in

equation 4.1:

θ = θ − α∇θL(θd,Ddq ), (4.2)

where α is the outer learning rate. As our model incorporates both context and KB information for each

dialogue and as MAML also consumes to much memory, we instead adopt a lightweight version of the

MAML algorithm that we describe below.

4.2.2.B Reptile

Reptile [17] algorithm is a first-order meta-learning algorithm where instead of sampling two source

and query sets, k > 1 batches are retrieved for each domain Dd = (Dd1 , ...,Ddk) and used to create

the temporary model’s parameters. The loss for the temporary model is calculated using Adam [57]

optimizer according to:

θd = Adamk(θ,Dd, β), (4.3)

where β is the inner learning rate and k is the number of updates in Dd. After each episode, the model’s

original parameters are updated using the ones calculated in equation 4.3:

θ = θ + α(θd − θ), (4.4)

where α is the outer learning rate. Reptile is shown in [17] to produce equivalent or even better updates

than MAML while consuming lower memory.

4.2.3 DATML

Our final model, DATML, is an adaptation of the architecture of DiKTNet with a better training technique,

while maintaining the strong representation learning. In figure 4.1, we present a visual illustration of our

approach. Instead of two training stages as in original work, we split joint training into source training

and fine-tuning:

1. Pre-training: we maintain the first phase, where we learn the latent general representations for

each turn using DI-VAE and DI-VST models. We exclude from training corpus all domains that

may overlap with the unseen target domain.

2. Source training: in this phase, we exclude all data from the target domain and improve the training

method by employing the Reptile meta-learning algorithm.
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3. Fine-tuning: finally, we fine-tune the model using only few example dialogues from the target

domain.

Figure 4.1: Visual illustration of both DiKTNet and DATML architectures. Both latent representations learned in the
pre-training phase are concatenated with the last hidden state from the context encoder and become
the initial hidden state of decoder. Start-of-Sequence (SOS) and End-of-Sequence (EOS) tokens are
omitted for sake of simplicity.

In the following section, we demonstrate how we evaluate both baselines and our model and show

that our DATML outperforms previous state-of-the-art DiKTNet and ZSDG approaches.
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5.1 Experiments

In this section, we describe how we evaluated both ZSDG and DiKTNet baselines and DATML. We also

analyze and suggest possible limitations of our approach.

5.1.1 Datasets

The dataset used to obtain the latent actions for DiKTNet and DATML was the MetalWOZ dataset. Both

baselines and our approach were evaluated on MultiWOZ corpus. For more details about these corpora,

see section 2.4.

5.1.2 Experimental Setup

In order to evaluate our model in a low-resource scenario, we choose the three most represented do-

mains from MultiWOZ: hotel, restaurant and attraction, where each contains more than 1500 dialogues

available. In the pre-training stage, we choose to learn the latent representations on MetalWOZ dataset

as it is a domain-agnostic corpus introduced specifically for learning general representations. In order to

make the evaluation as fair as possible, we exclude all dialogues from domains that could relate with the

target domain. In table 5.1, we present the excluded domains from MetalWOZ dataset for each target

domain from MultiWOZ.

Table 5.1: Excluded domains from MetalWOZ for each target domain in MultiWOZ dataset in pre-training stage.

Target domain from MultiWOZ Excluded domains from MetalWOZ

hotel HOTEL RESERVE

restaurant
MAKE RESTAURANT RESERVATIONS

RESTAURANT PICKER

attraction EVENT RESERVE

We train both DI-VAE and DI-VST based LAED with y size of 10 and k size of 5, where y represents

the number of latent variables and k the number of possible discrete values for each variable. Adam

optimizer is used with a learning rate of 10−3 and Dropout (p = 0.3) [58]. Both models’ RNNs have

hidden size of 512 and embedding size of 200 and were trained for 50 epochs, using early stopping if

the validation accuracy does not improve on the the same number of already completed epochs.

For source training, we train DATML on MultiWOZ dataset and exclude all dialogues from the target

domains. When fine-tuning to target domains, we use low resource data that varies from 1% to 10%

by following [3] approach. We use the same hidden size for the model’s encoder and decoder as in
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pre-training phase. We also use Dropout (p = 0.3). For Reptile, we use a k size of 5 and train the model

for 4000 episodes. The inner and outer learning rates are 10−3 and 10−1, respectively.

For ZSDG, we followed the original author’s [6] setting and used 150 seed responses for each do-

main. These responses were generated as described in section 4.1. We use the same hidden size,

learning rate and Dropout from DATML for both baseline models.

In order to fairly compare our model with state-of-the-art DiKTNet, we choose the same domain

target data for both models by setting the random seed to 271, with no particular reason for selecting

that number.

5.1.3 Metrics

We follow the work from DiKTNet [3] and ZSDG [6] and report BLEU and Entity F1 for each domain (see

section 2.5, where these evaluation metrics are described in more detail).

5.2 Results and Discussion

Table 5.2 shows results on the three most-represented domains from MultiWOZ dataset. As observed

in bold values, DATML outperforms both baselines ZSDG and DiKTNet in all low-resource scenarios.

Table 5.2: Results on the MultiWOZ dataset. We chose to evaluate the models on the three most represented
domains.

Domain hotel restaurant attraction

Model BLEU % Entity F1 % BLEU % Entity F1 % BLEU % Entity F1 %

ZSDG 5.0 8.0 4.7 14.3 6.0 16.0

DiKTNet - 1% 10.7 17.3 12.4 17.5 10.2 18.6

DiKTNet - 3% 11.4 18.2 13.4 26.0 12.4 20.6

DiKTNet - 5% 11.6 17.6 16.6 25.7 12.0 27.1

DiKTNet - 10% 13.1 16.8 16.9 28.2 12.3 27.4

DATML - 1% 10.9 18.0 14.1 24.0 11.0 23.4

DATML - 3% 13.0 23.1 16.7 28.4 14.1 28.6

DATML - 5% 14.1 25.3 17.8 30.0 15.0 31.2

DATML - 10% 14.2 26.3 18.3 32.9 15.4 32.2

We investigate how the use of different amounts of target domain data impacts the system’s perfor-

mance. Table 5.2 shows that our model’s performance correlates with the amount of available data from

the unseen domain. While small improvements can be observed when only 1% of target domain data is
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available, DATML achieves better results with 3% of target data in all metrics and domains in comparison

to DiKTNet with 10% of available target data. This shows that DATML outperforms DiKTNet in terms of

both performance and data-efficiency.

Table 5.2 also confirms that DiKTNet and DATML outperform ZSDG while using no annotated data

and thus discarding human effort in annotating dialogues. This confirms that DATML achieves state-of-

the-art results in data-efficiency and that is most suitable for real-world applications, as in underrepre-

sented domains the amount of annotated data is almost nonexistent.

Tables 5.3, 5.4 and 5.5 show generated responses on the three domains by all the evaluated models

above. In table 5.3, ZSDG identifies the domain in question, however, fails to provide a reference

number for the user. DiKTNet shows a more similar response with the gold one, yet, also fails to provide

a reference number. DATML succeeds in both reference selection and identifying the domain. In table

5.4, ZSDG identifies the domain with success but fails at constructing a coherent sentence. Although

both models present similar structure in generated responses, DATML sucessfully identifies Yu Garden

restaurant as the correct entity in comparison to DiKTNet’s Holiday Inn Cambridge, which in the KB

information represents a hotel and not a restaurant. Finally, in table 5.5, ZSDG fails to identify any entity

from the KB, and DiKTNet fails to identify the domain in question. Although DATML identifies the domain

and answers with a contextualized response, the sentence is not grammatically correct (“to” instead of

“for ”) and it does not appear to be written by a human.

The results demonstrate that using optimization-based meta-learning improves the overall model’s

performance, and validate our initial idea that better learning techniques are a key feature when adapt-

ing to unseen domains using minimal data. Although the generated responses seem promising and

DATML outperformed previous state-of-the-art DiKTNet, these low scores are far from being sufficient

for real-world applications, and more work is essential to surpass the problem of data scarcity in dialogue

systems.
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Table 5.3: Examples of generated responses on MultiWOZ dataset for the hotel domain.

Context Gold Response ZSDG DiKTNet - 1% DATML - 1%

That sounds perfect.
Can you reserve that
and provide me with
the reference num-
ber?

Okay, you’re all set.
The hotel is booked
and the reference
number is <ref>.
Can I help you with
anything else today?

I have booked your
room. The reference
number is hotel.

Sure, the reference
number is down. Is
there anything else I
can help you with to-
day?

Sure! Your booking
was successful and
your reference num-
ber is <ref>. Is there
anything else I can
help you with?

Table 5.4: Examples of generated responses on MultiWOZ dataset for the restaurant domain.

Context Gold Response ZSDG DiKTNet - 1% DATML - 1%

I am also looking for a
restaurant that serves
Chinese and that is in
the same area as the
hotel.

Yu Garden is an ex-
pensive restaurant in
the same area as the
hotel, would you like
me to make reserva-
tions?

I have many 2 options
for you . What type of
cuisine would you like
to be in?

How about the Ex-
press by Holiday Inn
Cambridge?

How about the Yu
Garden, which is in
the east part of town?

Table 5.5: Examples of generated responses on MultiWOZ dataset for the attraction domain.

Context Gold Response ZSDG DiKTNet - 1% DATML - 1%

Hi, I’m looking for
some places to go in
Cambridge.

Sure, do you know
what you would like to
do?

I’m sorry, I don’t have
any matches. Would
you like to look for
something else?

In what area would
you like to dine in?

What type of attraction
are you looking to?
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6.1 Conclusions

Domain adaptation in dialogue systems is extremely important as most domains are underrepresented

in the real-world scenario. In this work, we leveraged state-of-the-art models that aim to surpass this

problem and generalize to unseen domains using minimal data. We also presented relevant datasets

and metrics used to evaluate these systems.

We proposed a model that improved previous state-of-the-art method by enhancing the training

method. However, the evaluation results indicate that our model is far from being suited for real-world

applications and shows that this field requires more study.

We would like to refer that, in addition to the proposed solution, we also experimented to:

• Substitute the ELMo embeddings from DATML with BERT-based [59] embeddings. BERT mod-

els have shown to outperform ELMo-based models in various natural language processing tasks.

Essentially, our implementation received the dialogues as input and generated word embeddings

for each token by concatenating the last four hidden layers from BERT. However, BERT’s vocabu-

lary size is considerable small for our setting and we would have to retrain the model with all new

tokens.

• Started fine-tuning a GPT-2 transformer model [60] to our setting, but we could not get conclusive

results in time and so this experiment is left for future work.

We also like to refer that along with this thesis, we have made a submission [61] which is currently

under review.

6.2 Future Work

Domain adaptive dialogue systems are far from being suited to the real-word scenario, where most

domains are underrepresented. Thus, more work is essential to surpass this problem of data scarcity.

We would like to follow the idea of incorporating BERT model as embedding layer in our solution, as

it has been shown to achieve promising results. We also would like to continue the work with GPT-2 and

explore newest models like BART [62] and other tranformer-based [63] models.
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[22] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio,

“Learning phrase representations using rnn encoder-decoder for statistical machine translation,”

arXiv preprint arXiv:1406.1078, 2014.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp.

1735–1780, 1997.

[24] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural networks,” in

ICML, 2012.

[25] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” ArXiv e-prints, 11 2015.

[26] S. Kawano, K. Yoshino, Y. Suzuki, and S. Nakamura, “Dialogue act classification in reference in-

terview using convolutional neural network with byte pair encoding,” in 9th International Workshop

on Spoken Dialogue System Technology, L. F. D’Haro, R. E. Banchs, and H. Li, Eds. Singapore:

Springer Singapore, 2019, pp. 17–25.

[27] D. Ghosal, N. Majumder, S. Poria, N. Chhaya, and A. Gelbukh, “Dialoguegcn: A graph convolutional

neural network for emotion recognition in conversation,” in EMNLP/IJCNLP, 2019.

[28] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,

B. Kingsbury et al., “Deep neural networks for acoustic modeling in speech recognition,” IEEE

Signal processing magazine, vol. 29, 2012.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neu-

ral networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[30] F. Sultana, A. Sufian, and P. Dutta, “Advancements in image classification using convolutional neu-

ral network,” 2018 Fourth International Conference on Research in Computational Intelligence and

Communication Networks (ICRCICN), pp. 122–129, 2018.

47

https://www.aclweb.org/anthology/D19-1112
https://www.aclweb.org/anthology/D19-1112


[31] I. Sutskever, O. Vinyals, and Q. Le, “Sequence to sequence learning with neural networks,” Ad-

vances in NIPS, 2014.

[32] I. Serban, A. Sordoni, Y. Bengio, A. C. Courville, and J. Pineau, “Building end-to-end dialogue

systems using generative hierarchical neural network models,” in AAAI, 2015.

[33] A. Sordoni, Y. Bengio, H. Vahabi, C. Lioma, J. G. Simonsen, and J. Nie, “A hierarchical recurrent

encoder-decoder for generative context-aware query suggestion,” CoRR, vol. abs/1507.02221,

2015. [Online]. Available: http://arxiv.org/abs/1507.02221

[34] H. Chen, X. Liu, D. Yin, and J. Tang, “A survey on dialogue systems: Recent advances and new

frontiers,” ArXiv, vol. abs/1711.01731, 2017.

[35] D. G. Bobrow, R. M. Kaplan, M. Kay, D. A. Norman, H. Thompson, and T. Winograd, “Gus, a frame-

driven dialog system,” Artificial intelligence, vol. 8, no. 2, pp. 155–173, 1977.

[36] A. C. Graesser, S. Lu, G. T. Jackson, H. H. Mitchell, M. Ventura, A. Olney, and M. M.

Louwerse, “Autotutor: A tutor with dialogue in natural language,” Behavior Research Methods,

Instruments, & Computers, vol. 36, no. 2, pp. 180–192, May 2004. [Online]. Available:

https://doi.org/10.3758/BF03195563

[37] H. Wang, Z. Lu, H. Li, and E. Chen, “A dataset for research on short-text conversation,” EMNLP

2013 - 2013 Conference on Empirical Methods in Natural Language Processing, Proceedings of

the Conference, pp. 935–945, 01 2013.

[38] Z. Lu and H. Li, “A deep architecture for matching short texts,” in Advances in Neural

Information Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,

and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, pp. 1367–1375. [Online]. Available:

http://papers.nips.cc/paper/5019-a-deep-architecture-for-matching-short-texts.pdf

[39] R. Lowe, N. Pow, I. Serban, and J. Pineau, “The Ubuntu dialogue corpus: A large

dataset for research in unstructured multi-turn dialogue systems,” in Proceedings of the 16th

Annual Meeting of the Special Interest Group on Discourse and Dialogue. Prague, Czech

Republic: Association for Computational Linguistics, Sep. 2015, pp. 285–294. [Online]. Available:

https://www.aclweb.org/anthology/W15-4640

[40] M. Wang, Z. Lu, H. Li, and Q. Liu, “Syntax-based deep matching of short texts,” in IJCAI, 2015.

[41] L. Shang, Z. Lu, and H. Li, “Neural responding machine for short-text conversation,” in ACL, 2015.

[42] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and K. Saenko, “Sequence

to sequence - video to text,” in The IEEE International Conference on Computer Vision (ICCV),

December 2015.

48

http://arxiv.org/abs/1507.02221
https://doi.org/10.3758/BF03195563
http://papers.nips.cc/paper/5019-a-deep-architecture-for-matching-short-texts.pdf
https://www.aclweb.org/anthology/W15-4640
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Table A.1: MetalWOZ example dialogue from EVENT RESERVE domain.

System Hello how may I help you?

User I need a tent for my son’s birthday party.

System Do you have any design in mind?

User Circus tent.

System I can make a reservation for that. Do you want to make one?

User Yes

System But it will be at an expensive cost. Do you still want to make a reservation?

User I have the money. no worries.

System It can be done. I’ll reserve the tent for your son’s bitrhday party.

User How much is it?

System $2000

User That’s so expensive.

Table A.2: MetalWOZ example dialogue from MAKE RESTAURANT RESERVATIONS domain.

System Hello how may I help you?

User Hi, I have a question.

System I can help. What is your question?

User Can you reserve me and my business partners a few tables at The New Yorker for
tonight?

System Unfortunately, there are no more tables available at The New Yorker.

User How about at Cheesecake Factory?

System Yes, there are tables available at the Cheesecake Factory. How many tables would you
like to reserve?

User I need three tables please.

System For what time?

User 8 PM.

System Okay, three tables have been reserved at the Cheesecake Factory tonight at 8 pm.
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A.2 MultiWOZ full dialogue examples

Table A.3: MultiWOZ example dialogue from attraction and train domains.

User Can you help me find a train leaving on tuesday departing from Cambridge?

System And where would you like to go?

User I would like to go to Kings Lynn, please.

System At what time will you be traveling?

User I would like to arrive by 11:45.

System Train TR7548 leaves Cambridge at 10:11, arriving in Kings Lynn at 10:58. Would you like
me to book your ticket?

User Yes, please make a booking for 3 people.

System Yes, the reservation is complete. You can pay 29.4 GBP at the station. The reference
number is: GSD9FUA7. Can I help you further?

User I am looking for museum type attractions in the centre of town.

System I have found 11 museum attractions. Do you have a preference or would you like me to
suggest one?

User I would like one with free admission.

System Primavera has free admission. Their address is 10 King’s Parade.

User Thank you very much, that is all I’ll need.

System Thank you very much.

Table A.4: MultiWOZ example dialogue from the hotel domain.

User I am looking for a french restaurant.

System There are two french restaurants listed. Do you have a preference of area? Centre or
north part of town?

User I don’t care.

System Cote is a French restaurant in the centre part of town, and it is in the expensive price
range. Is that price range okay for you?

User Are there any other French places available?

System Restaurant Two Two is a nice place that serves French food in the expensive price range
and is in the North part of town.

User That sounds great! May I have their address and postcode, please?

System Restaurant Two Two’s Address is 22 Chesterton Road Chesterton, their postcode is C.B
4, 3 A.X. May I help you with anything else?

User That’s it. Thank you, goodbye

System You’re welcome. Goodbye.
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