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Abstract 
Biomedical tests take an important role assisting physicians providing accurate diagnostics to patients. 
These samples are collected in specimen collection centres and are transported in cool boxes to the 
laboratory where they are analysed. In this work, the case of a diagnostic provider group is considered. 
Since this entity deals daily with a great number of samples, the flow of their arrivals must be considered 
to ensure for a smooth workload in the laboratory. For this reason, a Biomedical Sample Transportation 
Problem (BSTP) mathematical model is developed to assist this entity in the creation of their routes. 
These routes have the particularity that they can depart from different locations other than the 
laboratory. Further, a multi-start algorithm based on the developed model is introduced with the purpose 
of handling large instances in a reasonable amount of time. The objective is to both minimize the routes’ 
total travel time and the number of sample boxes’ arriving to the laboratory in the busiest time period. 
To the best of ones’ knowledge, none of the previous works on the BSTP has considered the possibility 
of open routes as the current work presents. Application of the model in two regions with different 
objectives suggests that improvements can be achieved.  
Keywords: Vehicle Routing Problem; Biomedical Sample Transportation Problem; Desynchronized 
arrivals; Open routes; Time-windows; Optimization; Metaheuristic; Multi-start algorithm 
 

 
1. INTRODUCTION 
One of the main challenges addressed by 
healthcare systems is to guarantee high-quality 
services having limited resources. Diagnostic 
laboratories are constantly seeking for ways to 
improve their capabilities by strengthening 
diagnostic accuracy, managing higher workloads 
faster and extend test menus. Simultaneously, 
they are required to become more efficient by 
reducing costs [1]. 
A significant part of a successful laboratory 
operation is biomedical sample transportation. In 
fact, a well preserved and timely biomedical 
sample is vital to lead to an accurate diagnosis. 
Daily, thousands of biomedical samples are being 
transported from various healthcare facilities (e.g., 
hospitals, private clinics and retirement homes) to 
laboratories to be examined. Even if large 
hospitals can often locally analyse samples, most 
centres are not sufficiently equipped to perform 
such tests; thus, it must be ensured that samples 
are safely transported to clinical analysis 
laboratories. Accordingly, many Specimen 
Collection Centres (SCCs) are assigned to the 
same laboratory making essential managing the 
flow of the samples arriving to the lab in order to 
avoid congestion.  
Biomedical samples are perishable items; 
therefore, it must be ensured that once these 
samples are collected in the SCCs that they arrive 

in the laboratory in a short amount of time to 
guarantee that they lead to an accurate diagnosis. 
This short life span of biomedical samples usually 
makes necessary to perform more than one visit 
per day in each SCC in order to avoid sample 
perishing. 
The current study is integrated in a project from 
SIEMENS Healthineers (SH) Enterprise Services 
(ES) team and addresses the aim of a clinical 
analysis group, which pursues its activity in the 
area of public health. This group deals with a great 
number of biomedical samples each day. Hence, 
the present research has the objective of 
improving the routing of biomedical test sample 
transportation to their central clinical analysis 
laboratory using optimization approaches. This 
improvement should ensure for a smoother 
workload at the laboratory by desynchronizing the 
biomedical samples arrivals while at the same 
time reduce the operational costs and increase the 
resources usage by minimizing the routes total 
duration. To achieve this goal, a Biomedical 
Sample Transportation Model (BSTP) with 
desynchronized arrivals and open routes is 
developed.  
The remainder of this paper is organized as 
follows. In Section 2 the case-study is presented, 
and a literature review is performed on Section 3. 
Section 4 details the proposed optimization model 
and Section 5 describes the multi-start heuristic 
used. Section 6 presents performance results of 
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the solution approaches and Section 7 outlines 
key results. Finally, Section 8 concludes the 
paper. 

2. CASE-STUDY 
Entity’s background 
The entity under study is a group of clinical 
pathology and aims at continuously following up 
both with the medical evolution and challenges in 
the area of clinical pathology, while providing this 
knowledge to medical staff and patients. To be 
able to provide clinical diagnoses, the group has 
distributed throughout Portugal several collection 
points and laboratories, including hospital 
laboratories. 
An important aspect that lies behind the entity’s 
process of providing medical diagnosis is the 
associated sample transportation operations and 
logistics. To be able to provide an accurate 
medical diagnosis, it is fundamental that the 
biomedical sample is transferred with appropriate 
handling from the site where it was taken to the 
laboratory. 
The focus of the present research lies on 
optimizing the entity’s routes in two different 
regions, Region A and Region B, that transport 
biomedical samples to the entity’s central 
laboratory. 
Associated with the way the routes in Region A 
are defined, arises the issue of having periods of 
the day where too many samples arrive in the 
laboratory contrary to others where very few 
samples arrive. This leads to significant 
differences in the laboratory throughput 
throughout the day, that needs to be softened. 
This is, in fact, a bottleneck problem in the 
samples’ supply chain of the central laboratory. 
Regarding Region B routes, the problem of having 
too many samples arriving in the lab in certain 
periods of the day is not a concern, since these 
samples usually arrive to the laboratory in the 
evening. Nevertheless, they still have the issue of 
taking a long time to be completed, which is a 
challenge, given the perishable nature of the 
biomedical samples transferred. 
As a consequence of the challenges described for 
both these regions, the focus of the present thesis 
is to address them by constructing and proposing 
routes that, on one hand, allow for a smoother 
workload at the laboratory, and on the other hand, 
reduce the operational costs and increase the 
resources usage by minimizing the routes total 
duration. 
Problem scope definition 
To construct the entity’s routes, not only it is 
necessary to attend their restrictions and 
limitations, but also it is important to take their 
objectives into consideration. In fact, the biggest 

challenge is to face the bottleneck in the samples 
supply chain related with the samples’ arrival time 
while, at the same time, make the routes efficient 
by trying to reduce transportation costs by 
minimizing the routes’ duration.  
It is, therefore, the aim of this work to address this 
challenge by redesigning and rescheduling the 
collection routes in the two regions under study, 
considering the specific needs and challenges of 
each of them. More specifically, for Region A it is 
important to tackle the challenge of 
desynchronizing the samples’ arrivals in the 
laboratory, while at the same time take into 
concern the reduction of transportation costs; for 
Region B the main concern is to minimize the 
routes’ total duration.  

3. LITERATURE REVIEW 
Vehicle Routing Problem 
The Vehicle Routing Problem (VRP) constitutes a 
well-known class of optimization problems found 
in logistics, originated from real-life needs [2]. The 
problem was first introduced in 1959 by Dantzig 
and Ramser [3] as a generalization of the 
Traveling Salesman Problem (TSP) presented by 
Flood, in 1956  [4]. The TSP arises from the 
situation of a salesman who wants to visit his 
clients in a given set of cities and then return to his 
own city, in the shortest possible route.  
In the classical VRP, a fleet of vehicles is based at 
a single depot to collect or deliver products for a 
set of geographically scattered nodes [5]. Each of 
these vehicles, whose capacity cannot be 
exceeded, leaves the depot, visits the nodes and 
returns to the depot. The aim is to find the optimal 
set of routes so that all the nodes are served 
exactly once. Thereafter, fundamental elements of 
a typical VRP include the road network, the 
vehicles, the nodes and the depot [6]. Moreover, 
depending on the problem, the optimization 
objective can vary.  

VRP variants 
Depending on the operational context, the 
problem can have different constraints, designed 
to represent the problems characteristics, 
introduced in each of the fundamental elements 
that leads to the generation of several VRP 
variants. Typical constraints include time 
windows, multiple depots, multiple periods, and 
heterogeneous fleets [7], [8].  
A general assumption of the classical VRP is that 
each individual vehicle only performs one route 
over the planning horizon [9]. This assumption can 
be impractical, for instance, in scenarios where 
the fleet of vehicles is constituted by small 
vehicles with low capacity, since they do not have 
the capability of visiting a large number of nodes 
in each route [10], a common situation faced in 
metropolitan cities. The Multi-trip Vehicle Routing 
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Problem (MTVRP) emerges as an extension of the 
classical VRP that allows each vehicle to perform 
more than one route within a given time period. 
This problem considers dependency between 
routes, since it requires that the temporal aspects 
of the vehicle movements are considered. In fact, 
it is explicitly needed to guarantee that 
overlapping routes for the same vehicle do not 
occur and that the vehicles’ total duration is less 
than or equal to the maximum driving time [11].  
Finally, another important variant of the VRP 
consists in the introduction of time windows, 
Vehicle Routing Problem with Time Windows 
(VRPTW). This variant arises when the service of 
each node i is limited to a specific time window, 
[ai, bi], requiring the determination of a schedule 
for the vehicle routes’, so that the nodes are 
served in their corresponding time windows [12].  
VRP solution methods 
With the purpose of deciding the best solution 
method or algorithm to solve a VRP, one must 
consider both the solution quality and the time 
taken to obtain it [13]. Since the 1980s, many 
approaches including exact methods and 
heuristics have been designed to solve the VRP. 
Even though exact methods can solve optimally 
small instances, up to around 100 nodes [14], 
when facing larger and real-life scenarios, these 
methods become unfeasible given the time 
required to obtain the solution. Hence, the use of 
heuristic procedures in these environments is 
more appropriate. Although heuristic methods 
may not ensure an optimal solution, they allow 
reasonable time solving [14]. 

Biomedical Sample Transportation Problem 
Having all the relevant VRP classes and solution 
methodologies reviewed, the Biomedical Sample 
Transportation Problem (BSTP) can be 
introduced. The BSTP is a challenging VRP 
arising in the context of healthcare logistics and 
that can be applied specifically to the case study 
of the present work. This problem aims at creating 
a transportation plan to pick up perishable items, 
biomedical samples, at given locations, referred to 
as SCCs and to take them to facilities that have 
adequate treatment equipment, usually central 
laboratories. Thus, the transportation network 
consists of a group of SCCs (nodes) affected to a 
laboratory (depot). 
There are some concerns that arise with the 
biomedical sample transportation, following 
described. After collection, the samples are 
consolidated in cool boxes that need to arrive at 
the laboratory within a given time frame to be 
treated otherwise, the samples deteriorate and 
become unusable, increasing the laboratory’s 
costs and decreasing the quality of the service. In 
order to respect the sample lifespans, SCCs 
cannot maintain the collected biomedical samples 

for a long time; thereby, each SCC can have 
different number of sample transportation 
requests according to the SCC open hours, 
causing an interdependence of pickup times and 
routes. It is also important to impose a time 
constraint on the duration of each route to 
guarantee the samples’ quality. Thus, the BSTP is 
typically characterized by multiple visits to each 
node, a time-window on each visit time and 
multiple routes for each vehicle [15], being closely 
related to the MTVRP and the VRPTW, previously 
presented. 
All the aforementioned constraints fit the scope of 
the case study presented in this work though, 
there is also the need of considering 
desynchronization of the samples’ arrival to the 
lab and the fact that the first route of each vehicle 
can start in a different location than the lab. 
Anaya-Arenas et al. (2016) presented a version of 
the BSTP applied to a real-world case study in the 
Province of Québec in Canada. In this work, each 
SCC required several collection visits and each 
one of them needed to happen inside a given and 
independent time windows that satisfied the 
samples’ lifespan. Therefore, with the aim of 
minimizing the route duration time a multi-start 
heuristic was proposed [15].  
Using the same context, years later, in 2018, 
Toschi et al., developed a metaheuristic to solve 
the BSTP that considered the SCC opening and 
closing hours as decision variables and, also the 
interdependency between routes. The objective 
focused on minimizing the routes’ total duration 
[16].  
Last year, in 2019, Anaya-Arenas proposed 
another metaheuristic to solve the BSTP 
considering the opening and closing hours of the 
SCCs and the moment they are visited as decision 
variables, while taking into consideration the 
interdependency between routes [17]. 
Nevertheless, none of the presented works 
considered the need for the desynchronization of 
the samples’ arrival to the laboratory. 
Closer to the context of the case study presented 
in this thesis, Naji-Azimi et al. (2016) studied the 
BSTP with the desynchronization of the vehicles’ 
arrivals to the depot. To the best of ones’ 
knowledge, they were the first and the only ones 
yet to consider the desynchronization of the 
vehicles in this context as an objective. This 
consideration is extremely important, due to the 
fact that if too many boxes of samples arrive in a 
short period of time to the central laboratory, 
samples are queued and may have to wait a long 
time before they are analysed, creating a 
bottleneck in the samples’ supply chain [18]. Thus, 
by minimizing the maximum amount of sample 
boxes arriving within a given time period it 
normalizes both the laboratory workload and 
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reduces sample losses. Nevertheless, in Naji-
Azimi et al. (2016) work the possibility of open 
routes, routes that can depart from different places 
other than the lab, was not considered. 
From above it can be said that there is the need of 
developing a more detailed model that not only is 
able to desynchronize the arrivals in the lab and 
minimize the routes’ total time, as the one 
developed by Naji-Azimi et al. (2016) does, but 
also that allows for the possibility of having the 
routes start in a different places other than the lab. 
It is in this form that the current research will 
contribute to assist in the resolution of a real-world 
case study, the one previously described and 
encountered in the entity under study. 

4. THE BIOMEDICAL SAMPLE 
TRANSPORTATION MODEL 

Problem Statement 
In order to formulate the BSTP with 
desynchronized arrivals and open routes, it is 
firstly important to distinguish both the SCCs 
locations and the collection requests, since each 
SCC can have more than one collection request. 
The 𝑛 SCCs are defined as: 

𝑉’	 = 	 {𝑣!’, . . . , 𝑣"’} (1) 

, where each SCC 𝑙 requires 𝑄# collection requests 
leading to a total of 𝑝 = ∑ 𝑄#"

#$!  requests. Each 
one of these requests is composed of one box that 
contains several biomedical samples. 
The BSTP can be modelled as a complete graph 
𝐺 = {𝑉, 𝐴}, where: 

𝑉 =	 {𝑣%, 𝑣!, … , 𝑣&, 𝑣&'!, 𝑣&'(, … , 𝑣&')'!} (2) 

is the set of nodes in the network. 𝑝 represents the 
number of transportation requests and 𝑑 the 
number of drivers. More specifically, the subset 
𝑃 = {𝑣!, 𝑣", … , 𝑣#} corresponds to the transportation 
request nodes. Additionally, 𝑃# is denoted as the 
set of request nodes found in 𝑉 which matches the 
same SCC location. Since the first route of each 
day of each vehicle may depart from a different 
location rather than the central lab, the departing 
places must also be presented in the set of nodes 
in the network, therefore they are represented by 
the nodes (𝑣#$", … , 𝑣#$%$!). Finally, the laboratory 
is represented by the nodes (𝑣&, 𝑣#$!). With the 
exception of the first route of each day, which may 
start in a different location and finish in the lab, all 
of the other routes start and finish in the 
laboratory. 

The arc set of the graph can then be defined as: 

𝐴 = {$𝑣' , 𝑣(' ∶ 𝑣' , 𝑣( ∈ 𝑉,				𝑖 ≠ 𝑗, 
𝑖 = 0,… , 𝑝 + 𝑑 + 1	𝑎𝑛𝑑	𝑛𝑜𝑡	 

(𝑖 = 0	𝑉	𝑖 = 𝑝 + 1; 	𝑗 = 𝑝 + 2,… , 𝑝 + 𝑑 + 1} 
(3) 

, where a travel time between nodes, 𝑡'(, is 
assigned to each arc (𝑣*,𝑣+). Moreover: 

𝑡*+ = 0					𝑖𝑓					∃		𝑙		such that	𝑖, 𝑗	 ∈ 𝑃# (4) 
, in other words, if 𝑖 and 𝑗 correspond to two 
requests from the same SCC the travel time to go 
from one to the other is zero. It is important to note 
that in general 𝑡*+ ≠ 𝑡+* , being one of the reasons 
why a directed graph is used to model the 
problem. Furthermore, each request 𝑗 has to be 
carried out within a given time window [𝑎+ , 𝑏+]. 
Finally, two requests of the same SCC cannot be 
served in the same route. 
Further, to carry out the transportation requests 
there are available 𝐾 uncapacitated vehicles. 
Each one of these can execute multiple routes 
(𝑟 = 1,… , 𝑅). Each vehicle has a limitation on the 
length on the working day, 𝑇,. Additionally, both 
the average loading time for each transportation 
request in the SCCs, 𝜏*, and the unloading time at 
the lab before a new route starts, 𝜏%, have to be 
considered. Moreover, as mentioned in previous 
sections, the perishable nature of the biomedical 
samples requires having a maximal transportation 
time associated with the requests. Thereafter, 
there is also a maximal transportation time for the 
samples of request 𝑖, 𝑇-./* . 
The objective of this problem is then to minimize 
both the routes’ total duration (including the 
waiting times at the SCCs) and a weighted penalty 
𝜃 related with the maximum number of boxes that 
arrive in the laboratory in the busiest time period.  

Mathematical formulation 
In this section the details of the mathematical 
model used to define the biomedical sample 
transportation problem with desynchronized 
arrivals and open routes of the entity under study 
are presented. Thus, the sets, the parameters, the 
decision variables, the objective function and the 
constraint equations are presented below. 
Table 1 – Model notation: Sets. 

Notation Description 
Sets 

𝑖 index of the nodes: 𝑖 = 0, … , 𝑝 + 𝑑 + 1 
𝑗 index of the nodes: 𝑗 = 0, … , 𝑝 + 𝑑 + 1 
𝑘 vehicles: 𝑘 = 0,… , 𝐾 
𝑟 routes per vehicle: 𝑟 = 0,… , 𝑅 
𝑡 time periods: 𝑡 = 0,… , 𝑇 
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Table 2 – Model notation: Parameters and Decision Variables. 

Notation           Description 
Parameters 

𝑇! Limit on the working day of vehicle 𝑘 
𝜏" Loading time of request 𝑖 
𝜏# Unloading time at the laboratory 

𝑇$%&"  Maximal transportation time for the samples 
associated with request 𝑖 

𝜃 
Weighted penalty linked to the maximum 
number of boxes that arrive at the laboratory 
during the busiest time period 

𝑀 Large constant 
𝑑 Number of drivers 
𝑎" Start of time windows of request 𝑖 
𝑏" End of time windows of request 𝑖 
𝑡"' Travel time from node 𝑖 to node 𝑗 

𝜔 Units to discretize time 
Decision Variables 

𝑥"'!( ∈ 	 {0,1} 
Takes the value of 1 if vehicle 𝑘 in its route 𝑟 
travels from request 𝑖 to request 𝑗; 0 
otherwise 

𝑦")!( 

takes the value of 1 if request 𝑖 carried out by 
vehicle 𝑘 in its route 𝑟 arrives at the 
laboratory during the 𝑡)* time period; 0 
otherwise 

𝑢"!( ∈ 𝑅#+: 
represents the visit time (start of loading) of 
the 𝑟)* route of vehicle 𝑘 of the transportation 
request 𝑖. 

𝑤	 ∈ 𝑁+ 
represents the highest number of boxes 
arriving to the Lab during the most visited 
time period. 

The mathematical model reads as follows: 

𝑀𝑖𝑛				4 4 5𝑢,+-!( − 𝑢#!(8 +
.

(/-

0

!/-
𝜃 ∙ 𝑤 

(5) 

Subject to: 
 

4 4 4 𝑥"'!( = 1
,+1+-

"/#	&	"4,+-		

.

(/-

0

!/-
, 𝑗 = 1, … , 𝑝 (6)   

4 4 𝑥"'!( = 1
,

'/-

0

!/-
	 , 𝑖 = 𝑝 + 2,… , 𝑝 + 𝑑 + 1; 		𝑟 = 1 (7)   

4 4 𝑥"'!( ≤ 1
,+1+-

"/#	&	"4,+-'∈6!
	 , 𝑙 = 1, … , 𝑛; 	𝑘

= 1,… , 𝐾; 	𝑟 = 1,… , 𝑅 

(8) 

4 𝑥"'!(
,

"/#	
−4 𝑥'7!(

,+-

7/-
= 0,	 

𝑟 = 2,… , 𝑅; 		𝑗 = 1, … , 𝑝; 𝑘 = 1,… , 𝐾 

(9) 

4 𝑥"'!(
,+1+-

"/-&	"4,+-
−4 𝑥'7!(

,+-

7/-
= 0	,

𝑟 = 1; 		𝑗 = 1, … , 𝑝; 		𝑘 = 1,… , 𝐾 

(10) 

4 𝑥#'!(
,

'/-	
≤ 1, 𝑟 = 2,… , 𝑅; 		𝑘 = 1,… , 𝐾 (11) 

4 𝑥"'!(
,

'/-	
≤ 1	, 𝑟 = 1; 		𝑘 = 1,… , 𝐾; 	𝑖

= 𝑝 + 2,… , 𝑝 + 𝑑 + 1 

(12)   

4 𝑥#'!(
,

'/-	
−4 𝑥',,+-!(

,

'/-
= 0	, 𝑟 = 2,… , 𝑅; 	𝑘

= 1,… , 𝐾 

(13) 

4 4 𝑥"'!(
,

'/-	

,+1+-

"/,+9
−4 𝑥',,+-!(

,

'/-
= 0	, 𝑟 = 1; 𝑘

= 1,… , 𝐾; 		𝑖
= 𝑝 + 2,… , 𝑝 + 𝑑 + 1 

(14)   

𝑎' − 𝑇! ∙ P1 −4 𝑥"'!(
,+1+-

"/#&"4,+-
Q ≤ 𝑢'!(

≤ 𝑏' + 𝑇!

∙ P1 −4 𝑥"'!(
,+1+-

"/#&"4,+-
Q ,

𝑗 = 0,… , 𝑝 + 𝑑 + 1; 	𝑘
= 1,… , 𝐾; 𝑟 = 1,… , 𝑅 

(15) 

 

𝑢"!( − 𝑢'!( + 5𝑏" + 𝜏" + 𝑡"' − 𝑎'8 ∙ 𝑥"'!( ≤ 𝑏" − 𝑎' ,
𝑟 = 2,… , 𝑅; 		𝑘 = 1,… , 𝐾; 𝑗
= 1,… , 𝑝 + 1; 		𝑖 = 0, … , 𝑝 

(16)     

𝑢"!( − 𝑢'!( + 5𝑏" + 𝜏" + 𝑡"' − 𝑎'8 ∙ 𝑥"'!( ≤ 𝑏" − 𝑎' ,
𝑟 = 1; 	𝑘 = 1,… , 𝐾	𝑗
= 1,… , 𝑝 + 1; 𝑖
= 1, . . . , 𝑝, 𝑝 + 2,… , 𝑝 + 𝑑 + 1 

(17)   

𝑢#!( ≥ 𝑢,+-,!,(:- + 𝜏#		, 𝑘 = 1,… , 𝐾; 		𝑟 = 2,… , 𝑅 (18)   

𝑢,+-,!,( − 𝑢'!( ≤ 𝑇$%&
' + 𝑇! ∙ W1 −4 𝑥"'!(

,

"/#
X ,

𝑟 = 2,… , 𝑅; 		𝑘 = 1,… , 𝐾; 		𝑗
= 1, … , 𝑝 

(19)   

𝑢,+-,!,( − 𝑢'!( ≤ 𝑇$%&
' + 𝑇! ∙ P1 −4 𝑥"'!(

,+1+-

"/-&	"4,+-
Q ,

𝑟 = 1; 		𝑘 = 1,… , 𝐾; 		𝑗 = 1, … , 𝑝 

(20)   

𝑢,+-,!( − 𝑢"!- ≤ 𝑇!, 𝑟 > 1; 	𝑘 = 1,… , 𝐾; 	𝑖
= 𝑝 + 2,… , 𝑝 + 𝑑 + 1 

(21)   

4 4 4 𝑦")!( = 1, 𝑖 = 1,… , 𝑝
;

)/#		

.

(/-

0

!/-
 (22)   

𝑦")!( ≤4 𝑥"'!(
,+-

'/-
, 𝑖 = 1, … , 𝑝; 		𝑡 = 0,… , 𝑇; 𝑘

= 1,… , 𝐾; 		𝑟 = 1,… . , 𝑅	 

(23)     

𝑢,+-,!( < 𝜔 ∙ (𝑡 + 1) + 𝑀 ∙ (1 − 𝑦")!(),			𝑖 = 1, … , 𝑝; 		𝑡
= 0,… , 𝑇; 𝑘 = 1,… , 𝐾; 		𝑟
= 1,… , 𝑅	 

(24)     

𝑢,+-,!( ≥ 𝜔 ∙ 𝑡 − 𝑀 ∙ (1 − 𝑦")!(),
𝑖 = 1, … , 𝑝; 		𝑡 = 0,… , 𝑇; 𝑘
= 1,… , 𝐾; 		𝑟 = 1,… , 𝑅 

(25)   

𝑤 ≥4 4 4 𝑦")!(
,

"/-

.

(/-

0

!/-
, 𝑡 = 0, … , 𝑇 (26)   

𝑢#!( = 𝑢"!( , 𝑟 = 1; 	𝑖 = 𝑝 + 2,… , 𝑝 + 𝑑 + 1; 𝑘
= 1,… , 𝐾	 

(27)   

𝑢#!( ≤ 𝑢,+-!( , 𝑟 = 2,… , 𝑅; 		𝑘 = 1,… , 𝐾 (28)   

𝑢"!( −	4 5𝑎' + 𝜏' − 𝑎" + 𝑡'"8𝑥'"!(
,

'/#&"4'
≥ 𝑎" ,

𝑖 = 1, … , 𝑝; 		𝑟 = 1,… , 𝑅; 𝑘
= 1,… , 𝐾 

(29)     

4 4 	
,+1+-

"/,+9
𝑥"'!- −4 4 	

,+1+-

"/,+9
𝑥"'!:-,-

,

'/-

,

'/-
≤ 0,

𝑘 = 2,… , 𝐾 

(30)   

4 4 𝑥"'!(
,

"/-
−4 4 4 𝑥"7!:-(

,

"/-
≤ 0,

.

(/-

':-

7/-

.

(/-
 

𝑗 = 1,… , 𝑝; 		𝑘 = 2,… , 𝐾 

(31)   

4 4 4 𝑦")!(
;

)/#
≤ 𝑀 ∙4 4 𝑦")!:-,-

;

)/-

,

"/-

.

(/-

,

"/-
,

𝑘 = 2,… , 𝐾; 
 

(32)     

4 4 𝑦")!( ≤ 𝑀 ∙4 4 𝑦")!,(:-
;

)/-

,

"/-

;

)/#

,

"/-
	 ,

𝑘 = 1,… , 𝐾; 		𝑟 = 2,… , 𝑅 

(33)   

4 4 𝑥"'!(
.

(/-

0

!/-
= 0, ∀	𝑖, 𝑗

∈ 𝑉	\	{0, 𝑝 + 1}	|	(𝑎" + 𝜏" + 𝑡"'
> 𝑏')	 

(34)     

4 4 𝑥"'!(
.

(/-

0

!/-
= 0, ∀𝑖, 𝑗

∈ 𝑉	\	{0, 𝑝 + 1}	|	(𝑎" − 𝑏' + 𝜏'
+ 𝑡',,+- > 𝑇$%&" ) 

(35)   

4 4 4 𝑦"7!( = 0
):-

7/-

.

(/-

0

!/-
,			∀	𝑖

∈ 𝑉	{0, 𝑝 + 1}	|	5𝑎" + 𝜏" + 𝑡",,+-
≥ 𝜔𝑡8; 	𝑡 = 1,… , 𝑇 − 1 

(36)   

    
 

The first part of the objective function (5) 
minimizes the routes’ total duration (i.e., the sum 
of the end time minus starting time of each route 
of each vehicle) which includes the necessary 
waiting time at each SCC. The second part of the 
equation implements a penalty factor	𝜃	to the 
maximum number of boxes arriving during the 
busiest time period, 𝑤. Constraints (6) assures 
that each request is serviced by exactly one route. 
Constraints (7), ensure that the first route of each 



 
 

 6 

day (i.e., when 𝑟 equals 1) departs from one of the 
possible departing places that is not the central 
lab. Constraints (8) ensure that each route should 
only visit one original point at a time. Flow 
conservation is certified by constraints (9) and 
(10). Constraints (9) guarantee flow conservation 
for the routes that start in the lab (i.e., for 𝑟 > 1) 
and constraints (10) for the first route of each 
vehicle (i.e., for 𝑟 = 1). Constraints (11) and (12) 
state that the vehicle 𝑘 can start a route 𝑟 or not. 
Constraints (11) refer to routes that start in the lab 
and constraints (12) to the ones that start in a 
different location. If a given route has started it has 
to finish in the lab to deliver the samples. 
Thereafter, constraints (13) and (14) guarantee it 
for both routes that start in the laboratory and the 
ones that start in a different location, respectively. 
Constraints (15) states that the time windows for 
each request must be respected. The sub-tour 
elimination constraints are represented by the 
constraints (16) and (17). Constraints (16) 
characterizes the routes that start in the laboratory 
and constraints (17) the ones that do not. 
Constraints (18) ensure that route 𝑟 of vehicle 𝑘 
must start at least later than the arrival of its route 
𝑘 − 1 plus the waiting time in the laboratory 
between routes 𝜏%. Constraints (19) and (20) 
ensure that the time that takes to return to the 
depot after visiting a given node is restricted so 
that the samples’ lifetime is satisfied. Constraints 
(19) refers to the routes that start in the lab and 
constraints (20) to the ones that do not. Since 
each vehicle has a limitation on the length on the 
working day, constraints (21) set the maximum 
duration of vehicle 𝑘 which has to be less than 𝑇,. 
Constraints (22) state that the request 𝑖 will arrive 
in the laboratory within a given time period 𝑡. 
Constraints (23) ensure that if request 𝑖 has been 
visited by the 𝑟fg route of vehicle 𝑘 the variable 
𝑦*f,h can take the value of 1. Constraints (24) and 
(25) strengthen the connection within flow and 𝑦 
variables and divide time into periods of 𝜔 units of 
time. When using these constraints in the case 
where 𝑦*f,h = 1 we have 𝜔 ∙ 𝑡 ≤ 𝑢&'!,h ≤ 𝜔 ∙ (𝑡 +
1), meaning that the laboratory has to be visited 
within the 𝑡fg time period, therefore within time 𝜔𝑡 
and 𝜔 ∙ (𝑡 + 1). Constraints (26) calculate the 
laboratory maximum workload during the 
available time periods. In fact, the number of 
sample boxes that arrive in the lab in a specific 
time period is the same as the number of SCCs 
visited by the routes that returned to the lab in that 
same period. Supposing that a box of samples is 
gathered at each SCC request the workload is the 
number of boxes that arrive at the laboratory 
within this time period. Since the objective function 
considers the starting time of the route of each 
vehicle the time of the lab, one has to guarantee 
that for the first route of each vehicle (the ones that 
do not start in the lab) that this value is equal to 

the time they depart from that first location 
guaranteed by constraints (27). Moreover, 
constraints (28) enforce that the arrival time in the 
laboratory of a given route 𝑟 occurs after its 
departing time. Constraints (29) define a lower 
bound on the minimum value of variable 𝑢. In fact, 
when visiting the arc (𝑖, 𝑗) by the 𝑟fg route of 
vehicle 𝑘 the variable 𝑥*+,h equals 1 and 
consequently, 𝑢*,h + 𝜏* + 𝑡*+ ≤ 𝑢+,h. In case that 
𝑥*+,h	equals 0 we have 𝑢+,h ≥ 𝑎* which is always 
valid. Constraints (30) and (31) are based on the 
symmetry breaking constraints developed by 
Coelho and Laporte in 2014 [19]. Essentially, by 
ordering the use of the vehicles and the 
assignment of request to vehicles these 
constraints are able to remove symmetric 
solutions. Constraints (32) and (33) are symmetry 
defeating constraints which break the symmetry 
caused by variables 𝑦 enhancing the model. In 
particular, constraints (32) state that if the first 
route of vehicle 𝑘 − 1 has not been used, then the 
requests cannot be carried out by routes of the 
vehicle 𝑘. In addition, constraints (33) states that 
route 𝑟 of vehicle 𝑘 can only be used if to route 𝑟 −
1 of this same vehicle is already associated at 
least one request. Constraint sets (34) and (35) 
state that one cannot travel from request 𝑖 to 
request 𝑗 when 𝑎* + 𝜏* + 𝑡*+ > 𝑏+ and 𝑎* + 𝜏+ +
𝑡+,&'! − 𝑏+ > 𝑇-./* . Constraints (36) exhibits the 
connection concerning the earliest visit time of a 
given request and the possible time periods where 
the corresponding samples can arrive in the 
laboratory. Essentially, when 𝑎* + 𝜏* + 𝑡*,&'! ≥ 𝜔𝑡, 
request 𝑖 cannot arrive to the laboratory earlier 
than the 𝑡fg time period. 

5. HEURISTIC METHOD 
Multi-Start Heuristic Algorithm 
Multi-start algorithms hold two phases: the first 
one where an initial solution is generated and a 
second one where the generated solution is 
commonly, but not always, improved [20]. In the 
specific case of this algorithm, the first phase 
comprises the Construction procedure while the 
second phase is constituted by the Extraction-
Reinsertion and Swap procedures. 
To guarantee that diverse iterations lead to 
different solutions, a level of randomization is 
applied in two parameters: in the maximal sample 
transportation time (𝑇-./) and in the maximum 
length of a vehicle working day (𝑇i). Both 
parameters influence the Construction procedure, 
which creates different feasible or unfeasible 
solutions. Moreover, these two parameters are 
adapted in conformity with the feasibility of the 
solution and only solutions that are feasible can 
pass to the improvement steps.    Algorithm 1 
provides an insight on the general steps of the 
multi-start algorithm used.  
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Algorithm 1: Multi-start algorithm 

𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 	∅ 
𝑇𝑒𝑚𝑝;" = 𝑇! 
𝑇𝑒𝑚𝑝;#$% = 𝑇$%& 
For 𝐼𝑡𝑒𝑟 = 1	𝑡𝑜	𝑀𝑎𝑥")<( do 
    Repeat 
        𝑇!rrr = 𝑟𝑎𝑛𝑑𝑜𝑚	50, 𝑇! − 𝑇𝑒𝑚𝑝;"8 + 𝑇𝑒𝑚𝑝;" 
        𝑇$%&rrrrrr = 𝑟𝑎𝑛𝑑𝑜𝑚	(0, 𝑇$%& − 𝑇𝑒𝑚𝑝;#$%) + 𝑇𝑒𝑚𝑝;#$% 
        𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛	 =	Construction (𝑇!rrr, 𝑇$%&rrrrrr) 
        If 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is feasible then 
            𝑇𝑒𝑚𝑝;#$% = 𝑇𝑒𝑚𝑝;#$% − 𝛼 ∙ 𝑇$%& 
            𝑇𝑒𝑚𝑝;" = 𝑇𝑒𝑚𝑝;" − 	𝛼 ∙ 𝑇! 
        Else 
            𝑇𝑒𝑚𝑝;#$% = 𝑀𝑖𝑛{𝑇𝑒𝑚𝑝;#$% + 𝛼 ∙ 𝑇$%&, 𝑇$%&} 
            𝑇𝑒𝑚𝑝;" = 𝑀𝑖𝑛{𝑇𝑒𝑚𝑝;" + 	𝛼 ∙ 𝑇!, 𝑇!} 
        End If 
    Until 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is feasible 
    𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛	 =		Extraction-Reinsertion (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 
    𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛	 =		Swap (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 
    If 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛	improves the cost of the best-known solution 
then 
    				𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛	 
End for 

After obtaining an initial feasible solution, the 
improvement procedures are now applied. Thus, 
the Extraction-Reinsertion and the Swap 
procedures attempt to improve the quality of the 
solution coming from the Construction procedure. 
To do so, the original values of the sample travel 
time and the vehicle travel time are used. After the 
maximum number of iterations has been achieved 
the algorithm stops and the best solution found is 
returned. 
Construction procedure 
As stated, the construction procedure forms an 
initial solution, where the nodes are sequentially 
added to the routes. Routes are initialized by 
adding their respective starting and finishing 
points. To select the first node to be visited, 𝑛!, the 
following set of rules are used: 
• 𝑁! = 𝑎𝑟𝑔𝑚𝑎𝑥'∈*{𝑡',#$!}, i.e., the set of request 

nodes 𝑖 ∈ 𝑃 = (𝑣!, 𝑣", … , 𝑣#) whose travel time is 
the greatest to the laboratory; 

• 𝑁" = 𝑎𝑟𝑔𝑚𝑖𝑛'∈,={𝑏'}, i.e., the set of request 
nodes 𝑖 ∈ 𝑁!	whose time window upper bond is 
the lowest; 

• A random node, 𝑛!, is selected from 𝑁". 
After inserting the first node, 𝑛!, in the working 
route, to insert a new node certain rules are to be 
followed. Firstly, a node from the unvisited set of 
nodes is chosen in sequence and the possibility of 
adding it in every position of that route is 
evaluated. If there are feasible placing positions, 
the node will be placed in the position that 
conducts to the smallest increase in the route’s 
total travel time. In case there is not a feasible 
position for that node in that route, the algorithm 
tries to place the next unvisited node in that same 
route. The process repeats until all unvisited 
nodes are tested to be placed in that route. 

Afterwards, the same process occurs for the other 
unfilled routes. 
Extraction-Reinsertion procedure 
The first improvement procedure, the Extraction-
Reinsertion procedure, has the purpose of 
reducing the value of the objective function by 
repositioning some of the nodes of the solution 
previously obtained in the Construction 
procedure. Hence, to calculate this cost, the 
length of the time period, 𝜔, has now to be 
considered. This procedure lies on taking every 
node and place it on its best feasible position. 
Thus, starting from first route of the first vehicle all 
the nodes are repositioned in all possible 
locations. After trying to place a node in all 
positions the node is placed in the feasible 
position that leads to the best improvement. This 
procedure is repeated until no further 
improvement can be reached. 
Swap procedure 
The second improvement procedure, the Swap 
procedure, also aims at minimizing the cost of the 
current solution, i.e., the one coming from the 
Extraction-Reinsertion procedure. To improve the 
solution, following the order of the nodes in the 
current solution, each pair of nodes is considered, 
and their corresponding positions are swapped. 
The swap is applied to all possible combination of 
two nodes over all the vehicles’ routes. As soon as 
a move improves the solution’s cost, it is 
accepted. This procedure stops whenever the 
swapping of all the available nodes offers no more 
improvement. 

6. PERFORMANCE NUMERICAL RESULTS 
To test the mathematical model and the algorithm, 
a set of 15 significant instances (small, medium 
and large) was designed based on the 
geographical locations considered by the entity in 
Region A to construct their routes. The aim is to 
find the parameters that fit best the entity’s context 
to be used in the case study resolution chapter 
and to compare the results obtained with the 
mathematical model with the ones provided by the 
heuristic method previously presented. Hence, the 
mathematical model was developed and 
implemented using the optimization software 
GAMS and the heuristic algorithm was developed 
and implemented using Python 3.8.1.  
The first experiment lied on finding which 
penalization fits best the entity’s context: if 𝜃 = 25, 
𝜃 = 50 or 𝜃 = 75. The penalty that is found to fit 
better their purpose is the one where θ = 50, since 
it offers a favourable balance between the number 
of boxes arriving in the busiest period and the 
routes’ total time. This value does not penalize to 
much the arrivals in the laboratory and is able to 
find favourable results for the routes’ total time. 
Furthermore, it gives better gap results when 
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comparing with the penalization of θ = 25 and was 
able to provide results in some instances where 
the penalty of θ = 75 was not.  
The second experiment was to find the best form 
to discretize time: if in intervals of 30 minutes or 
60 minutes (i.e., 𝜔 = 30 or 𝜔 = 60). The 
parameter that is found to fit the entity’s scope is 
𝜔 = 60 since it outperformed significantly 𝜔 = 30, 
given that the time to obtain solutions for this 
parameter was remarkably lower. In terms of the 
objective function, the results were the same for 
the small and medium size instances. For the 
larger instances, one can encounter different 
performances, since that for some instances the 
results for 𝜔 = 60 outperformed the ones for 𝜔 =
30, while for others the opposite occurred.  
The last experiment lied on finding what is the 
most suitable value of iterations that balances the 
computational time and the quality of the solution, 
if 1, 50 or 100 iterations. With the results obtained 
one can perceive that 1 iteration was the only 
value that provided remarkably worse results. The 
difference obtained for 50 and 100 iterations, was 
not significant since it only provided different 
results for one instance. Thus, if the aim is to work 
with a small amount of collection requests 100 
iterations should be the value chosen, while if one 
is working with large instances a smaller number 
of iterations should be selected. 
For all of the experiments performed, the 
optimization software was not able to find results 
for the large instances, providing only results for 
the small and medium size instances. The 
heuristic method, on the other hand, was able to 
find results for all of the considered instances and 
required less computational time. The results 
obtained for the experiments were that the values 
for the heuristic method were very similar to the 
optimization software ones. More specifically, for 
the small instances the differences were always 
bellow 2% and for the medium size instances the 
differences were bellow 20%. 
In summary, the heuristic algorithm is a good 
alternative to the optimization solver. In terms of 
the parameters to use, for Region A a penalization 
of 50 and a time discretization into periods of 60 
minutes proved to find more adequate results. On 
the other hand, for Region B since the aim is only 
to minimize the routes’ time a penalization of 0 
should be considered. Regarding the number of 
iterations to consider it should be 50 for when the 
number of collection requests is very high and 100 
when one deals with a smaller number of 
collection requests. Thus, these will be the values 
considered when using the heuristic methodology 
in the next chapter. 
 
 

7. CASE STUDY RESULTS AND 
DISCUSSION 

Region A 
Associated with the manner that routes are 
currently defined in this region, arises the issue of 
having periods of the day where too many 
samples arrive in the lab and others where very 
few arrive. This leads to significant differences in 
the lab throughput throughout the day. Thus, 
emerging the need of improving them by 
desynchronizing their arrivals. 
The results obtained for this region using the 
heuristic algorithm are presented in the following 
table, Table 3. 
Table 3 - Numerical comparison of the routes currently 
established with the ones provided by the heuristic method in 
Region A. 

 Current routes Proposed routes 
Distance 

(kms) 
Time 
(min) 

Distance 
(kms) 

Time 
(min) 

Total 3744	 7642	 3958	 7839	
Average 117	 239	 124	 245	

Min. 25	 85	 37	 97	
Max. 522	 517	 536	 485	
𝒘 151	 118	

Analysing Table 3, it is possible to understand that 
with the proposed routes there is an increase of 
214 kms and 197 minutes on each day. In 
percentage, this corresponds to an increase of 
5,7% in terms of distance and of 2,6% in terms of 
time. The routes in average also take more 6 
minutes and 7 kms to be performed. Comparing 
the results for the shortest and longest routes, one 
would have more homogeneous routes with the 
heuristic algorithm results since that the shortest 
route would take more time to be completed, and 
the largest less time. Moreover, having the longest 
route performed in less time is beneficial for the 
entity due to the perishable nature of biomedical 
samples. Regarding the highest number of boxes 
arriving in the busiest time period, a decrease of 
33 boxes would be attained. 
To comprehend the change in the arrivals, graphs 
regarding the number of boxes arriving in the lab 
in function of the arrival times were plotted for both 
the current and the proposed routes. 

 
Figure 1 – Estimation of the number of boxes arriving in the 
central laboratory per hour by the current routes. 
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Figure 2 – Estimation of the number of boxes arriving in the 
central laboratory per hour by the proposed routes. 

Concerning the results obtained for the arrivals of 
the current ones (Figure 1) and the proposed ones 
(Figure 2) major differences can be identified. 
More specifically, apart from the early morning 
routes where the arrivals are maintained, with the 
new routes it would be possible to have boxes 
arriving earlier in the lab. As a matter of fact, it 
would be possible to have samples arriving at 13h 
in comparison to the current routes where 
samples only arrive after 14h. Also, the peak of 
151 boxes that occurred from 14h to 15h in the 
current routes would pass to occur between 15h 
and 16h having 118 boxes arriving in that interval, 
a difference of 33 boxes. Another important fact to 
point out lies on the afternoon peak that occurs in 
the current routes in the interval from 19h to 20h 
that would occur earlier between 18h and 19h. 
Finally, the proposed routes would also allow not 
having boxes arriving in the lab after 20h which is 
beneficial for the entity since it could allow the lab 
to close earlier. In general, the new routes would 
both allow having samples arriving earlier in the 
lab as well as providing for a smoother workflow in 
the lab, allowing the samples to be analysed 
earlier which in turn would make results to be sent 
to patients also earlier. 
Finally, to further analyse the impact of these 
arrivals in the workflow of the lab, and since the 
labs’ capacity is not explicitly known in terms of 
how many boxes can be analysed per hour, three 
different scenarios were created to analyse 
different possible capacities for the lab workflow. 
The three scenarios lied on having a lab capacity 
of 60, 80 or 100 boxes per hour. For the results 
obtained in these scenarios it would be possible to 
have all the samples analysed one hour earlier 
comparing to the currently established routes. 
Also, for scenario 2 and 3 it would allow having the 
full capacity being utilized for less hours, providing 
for a smoother workload in the lab.  
In summary, although the new routes require an 
increase in terms of the routes total distance and 
total travelled time, it would be possible to have all 
of the lab work to be completed earlier. Not only 
this would allow results to be sent earlier to 
patients, but also would allow freeing the 

technicians that had to work during this hour, 
which could in turn compensate the cost 
associated to the increase in the routes travel 
time. 
Region B 
The aim when calculating routes for Region B is to 
minimize the routes’ total travel time, not 
considering the desynchronization of the arrivals.  
The numerical results obtained for this region 
using the heuristic algorithm are now presented in 
the following table, Table 4. 
Table 4 – Numerical comparison of the routes currently 
established in with the new routes provided by the heuristic 
method. 

 Current Proposed Improve-
ment 

T
i
m
e 

R1	 10h00–19h01	 11h43–18h39	 -	
R2	 11h00–18h04	 10h02–18h09	 -	
R3	 10h00–20h42	 09h56–18h58	 -	
Total	 26h47	 24h05	 02h42	
Av.	 ~	09h01/route	 ~	08h07/route	 54min/route	

D
i
s
t
a
n
c
e 

R1	 502	kms	 383	kms	 -	
R2	 355	kms	 397	kms	 -	
R3	 590	kms	 465	kms	 -	
Total	 1447	kms	 1245	kms	 202	kms	

Av.	 ~	482	kms	 ~	415	kms	 67	kms/route	

By analysing Table 4, one can observe the 
improvements in terms of time and distance. In 
fact, with the new routes, an improvement of 
02h42 (i.e., less 11,2% in terms of time) would be 
achieved. Regarding the total distance, an 
improvement of 202 kilometres (i.e., less 16,2% in 
terms of distance) would be attained. Concerning 
the schedules of the routes the maximum time that 
a route would take would pass from 10h40 to 
09h02. The shortest route would also diminish 
since it would pass from taking 07h04 to be 
around 06h56. The remaining route would also be 
improved since it would change to last from 09h01 
to last 08h07. As a matter of fact, the results 
obtained with the heuristic algorithm provide more 
balanced routes in terms of time and distance 
since the difference between the longest and the 
shortest routes is less than from the ones currently 
established.  
Furthermore, the routes retrieved by the algorithm 
were also improved with regard to the arrival 
times, since all of them would arrive before 19h on 
the contrary to the currently established ones 
where the longest route arrives at almost 21h. This 
would enable samples to arrive earlier to the lab 
and to be tested earlier which in turn would allow 
results to be sent to the patients also earlier.  
In conclusion, the heuristic algorithm was very 
effective calculating Region B routes since it was 
able to provide the results desired by the entity. 
Not only the routes were improved in terms of 
distance and total travel time, but it would also 
enable results to be delivered earlier to patients. 
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8. CONCLUSIONS AND FUTURE WORK 
BSTPs are highly complex problems which are 
designed to transport biomedical samples from 
SCCs to the lab to be analysed. Supported by a 
case study description and an extensive literature 
review, a BSTP model with desynchronized 
arrivals and open routes was proposed. Its main 
goal is to assist a clinical analysis group, by 
reconstructing their current routes. Two objectives 
are considered in the model: minimization of the 
routes’ total travel time and the number of sample 
boxes’ arriving to the lab in the busiest time period. 
Besides, a multi-start heuristic was introduced to 
handle large instances in a reasonable amount of 
time.  
Firstly, to test the mathematical model and the 
heuristic, a set of 15 instances characterized by 
their size was created having as a basis the 
geographical regions that the entity considers 
when constructing the routes.  
The heuristic proved to be efficient in minimizing 
both the routes total duration as well as the 
number of arrivals during the busiest period, since 
it provided similar results and in less time in 
relation to the optimization program. In fact, it 
presented a relative error always bellow 20%. In 
addition, it also granted results for the large 
instances which GAMS could not find results.  
The parameters that fit best the case study context 
were also studied, arriving to the conclusion that 
the finest penalization to desynchronize arrivals 
would be of 50 (i.e., 𝜃 = 50) and that the finest 
time discretization would be into periods of 60 
minutes (i.e., 𝜔 = 60). Finally, the most 
appropriate number of iterations for the algorithm 
was investigated. Hence, arriving to the 
conclusion that if the aim is to work with a relatively 
small amount of collection requests it is 
appropriate to use 100 iterations, while if one is 
working with a set of large instances a smaller 
number of iterations must be selected to obtain 
results requiring computational time. 
The model was applied to two different regions: 
Region A and Region B. While the aim of the 
former region was to both desynchronize the 
arrivals in the lab and minimize the total travelled 
time, the aim of the latter region was only to 
minimize the total travelled time. When applying 
the algorithm for Region A the arrivals were 
successfully desynchronized, however implying 
an increase of 5,7% and of 2,6% in the routes’ 
total distance and total time, correspondingly. For 
Region B, improvements of 16,2% and of 11,2% 
can be attained in terms of the total distance and 
total time, respectively. 
Within the developed work, although important 
results were obtained also some limitations can be 
identified that can be taken as basis for future 
work in the problem. Thus, regarding the heuristic 

algorithm proposed and in order to obtain 
solutions with higher quality, changes in the 
algorithm could be performed. Firstly, further 
randomization should be introduced in the 
creation of the initial solution at each iteration in 
the algorithm. Also, in the improvement steps, 
diversification of the search should be achieved in 
order to further explore the solution space. An 
additional suggestion lies on allowing for soft time 
windows in order to obtain improved solutions.  
Still on the developed metaheuristic, 
improvements in the performance of the algorithm 
should be carried out in order to reduce the 
computational time taken to calculate the routes. 

BIBLIOGRAPHY 

[1] “Increasing Workforce Productivity in the Diagnostic Laboratory 
How Can the Lab Keep Up with Demand?,” Siemens Healthcare 
Diagnostics Inc, 2018. . 

[2] G. Erdoğan, “An open source Spreadsheet Solver for Vehicle 
Routing Problems,” Comput. Oper. Res., vol. 84, pp. 62–72, Aug. 
2017. 

[3] G. B. Dantzig and J. H. Ramser, “The Truck Dispatching Problem,” 
Source Manag. Sci., vol. 6, no. 1, pp. 80–91, 1959. 

[4] M. M. Flood, “The Traveling-Salesman Problem,” Oper. Res., vol. 
4, no. 1, pp. 61–75, Feb. 1956. 

[5] C. Alabas-Uslu and B. Dengiz, “A self-adaptive local search 
algorithm for the classical vehicle routing problem,” Expert Syst. 
Appl., vol. 38, no. 7, pp. 8990–8998, 2011. 

[6] F. Daneshzand, “The Vehicle-Routing Problem,” in Logistics 
Operations and Management, Elsevier Inc., 2011, pp. 127–153. 

[7] M. Mirabi, N. Shokri, and A. Sadeghieh, “Modeling and Solving the 
Multi-depot Vehicle Routing Problem with Time Window by 
Considering the Flexible End Depot in Each Route,” Int. J. Supply 
Oper. Manag. IJSOM Shokri Sade. Int J Supply Oper Manag., vol. 
33, no. 33, pp. 1373–1390, 2016. 

[8] J. Widuch, “Current and emerging formulations and models of 
real-life rich vehicle routing problems,” in Smart Delivery Systems, 
Elsevier Inc., 2020, pp. 1–35. 

[9] D. Cattaruzza, N. Absi, and D. Feillet, “Vehicle routing problems 
with multiple trips,” Ann. Oper. Res., vol. 271, no. 1, pp. 127–159, 
2018. 

[10] W. Li, Y. Wu, P. N. R. Kumar, and K. Li, “Multi-trip vehicle routing 
problem with order release time,” Eng. Optim., vol. 52, no. 8, pp. 
1279–1294, 2019. 

[11] A. Mingozzi, R. Roberti, and P. Toth, “An exact algorithm for the 
multitrip vehicle routing problem,” INFORMS J. Comput., vol. 25, 
no. 2, pp. 193–207, 2013. 

[12] F. Semiz and F. Polat, “Solving the area coverage problem with 
UAVs: A vehicle routing with time windows variation,” Rob. Auton. 
Syst., vol. 126, p. 103435, 2020. 

[13] A. Grasas, H. Ramalhinho, L. S. Pessoa, M. G. Resende, I. 
Caballé, and N. Barba, “On the improvement of blood sample 
collection at clinical laboratories,” BMC Health Serv. Res., vol. 14, 
no. 1, 2014. 

[14] A. Expósito, J. Brito, J. A. Moreno, and C. Expósito-Izquierdo, 
“Quality of service objectives for vehicle routing problem with time 
windows,” Appl. Soft Comput. J., vol. 84, Nov. 2019. 

[15] A. M. Anaya-Arenas, T. Chabot, J. Renaud, and A. Ruiz, 
“Biomedical sample transportation in the province of Quebec: A 
case study,” Int. J. Prod. Res., vol. 54, no. 2, pp. 602–615, 2016. 

[16] M. Toschi, E. Lanzarone, A. M. Anaya-Arenas, V. Bélanger, V. 
Nicoletta, and A. Ruiz, “A Fix-and-Optimize Variable 
Neighborhood Search for the Biomedical Sample Transportation 
Problem,” IFAC-PapersOnLine, vol. 51, no. 11, pp. 992–997, 
2018. 

[17] A. M. Anaya-Arenas, C. Prodhon, J. Renaud, and A. Ruiz, “An 
iterated local search for the biomedical sample transportation 
problem with multiple and interdependent pickups,” J. Oper. Res. 
Soc., pp. 1–16, 2019. 

[18] Z. Naji-Azimi, M. Salari, J. Renaud, and A. Ruiz, “A practical 
vehicle routing problem with desynchronized arrivals to depot,” 
Eur. J. Oper. Res., vol. 255, no. 1, pp. 58–67, 2016. 

[19] L. C. Coelho and G. Laporte, “Improved solutions for inventory-
routing problems through valid inequalities and input ordering,” Int. 
J. Prod. Econ., vol. 155, pp. 391–397, 2014. 

[20] R. Martí, “Multi-Start Methods,” in Handbook of Metaheuristics, 
2006, pp. 355–368. 

 


