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Abstract 

Biomedical tests take an important role assisting physicians providing accurate diagnostics to patients. 

These samples are collected in specimen collection centres and are transported in cool boxes to the 

laboratory where they are analysed. In the present dissertation, the case of a diagnostic provider group 

is considered. Since this entity deals daily with a great number of samples, the flow of their arrivals must 

be considered to ensure for a smooth workload in the laboratory. Hence, it is desirable to desynchronize 

the samples arrivals by handling the routes’ schedules and passing orders. 

In this work, a Biomedical Sample Transportation Problem (BSTP) mathematical model is developed to 

assist the entity under study in the creation of their routes. These routes have the particularity that they 

can depart from different locations other than the laboratory. Further, a multi-start algorithm based on 

the developed model is introduced with the purpose of handling large instances in a reasonable amount 

of time. The objective is to both minimize the routes’ total travel time and the number of sample boxes’ 

arriving to the laboratory in the busiest time period. To the best of ones’ knowledge, none of the previous 

works on the BSTP has considered the possibility of open routes as the current work presents. 

Application of the model in two regions with different objectives suggests that improvements can be 

achieved. More specifically, for the region that considers both objectives (i.e., minimizing the routes total 

travel time along with desynchronizing the arrivals) the arrivals are successfully desynchronized, 

however implying an increase of 5.7% and of 2.6% in the routes’ total distance and total time, 

correspondingly. For the region where the only objective is to minimize the routes’ total duration, 

improvements of 16.2% and of 11.2% can be attained in terms of the total distance and total time, 

respectively. 

Keywords: Vehicle Routing Problem; Biomedical Sample Transportation Problem; Desynchronized 

arrivals; Open routes; Time-windows; Optimization; Metaheuristic; Multi-start algorithm. 
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Resumo 

As análises clínicas desempenham um papel fundamental a efetuar diagnósticos precisos, por parte 

dos médicos, aos seus pacientes. Estas amostras são colhidas nos postos de colheita e transportadas 

em caixas térmicas para o laboratório, onde são analisadas. Na presente dissertação, é considerado o 

caso particular de um grupo de análises clínicas. Como esta entidade lida diariamente com um elevado 

número de amostras, deve ter-se em consideração o fluxo das chegadas das mesmas de forma a 

garantir uma melhor distribuição da carga de trabalho no laboratório. Deste modo, é importante 

dessincronizar as chegadas das análises clínicas alterando as rotas atualmente estabelecidas. 

Assim sendo, é desenvolvido nesta tese um modelo matemático para o Problema de Transporte de 

Amostras Biomédicas (BSTP) de modo a auxiliar esta entidade na criação das suas rotas. Estas rotas 

têm a particularidade de poderem partir de diferentes locais para além do laboratório. Para além disso, 

é sugerida uma heurística multi-start baseada no modelo matemático concebido, de modo a ser 

possível encontrar soluções para instâncias grandes num intervalo de tempo razoável. O propósito é 

então minimizar o tempo total das rotas e o número de caixas que chegam ao laboratório no período 

de tempo do dia com maior frequência de chegadas. De facto, nenhum dos trabalhos anteriores sobre 

o BSTP considerou a possibilidade de rotas abertas como o trabalho atual apresenta. 

A aplicação do algoritmo em duas regiões com objetivos diferentes sugere que há melhorias que podem 

ser alcançadas. Mais especificamente, para a região que considera ambos os objetivos mencionados 

(ou seja, minimizar o tempo total das rotas e dessincronizar as chegadas) foi possível dessincronizar 

as chegadas, porém com custo acrescido de 5.7% e de 2.6% na distância total percorrida e do tempo 

total das rotas, respetivamente. Para a região cujo objetivo é a minimização do tempo total das rotas, 

puderam ser alcançadas melhorias de 16.2% e 11.2%, respetivamente, em termos da distância total 

percorrida e do tempo total das rotas. 

Palavras-chave: Problema de Roteamento de Veículos; Problema de Transporte de Amostras 

Biomédicas; Chegadas dessincronizadas; Rotas abertas; Janelas de tempo; Otimização; 

Metaheurística; Algoritmo multi-start. 
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1 Introduction 

1.1 Motivation 

One of the main challenges addressed by healthcare systems is to guarantee high-quality services 

having limited resources. Diagnostic laboratories are constantly seeking for ways to improve their 

capabilities by strengthening diagnostic accuracy, managing higher workloads faster and extend test 

menus. Simultaneously, they are required to become more efficient by reducing costs [1]. 

A significant part of a successful laboratory operation is biomedical sample transportation. In fact, a 

well preserved and timely biomedical sample is vital to lead to an accurate diagnosis. Daily, thousands 
of biomedical samples are being transported from various healthcare facilities (e.g., hospitals, private 

clinics and retirement homes) to laboratories to be examined. Even if large hospitals often can locally 
analyse samples, most centres are not sufficiently equipped to perform such tests; thus, it must be 

ensured that samples are safely transported to clinical analysis laboratories. Accordingly, many 
Specimen Collection Centres (SCCs) are assigned to the same laboratory making essential managing 

the flow of the samples arriving to the laboratory in order to avoid congestion.  

Biomedical samples are perishable items; therefore, it must be ensured that once these samples are 
collected in the SCCs that they arrive in the laboratory in a short amount of time to guarantee that they 

lead to an accurate diagnosis. This short life span of biomedical samples usually makes necessary to 
perform more than one visit per day in each SCC in order to avoid sample perishing. 

The current study addresses this challenge by exploring the aim of an entity, which pursues its activity 

in the area of the public health. This entity deals with a great number of biomedical samples each day. 

Thus, the present research has the objective of improving the routing of biomedical test sample 

transportation to their principal clinical analysis laboratory using optimization approaches. This 

improvement should ensure for a smoother workload at the laboratory by desynchronizing the 

biomedical samples arrivals while at the same time reduce the operational costs and increase the 

resources usage by minimizing the routes total duration. 

1.2 Dissertation objectives  

The present dissertation focuses on developing and applying operation research techniques to improve 

the routes of a group of clinical pathology that transfer biomedical samples from the SCCs in two regions, 

Region A and Region B, to the central laboratory. The present master thesis makes part of a project 

from the SIEMENS Healthineers (SH) Enterprise Services (ES) team; thus, the developed work should 

be in accordance with their principles. SH ES team always seeks at delivering solutions that promote 

better clinical outcomes, improve patient experience while in parallel reduce costs. 
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The objective of the present research focuses on developing an optimization model that produces routes 

that are defined by both the sequence of the SCCs to visit and the schedules at which the SCCs should 

be visited. The developed model should integrate the objectives defined by the entity for both regions 

(Region A and Region B). Moreover, notwithstanding the fact that this model is inspired by the entity’s 

case study, it should be general enough to model similar contexts. To achieve this main goal, secondary 

research goals are also established: 

- Reviewing previous research already performed in the field of the Biomedical Sample 

Transportation Problem (BSTP) and emphasizing their complex nature; 

- Identifying potential gaps in the literature that are important for the resolution of the case study 

and suggesting possible alternative modelling approaches; 

- Contributing to the existing literature by providing both an optimization model and a multi-start 

heuristic for the entity’s context; 

- Finally, providing possible recommendations to assist the entity in the creation of new routes. 

1.3 Proposed methodology 

In order to accomplish the objectives, the proposed methodology comprises five fundamental steps, 

demonstrated in the following figure, Figure 1.1. 

 

Figure 1.1 – Proposed methodology. 

Step 1 - Case-study contextualization and problem definition 

The aim of the first step is to introduce the entity by describing its activity and the operations related to 

the transportation of the biomedical samples. Thus, present their network structure, limitations, main 

challenges faced and the corresponding objectives. 

Step 2 - Literature Review 

This step focuses on introducing the class of optimization problems found in logistics, the Vehicle 

Routing Problem (VRP). More specifically, describe the most common mathematical programming 

formulations used, the VRP variants closer to the case study and the most common resolution methods. 

Also, surveying the state-of-art of the BSTP and underline the contribution of this thesis to the already 

existing literature. 
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Step 3 – Mathematical model formulation and heuristic algorithm presentation 

In the third step, the mathematical formulation of the proposed model is outlined, and the structural 

components are presented. Then, the algorithm proposed to solve the case study is described. 

Step 4 - Performance analysis of the solution methods 

Afterwards, a performance analysis to validate the solution approach is performed. Therefore, a set of 

instances are applied both to the developed mathematical model using the optimization software and to 

the created heuristic algorithm. The corresponding results are then compared to evaluate their 

performance and to find the parameters that fit best the entity’s scope.  

Step 5 - Case-study resolution and analysis 

Finally, the algorithm is applied to the presented case-study in two different regions in order to produce 

recommendations. These results are analysed, discussed and compared to the current existing ones. 

1.4 Thesis outline 

The present dissertation is structured into eight chapters, which are briefly described subsequently. 

Chapter 1 – Introduction 

The first chapter, the present one, contextualizes the problem by providing a motivation and a general 

description of the objectives to be attained in this work. 

Chapter 2 – Case Study 

The aim of the second chapter, the case study, is to characterize the entity, its activity and describe their 

current biomedical sample collection operations. Namely, it contextualizes and describes the entity’s 

background, outlines the network structure of the SCCs and laboratories and details the current routes 

and their limitations. 

Chapter 3 – Literature Review 

After identifying the problem, the literature review aims at understanding the well-known class of 

optimization problems found in logistics, the VRP. Thereafter, its description, the most common 

mathematical programming formulations used, the different VRP variants (with more attention to the 

ones that are closer to the case study) and their resolution methods are described in detail. It also 

presents the BSTP, the VRP applied to the transportation of biomedical samples, and a description of 

the studies developed in the past that are closer to the case study, highlighting in particular the 

contribution of this work to existing studies. 
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Chapter 4 – The Biomedical Sample Transportation Problem  

In this chapter, the mathematical formulation of the proposed linear model is described. Thus, the 

structural components (i.e., the sets, parameters, decision variables, objective function and the 

constraints) are presented. 

Chapter 5 – Heuristic Algorithm 

The type of problems as the one under study hold various characteristics that make it difficult to be 

solved using exact solution approaches. Thus, the need of developing a heuristic algorithm arises. In 

Chapter 5, a multi-start algorithm to solve the BSTP with open routes and desynchronized arrivals is 

theoretically illustrated. 

Chapter 6 – Performance Numerical Results 

In Chapter 6, the performance of the proposed methods (optimization model and heuristic algorithm) is 

assessed over many realistic instances based on the network of the Region A of the entity. 

Chapter 7 – Case Study Results and Discussion 

Chapter 7 comprises the presentation of the results for the real-world case study, applying the developed 

heuristic algorithm in order to obtain results for both regions. 

Chapter 8 – Conclusions and Future Work 

The last chapter summarizes the work developed and incorporates the systematization of all the pros 

and cons of this model. It also presents suggestions for further work. 
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2 Case Study 

The development of the present thesis has as basis a real-world case study and aims at optimizing the 

biomedical samples collection routes of a medical diagnostic provider group in two regions: Region A 

and Region B. Thereafter, the present chapter has the objective of characterizing the group, its activity 

and describing their current biomedical sample collection operations in the referred locations. Hence, it 

starts with a brief contextualization and description of the entity’s background. Then, the associated 

routes are detailed, and their limitations are listed. Finally, a reflection on the challenge of the thesis is 

presented. 

2.1 Entity’s background 

The entity under study is a group of clinical pathology which aims at continuously following up both with 

the medical evolution and challenges in the area of clinical pathology, while providing this knowledge to 

medical staff and patients. To be able to provide clinical diagnoses, the group has distributed throughout 

several collection points and laboratories, including hospital laboratories. They also provide sample 

collections at home, a process valuable for the elderly and for those with reduced mobility, improving 

patient experience.  

An important aspect that lies behind the entity’s process of providing medical diagnosis is the associated 

sample transportation operations and logistics. To be able to provide an accurate medical diagnosis, it 

is fundamental that the biomedical sample is transferred with appropriate handling from the site where 

it was taken to the laboratory. The entity has then the concern of coordinating three sources of samples: 

collections at home, collection points and hospitals. 

Typically, patients go directly to the entity’s collection points to take the biomedical samples, however 

sample collections at home can be required and, in this case, professionals must go with the necessary 

material to the patient’s house. Home biomedical sample collections are organized in such a way that it 

is the responsibility of the nearest collection point to collect the sample and bring it back to the collection 

point. Thereafter, throughout the day, collection points gather samples collected at patient’s home and 

in these points, which then need to be transferred to the laboratory to be tested.  

The entity has additionally an agreement with some hospitals to analyse their samples. Some of these 

larger hospitals have integrated laboratories that can perform common exams (e.g., haematological 

tests, standard biochemical tests and urinalysis). This allows some samples not having the need to go 

to the central laboratory to be tested since they are tested in the hospitals. Nevertheless, when more 

specific exams are required (e.g., immunological tests and serological tests), samples must be 

transferred to the central laboratory to be properly examined. Moreover, in the hospitals that do not have 

an integrated laboratory, all the samples must be transferred to the central laboratory. 

Henceforth, with the need of transporting samples from the hospitals/collection points to the central 

laboratory arises the existence of predefined routes. The aim of the present thesis is to optimize these 



 6 

routes by variating the timing and the order that the collection points and hospitals are visited. Currently, 

sample collection routes are organized taking into consideration the hospitals and collection points 

geographical locations and defined collection hours, while ensuring that all the samples in that day arrive 

to the laboratory and meet all the requirements. 

The focus of the present thesis lies on optimizing their routes in Regions A and B that transport 

biomedical samples to the entity’s central laboratory, as this is one of the major challenges that this 

entity faces.  

2.2 Sample collection routes 

As biomedical samples are considered perishable items, its transportation must be made considering 

certain requirements. These include guarantee that the samples arrive to the laboratory with the required 

quality (for this, cool boxes are used) and that each route has a maximum transportation time restriction, 

since the samples have a limited time span. Additionally, depending on the opening hours of the 

collection points/hospitals, more than one route to the same point in the same day can be required. 

An important aspect that the entity considers when constructing the routes is the different opening hours 

of the collection points and hospitals. During weekdays, most collection points are open until late in the 

morning, allowing the existence of only one collecting route per day in that location. For collection points 

of bigger dimension and hospitals, since they are open for longer hours, multiple routes can be settled 

throughout the day, during the morning and afternoon period. During weekends, collection points are 

only open on Saturday’s morning, being closed on Sundays. In the case of hospitals, they continue 

having the same working hours as on the weekdays. 

When constructing the routes, the entity does not consider the vehicles capacity as a limitation. In fact, 

it has a homogeneous fleet (i.e., the vehicles are all equal) where each vehicle can transport 4 cool 

boxes. Each one of these cool boxes has the capacity of around 7/8 test tube supports carrying 64 

samples each. Therefore, it allows each vehicle to transport a very high number of samples (around 

2000) making their capacity not a limitation when collecting the samples. 

The demand on each collection point and hospital is not known in advance, since this number fluctuates 

according to multiple factors (e.g., day of the week, time of the year, etc.). Consequently, the routes are 

organized in a manner that guarantees that all the samples are transported to the laboratory to be 

analysed in that day independently of the daily demand on these points. This is possible both due to the 

unlimited vehicles’ capacity and by the multiple collections to the same collection point/hospital. 

Regarding the geographical organization of the routes, in the case of Region A, they usually start from 

the drivers’ house and are organized so that they first visit the closest sites. After performing the route, 

if a new route is attributed to that same driver, the driver then starts from the laboratory. In the case of 

Region B routes, since these take longer due to the geographic dispersion of the collection points and 

hospitals, only one route is attributed to each driver. In this case, drivers depart from one of the entity’s 
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laboratory located in Region B, go to the determined collection points and hospitals to collect the 

biomedical samples and transport them to the central laboratory. 

It is expected that drivers do not spend more than 5-10 minutes on each point, hence it is the technician’s 

responsibility to have the samples prepared for transportation. In smaller collection points, if the 

technician perceives that it is not necessary for the driver to pass on that collection point, the driver can 

be advised and skip it. Besides these predefined routes, the entity is also prepared for any emergency 

route that can arise (these usually include transference of samples to the laboratory and between 

laboratories).  

Currently, in Region A the entity counts on having 39 fixed established routes that satisfy all the 

aforementioned restrictions. In this moment, the entity counts on having a total of 28 vehicles available 

to perform the routes.  

Associated with the way the routes in this region are defined arises the issue of having periods of the 

day where too many samples arrive to the laboratory contrary to others where very few samples arrive. 

This leads to significant differences in the laboratory throughput throughout the day, that need to be 

softened. This happens substantially between 2 pm and 4 pm and is, in fact, a bottleneck problem in 

the samples’ supply chain of the entity’s central laboratory. 

Regarding Region B routes, the entity currently counts on 3 fixed established routes that also satisfy all 

the restrictions previously presented. Summing to those restrictions, since these routes take several 

hours to be completed, a lunch break of 1 hour has also to be considered.  

The problem of having too many samples arriving in the laboratory in certain periods of the day is not a 

concern in Region B routes, since these samples usually arrive to the laboratory in the evening. 

Nevertheless, they still have the issue of taking a long time to be completed, which is a challenge, given 

the perishable nature of the biomedical samples transferred. 

As a consequence of the challenges described for both these regions, the focus of the present thesis is 

to address these issues by constructing and proposing routes that, on one hand, allow for a smoother 

workload at the laboratory, and on the other hand, reduce the operational costs and increase the 

resources usage by minimizing the routes total duration. 

2.3 Chapter conclusions 

With the understanding of the logistics and operations associated with the entity biomedical sample 

collection, one can conclude that the design of the collection routes is a highly complex problem. Not 

only it is necessary to attend their restrictions and limitations, but also it is important to take their 

objectives into consideration. In fact, the biggest challenge is to face the bottleneck in the samples 

supply chain related with the samples’ arrival time while, at the same time, make the routes efficient by 

trying to reduce transportation costs by minimizing the routes’ duration.  
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It is, therefore, the aim of this work to address this challenge by redesigning and rescheduling the 

collection routes in the two regions under study, considering the specific needs and challenges of each 

of them. More specifically, for Region A it is important to tackle the challenge of desynchronizing the 

samples’ arrivals in the laboratory, while at the same time take into concern the reduction of 

transportation costs; for Region B the main concern is to minimize the routes’ total duration. In the next 

chapter, a literature review on the issue is explored to perceive how to address the problem in hand and 

face these challenges. 
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3 Literature Review 

The present chapter has the objective of understanding deeply the well-known class of optimization 

problems found in logistics, the Vehicle Routing Problem (VRP), that can be applied to solve the problem 

previously presented in the Case Study. Thereafter, its description, the most common mathematical 

programming formulations used, the different VRP variants (with more attention to the ones that are 

closer to the case study) and their resolution methods are presented in detail. Afterwards, the Biomedical 

Sample Transportation Problem (BSTP) is presented, and a description of the studies developed in the 

past that are closer to the case study are reviewed. 

3.1 Vehicle Routing Problem 

The VRP constitutes a well-known class of optimization problems found in logistics, originated from real-

life needs [2]. The problem was first introduced in 1959 by Dantzig and Ramser [3] as a generalization 

of the Traveling Salesman Problem (TSP) presented by Flood, in 1956 [4]. The TSP arises from the 

situation of a salesman who wants to visit his clients in a given set of cities and then return to his own 

city, in the shortest possible route.  

In the classical VRP, a fleet of vehicles is based at a single depot to collect or deliver products for a set 

of geographically scattered nodes [5]. Each of these vehicles, whose capacity cannot be exceeded, 

leaves the depot, visits the nodes and returns to the depot. The aim is to find the optimal set of routes 

so that all the nodes are served exactly once. Thereafter, fundamental elements of a typical VRP include 

the road network, the vehicles, the nodes and the depot [6]. Moreover, depending on the problem, the 

optimization objective can vary. Typical objectives are the minimization of the overall transportation 

costs which depends on the global travelled distance and on the fixed costs associated with the vehicles, 

the minimization of the number of vehicles needed to serve the nodes and the minimization of the 

penalties concerning partial service of the nodes [7]. Figure 3.1 represents a typical VRP solution. 

In the early 2000s, most methodological studies were based on a limited subset of operational problems 

[8], thereafter, on account of real-life needs, literature on routing problems has widely expanded with 

several more attributes/variants being introduced in the problem and, with faster and more efficient 

solution methods being developed [9].  

The optimal solution to the VRP is considered Nondeterministic Polynomial-time Hard (NP-Hard), as a 

result, its solvability using mathematical programming is conditioned and only small instances can be 

solved optimally [10]. Thus, to solve moderate-size problems that are of interest in practice, heuristics 

are often used [11]. 
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Figure 3.1 – Example of routes elaborated by solving a classical VRP (adapted from [12]).  

3.2 Basic models for the VRP 

Typically, to represent the road network of a VRP, a graph, G, is used. G is composed by a set of edges, 

A, that represent the road sections and by a set of vertices, V, that represent the depot and the nodes, 

so that G = {A, V} [7]. The vertex set, V = {0, 1, ..., n}, is usually formulated in such manner that the 

depot corresponds to vertex 0 and the rest of the vertices 1, ..., n correspond to the set of nodes that 

are needed to be visited in the problem. On its turn, the edge set is commonly represented by A = {(i, j): 

i, j ∈ V, i ≠ j}, where i and j represent the limits of the section. Many mathematical programming 

formulations for the VRP have been suggested in the literature though, the most common formulations 

include the vehicle flow formulation, the commodity flow formulation and the set partitioning formulation 

[7].  

Vehicle flow formulation models use variables for each edge of the graph [13], which include the two-

index vehicle flow formulation and the three-index vehicle flow formulation. The two-index vehicle flow 

formulation uses the integer variable xij, which represents the number of times edge (i,j) appears in the 

optimal solution. The three-index vehicle flow formulation, on the other hand, uses the binary variable 

xijk to represent the routing solution: xijk takes the value of 1 if edge (i,j) is traversed by vehicle k and 

takes the value 0 otherwise [14].  

In commodity flow formulation models, integer variables related with the edges are added to the two- or 

three-index flow formulations [7]. More specifically, the two-commodity flow formulation uses the binary 

variable xij, which takes the value of 1 if the edge (i,j) is in the solution, and uses the flow variables yij 

and yji that represent, respectively, the load and the empty space on the vehicle when the edge (i,j) is 

traversed [14]. 

Finally, models of set partitioning formulations type have an exponential number of binary variables that 

are associated with different feasible vehicle routes [7]. In fact, this formulation uses the binary variable 
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xj that is associated with each feasible route j, which takes the value of 1, if the route j is in the optimal 

solution [14]. 

3.3 VRP variants 

Depending on the operational context, the problem can have different constraints, designed to represent 

the problems characteristics, introduced in each of the fundamental elements (i.e., road network, 

vehicles, nodes and depots) that leads to the generation of several VRP variants. Typical constraints 

include time windows, multiple depots, multiple periods, and heterogeneous fleets [15], [16].  

Since both characteristics and restrictions of the problem treated in the present thesis were previously 

presented in the case study section, the VRP variants that are more relevant for this purpose are now 

be reviewed in detail. These are: the Capacitated Vehicle Routing Problem (CVRP), the Multi-Trip 

Vehicle Routing Problem (MTVRP) and the Vehicle Routing Problem with Time-Windows (VRPTW).  

3.3.1 Capacitated Vehicle Routing Problem (CVRP) 

The Capacitated Vehicle Routing Problem is considered the simplest variation of the VRP. Comparing 

with the TSP, it allows the use of more than one vehicle and assumes that the vehicles’ capacity is 

limited [17]. Thereafter, in the CVRP a fleet of identical vehicles, a homogeneous fleet, positioned at a 

central depot has to be optimally routed to supply a set of nodes [6], [18]. The demand of each node is 

known in advance; therefore, the solution has to be built so that the vehicles that leave the depot visit 

their respective nodes and return to the same depot while guaranteeing that their capacity is not 

exceeded and that all the nodes are served [6].  

As any other classical VRP, the CVRP can be modelled so that it matches other problems 

characteristics. Nevertheless, there are certain restrictions that, if applied, can lead to alterations of the 

problem, originating new VRP classes. In fact, a well-known extension of the CVRP lies on when the 

fleet of vehicles is heterogeneous, Heterogeneous Fleet Vehicle Routing Problem (HFVRP). This 

heterogenicity can arise from the vehicles’ variability in the fixed and operational requirements, including 

capacity, equipment, speed and cost [19]. Another example of a CVRP extension lies on the Open 

Capacitated Vehicle Routing Problem (OCVRP). In this variant instead of having routes that begin and 

end at the depot (i.e., closed routes), as it occurs in the classical CVRP, the routes must either start or 

end at the depot, but not both at the same time (i.e., open routes) [20]. 

3.3.2 Multi-trip Vehicle Routing Problem (MTVRP) 

A general assumption of the classical VRP is that each individual vehicle only performs one route over 

the planning horizon [21]. This assumption can be impractical, for instance, in scenarios where the fleet 

of vehicles is constituted by small vehicles with low capacity, since they do not have the capability of 

visiting a large number of nodes in each route [22], a common situation faced in metropolitan cities. 
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The Multi-trip Vehicle Routing Problem emerges as an extension of the classical VRP that allows each 

vehicle to perform more than one route within a given time period. This problem considers dependency 

between routes, since it requires that the temporal aspects of the vehicle movements are considered. 

In fact, it is explicitly needed to guarantee that overlapping routes for the same vehicle do not occur and 

that the vehicles’ total duration is less than or equal to the maximum driving time. Hence, the MTVRP 

aims at designing a set of schedules that minimizes the total costs in such way that all the nodes are 

visited [23].  

3.3.3 Vehicle Routing Problem with Time Windows (VRPTW)  

Finally, another important variant of the VRP is the Vehicle Routing Problem with Time Windows. This 

variant arises when the service of each node i is limited to a specific time window, [ai, bi], requiring the 

determination of a schedule for the vehicle routes’, so that the nodes are served in their corresponding 

time windows [24].  

Depending on the characteristics of the problem, two different types of time windows can arise: hard 

and soft time windows [25]. If the time window is hard it means that all the nodes must strictly be served 

within their respective time window. Therefore, the vehicles are not allowed to arrive after the latest time 

to begin service, bi, and if they arrive before the node is ready to begin service, ai, they must wait. On 

the other hand, if the time window is soft it means that the time frame is allowed to be violated but with 

penalty cost. Moreover, the VRPTW is usually solved considering two objective functions: minimizing 

the number of vehicles and minimizing the total travel time [26].  

The VRPTW has several useful real-world applications for problems where the nodes have limited time 

stamps. Some of these examples include bank deliveries, postal deliveries and school bus routing [27]. 

3.4 VRP solution methods 

With the purpose of deciding the best solution method or algorithm to solve a VRP, one must consider 

both the solution quality and the time taken to obtain it [28]. Since the 1980s, many approaches including 

exact methods and heuristics have been designed to solve the VRP. Even though exact methods can 

solve optimally small instances, up to around 100 nodes [29], when facing larger and real-life scenarios, 

these methods become unfeasible given the time required to obtain the solution. Hence, the use of 

heuristic procedures in these environments is more appropriate. Although heuristic methods may not 

ensure an optimal solution, they allow reasonable time solving [29]. The next subsections describe in 

detail each of the aforementioned approaches.  

3.4.1 Exact algorithms 

Exact approaches allow to find the optimal solution, while satisfying all the restrictions required by the 

problem. Nevertheless, due to the high complexity that real-life problems usually have, it may not be 

possible to find the optimal solution within reasonable time. As new inputs are introduced in the problem, 
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the time of response of the model grows exponentially thus, most times, these methods are only viable 

for smaller problems. According to Blocho (2020a), the most relevant methods to find the optimal 

solution are Integer Linear Programming (ILP) and Constraint Programming (CP).  

Integer Linear Programming 

When the problems are formulated as ILP, the variables are defined as integers (e.g., the vehicles’ 

capacity, constraints associated with the time windows) and the constraints are expressed as 

inequalities or linear equations. A classical approach to solve the ILP is the well-known branch-and-

bound (B&B) method developed by Land and Doig, in 1960 [30]. This technique is based on making 

partitions of the complete problem obtaining subproblems of smaller dimension that are easier to solve 

than the complete original problem. The unexplored subproblems generate other new subproblems by 

dividing the solution space into smaller regions, creating a tree structure which can be solved recursively 

(i.e., branching). At the same time, rules are used to eliminate regions of the search space that are 

probably suboptimal (i.e., bounding). When the whole tree has been examined, the best solution in the 

search is then returned [31]. An example of a B&B structure is represented in Figure 3.2. More examples 

of strategies widely used in solving the ILP are the branch-and-cut, branch-and-price and branch-and-

cut-and-price methods [32]. 

 

Figure 3.2 – Illustration of the B&B method (adapted from [32]). 

Constraint Programming 

In CP, a methodology used to represent and solve several optimization problems, the problems are 

articulated regarding the variables and constraints between the variables and are then solved using 

complete search techniques. The constraints determine the properties of the optimal solution, not the 

sequence of steps to be performed. CP is therefore frequently used for several variants of the VRP 

since these can be stated in terms of capacity, time windows, service time, precedence constraints, etc 

[32]. 
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3.4.2 Heuristics 

A heuristic is a computational method designed to solve larger problems, known to be complicated to 

solve optimally [27]. Thereby, heuristics allow to obtain feasible, but not necessarily optimal solutions, 

in reasonable computer time.  

According to Laporte (2007), heuristics are subdivided into classical heuristics and metaheuristics. 

Classical heuristics can additionally be divided into constructive heuristics and improvement heuristics, 

where both methods execute a limited examination of the solution space. Metaheuristics, on the other 

hand, are an improvement of classical heuristics with better exploration of the solution space [33]. The 

referred computational methods are now further explained. 

Constructive heuristics 

Constructive heuristics start from an empty solution that iteratively extends the current solution until the 

final one is built. These methodologies usually do not consider any improvement stages. According to 

Laporte (2007), the most popular constructive heuristic is the savings algorithm developed by Clarke 

and Wright [34]. Its main objective is to minimize costs by combining routes. Initially, the number of 

routes equals the number of nodes, as each individual route is constituted by the vehicle leaving the 

depot, passing in one node and then returning to the depot. A general iteration comprises the connection 

of two routes, one ending at node i and another route beginning at node j, resulting in a feasible route 

(0, i, j, 0), where 0 represents the depot. The saving between nodes i and j, Savingij, is calculated using 

the following equation: 

 -./012!" = 3!# + 3#" − 3!" (3.1) 

, where, cij represents the cost of travelling from node i to node j. At each iteration each possible saving 

is calculated and the one with the greatest saving is selected to be merged. The solution is returned 

when no more profitable and feasible merges can be found. 

The nearest-neighbour and insertion algorithms are other construction heuristics widely used to solve 

VRPs [35]. The nearest-neighbour method, proposed by Flood in 1956 [4], consists in constructing the 

solution with a greedy algorithm by selecting the closest unserved node each time. As for insertion 

heuristics, the generation of feasible solutions is made by inserting unserved nodes into partial feasible 

routes. 

Improvement heuristics 

Improvement heuristic algorithms aim at improving any feasible solution by conducting node exchanges 

between or within vehicle routes. Consequently, they can be separated into two types: intra-route and 

inter-route heuristics.  
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Intra-route methods conduct node exchanges within vehicle routes, post optimizing each route 

separately. Thus, since each route is considered individually it leads to the possibility of applying TSP 

improvement heuristics due to the fact that TSP considers only single routes [36]. In fact, most of these 

improvement procedures can be described in terms of the λ-opt algorithm of Lin (1965). In this case, λ 

nodes are removed from the route, which creates λ disconnected segments. Then, the λ nodes are 

added and the λ segments are reconnected so that a feasible route is reconstructed, if any profitable 

reconnection is found it is implemented [37]. This procedure stops when no more improvements can be 

obtained. 

Inter-route methods, on the other hand, consider different routes at the same time, and the objective is 

to move nodes between them. In this case, procedures that utilize the multi-route structure can be 

developed. Thompson et al. (1993) [38], Breedam et al. (1994) [39] and Kindervater et al. (2003) [40] 

provide descriptions of multi-route node exchanges used by several authors [41]. 

Moreover, according to Laporte (2007) the performance of classical improvement heuristics is good, but 

not excellent. Thus, it makes it more used as building blocks in metaheuristic methods. 

Metaheuristics 

Metaheuristics perform a more comprehensive search of the solution space to avoid converging into the 

first local optimum encountered. Therefore, they commonly combine neighbourhood search rules and 

recombination of solutions [35]. The neighbourhood consists in all solutions that can be reached by 

applying a given type of transformation in the solution. When comparing with classical heuristics, 

metaheuristics provide better quality solutions, however, require more computing time. Moreover, these 

techniques are dependent on the context of the problem which can make them difficult to extend to 

different contexts. Overall, the metaheuristics algorithms that have been proposed to solve the VRP can 

be composed by local search, population search and learning mechanism groups; nevertheless, the 

greatest algorithms derive from a combination of these different methods [35]. 

A local search heuristic usually begins with an initial solution, which may be infeasible, and at each 

iteration moves from the present solution to another one located in the neighbourhood. The search ends 

with the best-known solution after a stopping criterion has been satisfied [33]. An example of a well-

known local search metaheuristic is the Tabu Search introduced in 1986 by Glover [42]. Moreover, some 

search methods based on local optimization intend to achieve global optima (i.e., to find the optimal 

value among all possible solutions and not only the one found in the within the neighbourhood set of the 

candidate solution), thus they require some sort of randomization in order to overcome local optimality. 

If this diversification is not considered, these methods can get stuck in a small area of the solution space 

and may not be able to find a global optimum. One strategy to overcome local optimality lies in re-

starting the search from a new solution once a region has been widely explored, these methods are 

called Multi-Start Methods [43].  
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Population search methods essentially rely on genetic algorithms. Genetic algorithms are based on the 

evolution process found in nature, as they mimic the process of natural selection. Therefore, they consist 

on establishing generations based on a population, where each generation is created by selection, 

recombination and mutation of all the population solutions [35]. A properly designed genetic algorithm 

should maintain right balance between quality and diversity in a population in order to support efficient 

search. 

Finally, learning algorithms are essentially composed of neural networks and colony optimization 

algorithms [36]. Neural networks are models established by interconnected units with weighted links 

mimicking neurons in the brain, that allow to build a solution with the use of feedback mechanisms. In 

fact, the weights in the networks are gradually modified to better correspond an observed output to a 

described output. Elastic net and self-organizing maps are VRP applications that use neural networks 

and one can find examples of their use in Ouduour et al. (2020) [44] and Yoshiike et al. (2002) [45]. On 

the other hand, colony algorithms are based in the behaviour of ant colonies found in nature. Ants, when 

foraging for food release pheromones on their trail, as a result, as time passes more pheromones are 

released in the most frequent paths. It has been demonstrated experimentally that this ant colony 

pheromone trail behaviour can lead to the emergence of shortest paths. Similarly, when constructing a 

VRP solution to a certain move, the probability of it being selected can increase, if in the past this 

particular move has led to better outcomes [26], [35]. 

3.5 Biomedical Sample Transportation Problem 

Now that all the relevant VRP classes and solution methodologies have been reviewed in detail, the 

BSTP can be introduced. The BSTP is a challenging VRP arising in the context of healthcare logistics 

and that can be applied specifically to the case study of the present work. This problem aims at creating 

a transportation plan to pick up perishable items, biomedical samples, at given locations, referred to as 

SCCs and to take them to facilities that have adequate treatment equipment, usually central 

laboratories. Thus, the transportation network consists of a group of SCCs (nodes) affected to a 

laboratory (depot). 

There are some concerns that arise with the biomedical sample transportation, following described. 

After collection, the samples are consolidated in cool boxes that need to arrive at the laboratory within 

a given time frame to be treated otherwise, the samples deteriorate and become unusable, increasing 

the laboratory’s costs and decreasing the quality of the service. In order to respect the sample lifespans, 

SCCs cannot maintain the collected biomedical samples for a long time; thereby, each SCC can have 

different number of sample transportation requests according to the SCC open hours, causing an 

interdependence of pickup times and routes. It is also important to impose a time constraint on the 

duration of each route to guarantee the samples’ quality. Thus, the BSTP is typically characterized by 

multiple visits to each node, a time-window on each visit time and multiple routes for each vehicle [46], 

being closely related to the MTVRP and the VRPTW elucidated previously in section 3.3.2 and 3.3.3, 

respectively. 
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All the aforementioned constraints fit the scope of the case study presented in this thesis though, there 

is also the need of considering desynchronization of the samples’ arrival to the laboratory and the 

possibility of open routes, since that the first route of each vehicle can start in a different location than 

the laboratory.  

Works similar to the case study 

Prior to the arrival of the BSTP, most studies in the area of transportation of medicine related perishable 

items were focused on the specific case of blood transportation, also known as the Blood Sample 

Collection Problem (BSCP).  

In fact, one of the first works to address the problem of blood transportation was developed by Yi in 

2003 and was applied to the case of the American Red Cross. The developed model was based on a 

variant of the VRPTW, but with only one pickup for each centre; their goal was to maximize the quantity 

of collected and treated blood by minimizing the transportation costs, and, for this end, an exact 

algorithm was used [47].  

Then, Doerner et al. (2008) studied the blood transportation course of the Austrian Red Cross, with the 

particularity that the sample collection was done at mobile collection sites [48]. In this study, it was 

considered that the moment that the blood deterioration process starts is immediately after the donation, 

which made them have to consider interdependent pickups. 

Years later, in 2010, Ghandforoush et al. proposed a decision support system for platelet production 

and blood mobile scheduling. In their work, the authors only considered single route visiting, in other 

words, each route consisted in collecting the platelets form a single bloodmobile and returning to the 

laboratory [49].  

Mobasher et al. (2015), then proposed a solution to a similar problem, but also with the integration of 

scheduling the appointments in collection centres. They solved this problem using both an exact 

approach and an heuristic [50]. Also in 2015, Şahinyazan et al. presented a tour mobile collection system 

for the Red Cross in Turkey, where the main concern was to define tours for mobile collection units and 

shuttles to collect the harvested blood [51]. Nevertheless, a time constraint for returning to the depot 

was not considered. 

Regarding the BSTP, Anaya-Arenas et al. (2016) presented a version of this problem applied to a real-

world case study in the Province of Québec in Canada. In this work, each SCC required several 

collection visits and each one of them needed to happen inside a given and independent time windows 

that satisfied the samples’ lifespan. Therefore, with the aim of minimizing the route duration time a multi-

start heuristic was proposed [52].  

Using the same context, years later, in 2018, Toschi et al., developed a metaheuristic to solve the BSTP 

that considered the SCC opening and closing hours as decision variables and, also the interdependency 

between routes. The objective focused on minimizing the routes’ total duration [53].  
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Last year, in 2019, Anaya-Arenas proposed another metaheuristic to solve the BSTP considering the 

opening and closing hours of the SCCs and the moment they are visited as decision variables, while 

taking into consideration the interdependency between routes [54]. Nevertheless, none of the presented 

works considered the need for the desynchronization of the samples’ arrival to the laboratory. 

Closer to the context of the case study presented in this thesis, Naji-Azimi et al. (2016) studied the BSTP 

with the desynchronization of the vehicles’ arrivals to the depot. To the best of ones’ knowledge, they 

were the first and the only ones yet to consider the desynchronization of the vehicles in this context as 

an objective. This consideration is extremely important, due to the fact that if too many boxes of samples 

arrive in a short period of time to the central laboratory, samples are queued and may have to wait a 

long time before they are analysed, creating a bottleneck in the samples’ supply chain [55]. Thus, by 

minimizing the maximum amount of sample boxes arriving within a given time period it normalizes both 

the laboratory workload and reduces sample losses. Nevertheless, in Naji-Azimi et al. (2016) work the 

possibility of open routes was not considered. 

3.6 Chapter conclusions 

The literature review allowed to perceive that one cannot always apply a single specific VRP variant to 

represent a real-world problem since its complexity usually requires a mixture of these, an example of 

this lies on the case of the BSTP. Apparently, the most suitable approach to model the case study 

context and their objective seems to be the model developed by Naji-Azimi et al. (2016), where 

desynchronized arrivals to the depot are considered, one of the main focuses of the current study. 

Furthermore, it also considers that each SCC has its own time-window, which corresponds to the same 

situation as the one presented in the case study. Moreover, in this same study, the fleet of vehicles is 

homogeneous, and the vehicles capacity is considered unlimited, another similarity with the situation of 

the situation presented in the case study. Regarding the route’s duration, the model proposed by Naji-

Azimi et al. (2016) also considers that it must have a maximum duration time to guarantee the samples’ 

quality, a significant requirement.  

Even though Naji-Azimi et al. practices truly fit the purpose of the current study, there are certain 

disparities to take under concern. These includes the fact that open routes were not considered and 

have to in the case study previously presented, as in some routes the vehicles depart from the drivers’ 

houses or from another laboratory and not from the depot.  

Thereafter, in the next chapter a mathematical model, based on this work, but considering constraints 

lacking, is constructed aiming at simulating the case study reality, while considering the concerns and 

objectives of the management. 
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4 The Biomedical Sample Transportation Model 

As mentioned throughout this work, the main purpose of this thesis is to assist a clinical provider group 

improving the planning of their biomedical samples’ transportation routes by constructing a model 

capable of designing routes that determine the visiting sequences of the SCCs and the corresponding 

schedules. The developed model has the aim of minimizing the routes’ duration and the maximum 

number of samples’ arriving at the laboratory within the busiest time period, in order to allow for a 

smoother workload at the laboratory. 

Thereafter, this chapter comprises the mathematical model developed to address and simulate their 

situation. It is, in fact, an extension of the work found in Naji-Azimi et al. (2016). The problem is firstly 

described in a formal manner in section 4.1. Then, in section 4.2, its mathematical formulation is 

presented with the description of all the structural elements of the developed model, more specifically, 

the sets, the parameters and the decision variables, followed by the objective function and problems’ 

constraints. Finally, section 4.3 presents the conclusions of the present chapter. 

4.1 Formalization of the problem 

In order to formulate the BSTP with desynchronized arrivals, it is firstly important to distinguish both the 

SCCs locations and the collection requests, since each SCC can have more than one collection request. 

The 1 SCCs are defined as: 

 6’	 = 	 {/$’, . . . , /%’} (4.1) 

where each SCC = requires >&	collection requests leading to a total of ? = ∑ >&%
&'$  requests. Each one 

of these requests is composed of one box that contains several biomedical samples. 

The BSTP can be modelled as a complete graph A = {6, B}, where: 

 6 =	 {/#, /$, … , /(, /()$, /()*, … , /()+)$}  (4.2) 

is the set of nodes in the network. ? represents the number of transportation requests and D the number 

of drivers. More specifically, the subset E = {/$, /*, … , /(} corresponds to the transportation request 

nodes. Additionally, E& is denoted as the set of request nodes found in 6 which matches the same SCC 

location. Since the first route of each day of each vehicle may depart from a different location rather 

than the central laboratory (e.g., from the drivers’ house in the case of Region A and from the entity’s 

other lab in the case of Region B), the departing places must also be presented in the set of nodes in 

the network, therefore they are represented by the nodes F/()*, … , /()+)$G. Finally, the laboratory is 

represented by the nodes F/#, /()$G. Except for the first route of each day, which may start in a different 

location and finish in the lab, all of the other routes start and finish in the laboratory. 
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The arc set of the graph can then be defined as: 

 
B = FH/! , /"I ∶ /! , /" ∈ 6,				0 ≠ L,				0, L = 0,… , ? + D + 1	.1D	1NO	(0 = 0	6	0

= ? + 1; 	L = ? + 2,… , ? + D + 1	G (4.3) 

where a travel time between nodes, O!", is assigned to each arc (/!,/"). Moreover: 

 O!" = 0					0R					∃		=		such that	0, L	 ∈ E& (4.4) 

, in other words, if 0 and L correspond to two requests from the same SCC the travel time to go from one 

to the other is zero. It is important to note that in general O!" ≠ O"! , being one of the reasons why a directed 

graph is used to model the problem. Furthermore, each collection request L must be carried out within 

a given time window [." , U"]. Finally, two requests of the same SCC cannot be served in the same route. 

Further, to carry out the transportation requests there are available W uncapacitated vehicles. Each one 

of these can execute multiple routes (X = 1,… , Y). Each vehicle has a limitation on the length on the 

working day, Z,. Additionally, both the average loading time for each transportation request in the SCCs, 

[!, and the unloading time at the laboratory before a new route starts, [#, must be considered. Moreover, 

as mentioned in previous sections, the perishable nature of the biomedical samples requires having a 

maximal transportation time associated with the requests. Thereafter, there is also a maximal 

transportation time for the samples of request 0, Z-./! . 

The objective of this problem is then to minimize both the routes’ total duration (including the waiting 

times at the SCCs) and a weighted penalty # related with the maximum number of boxes that arrive in 

the laboratory in the busiest time period.  

4.2 Mathematical formulation 

In this section the details of the mathematical model used to define the BSTP with desynchronized 

arrivals and open routes are presented. Therefore, the sets, the parameters, the decision variables, the 

objective function and the constraint equations are presented below. 

Sets 

0 – index of the nodes: 0 = 0,… , ? + D + 1; 

L – index of the nodes: L = 0,… , ? + D + 1; 

\ – vehicles: \ = 0,… , W; 

X – routes per vehicle: X = 0,… , Y; 

O – time periods: O = 0,… , Z. 

Parameters 

Z, – limit on the working day of vehicle \; 
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[! – loading time of request 0; 

[# – unloading time at the laboratory; 

Z-./!  – maximal transportation time for the samples associated with request 0; 

# – weighted penalty linked to the maximum number of boxes that arrive at the laboratory during the 

busiest time period; 

D – number of drivers; 

.! – start of time windows of request 0; 

U! – end of time windows of request 0; 

O!" – travel time from node 0 to node L; 

) – units to discretize time; 

] – large constant. 

Decision variables 

^!",0					{0,1}      takes the value of 1 if vehicle \ in its route X travels from request 0 to request L; takes 

the value of 0 otherwise; 

_!1,0					{0,1}    takes the value of 1 if request 0 carried out by vehicle \ in its route X arrives at the 

laboratory during the O12 time period; takes the value of 0 otherwise; 

`!,0									Y#)       represents the visit time (start of loading) of the X12 route of vehicle \ of the transportation 

request 0; 

a												b#)      represents the highest number of boxes arriving to the laboratory during the most visited 

time period. 

Objective function 

The objective of the problem is to desynchronize the biomedical sample arrivals in the laboratory while 

trying to minimize the total costs, thus the objective function can be modelled as: 

 ]01				c c H`()$,0 − `#,0I +
3

0'$

4

,'$
# ∙ a (4.5) 

where the first part of the objective function minimizes the routes’ total duration (i.e., the sum of the end 

time minus starting time of each route of each vehicle) which includes the necessary waiting time at 

each SCC. The second part of the equation, on the other hand, implements a penalty factor	#	to the 

maximum number of boxes arriving during the busiest time period, a.  

Constraints 

In order to formulate the model so that the solution satisfies all the characteristics previously described 

in section 4.1, several constraints must be defined. To fully understand them it is firstly important to 
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comprehend that since the first route of each day may not depart from the central laboratory some 

constraints with the same purpose had to be divided into two different equations: one regarding the first 

route of each vehicle (i.e., when X equals 1) and another for the other routes (i.e., when X is greater than 

1). All the constraints are now presented: 

1) All collection requests must be served exactly once 

Constraints 4.6 assures that each collection request is serviced by exactly one route. 

c c c ^!",0 = 1
()+)$

!'#	&	!7()$		

3

0'$

4

,'$
 L = 1,… , ? (4.6) 

2) First route of each vehicle departs from the drivers’ houses 

The following constraints, constraints 4.7, ensure that the first route of each day (i.e., when X equals 1) 

departs from one of the possible departing places that is not the central laboratory. 

c c ^!",0 = 1
(

"'$

4

,'$
 0 = ? + 2,… , ? + D + 1; 		X = 1  (4.7) 

3) Each route services one original point at a time 

Each route should only visit one original point at a time: 

c c ^!",0 ≤ 1
()+)$

!'#	&	!7()$"∈9!
 = = 1,… , 1; 		\ = 1,… , W; 		X = 1,… , Y (4.8) 

4) Flow conservation 

Flow conservation is ensured by constraints 4.9 and 4.10. Constraints 4.9 ensures flow conservation for 

the routes that start in the lab (i.e., for X > 1) and constraints 4.10 for the first route of each vehicle (i.e., 

for X = 1). 

c ^!",0
(

!'#	
−c "̂&,0

()$

&'$
= 0 X = 2,… , Y; 		L = 1,… , ?; 	\ = 1,… , W (4.9) 

c ^!",0
()+)$

!'$&	!7()$
−c "̂&,0

()$

&'$
= 0 X = 1; 		L = 1,… , ?; 		\ = 1,… , W (4.10) 

 

5) Vehicles can start a route or not 

The following constraints state that the vehicle \ can start a route X or not. Constraints 4.11 refer to 

routes that start in the laboratory and constraints 4.12 to the ones that start in a different location. 
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c ^#",0
(

"'$	
≤ 1 X = 2,… , Y; 		\ = 1,… , W (4.11) 

c ^!",0
(

"'$	
≤ 1 X = 1; 		\ = 1,… , W; 		0 = ? + 2,… , ? + D + 1 (4.12) 

6) Ensures that all routes finish in the laboratory 

If a given route has started it has to finish in the laboratory to deliver the samples. Thereafter, constraints 

4.13 and 4.14 guarantee it for both routes that start in the laboratory (constraints 4.13) and the ones 

that start in a different location (constraints 4.14). 

c ^#",0
(

"'$	
−c "̂,()$,0

(

"'$
= 0 X = 2,… , Y; 		\ = 1,… , W (4.13) 

c c ^!",0
(

"'$	

()+)$

!'()*
−c "̂,()$,0

(

"'$
= 0 X = 1; 		\ = 1,… , W; 		0 = ? + 2,… , ? + D + 1 (4.14) 

7) Time windows constraints 

Constraints 4.15 states that the time windows for each request must be respected. 

!! − #" ∙ %1 −' (#!"$
%&'&(

#)*&#,%&(
) ≤ +!"$ ≤ ,! + #" ∙ %1 −' (#!"$

%&'&(

#)*&#,%&(
) 

L = 0,… , ? + D + 1;		
\ = 1,… , W;	
X = 1,… , Y 

(4.15) 

8) Sub-tour elimination constraints 

The sub-tour elimination constraints are represented by the constraints 4.16 and 4.17, once again, 

separated based on the departing location. Constraints 4.16 characterize the routes that start in the 

laboratory and constraints 4.17 the ones that do not. 

`!,0 − "̀,0 + HU! + [! + O!" − ."I ∙ ^!",0 ≤ U! − ." 
X = 2,… , Y; 		\ = 1,… , W;	
L = 1,… , ? + 1; 		0 = 0,… , ? 

(4.16) 

`!,0 − "̀,0 + HU! + [! + O!" − ."I ∙ ^!",0 ≤ U! − ." 
X = 1; 		\ = 1,… , W; 		L = 1,… , ? + 1	
0 = 1, . . . , ?, ? + 2,… , ? + D + 1 

(4.17) 

9) Waiting time in the lab between routes 

Route X of vehicle \ must start at least later than the arrival of its route \ − 1 plus the waiting time in the 

laboratory between routes [#. 

`#,0 ≥ `()$,,,0;$ + [# \ = 1,… , W; 		X = 2,… , Y (4.18) 
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10) Maximum duration of each route  

Constraints 4.19 and 4.20 state that the time that takes to return to the depot after visiting a given node 

is restricted so that the samples’ lifetime is satisfied. Constraints 4.19 refers to the routes that start in 

the laboratory and constraints 4.20 to the ones that do not: 

`()$,,,0 − "̀,0 ≤ Z-./
" + Z, ∙ (1 −c ^!",0

(

!'#
) X = 2,… , Y; 		\ = 1,… , W; 		L = 1,… , ? (4.19) 

`()$,,,0 − "̀,0 ≤ Z-./
" + Z, ∙ (1 −c ^!",0

()+)$

!'$&	!7()$
) X = 1; 		\ = 1,… , W; 		L = 1,… , ? (4.20) 

11) Ensures that each vehicle has a maximum time limitation on the working day 

Since each vehicle has a limitation on the length on the working day, constraints 4.21 set the maximum 

duration of vehicle \ which has to be less than Z,. 

`()$,,0 − `!,$ ≤ Z, X > 1; 		\ = 1,… , W; 		0 = ? + 2,… , ? + D + 1 (4.21) 

12) Ensures that each collection request arrives in the laboratory in a given time period 

The following constraints, constraints 4.22, state that the collection request 0 will arrive in the laboratory 

within a given time period O: 

c c c _!1,0 = 1
<

1'#		

3

0'$

4

,'$
 0 = 1,… , ? (4.22) 

13) Decision variable y restrictions 

Constraints 4.23 ensure that if collection request 0 has been visited by the X12 route of vehicle \ the 

variable _!1,0 can take the value of 1: 

_!1,0 ≤c ^!",0
()$

"'$
 

0 = 1,… , ?; 		O = 0,… , Z;	
\ = 1,… , W; 		X = 1,… . , Y 

(4.23) 

14) Force relation between flow and y variable and discretize time into periods of units of time 

Constraints 4.24 and 4.25 strengthen the connection within flow and _ variables and divide time into 

periods of ) units of time. When using these constraints, in the case where _!1,0 = 1 we have ) ∙ O ≤
`()$,0 ≤ ) ∙ (O + 1), meaning that the laboratory has to be visited within the O12 time period, therefore 

within time ) ∙ O and ) ∙ (O + 1). 
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`()$,,0 < ) ∙ (O + 1) +] ∙ (1 − _!1,0) 
0 = 1,… , ?; 		O = 0,… , Z;	
\ = 1,… , W; 		X = 1,… , Y 

(4.24) 

`()$,,0 ≥ ) ∙ O −] ∙ (1 − _!1,0) 
0 = 1,… , ?; 		O = 0,… , Z;	
\ = 1,… , W; 		X = 1,… , Y 

(4.25) 

15) To calculate the maximum number of boxes arriving in the laboratory during the available 

time periods 

Constraints 4.26 calculate the laboratory maximum workload during the available time periods. In fact, 

and as expressed by constraints 4.26 the number of sample boxes that arrive in the laboratory in a 

specific time period is the same as the number of SCCs visited by the routes that returned to the 

laboratory in that same period. Supposing that a box of samples is gathered at each SCC request the 

workload is the number of boxes that arrive at the laboratory within this time period. 

a ≥c c c _!1,0
(

!'$

3

0'$

4

,'$
 O = 0,… , Z (4.26) 

16) To ensure that the objective function timings are correct 

Since the objective function considers the starting time of the route of each vehicle the time of the 

laboratory, one has to guarantee that for the first route of each vehicle (the ones that may not start in 

the laboratory) that this value is equal to the time they depart from that first location, therefore constraints 

4.27 are implemented in the following way:  

`#,0 = `!,0 X = 1; 		0 = ? + 2,… , ? + D + 1; 		\ = 1,… , W (4.27) 

Moreover, constraints 4.28 enforce that the arrival time in the laboratory of a given route X occurs after 

its departing time: 

`#,0 ≤ `()$,0 X = 2,… , Y; 		\ = 1,… , W (4.28) 

17) Lower bound on the minimum value of variable j 

Constraints 4.29 define a lower bound on the minimum value of variable `. In fact, when visiting the arc 

(0, L) by the X12 route of vehicle \ the variable ^!",0 equals 1 and consequently, `!,0 + [! + O!" ≤ "̀,0. In 

case that ^!",0	equals 0 we have "̀,0 ≥ ." which is always valid. 

`!,0 −	c (." + [" − .! + O"!) ∙ "̂!,0
()+)$

"'#&!7"&"7()$
≥ .! 

0 = 1,… , ? + 1; 		X = 1,… , Y;	
\ = 1,… , W 

(4.29) 
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18) Symmetry breaking constraints  

Constraints 4.30 and 4.31 are based on the symmetry breaking constraints developed by Coelho and 

Laporte in 2014 [56]. Essentially, by ordering the use of the vehicles and the assignment of request to 

vehicles these constraints can remove symmetric solutions. 

c c 	
()+)$

!'()*
^!",$ −c c 	

()+)$

!'()*
^!",;$,$

(

"'$

(

"'$
≤ 0 \ = 2,… , W (4.30) 

c c ^!",0
(

!'$
−c c c ^!&,;$0

(

!'$
≤ 0

3

0'$

";$

&'$

3

0'$
 L = 1,… , ?; 		\ = 2,… , W (4.31) 

19) Symmetry defeating constraints 

Constraints 4.32 and 4.33 are symmetry defeating constraints which break the symmetry caused by 

variables _ enhancing the model. Constraints 4.32 state that if the first route of vehicle \ − 1 has not 

been used, then the requests cannot be carried out by routes of the vehicle \. In addition, 4.33 states 

that route X of vehicle \ can only be used if to route X − 1 of this same vehicle is already associated at 

least one request. 

 

 21)  Specific conditions 

Constraint sets 4.34 and 4.35 state that one cannot travel from request 0 to request L when .! + [! +
O!" > U" and .! + [" + O",()$ − U" > Z-./! . In fact, these equations eliminate redundant travels that violate 

the time windows and the maximum samples travel time. 

c c ^!",0
3

0'$

4

,'$
= 0 ∀	0, L ∈ 6	\	{0, ? + 1}	|	(.! + [! + O!" > U")	 (4.34) 

c c ^!",0
3

0'$

4

,'$
= 0 ∀0, L ∈ 6	\	{0, ? + 1}	|	(.! − U" + [" + O",()$ > Z-./! ) (4.35) 

22) Relation between earliest visit time and possible time periods 

Constraints 4.36 exhibits the connection concerning the earliest visit time of a given request and the 

possible time periods where the corresponding samples can arrive in the laboratory. Essentially, when 

.! + [! + O!,()$ ≥ )O, request 0 cannot arrive to the laboratory earlier than the O12 time period. 

c c c _!1,0
<

1'#
≤ ] ∙c c _!1,;$,$

<

1'$

(

!'$

3

0'$

(

!'$
 \ = 2,… , W (4.32) 

c c _!1,0 ≤ ] ∙c c _!1,,0;$
<

1'$

(

!'$

<

1'#

(

!'$
 \ = 1,… , W; 		X = 2,… , Y (4.33) 
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c c c _!&,0 = 0
1;$

&'$

3

0'$

4

,'$
 

∀	0 ∈ 6		{0, ? + 1}	|	H.! + [! + O!,()$ ≥ ) ∙ OI;	

O = 1,… , Z − 1 
(4.36) 

 

In summary, the BSTP model presented is composed by the objective function (4.5) and by all the 

restrictions from (4.6) to (4.36). The goal is to find the sequency and the visiting times of the SCCs that 

minimize both the maximum number of boxes arriving in the busiest period and the total travelling time 

while taking into consideration the SCCs time-windows and the maximum travel time for each route and 

each vehicle.  

4.3 Chapter conclusions 

In this chapter, the problem found in the case study is restated, and a mathematical model for the BSTP 

with desynchronized arrivals and open routes is developed. This model aims at designing new routes 

taking into consideration both the minimization of the routes total travel time as well as desynchronizing 

the arrivals in the laboratory. The model also considers several constraints that capture restrictions 

related to the desired plan (e.g., maximum time limitation for each vehicle and maximum time limitation 

for each route). 

This model is in fact a Mixed Integer Linear Program (MILP) model and it was then implemented in the 

mathematical modelling software GAMS. Nevertheless, as it is presented in Chapter 6, the solver was 

not able to tackle the larger, real-life inspired instances efficiently, which motivated the development of 

an approximated method. In the next chapter, Chapter 5 the approach to solve this problem is discussed 

in detail. 
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5 Heuristic algorithm 

As stated in the literature review the type of problems as the one under study hold various characteristics 

that make it difficult to be solved through the use of exact solution approaches, as the one used by 

GAMS software. This was observed when testing the model with several instances, as it is shown in 

Chapter 6. From this, arises the need of developing a heuristic algorithm that better addresses the 

problem, without compromising the results quality. Thus, a multi-start algorithm was developed. This 

used as basis the work of Naji-Azimi et al. (2016), which was adapted to fit the characteristics found in 

the case study chapter. 

The metaheuristic used for the purpose of this thesis is explained in detail throughout the present 

chapter. In section 5.1, the algorithm and its components are detailed, and section 5.2 describes the 

way the visiting times are updated and how the time windows and maximal sample transportation time 

constraints are respected. 

5.1 Multi-start heuristic algorithm 

Multi-start algorithms hold two phases: the first one where an initial solution is generated and a second 

one where the generated solution is commonly, but not always, improved [57]. In the specific case of 

this algorithm, the first phase comprises the Construction procedure while the second phase is 

constituted by the Extraction-Reinsertion and Swap procedures. A schematic representation of the 

developed algorithm is represented in the following figure, Figure 5.1. 

 

Figure 5.1 – Schematic representation of the multi-start algorithm developed. 
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As one can verify from Figure 5.1, the process repeats itself depending on the number of iterations 

chosen, ].^!1=0. Thus, to guarantee that diverse iterations lead to different solutions, a level of 

randomization is applied in two parameters: in the maximal sample transportation time (Z-./) and in the 

maximum length of a vehicle working day (Z4). Both parameters influence the Construction procedure, 

which creates different feasible or unfeasible solutions. Moreover, these two parameters are adapted in 

conformity with the feasibility of the solution and only solutions that are feasible can pass to the 

improvement steps.    Algorithm 1 provides an insight on the general steps of the multi-start algorithm 

used.  

Algorithm 1: Multi-start algorithm 

pqrO-N=`O0N1 = 	∅ 

Zqt?<" = Z, 

Zqt?<#$% = Z-./ 

For uOqX = 1	ON	].^!1=0 do 

    Repeat 

        Z,nnn = X.1DNt	H0, Z, − Zqt?<"I + Zqt?<" 

        Z-./nnnnnn = X.1DNt	(0, Z-./ − Zqt?<#$%) + Zqt?<#$% 

        v`XXq1O-N=`O0N1 =	Construction (Z,nnn, Z-./nnnnnn) 
        If v`XXq1O-N=`O0N1 is feasible then 

            Zqt?<#$% = Zqt?<#$% − w ∙ Z-./ 

            Zqt?<" = Zqt?<" − 	w ∙ Z, 

        Else 

            Zqt?<#$% = ]01	{Zqt?<" + w ∙ Z,; 	 	Z,} 

            Zqt?<" = ]01	{Zqt?<#$% + w ∙ Z-./; 		Z-./} 

        End If 

    Until v`XXq1O-N=`O0N1 is feasible 

    v`XXq1O-N=`O0N1 =	Extraction-Reinsertion (v`XXq1O-N=`O0N1) 

    v`XXq1O-N=`O0N1 =	Swap (v`XXq1O-N=`O0N1) 

    If v`XXq1O-N=`O0N1	improves the cost of the best-known solution, then 

    				pqrO-N=`O0N1 = v`XXq1O-N=`O0N1	 
End for 

From Algorithm 1 it is possible to verify that this multi-start algorithm consists in two loops: the outer 

loop (the For loop) and the inner loop (the Repeat – Until loop). The inner loop consists in constructing 

an initial feasible solution; thus, the Construction procedure is applied with distinct temporary values for 

the maximum vehicle travel time (Z,nnn) and the sample travel time (Z-./nnnnnn) parameters until a feasible 

solution is found. The outer loop comprises the inner loop and the two improvement steps. In the first 

iteration, Zqt?<" and Zqt?<#$% are initialized by setting their values to Z, and to Z-./, respectively, 

which have to be the first initial feasible parameters. After the first iteration, if the solution obtained by 
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the Construction procedure is feasible, the both Zqt?<" and Zqt?<#$% parameters reduce by a factor 

w which is another input variable (the value of w = 0.1 was used for the purpose of this thesis): 

Zqt?<" = Zqt?<" − w ∙ Z, (5.1) 

Zqt?<#$% = Zqt?<#$% − w ∙ Z-./ (5.2) 

On the other hand, if the solution is not feasible in order to increase the chance of finding a feasible 

solution the values of these two parameters are increased by applying: 

Zqt?<" = ]01	{Zqt?<" + w ∙ Z,; 	 	Z,} (5.3) 

Zqt?<#$% = ]01	{Zqt?<#$% + w ∙ Z-./; 		Z-./} (5.4) 

Finally, the temporary values used in the Construction procedure to be used as the maximum travel 

time and maximum sample time are: 

Z,nnn = X.1DNt	H0, 	Z, − Zqt?<"I 	+ 	Zqt?<" (5.5) 

Z-./nnnnnn = X.1DNt	H0, 	Z-./ − Zqt?<#$%I	+	Zqt?<#$% (5.6) 

, where X.1DNt(0, ^) is an integer number randomly selected between 0 and ^. 

After obtaining an initial feasible solution the improvement procedures are now applied. Thus, as 

previously mentioned, the Extraction-Reinsertion and the Swap procedures attempt to improve the 

quality of the solution coming from the Construction procedure. To do so, the original values of the 

sample travel time and the vehicle travel time are used. After the maximum number of iterations has 

been achieved the algorithm stops and the best solution found is returned. 

5.1.1 Phase one – Generation of an initial solution 

Construction procedure 

As stated, the construction procedure forms an initial solution, where the nodes (i.e., the SCCs) are 

sequentially added to the routes. Routes are initialized by adding their respective starting and finishing 

points. 

To find the method to select the first node to be visited by a route, 1$, tests were performed on 5 

instances whose characteristics are depicted in Table 5.1. These tests lied on finding which approach 

would give the best results. More specifically, the following two approaches were tested:  

- Approach 1: 1$ is chosen randomly from the set of request nodes whose travel time is the 

greatest to the laboratory and whose upper bond time-window is the lowest; 

- Approach 2: 1$ is chosen randomly from the set of request nodes who are the closest to the 

departing point and whose upper bond time window is the lowest. 
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Table 5.1 – Tests to find the methodology to choose the first node to be visited by a route. 

# 

Instances characteristics 
Objective function results 

General SCCs 

x′ z {>?@ z/x′ }̅AB	(min) Std. �B Std. ÄB Approach 1 Approach 2 

1 5	 5	 300	 1	 15.19	 13.42	 53.67	 243	 243	

2 12	 12	 300	 1	 23.49	 23.79	 0	 541	 545	

3 18	 18	 300	 1	 9.74	 156.82	 148.01	 552	 553	

4 21	 29	 300	 1.4	 5.87	 147.33	 173.68	 842	 847	

5 39	 50	 300	 1.28	 10.02	 129.09	 141.11	 1254	 1380	
 

As one can verify from the results obtained in Table 5.1, the method that leads to better results (i.e., that 

minimizes the most the objective function) is in fact Approach 1 which is the one that selects the node 

that is farthest from the laboratory with the lowest upper bond. This method provided for all instances 

an equal or better performance that the second approach, Approach 2. Thus, to select the first node to 

be visited, 1$, the following set of rules are used: 

• b$ = .X2t.^!∈9{O!,()$}, i.e., the set of request nodes 0 ∈ E = F/$, /*, … , /(G whose travel time is 

the greatest to the laboratory; 

• b* = .X2t01!∈C&{U!}, i.e., the set of request nodes 0 ∈ b$	whose time window upper bond is the 

lowest; 

• A random node, 1$, is selected from b*. 

After inserting the first node, 1$, in the working route, to insert a new node certain rules are to be 

followed. Firstly, a node from the unvisited set of nodes is chosen in sequence and the possibility of 

adding it in every position of that route is evaluated. If there are feasible placing positions, the node will 

be placed in the position that results in the smallest increase in the route’s total travel time. For example, 

if node 0 is placed between nodes L and \ the detour is calculated as O"! + O!, − O",. In case there is not 

a feasible position for that node in that route, the algorithm tries to place the next unvisited node in that 

same route. The process repeats until all unvisited nodes are tested to be placed in that route. 

Afterwards, the same process occurs for the other unfilled routes. The described procedure is now 

summarized in Algorithm 2. 
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Algorithm 2: Construction procedure 

For all \ ∈ W do 

    For all X ∈ Y do 

        Begin by initiate route X of vehicle \ with the first node, 1$ 
        While there is a node not yet placed to be added in a feasible position do 

            Add to the route X, if feasible, the nodes in the positions with the smallest increase in the   

            route’s total duration 

        End While 

        X = X + 1 

    End for 

    \ = \ + 1 

End for 
 

 

5.1.2 Phase two – Improvement of the initial solution 

Extraction-Reinsertion procedure 

The first improvement procedure, the Extraction-Reinsertion procedure, has the purpose of reducing 

the value of the objective function by repositioning some of the nodes of the solution previously obtained 

in the Construction procedure. Hence, to calculate this cost, the length of the time period, ), has now 

to be considered. 

The procedure lies on taking every node and placing it on its best feasible position. Thus, starting from 

first route of the first vehicle all the nodes are repositioned in all possible locations. After trying to place 

a node in all positions the node is placed in the feasible position that leads to the best improvement, i.e., 

it is placed it in the position that minimizes the most the cost of the objective function. This procedure is 

repeated until no further improvement can be reached. During the procedure, a new route can be 

created, or an already existing route can be closed. 

Swap procedure 

The second improvement procedure, the Swap procedure, also aims at minimizing the cost of the 

current solution, i.e., the one coming from the Extraction-Reinsertion procedure. To improve the solution, 

following the order of the nodes in the current solution, each pair of nodes is considered, and their 

corresponding positions are swapped. The swap is applied to all possible combination of two nodes 

over all the vehicles’ routes. As soon as a move improves the solution’s cost, it is accepted. This 

procedure stops whenever the swapping of all the available nodes offers no more improvement. 
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5.2 Information update 

In all the three procedures previously described, information regarding the time windows and the 

maximum sample transportation time when adding or removing a node from a given position need to be 

updated so that only feasible solutions are generated. Therefore, in order to efficiently update the time 

windows and the maximum sample transportation time constraints, rules to update the earliest and latest 

visiting time of the nodes in the solution need to be taken into consideration. Thus, an adaptation of the 

method of Campbell and Savelsbergh (2004) for the VRP with time windows was developed [58]. 

The X12 route of vehicle \ is represented by \0 = {3#
,' , 3$

,' , … , 3!
,' , 3!)$

,' , … , 3%"'
,' , 3%"')$

,' } where	1,' is the 

number of nodes visited by the X12 route of vehicle \, 3#
,' is the departing location node of vehicle \ and 

route X and 3%"')$
,'  the lab, the arrival node. The earliest and latest time at which node 3"

,' can be visited 

by the route X12 route of vehicle \ is represented by ÑD("' 	 and ÖD("' , respectively. 

Initially, for each \ and X the earliest and latest time of both the departing and arrival nodes, ÑD)"'  and 

ÑD*"'+&
"' , and, ÖD)"'  and ÖD*"'+&

"'  respectively, is set to be the same as their corresponding upper and lower 

window. In case of inserting a node 3"
,' between nodes 3!

,' and 3!)$
,'  the following two relations are 

applied: 

ÑD("' = ].^	{.D(
,' , 	ÑD,"' + [D,

,' + OD,"'D("'} (5.7) 

ÖD("' = ]01	{UD(
,' , 	ÖD,+&"' − [D(

,' − OD("'D,+&"' } (5.8) 

If ÑD("' ≤ ÖD("' , introducing the node 3"
,' between nodes 3!

,' and 3!)$
,'  will not violate the time window 

constraints. Nevertheless, it is still mandatory to verify both the maximum duration of the vehicle length 

and the maximum sample travel time are satisfied. Therefore, the following relations, equation 5.9 and 

5.10, dictate how to update the earliest and latest start time of nodes after and before 3"
,': 

ÑD-"' = ].^	{.D-
,' , 	ÑD-.&"' + [D-.&

,' + OD-.&"' D-
"'} (5.9) 

ÖD-"' = ]01	{UD-
,' , 	ÖD-+&"' − [D-

,' − OD-"'D-+&"' } (5.10) 

Moreover, the minimum length of the X12 route of vehicle \ requires serving the route at the latest 

feasible time, by setting it to /OD*"'+&
, − /OD)

,'. In this expression /OD,
,' is the real visit time of node 3!

,' by 

the route X of vehicle \ and can be calculated as:  

/OD,
,' = ].^	{.D,

,' , /OD,.&
,' + [D,.&

,' + OD,.&"' ,D,
"'} 0 = 1,… , 1-! + 1 (5.11) 
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In addition, /OD)
,' = ÖD)"' . 

Equations 5.12 and 5.13 ensure that the maximum vehicle travel time and the maximum sample travel 

time are satisfied: 

 /OD*"/+&
,/ − /OD0

,& ≤ Z,  (5.12) 

/OD*"'+&
,0 − /OD&

,' ≤ Z-./ X = 1,… , Y (5.13) 

Finally,  /OD)"' = /OD*"'.&+&
"'.& + [#	 for X = 2,… , Y. 

5.3 Chapter conclusions 

The present chapter describes in detail the proposed metaheuristic algorithm to solve complex real-life 

problems of the BSTP with desynchronized arrivals and open routes. Particularly, this algorithm 

comprises two main phases: the creation of an initial solution and the improvement of this solution. 

Several different initial solutions are created based on the number of iterations chosen for the algorithm. 

Randomization in the creation of initial solution is ensured by applying different initial values at each 

iteration for the maximal sample transportation time (Z-./) and the maximum length of a vehicle working 

day (Z4). 

The objective is to apply this algorithm to the case study problem previously presented in Chapter 2. 

However, one still has to ensure that the multi-start algorithm provides quality results and to find the 

parameters to apply to the case study have to be established (namely, the penalization to consider, #, 

the way to discretize time periods, ), and the number of iterations). Hence, the next chapter, Chapter 

6, provides results for both the mathematical model using the optimization program GAMS and the 

heuristic algorithm in a set of created instances.  
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6 Performance numerical results 

The purpose of this chapter is to present the numerical results obtained by applying the solution 

approaches in a set of created instances to analyse their performance. Hence, both the mathematical 

model using an optimization program and the heuristic method are tested and compared on different 

examples.  

The chapter is organized as follows: section 6.1 describes the set of instances created based on the 

entity’s data; section 6.2 reports the results obtained by running the linear model on GAMS software 

with a time limitation of 3 hours. Section 6.3 presents the results obtained by the heuristic method, the 

multi-start algorithm, and compares them with the ones obtained in section 6.2. Finally, section 6.4 

presents a conclusion for this chapter. 

6.1 Dataset presentation 

As previously mentioned, the entity under study has pre-defined routes that are programmed to occur 

in every day of the week, and which are organized based on the Specimen Collection Centres (SCCs) 

geographical locations. Each one of these SCCs can be visited more than once, having one or more 

collection requests per day. In order to test the mathematical model and the algorithm developed, a set 

of 15 instances was designed based on the geographical locations considered by the entity in region of 

A to construct their routes. These 7 regions are: Region A1, Region A2, Region A3, Region A4, Region 

A5, Region A6 and Region A7. 

The created instances were classified into three groups based on their size: small (less than 20 

collection requests), medium (more or equal than 20 but less than 50 collection requests) and large 

(more or equal than 50 collection requests). Table 6.1 summarizes the basic characteristics of these 

instances, namely the minimum and maximum number of SCCs and the minimum and maximum 

number of collection requests depending on the instances’ size. 

Table 6.1 – Instances summary. 

Size Number of 
instances 

Number of SCCs Number of collection requests 

Min. Max. Min. Max. 

Small 5	 5	 15	 5	 15	

Medium 5	 18	 25	 18	 29	

Large 5	 39	 70	 50	 71	
 

In order to define the instances, information regarding the SCCs was provided, namely their names and 

addresses, the time-windows at which they should be visited and the average maximal transportation 
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time for the samples. Information regarding the lunch hours and the maximum time of a working day 

was also provided as well as the departing places of each vehicle. 

With the information regarding the SCCs, in particular their names and addresses, it was possible to 

obtain the time matrices necessary to comprehend the spatial density related to the considered 

instances. Firstly, with the tool “Google My Maps” the geolocations (i.e., latitude and longitude) of all the 

significant points were obtained. Afterwards, with the geolocations defined it was possible to obtain the 

distance matrices with the use of a Google Maps API [59]. Then, it was asked to an expert what the 

value of the average velocity should be considered to map the time matrix. It was responded that for 

Region A1, Region A2, Region A3, Region A4 and Region A5 the average velocity should be around 

60 km/h while for Region A6 and Region A7 the average velocity should be about 75 km/h. 

Moreover, to dictate the value of the routes’ maximal transportation time, the same worker stated that it 

should be around 5 hours. Except for the regions where the SCCs are more far away from one another, 

which can take more than 5 hours. Thus, for most places Z-./ was considered to be 5 hours (i.e., 300 

minutes) with the exception of Region A2.2, Region A6 and Region A7 which can take higher values 

than 5 hours (up to 540 minutes). 

Another information that had to be provided was the desired time windows to pass in each SCC. These 

time windows were defined in a way that guarantees that all the biomedical samples arrive to the 

laboratory in that day. 

Table 6.2 reports a summary of the properties of the 15 instances created. It is important to highlight 

that the columns headings follow the same notation as the one used in Chapter 4. The names of the 

instances are based on the previously presented geographical regions. The numbers after the regions’ 

name represent different sets of SCCs of the same geographical region. Moreover, it specifies for each 

instance the number of SCCs (6′), the number of collection requests (E) and the maximum considered 

transportation time in minutes (Z-./). To characterize the SCCs of each instance the table also provides 

information on: the average number of pickups for the SCCs (E/6′), the average travel time in minutes 

(O!̅") and the standard deviations on the opening and closing hours in minutes (respectively, rOD. ." and 

rOD. U"). 

 

 

 

 

 

 



 37 

Table 6.2 – Summary of the properties of the 15 instances. 

# Size Name 
General SCCs 

x′ z {>?@ z/x′ }̅AB 
(min) 

Std. �B Std. ÄB 

1 

Small 
(z < Üá) 

Region A3.1 5	 5	 300	 1	 15.19	 13.42	 53.67	

2 Region A5.2 10	 10	 300	 1	 11.15	 34.79	 0	

3 Region A2.3 12	 12	 300	 1	 23.49	 23.79	 0	

4 Region A4.1 15	 15	 300	 1	 6.18	 50.03	 0	

5 Region A4.2 15	 15	 300	 1	 6.77	 48.73	 0	

6 

Medium 
(Üá ≤ z < àá) 

Region A2.1 21	 29	 300	 1.4	 5.87	 147.33	 173.68	

7 Region A2.2 21	 21	 350	 1	 25.00	 151.96	 107.17	

8 Region A1.3 18	 18	 300	 1	 9.74	 156.82	 148.01	

9 Region A5.1 21	 21	 300	 1	 16.88	 144.90	 115.54	

10 Region A3.2 25	 26	 300	 1.04	 13.85	 149.94	 141.29	

11 

Large 
(z ≥ àá) 

Region A2.1 + A2.2 42	 50	 350	 1.19	 18.10	 149.10	 148.08	

12 Region A2.1 + A2.4 39	 50	 300	 1.28	 10.02	 129.09	 141.11	

13 
Region A3.1 + A3.2 

& Region A5.1 + 

A5.2 

70	 71	 300	 1.01	 15.62	 127.26	 93.26	

14 
Region A6.1 + A6.2 

& Region A7.1 + 

A7.2 + A7.3 

62	 62	 450	 1	 53.43	 133.61	 102.92	

15 Region A1.1 + A1.4 41	 51	 300	 1.24	 6.00	 136.06	 110.8	
 

Finally, to fully characterize the 15 instances there are general parameters that can be applied to all of 

them. These parameters are: 

• Loading time in the SCCs (âA) and unloading time in the lab (âE): 
Experts referred that the loading time in the SCCs should be around 10 minutes. The unloading 

time at the laboratory, on the other hand, should set to be about 60 minutes since it is in this 

period that the drivers have their lunch break. 

 

• Working hours in the laboratory (�E and ÄE): 
Entity experts also stated that the samples should arrive in the lab between 8h to 21h. 

 

• Large constant (ä): 

In the formulation of the model a large constant, ], is used and it is fixed to be 100000. It is 

important to note that this value is larger than any other value used such as distances or times. 

A summary of these common parameters can be found in the following table, Table 6.3. 
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Table 6.3 – Common parameters. 

âE (min) âA (min) �E (min) ÄE (min) ä 

60	 10	 480	 1260	 100000	
 

6.2 Optimization solver results 

As referred in Chapter 4, the developed model was tested using the optimization software GAMS. The 

properties of the computer used for this purpose are stated in the following table, Table 6.4. 

Table 6.4 – System properties 

System properties 

2 Processors Intel(R) Xenon(R) CPU &  X5680 @ 3.33GHz 

Installed Memory (RAM) 24 GB 
 

Several tests were performed on the 15 instances previously described to test the mathematical model 

and to find the parameters that would fit better the case study context. For all these tests, the 

computational time was limited to 3 hours (10800	seconds). Additionally, for all the tests that the 

optimization program could not find any solution within the time limitation stipulated (3 hours of 

computation) were marked with an asterisk. 

As previously mentioned in Chapter 4, the aim of the optimization program is to find a solution that 

minimizes the objective function. This function represents the sum of the routes’ total duration with a 

penalization, #, associated with the number of boxes arriving in the laboratory in the most occupied 

period, which is represented by a. To measure the number of boxes arriving in the busiest period, the 

day is discretized into intervals of ) minutes. The objective is to find which values of # and ) fit best the 

entity under study characteristics, thus, two different experiments are be performed. The first lies on 

finding which penalization fits best the case study context: if # = 25, # = 50 or # = 75. The second one 

is to find the best form to discretize time: if in intervals of 30 minutes or 60 minutes (i.e., ) = 30 or ) =
60). 

6.2.1 Penalization factors experiment (!) 

As mentioned, the first experiment lies on comparing the results for different penalties values to see 

which value is the one that better balances the minimization of the route’s duration and the number of 

arrivals during the busiest period. For this purpose, it was considered that the time discretization should 

be ) = 60. Thus, Table 6.5 reports the results for different values of penalties: # = 25, # = 50 and # =
75 and presents the values obtained for the objective function, routes’ total duration (in minutes), number 

of boxes arriving in the busiest period (a), lower bound, gap and the computational time (in seconds). 
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Table 6.5 – Optimization Solver Results for the 15 instances with different values of ! (! = 25, ! = 50 and ! = 75) considering ' = 60. 

 
 

 

# 

)	 = 	+, )	 = 	,- )	 = 	., 

Objective 
Function 

Total 
time 
(min) 

/ Lower 
Bound 

Gap 
(%) 

Computatio 
nal Time 

(sec) 

Objective 
Function 

Total 
time 
(min) 

/ Lower 
Bound 

Gap 
(%) 

Computatio 
nal Time 

(sec) 

Objective 
Function 

Total 
time 
(min) 

/ Lower 
Bound 

Gap 
(%) 

Computatio 
nal Time 

(sec) 

1 241	 116	 5	 241	 0	 0.03	 366	 116	 5	 366	 0	 0.09	 491	 116	 5	 491	 0	 0.11	
2 413	 163	 10	 413	 0	 2787	 663	 163	 10	 663	 0	 2609	 913	 163	 10	 913	 0	 2801	
3 541	 241	 12	 300	 44.5	 10800	 841	 241	 12	 600	 28.7	 10800	 1141	 241	 12	 900	 21.1	 10800	
4 566	 191	 15	 375	 33.7	 10800	 941	 191	 15	 750	 20.3	 10800	 1316	 191	 15	 1125	 14.5	 10800	
5 577	 202	 15	 375	 35	 10800	 952	 202	 15	 750	 21.2	 10800	 1328	 203	 15	 1125	 15.3	 10800	
6 840	 415	 17	 54	 93.6	 10800	 1264	 414	 17	 120	 90.2	 10800	 *	 *	 *	 *	 *	 10800	
7 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	
8 540	 290	 10	 100	 81.5	 10800	 790	 290	 10	 350	 55.7	 10800	 1040	 290	 10	 600	 42.3	 10800	
9 698	 323	 15	 50	 92.8	 10800	 1061	 361	 14	 100	 90.6	 10800	 1202	 377	 11	 255	 81.2	 10800	
10 735	 360	 15	 54	 92.6	 10800	 1114	 364	 15	 100	 91	 10800	 *	 *	 *	 *	 *	 10800	
11 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	
12 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	
13 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	
14 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	
15 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	
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Analysing Table 6.5, one can verify that once the instances grow the optimization program stops finding 

the optimal solution. The program only found the optimal result for the first two small instances. Further, 

as the complexity of the problem increases the optimization program ceases finding results within the 3 

hours of computation. This occurred for all the large size instances and for instance 7. It is also important 

to point out that for the penalty factor of θ = 75 the model could not find a solution for instances 6 and 

10, while it found for the other two penalty factors. 

Comparing the different results for different values of penalty, it is possible to perceive that the program 

only found reasonable values of gap for the small instances, while for the medium size instances the 

values of gap increased in a significant amount. In addition, analysing each individual instance, for the 

same computational time the values of gap decrease when the penalty increases. This was in fact 

verified for all the instances where GAMS could find results.  

By evaluating the routes’ total time for when the optimization program was able to dictate results, it is 

possible to verify that the number of boxes arriving in the laboratory in the busiest period does not 

change drastically within the penalties. The most pertinent instance to analyse is instance 9, since it 

provided different values of % for all the different penalties. For the penalty of θ = 25, it presented that 

the routes’ total time would be 323 minutes with 15 boxes arriving in the busiest period, for the penalty 

of θ = 50 one would have a value of the routes’ total time of 361 minutes with 14 boxes arriving in the 

lab in the busiest period and, finally, for the penalty of θ = 75, it gave that the routes’ total time would 

be 377 minutes with 11 boxes arriving in the most occupied time period. These results were, as 

expected, that higher values of penalty would provide higher values for the routes’ total time and 
decrease the number of boxes arriving in the laboratory in the busiest period. The main reason why this 

reality did not occur in the other instances is due to the time windows restrictions of the collection 

requests. In fact, some collection requests time windows forced SCCs to be visited by a particular route 

not allowing the number of boxes arriving in the laboratory in the most occupied time period to change. 

With all being said, the penalty that is found to fit better the purpose of this thesis is the one where θ =
50, since it offers a favourable balance between the number of boxes arriving in the busiest period and 

the routes’ total time. This value does not penalize to much the arrivals in the laboratory and is able to 

find favourable results for the routes’ total time. Furthermore, it gives better gap results when comparing 

with the penalization of θ = 25 and was able to provide results in some instances when the penalty of 

θ = 75  was not able to provide. Thus, for the case study of Region A, a penalization of θ = 50 is the 

value used to find new routes. 

6.2.2 Time period discretization experiment (!) 

The second experiment lied on finding what would be the finest way to discretize time, if in intervals of 
30 minutes or if intervals of 60 minutes. Therefore, Table 6.6 reports the numerical results produced for 

these instances when ( = 30 and ( = 60.
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Table 6.6 – Optimization Solver Results for the 15 instances with different values of ! (! = 30 and ! = 60) considering & = 50. 

# 

( = )* ( = +* 

Objective 
Function 

Total 
time 
(min) 

, Lower 
Bound 

Gap 
(%) 

Computational 
Time (sec) 

Objective 
Function 

Total time 
(min) , Lower 

Bound 
Gap 
(%) 

Computational 
Time (sec) 

1 366	 116	 5	 366	 0	 0.56	 366	 116	 5	 366	 0	 0.09	
2 663	 163	 10	 663	 0	 3214	 663	 163	 10	 663	 0	 2609	
3 841	 241	 12	 600	 28.7	 10800	 841	 241	 12	 600	 28.7	 10800	
4 941	 191	 15	 750	 20.3	 10800	 941	 191	 15	 750	 20.3	 10800	
5 951	 201	 15	 750	 21.1	 10800	 952	 202	 15	 750	 21.2	 10800	
6 1266	 416	 17	 50	 96.1	 10800	 1264	 414	 17	 120	 90.2	 10800	
7 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	
8 790	 290	 10	 50	 93.7	 10800	 790	 290	 10	 350	 55.7	 10800	
9 1062	 362	 14	 50	 95.3	 10800	 1061	 361	 14	 100	 90.6	 10800	
10 *	 *	 *	 *	 *	 10800	 1114	 364	 15	 100	 91	 10800	
11 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	
12 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	
13 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	
14 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	
15 *	 *	 *	 *	 *	 10800	 *	 *	 *	 *	 *	 10800	
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Similar to the results previously presented in Table 6.5, also in Table 6.6 for both ! = 60 and ! = 30 

the optimization program was not able to find results for the large instances and for instance 7 even 

after 3 hours of computational time. Furthermore, for instance 10 GAMS software could only find results 

when ! = 60. 

In terms of the objective function, the results provided by when the time is discretized into intervals of 

30 minutes (! = 30) are similar to when the time is discretized into intervals of 60 minutes (! = 60). 

Nevertheless, when the optimization program did not find equal results, as one can notice in instances 

6 and 9, the objective function values were higher for ! = 30, while the number of boxes arriving in the 

busiest period were the same. Since the aim is to minimize the objective function, the quality of the 

results provided for ! = 30 is worse when compared to ! = 60. 

Finally, with all things considered, it is possible to conclude that the complexity of solving the problem 

when the day is discretized into intervals of 30 minutes is much higher than when discretizing it into 

intervals of 60 minutes. Thus, since the performance of the ! parameter was remarkably higher for 

when it took the value of 60, for the purpose of this thesis and for the case study chapter, this parameter 

takes the value of 60. 

In summary, using the optimization program to find solutions for the developed model is not viable for 

large instances, since it was not able to provide results even after several hours of computation. 

Nevertheless, from the results obtained, one can conclude that the parameters that fit best the purpose 

of the entity under study are when the penalty value is equal to 50 (i.e., θ = 50) and when the time is 

discretized into intervals of 60 minutes (i.e., ! = 60). As a result, these are the parameters to be used 

in Chapter 7 to compute Region A routes. For the case of Region B since the objective is not to 

desynchronize the arrivals a penalty of θ = 0 is considered. 

6.3 Heuristic results 

From the previous section it was possible to perceive that the optimization program was not able to find 
results for the large size instances. Since the problem found in this entity has many SCCs, the need of 

developing a heuristic algorithm emerged; ergo, the multi-start heuristic algorithm described in Chapter 

5 was developed and implemented in Python 3.8.1. 

For both experiments presented in the previous section (in Table 6.5 and 6.6), even after multiple hours 

of computation GAMS software was not able to find reasonable values of lower bound to use to compare 

the objective function with. Thus, for the purpose of this section, the solutions obtained by GAMS are 

the ones used as benchmark and not the values of the lower bound. Thereby, the solutions obtained 

previously are used to compare to the ones obtained using the heuristic algorithm. 

To test whether the developed heuristic is appropriate to be used for the purpose of the case study, a 

variety of tests are developed to compare the heuristic results with the ones obtained in the previous 

section. Also, a validation of the parameters chosen (more specifically, θ = 50 and ! = 60) is performed. 
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Thereafter, for this purpose, the same 15 instances are used. To be able to compare them, the results 

provided for the heuristic are executed using the same computer as the one used to obtain GAMS 

results, where the system properties are presented in Table 6.4. 

The first experiment performed, presented in Table 6.7, depicts the results obtained for the optimization 

program, GAMS, and for the heuristic when different values of penalizations are considered, namely 

) = 25, ) = 50 and ) = 75. For this purpose, the parameter considered to discretize time is ! = 60 and 

the number of iterations considered for the heuristic is 100. This table presents the objective function 

results, the routes’ total time (in minutes), the number of boxes arriving in the busiest period (,), the 

difference in percentage (i.e., the deviation of the objective function of the heuristic compared to the 

GAMS solution) and the computational time (in seconds).  

The second experiment, presented in Table 6.8, portraits the results of discretizing the day into different 

intervals, namely for when the day is discretized into intervals of 30 minutes (! = 30) and for when the 

day is discretized into intervals of 60 minutes (! = 60). This table introduces the results for both solution 

methodologies regarding: the value of the objective function, routes’ total time (in minutes), number of 

boxes arriving in the busiest period (,), the difference in percentage (i.e., the deviation of the objective 

function of the heuristic compared to the GAMS solution)  and computational time (in seconds). The 

number of iterations considered for the heuristic is also 100 and the penalization considered is ) = 50. 
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Table 6.7 – Heuristic and optimization solver results for different values of ! (! = 25, ! = 50 and ! = 75) considering ' = 60. 

 
 
 
 
 

# 

) = 25 ) = 50 ) = 75 

Objective 
function 

Total time 
(min) *  

Diff 
ere 
nce 
(%) 

Computation
al Time (sec) 

Objective 
Function 

Total time 
(min) * 

Diff 
ere 
nce 
(%) 

Computation
al Time (sec) 

Objective 
Function 

Total 
time(min) * 

Diff 
ere 
nce 
(%) 

Computation
al Time (sec) 

G H G H G H G H G H G H G H G H G H G H G H G H 

1 241	 243	 116	 118	 5	 5	 0.8	 0.03	 38.8	 366	 368	 116	 118	 5	 5	 0.5	 0.09	 39	 491	 493	 116	 118	 5	 5	 0.4	 0.11	 39	

2 413	 420	 163	 170	 10	 10	 1.7	 2787	 446	 663	 670	 163	 170	 10	 10	 1.1	 2609	 449	 913	 920	 163	 170	 10	 10	 0.8	 2801	 448	

3 541	 541	 241	 241	 12	 12	 0	 10800	 439	 841	 841	 241	 241	 12	 12	 0	 10800	 440	 1141	 1141	 241	 241	 12	 12	 0	 10800	 442	

4 566	 567	 191	 192	 15	 15	 0.2	 10800	 2418	 941	 942	 191	 192	 15	 15	 0.1	 10800	 2440	 1316	 1317	 191	 192	 15	 15	 0.08	 10800	 2445	

5 577	 580	 202	 205	 15	 15	 0.5	 10800	 1399	 952	 955	 202	 205	 15	 15	 0.3	 10800	 1392	 1328	 1330	 203	 205	 15	 15	 0.2	 10800	 1383	

6 840	 842	 415	 417	 17	 17	 0.2	 10800	 4387	 1264	 1267	 414	 417	 17	 17	 0.2	 10800	 4410	 *	 1692	 *	 417	 *	 17	 -	 10800	 4575	

7 *	 799	 *	 399	 *	 16	 -	 10800	 1989	 *	 1199	 *	 399	 *	 16	 -	 10800	 1991	 *	 1599	 *	 399	 *	 16	 -	 10800	 2004	

8 540	 550	 290	 300	 10	 10	 1.9	 10800	 1010	 790	 800	 290	 300	 10	 10	 1.2	 10800	 1026	 1040	 1050	 290	 300	 10	 10	 1	 10800	 1005	

9 698	 723	 323	 348	 15	 15	 3.6	 10800	 1829	 1061	 1098	 361	 348	 14	 15	 3.5	 10800	 1834	 1202	 1431	 377	 381	 11	 14	 19.1	 10800	 2414	
10 735	 862	 360	 437	 15	 17	 1.2	 10800	 2341	 1114	 1287	 364	 437	 15	 17	 15.5	 10800	 2341	 *	 1712	 *	 437	 *	 17	 -	 10800	 2351	

11 *	 1216	 *	 791	 *	 17	 -	 10800	 15176	 *	 1603	 *	 753	 *	 17	 -	 10800	 15936	 *	 2056	 *	 781	 *	 17	 -	 10800	 16091	

12 *	 1198	 *	 773	 *	 17	 -	 10800	 19829	 *	 1623	 *	 773	 *	 17	 -	 10800	 19131	 *	 2048	 *	 773	 *	 17	 -	 10800	 19874	

13 *	 1924	 *	 1149	 *	 31	 -	 10800	 56862	 *	 2699	 *	 1149	 *	 31	 -	 10800	 56126	 *	 3474	 *	 1149	 *	 31	 -	 10800	 55717	

14 *	 2337	 *	 2037	 *	 12	 -	 10800	 29122	 *	 2640	 *	 1990	 *	 13	 -	 10800	 23148	 *	 2946	 *	 2046	 *	 12	 -	 10800	 22722	

15 *	 1185	 *	 685	 *	 20	 -	 10800	 14117	 *	 1685	 *	 685	 *	 20	 -	 10800	 14147	 *	 2185	 *	 685	 *	 20	 -	 10800	 14352	
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Table 6.8 – Heuristic and optimization solver results for different values of ' (' = 30 and ' = 60) considering ! = 50. 

 
 
 
 

# 

, = -.  , = /.  
Objective 
Function 

Total time 
(minutes) * Differ 

ence 
(%)  

Computational 
Time (sec) 

Objective 
Function 

Total time 
(minutes) * Differ 

ence 
(%)  

Computational 
Time (sec) 

G H G H G H G H G H G H G H G H 

1 366	 368	 116	 118	 5	 5	 0.5	 0.56	 42	 366	 368	 116	 118	 5	 5	 0.5	 0.09	 39	
2 663	 670	 163	 170	 10	 10	 1.1	 3214	 497	 663	 670	 163	 170	 10	 10	 1.1	 2609	 449	
3 841	 841	 241	 241	 12	 12	 0	 10800	 486	 841	 841	 241	 241	 12	 12	 0	 10800	 440	
4 941	 942	 191	 192	 15	 15	 0.1	 10800	 2612	 941	 942	 191	 192	 15	 15	 0.1	 10800	 2440	
5 951	 955	 201	 205	 15	 15	 0.4	 10800	 1567	 952	 955	 202	 205	 15	 15	 0.3	 10800	 1392	
6 1266	 1267	 416	 417	 17	 17	 0.1	 10800	 5037	 1264	 1267	 414	 417	 17	 17	 0.2	 10800	 4410	
7 *	 1199	 *	 399	 *	 16	 -	 10800	 2177	 *	 1199	 *	 399	 *	 16	 -	 10800	 1991	
8 790	 800	 290	 300	 10	 10	 1.3	 10800	 1150	 790	 800	 290	 300	 10	 10	 1.2	 10800	 1026	
9 1062	 1098	 362	 348	 14	 15	 3.4	 10800	 1991	 1061	 1098	 361	 348	 14	 15	 3.5	 10800	 1834	
10 *	 1287	 *	 364	 *	 17	 -	 10800	 2603	 1114	 1287	 364	 437	 15	 17	 15.5	 10800	 2341	
11 *	 1608	 *	 758	 *	 17	 -	 10800	 18301	 *	 1603	 *	 753	 *	 17	 -	 10800	 15936	
12 *	 1609	 *	 759	 *	 17	 -	 10800	 22035	 *	 1623	 *	 773	 *	 17	 -	 10800	 19131	
13 *	 2015	 *	 1215	 *	 16	 -	 10800	 42942	 *	 2699	 *	 1149	 *	 31	 -	 10800	 56126	
14 *	 2493	 *	 1893	 *	 12	 -	 10800	 16707	 *	 2640	 *	 1990	 *	 13	 -	 10800	 23148	
15 *	 1685	 *	 685	 *	 20	 -	 10800	 14191	 *	 1685	 *	 685	 *	 20	 -	 10800	 14147	
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Looking at the results provided both in Table 6.7 and 6.8, one can verify that the ones provided by the 

heuristic method are very similar to the optimization software ones. In fact, the differences between the 

results obtained by both resolution methodologies are significantly low. More specifically, for the small 

instances the differences were always below 2% and for the medium size instances the differences are 

below 20%.  

In terms of computational time, for the instances that GAMS software was able to find a solution, the 

heuristic multi-start algorithm found the solution in much less time than GAMS. The heuristic method 

was also able to provide results when the optimization algorithm could not, as one can see from the 

larger instances and instance 7. 

By looking in detail to the results obtained for the values of ! = 50 and % = 60, the parameter values 

that were found to suit best the entity’s purpose, it was also possible to note that they outperformed the 

other parameters.  

In fact, for the penalization factor of ! = 50 the objective function differences were all lower than the 

ones obtained by the penalization factor of ! = 25. With regard to when ! = 75, while for the small size 

instances this parameter had lower differences when comparing to ! = 50, for the medium size the 

opposite occurred. In terms of the total time and the number of boxes arriving in the laboratory in the 

busiest period, when the heuristic method provided different solutions between the penalization values, 

as it is the case of instances 9, 11 and 14, the routes’ total time was always less for the penalization 

factor of ! = 50, supporting the decision of choosing this value. In terms of computational time, the 

differences between the penalizations were not significant. 

By looking into the results of Table 6.8, for the discretization of time into periods of 60 minutes, % = 60, 

in terms of the computational time this parameter outperformed significantly % = 30 since the time taken 

to obtain the solution was remarkably lower, except for instance 13 and 14 where the opposite occurred. 

In terms of the objective function, the results were the same in the small and medium size instances. 

For the larger instances, as expected, the values of the objective function were lower for % = 30 since 

that if the day is divided into periods of 30 minutes the number of intervals for the arrivals is the double 

of when the day is discretized into periods of 60 minutes. By looking into the routes’ total time, one can 

encounter different performances, since that for some instances the results for % = 30 outperformed the 

ones for % = 60, while for others the opposite occurred.  

The last analysis lied on finding what is the most suitable value of iterations that balances the 

computational time and the quality of the solution. Henceforth, tests were performed for a different 

number of iterations, namely 1 iteration, 50 iterations and 100 iterations. These results are compared to 

the ones obtained with the optimization program. Table 6.9 depicts the results by presenting the value 

of the objective function, the number of boxes arriving in the busiest period (+), the difference in 

percentage (i.e., the relative error when comparing to the results obtained by GAMS) and the 

computational time (in seconds).
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Table 6.9 – Heuristic results for different number of iterations considering ! = 60 and % = 50. 

# 

Best GAMS Heuristic (1 iter.) Heuristic (50 iter.) Heuristic (100 iter.) 

Objective 
Function ' Objective 

Function ' Difference 
(%) 

Computational 
Time (sec) 

Objective 
Function ' Difference 

(%) 
Computational 

Time (sec) 
Objective 
Function ' Difference 

(%) 
Computational 

Time (sec) 

1 366	 5	 368	 5	 0.5	 0,5	 368	 5	 0.5	 21	 368	 5	 0.5	 39	
2 663	 10	 670	 10	 1.1	 5	 670	 10	 1.1	 241	 670	 10	 1.1	 449	
3 841	 12	 841	 12	 0	 4	 841	 12	 0	 438	 841	 12	 0	 840	
4 941	 15	 942	 15	 0.1	 26	 942	 15	 0.1	 1331	 942	 15	 0.1	 2440	
5 952	 15	 955	 15	 0.3	 16	 955	 15	 0.3	 767	 955	 15	 0.3	 1392	
6 1264	 17	 1267	 17	 0.2	 55	 1267	 17	 0.2	 2432	 1267	 17	 0.2	 4410	
7 *	 *	 1199	 16	 -	 29	 1199	 16	 -	 1088	 1199	 16	 -	 1991	
8 790	 10	 1008	 13	 27.6	 11	 800	 10	 1.3	 550	 800	 10	 1.3	 1026	
9 1061	 14	 1098	 15	 3.5	 17	 1098	 15	 3.5	 1000	 1098	 15	 3.5	 1834	
10 1114	 15	 1287	 17	 15.5	 25	 1287	 17	 15.5	 1307	 1287	 17	 15.5	 2341	
11 *	 *	 1740	 19	 -	 187	 1603	 17	 -	 8920	 1603	 17	 -	 15936	
12 *	 *	 1683	 19	 -	 228	 1623	 17	 -	 10352	 1623	 17	 -	 19131	
13 *	 *	 2699	 31	 -	 557	 2699	 31	 -	 28279	 2699	 31	 -	 56126	
14 *	 *	 2646	 12	 -	 235	 2646	 12	 -	 10650	 2640	 13	 -	 23148	
15 *	 *	 1685	 20	 -	 134	 1685	 20	 -	 7058	 1685	 20	 -	 14147	
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As can be observed, as the number of iterations increases the time taken to obtain the solution also 

increases. As expected, the number of iterations is in direct proportion to the computational time, since 

that the time taken to obtain the results for 100 iterations takes approximately 100 times more than for 

1 iteration. 

In terms of the quality of the results obtained, considering that the objective is to minimize the value of 

the objective function, it is possible to perceive that the only number of iterations that provided 

remarkably worse results was for 1 iteration. While for most instances all three values of iterations 
granted the same results, for instances 8, 11 and 12, the value of 1 iteration provided worse results. 

Furthermore, with the results obtained for 50 and 100 iterations, one can perceive that the results were 

the same except for instance 14 where with 100 iterations the program was able to find a better solution.  

In conclusion, the quality of the results having several iterations of 100 is better than for the other two 

parameters. Nevertheless, if one is working with large sized instances, 100 iterations can take too much 

computational time to be completed. Thus, if the aim is to work with a relatively small amount of 

collection requests 100 iterations should be the value chosen, while if one is working with very large 

instances a smaller number of iterations must be selected. Therefore, for the purpose of this thesis, in 
the next chapter the number of iterations considered is 100 iterations for when dealing with instances 

with a smaller number of collection requests and 50 iterations for when dealing with many collection 

requests. 

6.4 Chapter conclusions 

In summary, the heuristic algorithm is a good alternative to the optimization solver provided with GAMS. 

While GAMS was only able to find results for small and medium size instances the multi-start algorithm 

was able to find results for all the instances. In terms of the parameters to use, from the performed tests 

it can be concluded that the values that fit best the purpose of the routes of Region A are to have a 

penalization factor of 50 (! = 50) and a time discretization into periods of 60 minutes (% = 60). On the 

other hand, for the purpose of the routes in Region B, since the objective is not to desynchronize the 

arrivals a penalization of 0 should be considered. Moreover, and similar to Region A, the parameter that 

discretizes time for Region B should be % = 60. Finally, the number of iterations to consider should be 

50 for when the number of collection requests is very high and 100 when one deals with a smaller 

number of SCCs. Thus, these are the values considered when using the heuristic methodology to find 

routes in the following chapter.  
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7 Case Study Results and Discussion 
The aim of this chapter lies on constructing routes for the context of the case study previously outlined 

in Chapter 2. For this, the multi-start heuristic algorithm for the BSTP with desynchronized arrivals and 

open routes, already developed and tested, is used to calculate routes for Region A and for Region B.  

For this purpose, the parameters that provided the best results in the previous chapter are utilized. More 

specifically, for both regions a time discretization into periods of 60 minutes, % = 60, is used. For Region 

A, since the aim is to desynchronize the arrivals a penalization factor of ! = 50 is employed. On the 

other hand, for Region B, since the aim is to minimize the routes total time a penalization of ! = 0 is 

considered. 

This chapter is divided as follows: section 7.1 details for Region A a description of the current routes, of 
the routes provided by the heuristic algorithm and a comparison between them. Section 7.2, on the other 

hand, details for Region B the currently established routes, the proposed routes and a comparison with 

each other. On section 7.3 recommendations for the entity are detailed. Finally, section 7.4 presents a 

final conclusion on the results obtained. 

7.1 Region A routes 

As already mentioned, associated with the manner that Region A routes are currently defined arises the 

issue of having periods of the day where too many samples arrive in the laboratory and others where 

very few arrive. This leads to significant differences in the laboratory throughput throughout the day. 

Thus, emerging the need of improving these routes by desynchronizing the arrivals in the laboratory. 

The following sections have detailed information regarding the routes. Particularly, section 7.1.1 

presents an overview of the currently established routes, section 7.1.2 describes the results obtained 

with the heuristic algorithm and, finally, in section 7.1.3, a comparison of the results with the currently 
established routes is performed. 

7.1.1 Region A current routes 

Since the total number of collection requests in Region A is relatively high (more specifically, there are 
currently 449 requests) designing routes considering all of these locations at the same time is very 

complex and time consuming to do by hand. Therefore, to overcome this challenge, the entity follows 

the strategy of dividing Region A into smaller regions based on geographical locations and designs the 

routes individually for each smaller region. As mentioned in the previous chapter, the names of these 

regions are: Region A1, Region A2, Region A3, Region A4, Region A5, Region A6 and Region A7. 
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The entity currently counts on four different types of routes defined by their corresponding schedules. 

These are: 

- Routes that occur in the early morning, more specifically until 12h, which allow samples to arrive 

early to the laboratory; 

- Routes defined in the morning period that arrive in the laboratory at lunch time;  

- Routes that collect samples in the afternoon period; 

- Routes that visit more distant points that are defined for the full day. 

Thus, to a driver, it can be either be attributed an early morning route along with a morning route and 

an afternoon route, or a morning route and an afternoon route, or a route that takes the full day to be 

completed. In total there are 39 routes currently established.  

Further, having the order of the SCCs to be visited defined, with the purpose of analysing the numerical 

properties of the routes and the arrivals to the laboratory, it is necessary to have information on the 

departing times as well as on the time that it takes to travel between locations. Thereby, the entity under 

study provided information regarding the time at which each route starts. To know the time the routes 

would take, the time matrix that had to be plotted to calculate the new routes was used. Moreover, the 
loading time at each SCCs had to be considered, and as experts stated, it takes the value of 10 minutes. 

Further, to examine the routes in terms of the total travelled distance, the distance matrix that had to be 

calculated for the new routes was also used for this purpose.  

The results obtained were that in total 3744 kms are travelled on each day, taking a total time of 7642 

minutes. This is, in average, 117 kilometres and 239 minutes per route. The shortest route has a total 

distance of 25 kilometres and takes 85 minutes to be completed. The longest, on the other hand, has a 

total distance of 522 kilometres and takes 517 minutes to be completed. This information is summarized 

in the next table, Table 7.1. 

Table 7.1 – Information regarding the current routes of the entity in Region A. 

 Distance (kms) Travel time (min) 

Total 3744	 7642	

Average 117	 239	

Minimum 25	 85	

Maximum 522	 517	
 

After having the schedules of the routes, it was possible to compute a graph with the predictions of what 

the arrivals in the laboratory currently are. Hence, the graph in Figure 7.1 was plotted. This graph 

represents the number of boxes arriving in the laboratory (i.e., the number of SCCs visited by the given 
routes) in function of the corresponding arrival times (divided into intervals of 1 hour). 
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Figure 7.1 – Estimation of the number of boxes arriving in the entity’s central laboratory per hour by 

the routes organized in Region A. 

Analysing Figure 7.1, one can comprehend the flow of the arrivals in the laboratory. Firstly, the impact 

of the early morning routes can be perceived by the samples that arrive between 10h and 12h. In the 

interval of time from 12h to 14h there are not any samples arriving in the laboratory. In the intervals after 

is where most of the samples arrive, more precisely, in the time period from 14h-16h, reaching the peak 

of 151 boxes between 14h-15h. These arrivals mainly come from the samples collected by the morning 
routes. The arrivals of the samples after 16h are more distributed in time and they mainly come from 

the afternoon routes and longer routes. This disparity in the arrivals, where there is a period where no 

samples arrive and another where most of them arrive, represents the main issue faced in Region A 

routes, which portraits the need of rearranging the routes. 

Finally, having the current routes described it is possible to understand the need of desynchronizing the 

routes arrivals in order to allow for the laboratory to have a more continuous flow of samples arrivals. 

Thus, the objective is to minimize the peak that occurs in the interval from 14-15h, while at the same 

time try to minimize the total time of the routes. 

7.1.2 Region A proposed routes  

To calculate the new routes for Region A, experts stated that the early morning routes should not be 

modified. Hence, only the morning routes, afternoon routes and the routes that take the full day to be 
completed are considered. For these, there is a total number of 425 collection requests. 
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As previously detailed in Chapter 6, when calculating routes using the heuristic algorithm, as the number 

of requests increase the computational time taken to compute the routes also increases. Hence, 

considering all the 425 request nodes at the same time would not be adequate since it would take a 

considerable amount of time to obtain results. In order to overcome this challenge, a strategy of diving 

the request nodes into different clusters based on geographical locations was followed. Firstly, the 

request nodes from Region A6 and A7 were considered in a different group from Region A1, A2, A3, A4 

and A5.  

The routes presented in Region A6 and A7 are the ones that take the full day to be completed, having 

a total of 60 collection requests. According to entity experts, different input parameters must be 

considered for these locations, namely the average velocity to calculate the time matrix and the 

maximum time limitation for the routes. For this, an average velocity of 75 km/h and a maximal time for 

each route of 540 minutes should be considered. 

Even with the two geographical clusters presented, one would still have 365 request nodes for the 

regions of Region A1, A2, A3, A4 and A5. Therefore, since this number is notably high, it would still not 

be possible to obtain results within reasonable computing time. Since the aim is to desynchronize the 
arrivals, dividing the cluster into smaller ones based on geographical locations is not an option due to 

the way the mathematical model was developed. In fact, the arrivals would not be desynchronized, since 

it would only consider the desynchronization of each individual region. Therefore, the strategy followed 

was to divide the request nodes into two different groups based on their collecting schedules. Therefore, 

one group is composed by the request nodes of the morning routes (250 request nodes) and the other 

consists of the nodes in the afternoon routes (115 nodes). According to the entity experts, an average 

velocity of 60 km/h and a total travel time limitation of 360 minutes should be considered.  

Hence, the strategy taken was to first divide the request nodes into two different clusters based on 
geographical locations, and then divide the request nodes of the largest cluster into two groups based 

on the collecting schedules. A representation of the strategy followed is represented in the following 

image, Figure 7.2. 
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Figure 7.2 – Representation of the strategy taken to divide the total number of requests to calculate 

new routes. 

Apart from the maximal time each route should take and the average velocity to calculate the time 

matrix, other input parameters must be considered. Similar to the instances created in the previous 

chapter, there are common input parameters to be introduced. Furthermore, as stated, for all the groups 

a penalization of ! = 50 and a time discretization into periods of 60 minutes, % = 60, was considered. 

Regarding the number of iterations, for Regions A6 and A7 100 iterations were considered. For the 

morning routes of Region A1, A2, A3, A4 and A5, since this group deals with the greatest number of 

request nodes 50 iterations were chosen. Finally, for the afternoon routes 100 iterations were 
considered. All the presented input parameters are summarized in Table 7.2. 

Table 7.2 – Input parameters considered for each zone in Region A. 

Group 
# 

Collection 
Requests 

Number of 
iterations ! " 

(min) 
#!"#	1 
(min) 

%$	2 
(min) 

%%	3 
(min) 

&$	4 
(min) 

'$	5 
(min) (	6 

Region A6 
and A7 60	 100	 50	 60	 540	 -	 10	 480	 1260	 100000	

Morning 
routes 250	 50	 50	 60	 360	 -	 10	 480	 1260	 100000	

Afternoon 
routes 115	 100	 50	 60	 360	 -	 10	 480	 1260	 100000	

 
1 2&'( is the maximal transportation time for each route 
2 3) is the unloading time in the laboratory. Since only one route is considered for each vehicle, this value is not 
considered when calculating these routes 
3 3* is the unloading time in each SCC 
4 4) represents the upper time window of the laboratory 
5 5) represents the lower time window of the laboratory 
6 6 is a large constant 
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After introducing the input parameters into the algorithm, for each region new routes were retrieved. The 

numerical results obtained were the following: 

- For the routes of Regions A6 and A7:  

• The routes’ total time would be 2074 minutes and the total distance 1843 kms; 

• Comparing to the current routes it would take more 61 minutes and 78 kms to be 
performed. 

- For the morning routes of Region A1, A2, A3, A4 and A5: 

• The routes’ total time would have a value of 3754 minutes and the total number of 

kilometres would be 1254; 

• Comparing to the current routes it would be necessary to travel more 97 minutes and 
97 kms. 

- Finally, for the results obtained for the afternoon routes of Region A1, A2, A3, A4, and A5:  

• The routes’ total travel time would be of 2011 minutes and the total number of kilometres 

861; 

• Comparing to the current solution it would take more 39 minutes and 39 kms. 

In summary, the routes obtained with the algorithm sum in total 3958 kms travelled within 7839 minutes, 

which is more 214 kms and 197 minutes than the current solution. This is in average 124 kms and 245 

minutes per route. The shortest route would have a total distance of 37 kms and take 97 minutes to be 

completed. The longest, on the other hand, would have a total distance of 536 kms and take 485 minutes 
to be completed. Table 7.3 summarizes all the presented numerical results for the routes obtained with 

the multi-start heuristic algorithm. 

Table 7.3 – Information regarding the routes obtained with the multi-start algorithm in Region A. 

 Distance (kms) Travel time (min) 

Total 3958	 7839	
Average 124	 245	

Shortest route 37	 97	
Longest route 536	 485	

 

Additionally, and to comprehend the distribution of the arrivals during the day, a graph like the one 
presented in the previous section (Figure 7.1) was developed. Thus, the next figure, Figure 7.3, 

represents this graph which depicts the number of boxes arriving in the laboratory (i.e., the number of 

SCCs visited by the given routes) in function of the arrival time intervals (divided into intervals of 1 hour).  
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Figure 7.3 – Estimation of the number of boxes arriving in the central laboratory per hour by the 

routes organized in Region A. 

Analysing Figure 7.3, one can understand what the flow of the arrivals in the laboratory would be using 

the routes obtained with the heuristic algorithm. Firstly, as expected the arrivals between 10h and 12h 

would be the same, since the early morning routes were not modified. After this period, one would not 

have arrivals between 12h to 13h, having samples arriving in the laboratory after 13h. The peak of the 

maximum number of arrivals would be reached between the time period of 15h-16h reaching 118 boxes, 
less 33 boxes than the busiest period of the current routes. After 16h one would have less arrivals 

coming mainly from the afternoon routes and from the routes that take the full day to be established. 

7.1.3 Region A routes’ comparison 

Having described in detail both the current routes and the routes obtained with the heuristic algorithm, 

it is possible to perceive the main differences between them. In fact, the results obtained with the 

heuristic method were improved in terms of the desynchronization of the arrivals in the central 

laboratory; nevertheless, desynchronizing the arrivals implies an increase in the routes total travelled 

time and consequently in the total distance travelled. All these differences are now detailed. 

Firstly, a comparison on the numerical results obtained for both the current routes and for the proposed 

routes was performed. The results are represented in the following table, Table 7.4. 
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Table 7.4 – Numerical comparison of the routes currently established with the ones provided by the 

heuristic method in Region A. 

 
Current routes Proposed routes 

Distance (kms) Travel time 
(min) Distance (kms) Travel time 

(min) 

Total 3744	 7642	 3958	 7839	
Average 117	 239	 124	 245	
Minimum 25	 85	 37	 97	
Maximum 522	 517	 536	 485	

Number of boxes arriving in 
the busiest time period (!) 151	 118	

 

Analysing Table 7.4, it is possible to understand that there is an increase of 214 km and of 197 minutes 

on each day. In percentage, this corresponds to an increase of 5.7% in terms of the total distance and 

of 2.6% in terms of time. The routes in average would also take more 6 minutes and 7 kilometres to be 

performed. Comparing the results for the shortest and longest routes, one would have more 

homogeneous routes with the ones provided by the heuristic algorithm since that the shortest route 

would take more time to be completed than the one that is currently established, and for the largest, one 
the other hand, it would take less time to be performed. Moreover, the fact that the longest route could 

be performed in less time is also beneficial for the entity due to the perishable nature of biomedical 

samples. Regarding the highest number of boxes arriving in the busiest time period, a decrease of 33 

boxes would be attained. 

Secondly, concerning results obtained for the arrivals of the current ones (presented in Figure 7.1) and 

the proposed ones (presented in Figure 7.3) major differences can be identified. More specifically, apart 

from the early morning routes where the arrivals are maintained, with the new routes it would be possible 

to have boxes arriving earlier in the laboratory. As a matter of fact, one would have samples arriving at 
13h in comparison to the current routes where samples only arrive after 14h. Also, the peak of 151 

boxes that occurred from 14h to 15h in the current routes would pass to occur between 15h and 16h 

having 118 boxes arriving in that interval, a difference of 33 boxes. Another important fact to point out 

lies on the afternoon peak that occurs in the current routes in the interval from 19h to 20h that would 

occur earlier for the proposed routes, between 18h and 19h. Finally, the routes obtained with the 

metaheuristic would also allow not having boxes arriving in the laboratory after 20h which is beneficial 

since it could permit the laboratory to close earlier. In general, the new routes would allow having 
samples arriving earlier, providing for a smoother workflow in the laboratory. Further, allowing the 

samples to be analysed earlier which in turn would make results to be sent to patients also earlier. 

Finally, to further analyse the impact of these arrivals in the workflow of the laboratory, and since the 

labs’ capacity is not explicitly known in terms of how many boxes can be analysed per hour, three 
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different scenarios were created to analyse different possible capacities for the laboratory workflow. The 

three scenarios lie on having a laboratory capacity of 60, 80 or 100 boxes per hour. 

Scenario 1 – Labs’ capacity of 60 boxes per hour 

Figure 7.4 depicts the laboratory capacity usage in percentage in terms of the working time in the 

laboratory if the total capacity is 60 boxes per hour. Namely, Figure 7.4a represents it for the current 

established routes and Figure 7.4b for the routes obtained with the heuristic algorithm. 

 

 
Figure 7.4 – Laboratory occupation rate in percentage through the day considering a total capacity of 

60 sample boxes per hour. Figure 7.4a: Current Routes; Figure 7.4b: Proposed routes. 

Comparing both graphs, it is possible to understand that the capacity of the laboratory in the new routes 

would start to be fully utilized since 13h on the contrary o the current routes where it only starts to be 
utilized after 14h. In this scenario, for the routes obtained with the heuristic algorithm it would also enable 

all the samples to be analysed one hour earlier. 
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Scenario 2 – Labs’ capacity of 80 boxes per hour 

For the second scenario, a labs’ total capacity of 80 boxes per hour is tested. The results obtained for 

the laboratory occupation rate throughout the day for both the current routes and for the proposed routes 

are represented, correspondingly, in the following figures, Figure 7.5a and 7.5b. 

 

Figure 7.5 – Laboratory occupation rate in percentage through the day considering a total capacity of 

80 sample boxes per hour. Figure 7.5a: Current Routes; Figure 7.5b: Proposed routes. 

Comparing both graphs, it is possible to perceive that with the proposed routes all the samples would, 

once again, start being analysed one hour earlier. Consequently, the possibility of having all of them 

analysed one hour earlier arises. Further, for the proposed routes one would only have the full capacity 

being used for 3 hours, on the contrary to the current routes where it is utilized for 4 hours, allowing for 
a smoother workload.  
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Scenario 3 – Labs’ capacity of 100 boxes per hour 

Finally, for the last scenario, 100 boxes per hour, the results obtained for the laboratory occupation rate 

through the day are presented in Figure 7.6. More specifically, the results for the current routes are 

described in in Figure 7.6a and in Figure 7.6b for the proposed routes. 

 

 

Figure 7.6 – Laboratory occupation rate in percentage through the day considering a total capacity of 

100 sample boxes per hour. Figure 7.6a: Current Routes; Figure 7.6b: Proposed routes. 

Finally, for the last scenario, if one would have a total capacity of analysing 100 sample boxes per hour, 

once again, all the samples would be analysed 1 hour earlier with the proposed routes. Furthermore, 

for the proposed routes the laboratory occupation rate would be fully used for 2 hours while for the 
current routes it would be for 3 hours. 
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analysed one hour earlier comparing to the currently established routes. Also, for scenario 2 and 3 it 
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would allow having the full capacity being utilized for less hours, providing for a smoother workload in 

the laboratory.  

In summary, although the proposed routes require an increase in terms of the routes total distance and 

total travelled time, it would be possible to have all the laboratory work to be completed earlier. Not only 

this would allow results to be sent earlier to patients, but also would allow freeing the technicians that 

had to work during this hour, which could in turn compensate the cost associated to the increase in 

routes total travelled time and distance. 

7.2 Region B routes 

For the routes established in Region B that transfer biomedical samples to the central laboratory, the 

issue of having too many samples arriving in the laboratory in certain periods of the day is not a concern. 

The main challenge that is faced in this region lies on the fact that the routes take several hours to be 

completed, which makes these samples arrive very late to the laboratory to be analysed. 

The following sections have detailed information regarding the routes in Region B. Specifically, section 

7.2.1 outlines the currently established routes, section 7.2.2 describes the results obtained with the 

heuristic algorithm and, finally, in section 7.2.3, a comparison of the current routes with the ones 

provided by the algorithm is established. 

7.2.1 Region B current routes 

In Region B, the entity has currently three pre-defined routes established, which occur in every weekday 

to collect samples from 26 different SCCs. All these routes depart in the morning from one of the entity’s 

laboratories that is located in Region B, visit the corresponding SCCs and terminate once they deliver 

the biomedical samples in the central laboratory.  

Then, to analyse in detail these routes, the time and the distance that they take to be completed was 
estimated. To estimate it and to obtain values that can be compared to the ones that the algorithm 

provides, once again, both the distance matrix and the time matrix that had to be computed to calculate 

the new routes were used. Thus, with the information of the departing time of each route, the time the 

routes would take was estimated. It is important to mention that the 10-minute interval stated that takes 

to load the samples in the SCCs was considered. Finally, the drivers’ 1-hour lunch break was also taken 

into consideration. 
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The results obtained were the following: 

- The first route is scheduled to occur from 10h00 to 19h01, taking around 9 hours and 502 km 

to be completed; 

- The second one is scheduled to occur from 11h00 to 18h04, taking around 7 hours and 355 km 

to be completed; 

- Finally, the last one is scheduled to occur from 10h00 to 20h42, taking almost 11 hours and 590 

km to be completed. 

This gives the routes of Region B a total duration of 26h47 which is in average 09h01 per route. In terms 

of distance, the drivers travel a total distance of 1447 km which is in average 482 kms per route.  

Finally, as one can verify from these results, the samples are arriving very late in the laboratory, 

especially for the last route that takes almost 11 hours to be completed and is arriving at almost 21h00. 

Thus, arising the need of rescheduling these routes. 

7.2.2 Region B proposed routes 

The aim when proposing the new routes for Region B is to minimize the routes’ total travel time, hence 

the multi-start heuristic algorithm is used with the parameters that were found in Chapter 4 to fit best the 

case study purpose for this region. In fact, a penalization of 0 (i.e., θ = 0) and a time discretization into 

periods of 60 minutes (i.e., % = 60) are considered. Moreover, since the number of collection requests 

is not very high (there are 26 collection requests) a total number of 100 iterations is used. 

Furthermore, when discussing with entity experts what should the time limitation for the drivers be, it 

was stated that a time limitation of 09h30 per driver (including the lunch time) is appropriate. With this 

value, one would have routes that are fairer for the drivers in terms of their working time and not have 

routes that take too much time to be completed as the ones that are currently established.  

Regarding the average time to compute the time matrix, experts stated that an average velocity of 75 

km/h should be considered. Furthermore, the average waiting time in the SCCs should be 10 minutes 
and the laboratory working hours should be the same as previously considered.  

All the presented parameters are now schematized in the following table, Table 7.5. 
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Table 7.5 – Input parameters considered for Region B. 

# Collection 
Requests 

Number of 
iterations ! " 

(min) 
#!"#	7 
(min) 

%$	8 
(min) 

%%	9 
(min) 

&$	10 
(min) 

'$	11 
(min) (	12 

26	 100	 0	 60	 570	 -	 10	 480	 1260	 100000	

 

Subsequently, after inserting the input parameters into the metaheuristic, new routes were retrieved. 

The numerical results obtained were the following: 

- The first route would be scheduled to occur from 11h43 to 18h39, taking around 7 hours and 

383 km to be completed; 

- The second route would be scheduled to occur from 10h02 to 18h09, taking around 8 hours and 
355 km to be completed; 

- Finally, the last one would be scheduled to occur from 09h56 to 18h58, taking around 9 hours 

and 590 km to be completed. 

These routes sum in total 24h05 which is in average 08h07 per route. In terms of distance, the drivers 

would have to travel a total distance of 1245 km which is 415 kms per route. 

7.2.3 Region B routes’ comparison  

From the results obtained, one can corroborate that the routes provided by the multi-start heuristic 

method were improved in comparison to the current ones, both in terms of the routes’ total time and in 

terms of the travelled distance. A numerical comparison for the current routes and for the ones obtained 

with the heuristic algorithm is now detailed in Table 7.6. 

 

 

 

 

 

 
7 2&'( is the maximal transportation time for each route 
8 3) is the unloading time in the laboratory. Since only one route is considered for each vehicle, this value is not 
considered when calculating these routes 
9 3* is the unloading time in each SCC 
10 4) represents the upper time window of the laboratory 
11 5) represents the lower time window of the laboratory 
12 6 is a large constant 
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Table 7.6 – Numerical comparison of the routes currently established with the proposed routes 

provided by the heuristic method. 
 

 

 

By analysing Table 7.6, one can observe the improvements in terms of time and distance. In fact, with 

the proposed routes an improvement of 02h42 (i.e., less 11.2% in terms of time) would be achieved. 

Regarding the total distance, an improvement of 202 kms (i.e., less 16.2% in terms of distance) would 

be attained. Concerning the schedules of the routes the maximum time that a route would take would 

pass from 10h42 to 09h02. The shortest route would also diminish since it would pass from taking 07h04 

to be around 06h56. The remaining route would also be improved since it would change to last from 

09h01 to last 08h07. As a matter of fact, the results provided by the heuristic algorithm provide more 
balanced routes in terms of time since the difference between the longest and the shortest route is less 

than from the ones currently established.  

Furthermore, the routes retrieved by the metaheuristic were also improved regarding the arrival times, 

since all of them would arrive before 19h on the contrary to the currently established ones where the 

longest route would arrive at almost 21h. This would enable samples to arrive earlier at the laboratory 

and to be tested earlier which in turn would allow results to be sent to the patients also earlier. 

In conclusion, the heuristic algorithm was very effective calculating Region B routes since it was able to 

provide the results desired by the entity. Not only the routes were improved in terms of distance and 
total travel time, but it would also enable results to be delivered earlier to patients. 

 Current Routes Proposed Routes Improvement 

Time 

Route 1: 10h00–19h01	(dur.	09h01)	 11h43–18h39	(dur.	06h56)	 -	

Route 2: 11h00–18h04	(dur.	07h04)	 10h02–18h09	(dur.	08h07)	 -	

Route 3: 10h00–20h42	(dur.	10h42)	 09h56–18h58	(dur.	09h02)	 -	

Total 
time: 26h47	(1607	min)	 24h05	(1445	min)	 02h42	

Average: ~	09h01/route	 ~	08h07/route	 54	min/route	

Distance 

Route 1: 502	kms	 383	kms	 -	

Route 2: 355	kms	 397	kms	 -	

Route 3: 590	kms	 465	kms	 -	

Total 
distance: 1447	kms	 1245	kms	 202	kms	

Average ~	482	kms	 ~	415	kms	 67	kms/route	
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7.3 General recommendations 

From the previous discussion, one can conclude: 

- The results obtained for the Region A show that there are changes that can be performed to 

smooth the workload in the laboratory. Even though the program was not able to reduce the 
total travelled time (having an increase of 5.7% in terms of distance and of 2.6% in terms of 

time) with the results obtained it is possible to have earlier arrivals in the laboratory and have 

all the samples analysed one hour earlier, and consequently deliver earlier the results to 

patients; 

- With the current resources, the expected improvement in terms of kilometres for the routes of 

Region B is of 16.2% and of 11.2% in terms of the total travelled time; 

- The results for Region B also exhibit the possibility of having earlier results deliveries to patients. 

Having earlier arrivals in the laboratory would enable samples to be analysed earlier which in 
turn would allow earlier results deliveries to patients. 

7.4 Chapter conclusions 

In this chapter the heuristic algorithm was applied to the case study previously presented in Chapter 2. 

Thus, new routes were created for Regions A and B. While the aim for the creation of new routes for 
Region A was to desynchronize the arrivals taking into account the minimization of the routes total time, 

for Region B the only goal was to minimize the routes total travel time. 

For Region A, to desynchronize the arrivals a penalization of ! = 50 was considered. Since the number 

of nodes in this region is very high, a strategy of dividing them into different groups and compute new 

routes for each one of these groups was performed. Firstly, they were divided into two groups based on 

geographical locations having the collection requests for Regions A6 and A7 apart from the other 

regions. Since in the other regions there would still be many nodes, the strategy of dividing them based 

on their collection schedules was performed; thus, the morning routes were in a different group than the 

afternoon routes. The results obtained with the heuristic algorithm were favourable in terms of the 

samples arrivals since they would be able to arrive earlier in the laboratory and to be analysed earlier. 

Nevertheless, the desynchronization of the arrivals implies an increment of 5.7% in the total distance 
and of 2.6% in the total time. 

On the other hand, for Region B, since the number of nodes is relatively small the whole set was 

considered at the same time.  Since the aim of the creation of these routes is only to minimize the total 

travel time, a penalization of ! = 0 was considered.  The results obtained were favourable and in 

accordance with what was expected from the entity, having a daily improvement of 16.2% in terms of 

distances and of 11.2% in terms of time. The new routes also permit earlier arrivals of biomedical 

samples in the laboratory, allowing them to be analysed earlier making the results being delivered to 

patients also earlier. 
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8 Conclusions and Future Work 

8.1 Conclusions 

This dissertation focuses on addressing the challenge found when designing the routes of a clinical 

analysis group in two different regions: Region A and Region B. Namely, the routes in Region A collect 

biomedical samples from different SCCs and transport them to the central laboratory to be analysed. 
The current routes create at the laboratory certain periods of the day where a large number of biomedical 

samples arrive while there are others where very few samples arrive. This is causing a bottleneck in the 

samples’ supply chain of the central laboratory. On the other hand, the routes in Region B that start in 

one of the entity’s laboratories located in Region B and terminate in the central laboratory are taking a 

considerable amount of time to be completed, causing the samples to arrive very late in the laboratory. 

Consequently, the primary goal of the present research was to apply optimization techniques to assist 

the entity under study planning their routes.  

To deal with these challenges, a literature review on the matter was performed. Based on this, a 
Biomedical Sample Transportation Problem (BSTP) with desynchronized arrivals was developed where 

the possibility of open routes in order to fit the purpose of the entity was considered. To the best of one’s 

knowledge this is the first work on the BSTP to include this possibility. The problem then consists in 

minimizing both the routes total travel time and desynchronizing the arrivals in the laboratory. 

Afterwards, the developed mathematical model was implemented in an optimization modelling software, 

GAMS. To test the model, a set of 15 instances characterized by their size (small, medium and large) 

was created having as a basis the geographical regions that the entity considers when constructing the 
routes. Regarding the large instances created, the program was not able to find any solution even after 

several hours of computation. Consequently, since the entity deals with a great number of SCCs the 

need of developing a heuristic algorithm emerged. 

Thus, a metaheuristic algorithm was developed, more specifically, a multi-start algorithm. In order to 

test the metaheuristic, the same instances were used, and the results were compared to the ones 

obtained previously with the optimization program. The heuristic proved to be efficient in minimizing both 

the routes total duration as well as the number of arrivals during the busiest period, since it provided 

similar results and in less time in relation to the optimization program. In fact, it presented a relative error 
always below 20%. In addition, it also granted results for the large instances which GAMS could not find 

results.  

The parameters that fit best the case study context were also studied, arriving to the conclusion that the 

finest penalization to desynchronize arrivals would be of 50 (i.e., ! = 50) and that the finest time 

discretization would be into periods of 60 minutes (i.e., % = 60). Finally, the most appropriate number 

of iterations for the algorithm was investigated. Hence, arriving to the conclusion that if the aim is to 
work with a relatively small amount of collection requests it is appropriate to use 100 iterations, while if 
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one is working with a set of large instances a smaller number of iterations must be selected to obtain 

results requiring computational time. 

After having the algorithm developed and tested and having the finest parameters studied, the heuristic 

method was applied to redesign the entity’s routes in the two different regions: Region A and Region B.  

For Region A the results obtained were able to fulfil their requirements since the arrivals in the laboratory 

would be more fluid: having the total number of sample boxes arriving in the busiest period to pass from 

151 to 118. Also, all the samples would be able to arrive 1 hour earlier to the laboratory in comparison 
to the currently established routes. Nevertheless, with the new routes comes the cost of 5.7% in the 

routes total travelled distance and of 2.6% in terms of the routes total travelled time. Furthermore, an 

analysis on the laboratory occupation was performed and it was possible to observe that the proposed 

routes would allow for a smoother workload in the laboratory also enabling samples to be processed 

earlier. This fact could compensate the increased costs in terms of the total travelled distance and total 

time since that the technicians working in the laboratory could be dispensed one hour earlier. 

On the other hand, for Region B the results obtained were very optimistic, having an improvement of 

16.2% in terms of distance and of 11.2% in terms of time on each day. Also, the routes obtained would 
be more balanced in terms of time and would permit the collected samples to arrive earlier to the 

laboratory to be analysed, which in turn would also allow results to arrive earlier to patients. 

In summary, the proposed model and developed heuristic algorithm were able to find results that fulfilled 

the entity requirements. More precisely, for Region A desynchronized arrivals in the laboratory would 

be achieved allowing for a smoother workload in the laboratory. For Region B reduction of the routes 

total travel time would be attained which in turn would allow the biomedical samples to arrive earlier in 

the laboratory to be analysed. 

8.2 Limitations and future work 

Within the developed work, although important results were obtained, also some limitations can be 

identified that can be taken as basis for future work in the problem. Thus, regarding the heuristic 

algorithm proposed and in order to obtain solutions with higher quality, changes in the algorithm could 

be performed. Firstly, further randomization should be introduced in the creation of the initial solution at 
each iteration in the algorithm. Also, in the improvement steps, diversification of the search should be 

achieved in order to further explore the solution space. An additional suggestion lies on allowing for soft 

time windows in order to obtain improved solutions.  

Still on the developed metaheuristic improvements in the performance of the algorithm should be carried 

out in order to reduce the computational time taken to calculate the routes. 

Furthermore, it would be interesting to develop a Google Maps API to retrieve more accurate time 

matrices. Although introducing the time matrix obtained from the distance matrix considering an average 

velocity in the algorithm provides faithful results, it would be more reliable to have into consideration 
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possible traffic information and velocities that consider different types of roads (i.e., highways, rural 

areas, etc..). 

A final suggestion lies on building a user-friendly interface application so that anyone with access can 

easily calculate new routes. This would be helpful for the entity under study, since their routes are 

changed frequently. The application should comprise all the input parameters and would also be 

interesting if it could retrieve a map with the new routes and the stops identified. 
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Annexes 

A. Current routes 

A1. Region A 

Table A1.1 - Current solution of Regions A6 and A7. 

Routes 
Time 
taken 
(min) 

Total 
Distance 

(km) 
Departing 

time 
Arrival 
Time 

2-49-50-51-52-53-54-55-56-57-1	 517	 533	 09h00	 17h36	
3-27-28-29-30-31-32-33-34-35-36-37-38-1	 290	 212	 10h00	 14h50	

4-8-9-10-11-12-13-14-15-1	 286	 258	 11h00	 15h46	
5-16-17-18-19-20-21-22-23-24-25-26-1	 250	 175	 11h00	 15h10	
6-39-40-41-42-43-44-45-46-47-48-1	 294	 242	 10h00	 14h53	
7-58-59-60-61-62-63-64-65-66-67-1	 376	 345	 11h00	 17h16	

All routes	 2013	 1765	 -	 -	
 

Table A1.2 - Current solution of the morning routes of Regions A1, A2, A3, A4 and A5. 

Routes 
Time 
taken 
(min) 

Total 
Distance 

(km) 
Departing 

time 
Arrival 
Time 

2-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-
32-1	 230	 60	 10h30	 14h20	

3-33-34-35-36-37-38-39-40-41-42-43-44-45-46-47-1	 260	 110	 09h45	 14h05	
4-48-49-50-51-52-53-54-55-56-57-58-59-60-61-62-63-

64-65-66-1	 348	 158	 10h00	 15h48	
5-67-68-69-70-71-72-73-74-75-76-77-78-79-80-81-82-

83-84-85-86-87-1	 332	 122	 10h30	 16h02	
6-88-89-90-91-92-93-94-95-96-97-98-99-100-101-102-

103-1	 195	 35	 11h00	 14h15	
7-104-105-106-107-108-109-110-111-112-113-114-115-

116-117-118-119-120-1	 231	 61	 09h15	 14h15	
8-121-122-123-124-125-126-127-128-129-130-131-132-

133-134-135-136-1	 207	 47	 11h00	 14h27	
9-137-138-139-140-141-142-143-144-145-146-147-148-
149-150-151-152-153-154-155-156-157-158-159-1	 328	 98	 10h30	 15h58	
10-160-161-162-163-164-165-166-167-168-169-170-

171-1	 167	 47	 11h30	 14h17	
11-172-173-174-175-176-177-178-179-180-181-182-
183-184-185-186-187-188-190-191-192-193-194-1	 355	 125	 10h30	 16h25	
12-195-196-197-198-199-200-201-202-203-204-205-

206-207-208-209-210-211-1	 251	 81	 11h30	 15h41	
13-212-213-214-215-216-217-218-219-220-221-222-

223-224-225-226-227-228-229-1	 249	 69	 11h30	 15h39	
14-230-231-232-233-234-235-236-237-238-239-240-

241-242-243-244-245-246-247-248-1	 229	 39	 10h30	 14h19	
15-249-250-251-252-253-254-255-256-257-258-259-

260-261-262-263-264-265-1	 275	 105	 09h45	 14h20	
All routes	 3657	 1157	 -	 -	
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Table A1.3 - Current solution of the afternoon routes of Regions A1, A2, A3, A4 and A5. 

Routes 
Time 
taken 
(min) 

Total 
Distance 

(km) 
Departing 

time 
Arrival 
Time 

2-14-15-16-17-18-19-20-21-22-23-24-25-26-1	 226	 96	 15h20	 19h06	
3-27-28-29-30-31-32-33-34-35-36-37-38-1	 158	 38	 15h05	 17h43	

4-39-40-41-42-43-44-45-46-47-1	 213	 123	 16h48	 20h21	
5-48-49-50-51-52-53-54-55-56-57-1	 138	 38	 17h02	 19h20	

6-58-59-60-61-62-63-64-1	 251	 181	 15h15	 19h26	
7-65-66-67-68-69-70-71-72-73-74-75-1	 164	 54	 14h06	 16h50	

8-76-77-78-79-80-81-82-1	 153	 83	 15h27	 18h00	
9-83-84-85-86-87-88-89-90-91-92-1	 168	 68	 16h58	 19h46	

10-93-94-95-96-97-98-99-100-101-102-1	 162	 62	 15h17	 16h57	
11-103-104-105-106-107-108-109-110-111-112-1	 125	 25	 16h39	 18h44	
12-113-114-115-116-117-118-119-120-121-122-1	 129	 29	 15h19	 17h28	

13-123-124-125-126-127-128-1	 85	 25	 15h20	 16h45	
All routes	 1972	 822	 -	 -	

 

A2. Region B 

Table A2.1 - Current solution of Region B. 

Routes 
Time 
taken 
(min) 

Total 
Distance 

(km) 
Departing 

time 
Arrival 
Time 

2-5-6-7-8-9-10-11-12-1	 541	 502	 10h00	 19h01	
3-13-14-15-16-17-18-19-20-1	 424	 355	 11h00	 18h04	

4-21-22-23-24-25-26-27-28-29-30-31-1	 642	 590	 10h00	 20h42	
All routes	 1607	 1447	 -	 -	

 

B. Proposed routes 

B1. Region A 

Table B1.1 - Solution for Regions A6 and A7. 

Routes 
Time 
taken 
(min) 

Total 
Distance 

(km) 
Departing 

time 
Arrival 
Time 

2-10-9-38-64-65-67-49-1	 485	 536	 09h48	 17h53	
3-22-21-20-8-26-13-14-11-12-58-1	 277	 246	 09h24	 14h01	

4-41-27-40-28-44-43-15-25-24-23-19-18-17-1	 240	 170	 09h43	 13h43	
5-16-29-45-57-46-37-33-32-34-36-35-54-55-30-42-1	 388	 335	 09h37	 16h05	

6-56-53-51-52-50-48-47-39-1	 361	 371	 09h33	 15h34	
7-31-66-63-62-61-60-59-1	 323	 334	 09h41	 15h04	

All routes 2074	 1843	 -	 -	
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Table B1.2 - Solution for the morning routes of Regions A1, A2, A3, A4 and A5. 

Routes 
Time 
taken 
(min) 

Total 
Distance 

(km) 
Departing 

time 
Arrival 
Time 

2-16-74-71-23-31-25-30-29-28-27-26-24-17-20-22-21-
19-88-1	 243	 63	 09h38	 13h41	

3-49-45-46-43-42-41-40-37-39-38-36-34-33-55-54-68-1	 333	 173	 09h21	 14h54	
4-162-65-63-64-59-60-57-56-53-50-51-48-52-44-47-73-

79-81-1	 340	 160	 09h59	 15h39	
5-67-18-85-84-83-80-75-77-76-70-78-72-69-35-58-62-

66-61-1	 308	 128	 09h38	 14h46	
6-210-175-92-98-97-227-216-212-155-213-95-174-221-

222-203-176-173-1	 224	 54	 10h04	 13h48	
7-116-115-114-113-112-111-110-109-108-107-104-118-

119-101-99-32-82-1	 273	 103	 11h02	 15h35	
8-134-133-132-131-130-129-128-127-126-125-123-124-

122-137-105-256-257-258-255-1	 280	 90	 11h03	 15h43	
9-151-148-149-150-140-141-145-142-144-143-139-147-

121-136-120-135-1	 220	 60	 11h05	 14h45	
10-169-167-168-164-163-161-165-160-103-100-243-

244-146-152-138-153-159-1	 226	 56	 11h01	 14h47	
11-172-178-179-106-117-102-233-166-166-171-170-

157-158-1	 185	 65	 11h05	 14h10	
12-154-206-196-205-198-197-195-194-193-191-192-
180-190-250-187-186-185-249-184-183-182-181-177-1	 320	 90	 09h54	 15h14	
13-247-218-238-94-89-215-214-211-91-93-207-209-

208-86-200-87-199-201-202-96-1	 275	 75	 10h05	 14h40	
14-156-248-230-232-245-241-240-239-231-235-236-
237-234-246-242-90-229-228-226-225-224-223-204-

220-219-217-1	
304	 44	 10h01	 15h05	

15-189-263-265-259-260-251-252-188-253-261-262-
264-254-1	 223	 93	 10h00	 13h43	
All routes	 3754	 1254	 -	 -	

 

Table B1.3 - Solution for the afternoon routes of Regions A1, A2, A3, A4 and A5. 

Routes 
Time 
taken 
(min) 

Total 
Distance 

(km) 
Departing 

time 
Arrival 
Time 

2-16-22-20-21-17-14-24-23-1	 146	 66	 14h43	 17h09	
3-39-40-59-58-15-25-1	 231	 171	 15h58	 19h49	

4-28-91-84-85-80-77-78-79-76-60-61-102	 245	 125	 15h47	 19h52	
5-72-73-37-38-35-36-31-34-33-122-46-47-1	 214	 94	 14h54	 18h28	

6-125-45-44-93-42-43-68-70-1	 117	 37	 16h37	 18h34	
7-57-54-55-56-52-53-51-48-49-82-81-1	 172	 62	 15h46	 18h38	
8-126-69-65-63-64-62-41-111-112-1	 171	 81	 15h48	 18h39	

9-29-30-75-67-66-97-1	 97	 37	 15h16	 16h53	
10-32-27-92-83-87-90-89-86-88-74-71-1	 174	 64	 16h19	 19h13	

11-110-96-95-115-94-99-101-1	 99	 29	 15h41	 17h20	
12-114-113-127-128-100-104-108-109-119-98-120-121-

1	 157	 37	 16h12	 18h49	
13-50-26-106-103-123-124-118-117-116-105-107-19-

18-1	 188	 58	 14h49	 17h57	
All routes	 2011	 861	 -	 -	
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B2. Region B 

Table B2.1 - Solution for Region B. 

Routes 
Time 
taken 
(min) 

Total 
Distance 

(km) 
Departing 

time 
Arrival 
Time 

2-9-8-7-6-5-1	 416	 383	 11h43	 18h39	
3-10-15-16-19-18-17-14-13-11-12-21-1	 487	 397	 10h02	 18h09	
4-20-23-24-25-27-26-29-30-31-22-1	 542	 465	 09h56	 18h58	

All routes	 1445	 1245	 -	 -	
 


