
Descriptive and Predictive Modeling of Water Distribution
Network Dynamics using Multivariate Time Series Data

Susana Gomes
susana.correia.gomes@tecnico.ulisboa.pt

Instituto Superior Técnico
Lisbon, Portugal

ABSTRACT
Water distribution networks (WDNs) are hydraulic infrastructures
that provide a continuous supply of pressurized safe drinking water
to all consumers, playing an important role in public health. Leak-
ages cause service interruptions, waste resources, and compromise
water quality. Although we can find many methods that support
the monitoring and control of WDNs, they exhibit limited ability to
detect anomalies and are not yet consistently applied to Portuguese
WDNs. We show that it is possible to (1) describe the dynamics of a
WDN through spatiotemporal correlation analysis of pressure and
volumetric flowrate sensors, and (2) analyze disruptions on the ex-
pected correlation to detect burst leakage dynamics using standard
classifiers. Our approach is promising in a synthetic setting and of-
fers initial support towards leakage detection in real WDNs despite
the presence of highly irregular consumption patterns, a limited
number of recorded leakages, and highly heterogeneous leakage
profiles. We discovered that the disruption caused by leakages is
higher shortly after the burst. Furthermore, a comprehensive pair-
ing of heterogeneous sensors and data balancing in the real setting
is also promising. Our results suggest that it is important to access
data fromWDNs with good sensor coverage and complete informa-
tion about leakages. Accordingly, we believe that our WDN would
benefit a lot from sensor expansion and relocation. Lastly, given the
simplicity, novelty, and accuracy of the proposed correlation-based
principles for anomaly detection in heterogeneous and georefer-
enced time series, we anticipate our work to contribute to the study
and development of automated leakage detection in portuguese
WDNs. Keywords: burst leakage detection, correlation analysis,
multivariate time series, prediction, spatiotemporal data analysis,
water distribution network.

1 INTRODUCTION
Water distribution networks (WDNs) are hydraulic infrastructures
responsible for providing a pressurized and continuous supply of
safe drinking water to all consumers [8]. WDNs have an impor-
tant role in public health, and with climate change and population
growth demanding higher consumption levels of water, the need for
well-managed systems is more important than ever [15]. Moreover,
leakages can cause service interruptions, contribute to resource
wastes, and increase the risk of compromising water quality [6]. Al-
though we can find many methods and algorithms that improve the
monitoring and control of WDNs, such as WaterWiSe [23] in Singa-
pore, the reality is that they show limited ability to detect anomalies
and are not yet consistently applied to Portuguese WDNs.

In this work, we study the spatiotemporal correlations of pres-
sure and volumetric flowrate sensors under normal conditions to

detect anomalous behavior when the normal conditions suffer a dis-
ruption. Therefore, and as part of theWISDOM [4] project, our main
focus is to detect burst leakages according to Portuguese necessities
by identifying descriptors and predictors of WDN dynamics.

Due to the nature of the problem, we identified several chal-
lenges that may hamper the performance of the description and
prediction tasks, namely, (1) poor sensor coverage, (2) highly irreg-
ular consumption patterns, (3) leakages with multiple profiles, (4)
low number of leakages and lack of information regarding its size
and exact beginning, (5) network changes and interventions that
disrupt the natural behavior of the network, and (6) the necessity
of detecting leakages as soon as possible. We also had to explore
and analyze high volumes of data that contained gaps and irregular
time steps of recording. The data comprised numerous time series
from volumetric flowrate and pressure sensors placed throughout
the WDN of a Portuguese tourist resort with extensive irrigation,
large hotel units, and irregularities in the occupation of households.

Through the development of a new technique that uses the dis-
ruption of spatiotemporal correlations between sensors to detect
burst leakages in WDNs, we provide (1) a comprehensive analysis
of network dynamics in a real WDN versus in a synthetic WDN,
(2) an assessment of two correlation methods as descriptors of net-
work dynamics, (3) a study of how the correlation between sensors
evolves over time, (4) a performance assessment of three standard
classifiers on leakage detection, (5) a study of the importance of
feature/sensor selection in leakage detection, and (6) a study of
the impact of the leakage size in its detection. Additionally, these
contributions could offer direct support to answer alternative prob-
lems in WDNs, such as, (1) optimal sensor placement through the
installation of new sensors where current sensor correlations are
weak, and (2) the detection of status’ changes in active hydraulic
elements, since these might also cause a correlation disruption.

2 BACKGROUND
This section introduces the fundamental topics of this work, which
we separated into two parts. The first one involves concepts associ-
ated with WDNs, while the other comprises of technical concepts,
more specifically, the ones related to time series data.

2.1 Water Distribution Network Background
Water distribution networks (WDNs) are hydraulic infrastructures
that provide a continuous supply of pressurized safe drinking water
to all consumers [8]. They are generally composed of a large number
of active hydraulic elements, such as pumps and valves, and passive
ones, such as pipes and reservoirs. Water utilities (WUs) are entities
responsible for managingWDNs, relying on the existence of sensors
and monitoring devices placed throughout the network.

Part of the data used in this work is obtained from sensors re-
sponsible for measuring water pressure and volumetric flowrate.
The pressure is described as the normal force per unit area at a given
point acting on a given plane within the water mass of interest.
Regarding the volumetric flowrate, simply referred to as flowrate in
this work, corresponds to the amount of water flowing in a certain
point per unit of time [24]. Note that the flowrate is proportional
to the square root of the pressure difference between two points.

Additional data was generated using an artificial EPANET model
of the target WDN. EPANET is a public domain software created by
the United States Environmental Protection Agency that simulates
hydraulic and water quality behavior within pressurized pipe net-
works. It also provides an environment for editing network input
data, running simulations, and visualize the results.

Lastly, our data (real and synthetic) contains leakages, which are
commonly defined as the loss of treated water from the network
through uncontrolled means [10, 19]. They are categorized in liter-
ature as (1) background leakages, which consist of the aggregation
of leakages small enough to be undetected for long periods, and
(2) burst leakages, which are occurring pipe ruptures that usually
result in a large water discharge [9].

2.2 Technical Background
Since time series data is our main source of information, we define
them and explore the challenges of its classification, as well as
existent solutions.

2.2.1 Time Series Definition. A discrete time series is described
as a sequence of 𝑇 observations, each one being measured at a
discrete time 𝑡 ∈ {1, . . . ,𝑇 }, made sequentially and regularly along
𝑇 instances of time. A real-valued observation of a time series,
x𝑡 = (𝑥1𝑡 , . . . , 𝑥𝑘𝑡), where 𝑘 is the multivariate order, 𝑡 ∈ {1, . . . ,𝑇 },
and 𝑥𝑘𝑡 ∈ R [3]. A time series is called univariate when 𝑘 = 1, and
multivariate when 𝑘 > 1.

2.2.2 Time Series Classification. Classification is the process of
predicting a class label for a given unlabeled instance [25]. The pre-
diction depends on the classifier, which uses training data to learn
and create rules to classify new instances. Classical classifiers, such
as naive Bayes (NB) and support vector machines (SVMs), assume
that features are not dependent on the ordering [2]. Consequently,
these classifiers will handle time series’ time points as separate
features. Several algorithms consider time series as a whole, i.e.,
without ignoring feature ordering. For example, the one nearest
neighbor classifier with an Euclidean distance or with a dynamic
time warping is usually the starting point for most researchers. Ac-
cording to Bagnall et al. [2], time series classifiers can be grouped
into six categories, namely, time domain distance based, differential
distance based, dictionary based, shapelet based, interval based,
and ensemble classifiers. Note that interval based classifiers extract
features, such as the mean and standard deviation, from time series’
intervals.

2.2.3 Classical Classification. Extracting features from time series’
intervals allows the creation of a new dataset without explicit fea-
ture ordering, making classical classifiers a viable solution. Note
that this work does not present a comparative study of different

classifiers. Since we only want to assess the potential of the extrac-
tion of features from time series in the context of WDNs, we only
focused on two well-known classifiers, namely, NB and SVMs.

Naive Bayes. NB classifier uses a probabilistic classification ap-
proach that simplifies learning by assuming all features are con-
ditionally independent given the class [25]. We assume a training
dataset with𝑚 points x𝑖 ∈ 𝑅𝑑 in a 𝑑-dimensional space, where 𝑖 ∈
{1, . . . ,𝑚}, 𝑦𝑖 is the class for each point, with 𝑦𝑖 ∈ {𝑐1, 𝑐2, · · · , 𝑐𝑘 },
and D𝑖 representing the subset of points that are labeled as class
𝑐𝑖 . Accordingly, NB uses the Bayes theorem to predict the class
of x as the one that maximizes the posterior probability, i.e., 𝑦 =

arg max𝑖 {𝑃 (𝑐𝑖 | x)}. The posterior probability of class 𝑐𝑖 , 𝑃 (𝑐𝑖 | x) =
𝑃 (x | 𝑐𝑖) 𝑃 (𝑐𝑖), is the product between the likelihood 𝑃 (x | 𝑐𝑖) and
the prior probability 𝑃 (𝑐𝑖) of class 𝑐𝑖 . Essentially, the posterior
probability of class 𝑐𝑖 depends on the likelihood of that class taking
its prior probability into account. The prior probability of class 𝑐𝑖
is defined as 𝑃 (𝑐𝑖) =

𝑚𝑖

𝑚 , while the likelihood is defined as the
probability of observing x assuming that the true class is 𝑐𝑖 . Due to
the initial assumption that all features are independent given the
class, we can decompose the likelihood of class 𝑐𝑖 into a product of
the likelihood along each dimension 𝑋 𝑗 ,

𝑃 (x | 𝑐𝑖) = 𝑃 (𝑥1, 𝑥2, · · · , 𝑥𝑑 | 𝑐𝑖) =
𝑑∏
𝑗=1

𝑃
(
𝑥 𝑗 | 𝑐𝑖

)
. (1)

When a numeric feature is shown to be approximately normally
distributed for a given class 𝑐𝑖 , the likelihood for class 𝑐𝑖 , for variable
𝑋 𝑗 , is given as

𝑃
(
𝑥 𝑗 | 𝑐𝑖

)
=

1
√

2𝜋𝜎𝑖 𝑗
exp

{
−
(
𝑥 𝑗 − `𝑖 𝑗

)2
2𝜎2

𝑖 𝑗

}
, (2)

with `𝑖 𝑗 and𝜎2
𝑖 𝑗
as themean and variance for variable𝑋 𝑗 , for class 𝑐𝑖 .

Although feature independence is usually violated in real datasets,
Rish et al. [21] shows that NB is a very competitive classifier and
works best when the data either has completely independent fea-
tures or has functionally dependent features.

Support Vector Machines. SVMs are a classification method that
sees observations in a 𝑑-dimensional space and finds a hyperplane
that maximizes the gap or margin between the observations from
different classes [25]. In a two dimensional space, this optimal
hyperplane corresponds to a line that separates the classes. When
it is not possible to find a hyperplane in the current dimension that
separates the classes completely, we can use the kernel trick to find
an optimal hyperplane in a high-dimensional space.

Assuming a dataset D = {(x𝑖 , 𝑦𝑖)}𝑚𝑖=1 with 𝑚 points in a 𝑑-
dimensional space and with two class labels 𝑦𝑖 ∈ {+1,−1}. An
hyperplane serves as a linear discriminant, i.e., a decision boundary
that predicts the class 𝑦 for any point x. An hyperplane ℎ(x) in 𝑑 di-
mensions is defined as ℎ(x) = w𝑇 x+𝑏, wherew is a 𝑑-dimensional
weight vector, and 𝑏 is a scalar called bias. The hyperplane ℎ(x)
splits the original 𝑑-dimensional space into two half-spaces. When
each half-space has points from a single class, we call it a separating
hyperplane [25].

Considering that the distance of a point x from the hyperplane
ℎ(x𝑖) = 0 is given by 𝛿𝑖 =

𝑦𝑖 ℎ (x𝑖)
∥w∥ , support vectors are all data

2

points that achieve the minimum distance 𝛿∗ = minx𝑖
{
𝑦𝑖 ℎ (x𝑖)
∥w∥

}
.

Therefore, support vectors are the points closer to the hyperplane
and their distance from it is called margin. These points, or vectors,
influence the position and orientation of the hyperplane and are
chosen to maximize the margin of the classifier. Additionally, we
can normalize the parameters of the hyperplane so that the absolute
distance of a support vector from it is 1, i.e., 𝛿∗ = 1

∥w∥ . We call
them canonical hyperplanes and the main idea of SVMs is to find
the canonical hyperplane with the maximum margin among all
possible separating canonical hyperplanes,

ℎ∗ = arg max
ℎ

{
𝛿∗
ℎ

}
= arg max

w,𝑏

{
1

∥w∥

}
. (3)

Since not all datasets are linearly separable, we can use the
kernel trick. The idea is to map the original 𝑑-dimensional points
in a high-dimensional space, called feature space, via non-linear
transformations, in hopes that the data will be linearly separable
there. It is also important to note that this trick allows us to find
the optimal hyperplane without actually having to map the points
in the new space. Instead, kernel functions find the non-linear
relationships among features [25]. One popular function is the
polynomial kernel, which is defined as

𝐾𝑞 (x, y) =
(
𝑐 + x𝑇 y

)𝑞
, (4)

where x, y ∈ R𝑑 , 𝑞 is the degree of the polynomial and 𝑐 ≥ 0 is
a constant. The linear and quadratic kernels are special cases of
the polynomial kernel when 𝑞 = 1 and 𝑞 = 2, respectively. The
Gaussian radial basis function (RBF) is another well known kernel
function and is defined as

𝐾 (x, y) = exp
{
− ∥x − y∥2

2𝜎2

}
, (5)

where 𝜎 > 0 is a constant. It is important to note that the RBF
kernel has infinite dimensionality. According to Hofmann [13], a
low polynomial kernel or an RBF kernel are good alternatives to
conventional classifiers.

3 RELATEDWORK
This section provides an overview of the existing literature on topics
related to some of our challenges, namely, the correlation between
a pair of time series, feature selection, and burst leakage detection.

3.1 Correlation Measures
Since the first part of our solution focuses on proposing descriptive
models of network dynamics through the correlation analysis of
pairs of sensors, it is important to explore different correlation
measures. Classical and modern approaches can be considered. For
example, Pearson’s cross-correlation coefficient (PCC),

𝑃𝐶𝐶 (𝑋,𝑌) =
∑𝑀
𝑡=1 (𝑥𝑡 − 𝑥) (𝑦𝑡 − 𝑦)√∑𝑀

𝑡=1 (𝑥𝑡 − 𝑥)
2 ·

√∑𝑀
𝑡=1 (𝑦𝑡 − 𝑦)

2
, (6)

is one of the best-known correlation measures, where 𝑋 and 𝑌
are two univariate time series of length 𝑀 , and 𝑥 and 𝑦 are their
corresponding means [16]. It is also important to note that the
sample size has a drastic effect on the results. De Winter et al [7]
showed that in their dataset, a sample size of 25 was not enough

to capture the true correlations. However, when doubling that size,
the results got substantially better.

Rank correlation coefficients are used to measure an ordinal as-
sociation, i.e., the extent to which one variable increases when the
other increases without requiring that increase to be represented by
a linear relationship. Both Spearman’s and Kendall’s rank correla-
tion coefficients fall into this category. Since they are less sensitive
to non-normality in distributions, they can be considered as an
alternative to PCC [14].

Podobnik and Stanly [20] proposed an interesting solution called
detrended cross-correlation analysis (DCCA), which is based on
detrended fluctuation analysis (DFA) and allows the analysis of two
non-stationary time series. Considering 𝑋 and 𝑌 as two univariate
time series with 𝑀 observations, each one being measured at a
discrete time 𝑡 ∈ {1, . . . ,𝑇 }, DCCA starts by defining 𝑅𝑘 ≡ ∑𝑘

𝑡=1 𝑥𝑡
and 𝑅′

𝑘
≡ ∑𝑘

𝑡=1 𝑦𝑡 , where 𝑘 ≤ 𝑇 . Then, it divides both time series
into 𝑇 − 𝑛 overlapping boxes, each containing 𝑛 + 1 values, where
1 ≤ 𝑛 < 𝑇 . Considering that each box starts at 𝑡 and ends at 𝑡 + 𝑛,
DCCA defines the local trend as �̃�𝑘,𝑡 and �̃�′𝑘,𝑡 , where (𝑡 ≤ 𝑘 ≤ 𝑡 +𝑛).
We now calculate, for each box, the covariance of its residuals,

𝑓 2
DCCA (𝑛, 𝑡) ≡ (𝑛 − 1)−1

𝑡+𝑛∑
𝑘=𝑡

(
𝑅𝑘 − �̃�𝑘,𝑡

) (
𝑅′
𝑘
− �̃�′

𝑘,𝑡

)
. (7)

Finally, to obtain the detrended covariance 𝐹 2
DCCA, we average the

results of all boxes,

𝐹 2
DCCA (𝑛) ≡ (𝑇 − 𝑛)−1

𝑇−𝑛∑
𝑡=1

𝑓 2
DCCA (𝑛, 𝑡) . (8)

Since real-data can be categorized by a high degree of non-stationary,
we can apply DCCA to a variety of fields.

3.2 Feature Selection
Feature selection methods are responsible for finding relevant and
informative features that represent our data. Additionally, it can
increase an algorithm’s speed and improve its performance [5]. In
our case, it could help reducing the number of sensors needed in
the WDN. One approach is through individual relevance ranking
methods, which assume feature independence [11]. Filter functions
are the ones responsible for ordering the features according to their
degree of dependence on the target [5]. Classical statistic tests, such
as the Chi-squared, the Analysis of Variance (ANOVA) F-test, and
the Kruskal–Wallis H test can be used as filter functions [11].

The Chi-squared test is used when in the presence of discrete
features and measures the difference between the observed counts
and expected counts of the data [25]. For continuous features that
follow a normal distribution, ANOVA F-test can be used instead. It
computes the ratio between the mean square error between groups
and the mean square error within groups [12].

For non-normal distributions, we can use the non-parametric
Kruskal–Wallis H test [18]. This test starts by assigning ranks to
the data using all scores in the experiment. Then, it computes the
sum of squares between groups,

𝑆𝑆bn =
(Σ𝑅1)2

𝑛1
+ (Σ𝑅2)2

𝑛2
+ · · · + (Σ𝑅𝑘)2

𝑛𝑘
, (9)

3

where 𝐾 is the number of groups, 𝑛𝑖 denotes the number of in-
stances in the 𝑖𝑡ℎ group, and Σ𝑅 is the sum of the ranks in each
group. Lastly, it computes the value of 𝐻 as

𝐻 =

(
12

𝑁 (𝑁 + 1)

)
(𝑆𝑆bn) − 3(𝑁 + 1), (10)

where 𝑁 is the number of instances in the data [12]. If H exceeds a
critical value, we may conclude that the groups do not come from
the same population [18].

3.3 Burst Leakage Detection
Since the main focus of this work is burst leakage detection, we
explored different methods that detect and discover them. These
methods can be grouped into hardware-based methods, which
aim to accurately locate the leakage, and software-based methods,
which attempt to isolate possible leakage areas [17]. Software-based
leakage detection methods, usually rely on a model or algorithm
that uses additional information, such as pressure or flowrate data,
rather than leakage noise information, and can be grouped into
numerical and non-numerical methods [17]. The numerical ones
mainly include methods based on transient events and on the tradi-
tional hydraulic model method, whereas the non-numerical ones
use a data-driven approach.

The non-numerical methods, in which our work is included, an-
alyze the monitoring data, and find their rules through data mining
and artificial intelligence algorithms. It is important to note that
some methods, for example, methods that use artificial neural net-
works, need to be updated frequently and require a lot of historical
data to be trained [1]. Valizadeh et al. [22] proposed a solution us-
ing feature extraction and classification. They used time windows
and time-domain features to transform the time signals of flow,
pressure, and temperature at the inlet and outlet of the network
into a matrix of features. The time-domain features include the
mean value, root-mean-square, standard deviation, among others.
Regarding the classifiers, they compare a k-Nearest Neighbors clas-
sifier to a Bayesian classifier. Although it is not clear which one is
better, these two classifiers perform differently depending on the
window size and leak characteristics, i.e., its diameter and location.

4 SOLUTION
The goal of this work is to detect burst leakages in WDNs through
the classification of time series data collected by sensors. Accord-
ingly, our solution is divided into the three steps, namely, prepro-
cessing, correlation analysis, and prediction.

4.1 Dataset Description and Preprocessing
Our WDN is responsible for supplying water to a tourist resort
with extensive irrigation, large hotel units, and irregularities in the
occupation of households. Therefore, it suffers from highly irregular
consumption patterns, which will allow us to test our solution in
a challenging setting. We will also conduct our experiments in an
equivalent synthetic setting without noise and network changes.

Regarding the synthetic setting, we have 18696 chunks of data
from 7 volumetric flowrate and 21 pressure sensors of an EPANET
model of the original WDN. The chunks have 145 time points and
a granularity of 600 seconds. Each one includes a 24 time point

leakage with a different combination of location (3116 network
points) and size (six coefficients between 0.05 and 2.0). The higher
the coefficient, the larger the leakage is. Due to faulty configurations
of pipe directions in the model, we considered the absolute value of
negative values. We also approximated to zero all flowrate values
bellow 1 × 10−3 since there was no evidence of water flow.

Concerning the real setting, the data corresponds to the entire
year of 2017, and was extracted from 7 volumetric flowrate and 6
pressure sensors. Since the monitoring system has a granularity
of approximately 60 seconds, to estimate observations at a regular
sampling (equally distant points), we applied a linear interpolation
method available in Pandas1 Python module to guarantee regular
time steps of recording. The data is also missing the last day of
every month, but since it is only 12 days, we did not apply any
data imputation technique. Regarding leakages, we have complete
information about 12 of them but we do not know their exact
beginning nor its size.

4.2 Descriptors of Dynamics
Here we explain how we transformed our original time series
dataset into a new dataset without explicit feature ordering and
how we selected the most informative features. It is also important
to remember that the disruption of the correlation between two
sensors may indicate a leakage.

4.2.1 Feature Construction. Since the correlation value between
two highly correlated sensors is expected to decrease when a leak-
age occurs between them, we created a feature construction strategy
that calculates the correlation value between all pairs of sensors
throughout time. Accordingly, each column of our new dataset
corresponds to a pair of sensors and each row indicates the time
window in which we calculated the correlation. For predictive pur-
poses, we also have a column that indicates if an instance is positive
or negative, i.e., if it contains a leakage or not.

Regarding the correlation methods, we used two correlation
methods described in section 3.1. The first one is the classical and
widely used Pearson cross-correlation coefficient (PCC), available in
SciPy2 Python module. Since our time series suffer from irregulari-
ties, we also decided to use the modern approach cross-correlation
analysis (DCCA), available in Jaime Ide’s profile on GitHub3.

Concerning the synthetic dataset, each chunk originated two
instances, specifically, one positive and one negative. To create the
positive instances, either the beginning or the end of the leakage is
in the middle of the time window. Regarding its size, we generated
different datasets with windows between 16 and 40 time points.

For the real dataset, we have a sliding window that moves over
the time series in intervals of 15 minutes, allowing the early de-
tection of leakages. We considered as positive all instances that
occurred between the leakage report and the beginning of the res-
olution work. Since we do not know the exact time the leakage
started, we also counted as positive the instances that took place
two hours before the official leakage report time. Note that we
disgarded the instances that occurred during the leakage resolution.

1https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.
interpolate.html
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html
3https://gist.github.com/jaimeide/a9cba18192ee904307298bd110c28b14

4

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.interpolate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.interpolate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html
https://gist.github.com/jaimeide/a9cba18192ee904307298bd110c28b14

Finally, we generated different datasets with time windows between
60 and 240 minutes.

4.2.2 Feature Selection. Since sensors are not all correlated, reduc-
ing the number of features might lead to fewer sensors needed in
the network and improve the predictors’ speed and performance.
Since our data does not follow a normal distribution, we used the
non-parametric Kruskal– Wallis H test described in section 3.2 and
available in SciPy4 Python module. Additionally, we also created
our own feature ranking approach that favors strong correlations
in normal situations, i.e., without leakages.

In our approach, we (1) find the mean of each pair (feature)
within negative instances. Then, (2) for each sensor, we sort its
pairs by mean. Lastly, (3) we take the pairs that ranked first for each
sensor, remove the duplicates, and sort them. We do that for the
ones that ranked second and so on. Thus, this strategy prefers the
highest correlated pairs without favoring one sensor in particular.

4.3 Predictors of Leakage Dynamics
To predict burst leakages, we used the two classifiers described
in section 2.2.3 and available in the Scikit-Learn Python module,
namely, NB5, an SVM6 with a linear kernel, and an SVM7 with
an RBF kernel. To assess their performance and tune their hyper-
parameters, we collected class-specific measures, namely, 𝑟𝑒𝑐𝑎𝑙𝑙𝑁 ,
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃 , 𝑟𝑒𝑐𝑎𝑙𝑙𝑃 , and 𝐹𝑃 (𝐹1 measure). Since binary classifiers
usually use a threshold 𝜌 to determine the instances’ class, we used
the receiver operating characteristics (ROC) plot to (1) understand
what the best performance they can achieve is and to (2) assess if
the threshold is preventing them from attaining desirable results.

Regarding the evaluation strategy, for the synthetic dataset, we
used 20% as the test set and a 5-fold cross-validation on the remain-
ing 80%. Concerning the real data, due to the severe class imbalance,
the number of folds used is equal to the number of leakages, ensur-
ing one leakage in the validation set, while the others are used for
training. Please note that one leakage is equivalent to more than
one positive instance due to the sliding time windows. We also put
one of the folds aside to serve as the test set.

5 RESULTS: DESCRIPTIVE SETTING
This section presents a comprehensive analysis of the steps per-
formed to learn the descriptive models of network dynamics.

5.1 Exploratory Data Analysis
As previously mentioned, the synthetic setting has a total of 28
sensors placed throughout the WDN that provided time series
with a clear seasonality. In these conditions, disruptions in the
network are more noticeable, which is the ideal setting for the
first experiments. Moreover, when the flowrate drops, the pressure
increases, and vice-versa, which is a sign of inverse correlation.

Unlike the synthetic setting, all 13 sensors from Infraquinta
are concentrated in three areas. Consequently, the lack of sensor

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.
kruskalwallis.html
5https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.
html
6https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
7https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

coverage may negatively impact the ability to detect leakages that
do not occur between these areas. The time series from Infraquinta’s
WDN, as exemplified in Fig. 1, are generally more complex than
the synthetic ones due to the exposure to different consumption
patterns. For example, we decomposed the time series using an

Figure 1: A real time series during May 15, 2017.

additive decomposition model and found large residuals and an
uninformative trend.

Lastly, the data from two pressure sensors from the synthetic
setting and four pressure sensors from the real setting were mostly
zero, and thus, were not considered for the next steps.

5.2 Correlation Analysis
Next, with the help of heatmaps, we overview the datasets ob-
tained through feature construction. Accordingly, one heatmap
corresponds to one instance of the dataset, and each cell represents
the correlation value (DCCA or PCC) between a pair of sensors.

Regarding the synthetic setting, since we considered 26 sensors,
our new dataset has a total of 26𝐶2 = 325 features. Fig. 2 shows the
heatmaps of two representative synthetic instances, one positive
and one negative, from the same chunk, using DCCA as the cor-
relation method. Observing the negative instance, sensors of the

Figure 2: DDCA heatmaps of two synthetic instances.

same type are directly correlated, while pairs of different types are
inversely correlated. PCC also obtained similar color patterns, but
the difference between instances is less apparent than with DCCA.

Regarding the real setting, our new dataset has a total of 9𝐶2 = 36
features. Although we detected some similarities between DCCA
and PCC heatmaps, it is not as apparent as in the synthetic ones.
Comparing the negative and positive instances, while most correla-
tions became weaker in PCC, some grew stronger in DCCA.

5.3 Correlation Over Time
Another critical element to assess is how correlation evolves, es-
pecially before and during the leakage. Fig. 3 shows the DCCA
and PCC over time between two synthetic sensors, flowrate and
pressure, from the same chunk.

5

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.kruskalwallis.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.kruskalwallis.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Figure 3: Correlation over time between two synthetic sen-
sors.

Before the leakage, DCCA and PCC remained between -0.5 and
-1, negative or positive. Note that the disruption peaks when the
middle of the time window aligns with the beginning of the leakage.
Moreover, DCCA oscillates a lot more than PCC, causing the impact
of the leakage to be more apparent.

Regarding the real setting, the behavior of DCCA and PCC is
very similar in this setting. Both are very unstable before the leak-
age, which is probably an indication that they can not accurately
quantify the correlation between time series due to the large volume
of noise present. Although the differences between the negative
and the positive instances are not as striking as in the synthetic
setting, we can still notice a subtle change after the leakage.

5.4 Correlation in Small Leakages and
Different Time Windows

For the experiments with the synthetic dataset, we have been using
a leakage coefficient of 2.0 and a window of 40 time points. Fig. 4
shows the DCCA variation with the leakage coefficient and time
window size between the same representative sensors of figure 3.

Figure 4: DCCA variation with the leakage coefficient and
time window size between two synthetic sensors.

As expected, larger leakages (𝑐𝑜𝑒 𝑓 ≥ 0.5) seem to cause a higher
disruption in the correlation than the smaller ones. Although we
can not perform this analysis for the real setting because we do not
have information about the leakage sizes, it is expected for smaller
ones (𝑐𝑜𝑒 𝑓 ≤ 0.1) to go undetected.

Regarding the time window, the correlation values start diverg-
ing around 32 time points, peaking at 40. One possible explanation
is that DCCA could not accurately identify the degree of correlation
with less than 32 points. For the real setting, we have been using
a time window of 120 minutes. Although the 60 minute window
fluctuates a lot more than the others, all behave similarly over time.
Contrarily, 240 minutes causes so much stability that it sometimes
camouflages the leakage. Lastly, a time window of 120 minutes
seems to be the most balanced, i.e., it does not fluctuate a lot, but it
still allows us to notice leakages.

5.5 DCCA Parameterization
Since DCCA has a parameter 𝑛 that affects the size of the overlap-
ping boxes, it is important to access its impact on both settings. For
the synthetic one, we analyzed 𝑛 values between 1 and 39. With
𝑛 = 1, the correlation difference between negative and positive in-
stances reaches its peak. For𝑛 > 1, the difference between instances
slowly grows until 𝑛 = 39, its best value after 𝑛 = 1.

To understand how 𝑛 affects DCCA in a real setting, we chose
four different values so that the boxes’ sizes would be 1

2 ,
1
3 ,

1
4 , and

1
5 of our time window. Using a time window of 120 minutes, 𝑛
corresponds to 59, 39, 29 and 23. Fig. 5 shows the DCCA variation
between two representative real sensors, flowrate and pressure,
during February 7, 2017. Although all four values of 𝑛 seem to

Figure 5: DCCA variation with the leakage coefficient be-
tween two real sensors.

follow the same pattern, 𝑛 = 59 stands out from the others since it
fluctuates a lot more. The other three do not fluctuate as much but
vary enough to let us notice the leakage.

6 RESULTS: PREDICTIVE SETTING
This section assesses the predictive ability of detecting leakages in
controlled and real settings, presenting a comprehensive analysis
of the hyperparameterization steps performed to identify the most
suitable leakage dynamic predictors for our WDN.

6.1 Artificial Water Distribution Network
Here we focus on understanding how a classifier performs on a
WDN under ideal conditions. Note that the synthetic dataset ob-
tained through feature construction has 37392 instances, where
half is negative and the others are positive (3116 per coefficient).

6.1.1 Initial Results. To get an overall idea of the classifiers’ perfor-
mance in our synthetic setting, we started by gathering the results
of three different classifiers using DCCA and PCC. Accordingly,
Table 1 presents the mean results for a 5-fold cross-validation on
the training set. Note that TWS and #F refer to the time window

Table 1: Initial training set results of the synthetic setting.

Classifier Correlation TWS #F 𝑃𝑟𝑒𝑐𝑃 𝑅𝑒𝑐𝑎𝑙𝑙𝑃 𝐹𝑃

NB DCCA (𝑛 = 1) 40 325 0.88 0.71 0.78
PCC 40 325 0.93 0.64 0.76

SVM (Linear) DCCA (𝑛 = 1) 40 325 1.00 1.00 1.00
PCC 40 325 1.00 0.97 0.99

RBF (RBF) DCCA (𝑛 = 1) 40 325 1.00 0.75 0.86
PCC 40 325 0.94 0.70 0.80

size and the number of features used, respectively.
Overall, NB performs worse than our two SVMs, with the linear

kernel achieving the best results. As the experiments in sections 5.2
6

and 5.3 indicated, DCCA provided better results than PCC. Hence,
the next sections will only include the results obtained using DCCA.
It is also important to note that all iterations of the 5-fold cross-
validation obtained similar results, meaning that the classifiers do
not seem to be overfitting the data. Unless otherwise stated, the
reader can always assume that for this setting.

6.1.2 Feature Selection. Here we assess if we can reduce the num-
ber of pairs used without negatively affecting the classifiers’ per-
formance. Fig. 6 shows NB and SVM (linear) results along with the
top 𝑘 features selected, starting from the top 15 to the top 100.

Figure 6: Classifiers’ performance in the synthetic setting
along with the top 𝑘 features selected.

While the Kruskal–Wallis H test worked better on SVMs, ours
managed to improve the performance of NB. Note that NB’s perfor-
mance using 43 features is better than with 325, meaning that some
could be misleading and uninformative. Regarding SVM (linear),
it never reaches it using the top 100 alone, but Kruskal-Wallis still
managed to deliver competitive results using 83 features. Regarding
the next sections, since an RBF kernel could not match the results
with a linear one, we will only use the latter. Moreover, NB will use
the top 43 features selected by our method, and SVM will use the
top 83 by Kruskal–Wallis.

6.1.3 Time Window Size. Since we have been using a window of
40 time points, it is important to understand the impact of other
sizes on the results. Fig. 7 shows that increasing the size of the time
window does not always enhance the classifiers’ performance. As

Figure 7: Classifiers’ performance in the synthetic setting
along with different time window sizes.

the experiments in section 5.4 indicated, we see an improvement
around 30 time points. Unlike NB, SVM seems to be able to adapt
well to different time windows. Since a window of 40 time points
obtained the best results for both classifiers, we will continue to
use it in the next sections.

6.1.4 Threshold Adjustment. Herewe assess (1) if the default thresh-
old zero (𝜌 = 0) prevents NB and SVM from achieving optimal
results and (2) its impact on small leakages.

Fig. 8 shows that, with an AUC of 0.99, SVM’s performance is
almost optimal. Note that SVM’s 𝑟𝑒𝑐𝑎𝑙𝑙𝑃 increases when we lower

Figure 8: SVM’s (linear) ROC plot and its performance in the
synthetic setting along with different thresholds.

the threshold. Then, after peaking at the optimal threshold 𝜌 =

−0.74, the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃 rapidly drops, indicating that some positive
instances’ scores are close to the majority of the negative ones.
We can also see that 𝜌 = −0.66 achieves the same results as the
optimal threshold 𝜌 = −0.70. Therefore, we can obtain the same
performance without lowering the threshold as much. Regarding
NB, it has a AUC of 0.94 and its optimal threshold is 𝜌 = −0.99
(𝑃𝑟𝑒𝑐𝑃 = 0.94, 𝑅𝑒𝑐𝑃 = 0.82, 𝐹𝑃 = 0.88). Since 𝜌 = −0.99 increases
the number of FP, a modest alternative would be to use 𝜌 = −0.67
(𝑃𝑟𝑒𝑐𝑃 = 1.00, 𝑅𝑒𝑐𝑃 = 0.75, 𝐹𝑃 = 0.86). Although the results are not
as good, it still increases the 𝑟𝑒𝑐𝑎𝑙𝑙𝑃 and prevents instances from
being classified as negative if their negative class score is low.

Fig. 9 clearly shows that the lower the coefficient of a positive in-
stance, the closer its score is to zero. Note that in SVMs, an instance’s
score corresponds to its distance from the hyperplane. Therefore,
the closer it is to zero, the less sure the SVM is about its class. As

Figure 9: SVM’s (linear) box plots of the instances’ scores and
the percentage of instances incorrectly classified.

the experiments in section 5.4 indicated, the percentage of FN is
larger for instances with coefficients of 0.05 and 0.1 than for others.
NB is also not as confident about the true class of these instances as
it is for the others. Once again, the majority of negative instances
have similar scores. However, some positive instances were able to
get even lower scores, proving that these are hard to differentiate
from the negative ones. Note that it might not be exclusively due
to their size but also because of their location. Considering these
results, we decided to move on to the next section using a threshold
of −0.67 for NB and one of −0.66 for the SVM.

7

6.1.5 Test Set Results. Since all iterations were coherent and the
experiments were successful, we can now proceed to the final eval-
uation. As Table 2 shows, the results obtained using the test set are
similar to the mean results of the cross-validation on the training
set, proving that our classifiers are not overfitting and are generic
enough to accommodate small changes in the data.

Table 2: Test set results for the synthetic setting.
Classifier Correlation TWS #F Threshold 𝑃𝑟𝑒𝑐𝑃 𝑅𝑒𝑐𝑎𝑙𝑙𝑃 𝐹𝑃

NB DCCA (𝑛 = 1) 40 43 -0.67 1.00 0.75 0.86
SVM (Linear) DCCA (𝑛 = 1) 40 83 -0.53 1.00 0.98 0.99

To get a detailed view of the results, we plotted the percentage
of misclassified instances by their leakage coefficient, as depicted in
Fig. 10. Overall, the test set confirms that (1) some positive instances

Figure 10: Percentage of instances incorrectly classified on
the training and test set.

are difficult to differentiate from negative ones, and (2) although
SVM is much better at identifying leakages, NB still manages to
identify more than 80% of the positive instances with coefficients
larger than 0.1.

6.2 Real Water Distribution Network
Contrary to section 6, here we focus on understanding how a clas-
sifier performs under real conditions. Note that the real dataset
obtained through feature construction has 33529 instances, where
33401 are negative (99.6%) and the remaining 128 are positive (0.4%).

6.2.1 Initial Results. As in section 6.1.1, we started by gathering
the results obtained with three different classifiers using DCCA and
PCC as the correlation methods. Accordingly, Table 3 presents the
mean results for an 11-fold cross-validation on the training set. Note

Table 3: Initial training set results for the real setting.
Classifier Correlation TWS #F 𝑅𝑒𝑐𝑎𝑙𝑙𝑁 𝑃𝑟𝑒𝑐𝑃 𝑅𝑒𝑐𝑎𝑙𝑙𝑃 𝐹𝑃 L

NB DCCA (n=29) 120 36 0.99 0.00 0.00 0.00 0.00
PCC 120 36 0.98 0.01 0.04 0.01 0.27

SVM (Linear) DCCA (n=29) 120 36 1.00 0.00 0.00 0.00 0.00
PCC 120 36 1.00 0.00 0.00 0.00 0.00

RBF (RBF) DCCA (n=29) 120 36 0.80 0.00 0.06 0.00 0.36
PCC 120 36 0.68 0.00 0.33 0.01 0.55

that 𝐿 represents the portion of leakages detected. For example,
𝐿 = 1 indicates that all iterations of the 11-fold cross-validation
correctly classified at least one positive instance. Although the
goal is to correctly classify all positive instances, we only need to
identify one per iteration to detect a leakage.

We can see that when the 𝑟𝑒𝑐𝑎𝑙𝑙𝑃 increases, the 𝑟𝑒𝑐𝑎𝑙𝑙𝑁 drops,
meaning that the classifiers have to misclassify negative instances
to identify positive ones. Although it is difficult for all three to
differentiate them, the SVM (RBF) looks promising. However, and
as expected, its cross-validation results are not consistent through
all iterations. Several problems may cause this, including leakages
with different profiles and only one leakage to validate per iteration.

6.2.2 Reduction of Negative Instances. Since the class imbalance
might be preventing our classifiers to learn, here we assess how
their performance changes with the reduction of negative instances.
We started our experiments with a 10% random sample of negative
instances from our training set (3062 instances) until we reached
an almost balanced training set, i.e., a 0.5% random sample (153
instances). Note that the chosen samples may not be representative
of the class, causing the loss of crucial information. Fig. 11 shows
the performance of NB and SVM (linear) along with the reduction
of negative instances.

Figure 11: Classifiers’ performance in the real setting along
with the reduction of negative instances.

Although an SVM (RBF) did not benefit a lot from dataset reduc-
tion, NB and SVM (linear) performed better with a more balanced
dataset. Additionally, contrary to the results obtained for the syn-
thetic setting in section 6.1, these experiments confirmed that PCC
results are better and more stable than DCCA’s in this setting. One
possible explanation is that DCCA could be more sensitive to varia-
tions, as shown in section 5.2, which is an advantage in a controlled
scenario since most changes are leakages. However, in a real un-
stable scenario, this sensitivity could mislead the classifiers into
thinking that negative instances are positive. Lastly, a sample of
0.5% (153 instances) produced better results across our three classi-
fiers, but it was not generic enough to be consistent in all iterations
of cross-validation. Thus, a sample of 1% (306 instances) is a safer
choice even though its results are not as good.

Regarding the next sections’ experiments, we decided to use PCC
as the correlation method. Moreover, we will compare the results
obtained when training with a complete set versus one with a 1%
sample of negative instances.

6.2.3 Feature Selection. Although this dataset does not have as
many features as the synthetic one, it still could be useful to under-
stand if any features are causing a performance decrease. Accord-
ingly, Fig. 12 shows the performance of SVM (RBF) for a complete
training set and NB for a 1% sample.

With a complete training set, the results dependent a lot on the
features selected. Although this disparity does not allow us to be

8

Figure 12: Classifiers’ performance in the real setting along
with the top 𝑘 features selected.

sure about which features to choose, the 19 selected by our method
got better and slightly more consistent results than with all features.

Regarding NB and SVM (linear) with a 1% sample, the results
are very similar but it seems that including all features is a safer
choice. As detailed in section 6.1.2, the classifiers’ performance
in the synthetic setting improves considerably after reaching a
minimum of 30 features. Since we only have 36, we believe that our
classifiers would benefit from having more features/sensors.

6.2.4 Time Window Size. Since we have been using a time window
of 120 minutes, we prepared three additional ones of 60, 180, and
240 minutes, as shown in Table 4 to understand how different sizes
affect the performance. Note that NI refers to the percentage of

Table 4: Classifiers’ performance in the real setting using
four different time window sizes.

NI Classifier Correlation Method TWS #F 𝑅𝑒𝑐𝑎𝑙𝑙𝑁 𝑃𝑟𝑒𝑐𝑃 𝑅𝑒𝑐𝑎𝑙𝑙𝑃 𝐹𝑃 𝐿

1% NB PCC

60 36 0.74 0.36 0.43 0.37 0.91
120 36 0.83 0.39 0.36 0.35 0.91
180 36 0.83 0.34 0.39 0.36 0.64
240 36 0.83 0.40 0.36 0.36 0.73

1% SVM (Linear) PCC

60 36 0.88 0.25 0.11 0.16 0.55
120 36 0.89 0.29 0.27 0.27 0.64
180 36 0.87 0.20 0.20 0.19 0.45
240 36 0.90 0.31 0.21 0.23 0.55

100% SVM (RBF) PCC

60 19 0.79 0.01 0.25 0.01 0.91
120 19 0.72 0.01 0.50 0.02 0.82
180 19 0.88 0.00 0.01 0.00 0.18
240 19 0.90 0.02 0.01 0.01 0.09

negative instances used in the training set.
Overall, a 60 and a 120 minute window provided better results

than larger windows. As we have seen in section 5.4, the corre-
lation over time for larger windows looks more stable, possibly
camouflaging the leakages. Since a 120 minute window obtained
better results for the SVMs, we will keep using it. Note that the
granularity of the synthetic dataset is only 10 minutes, whereas
this one is 1 minute. So, although the synthetic window is larger in
time, it contains fewer points. Therefore, the correlation methods
need to use a larger window in the synthetic setting to capture the
true correlation value between time series. Consequentially, we
also do not need to use a window that large since the granularity
of the real dataset is high enough.

6.2.5 Threshold Adjustment. As the last step of hyperparameter
tuning, we assess (1) what the best performance our classifiers can
achieve is, and (2) if the default threshold is preventing them from
achieving optimal results. Accordingly, Fig. 13 presents NB’s ROC
plot and its performance along with different thresholds.

Figure 13: NB’s ROC plot and its performance in the real set-
ting (1% sample) along with different thresholds.

All iterations of our classifiers generated distinct ROC curves,
some even worse than random, reflecting the disparity of the re-
sults between iterations and proving that the dataset is not generic
enough. Moreover, all three mean curves are very close to the
chance line, confirming that the classifiers show a lot of difficulty
in differentiating classes. Consequently, we can not improve the
𝑟𝑒𝑐𝑎𝑙𝑙𝑃 without misclassifying a large number of negative instances.

When assessing the threshold evolution, if we were to chose a
different threshold for NB and the SVM (linear), we would tech-
nically improve their performance. However, since the iteration
results are very distinct, we could be overfitting the data even more.

6.2.6 Test Set Results. During section 6.2 , we used an 11-fold
cross-validation on the training set to assess the performance of
our classifiers and tune its hyperparameters. The mean results
obtained after the hyperparameterization and the ones obtained
with the test set are summarized in Tables 5 and 6, respectively.

Table 5: Final training set results for the real setting.
NI Classifier Correlation TWS #F 𝑅𝑒𝑐𝑎𝑙𝑙𝑁 𝑃𝑟𝑒𝑐𝑃 𝑅𝑒𝑐𝑎𝑙𝑙𝑃 𝐹𝑃 L

1% NB PCC 120 36 0.83 0.39 0.36 0.36 0.91
1% SVM (Linear) PCC 120 36 0.89 0.29 0.27 0.27 0.64
100% SVM (RBF) PCC 120 19 0.72 0.01 0.50 0.02 0.82

Table 6: Test set results for the real setting.
NI Classifier Correlation TWS #F 𝑅𝑒𝑐𝑎𝑙𝑙𝑁 𝑃𝑟𝑒𝑐𝑃 𝑅𝑒𝑐𝑎𝑙𝑙𝑃 𝐹𝑃 L

1% NB PCC 120 36 0.57 0.00 0.22 0.00 1
1% SVM (Linear) PCC 120 36 0.59 0.00 0.11 0.00 1
100% SVM (RBF) PCC 120 19 0.54 0.00 0.44 0.01 1

As expected, the test set results differ from the training set ones.
Additionally, a higher 𝑟𝑒𝑐𝑎𝑙𝑙𝑁 results in a lower number of TP,
meaning that we have to misclassify negative instances to identify
the positive ones. Nonetheless, all classifiers identified at least one
positive instance, so they all successfully detected the leakage.

Regarding the dataset imbalance, the results obtained with a 1%
sample of negative instances are similar to the ones obtained with
the SVM (RBF). However, it is important to note that both NB and
the SVM (linear) performed better with fewer negative instances.
Therefore, we believe that reducing the negative instances is promis-
ing, but the inconsistency of the positive instances is preventing
the classifiers from achieving satisfactory results.

Overall, the test set confirms that it is very difficult to learn the
difference between positive and negative instances in a real WDN.
We identified several problems that may contribute to these results:
• Low number of leakages – Since we do not have many exam-
ples of what a leakage is, our classifiers can not generalize that
information and end up overfitting the data;

9

• Lack of information regarding the size and actual beginning of
the leakage – The results in section 5.3 show that it is easier to
detect larger leakages, especially when the time window covers
its beginning. For example, our leakages could be small, thus
preventing our classifiers from learning and detecting them;

• Location of leakages – Leakages occur in different WDN points,
affecting the correlations between downstream and upstream
sensors, which hampers the generalization of leakage dynamics;

• Poor sensor coverage – Section 6.1.2 showed that the performance
of the classifiers improved considerably with more than 30 fea-
tures. Additionally, the synthetic dataset is also composed of
data from sensors placed throughout the network. Therefore,
we believe that our classifiers would benefit a lot from sensor
expansion and relocation;

• Network changes and interventions – They can disrupt the natural
behavior of the WDN, making the learning process more difficult.

6.3 Conclusions
Our work explored and presented a solution to detect burst leakages
in WDNs through the classification of time series data collected
by their sensors. The solution used the correlation values between
pairs of sensors along time as descriptors of network dynamics
for later predict the leakage dynamics, which can be easily gen-
eralized to other WDNs. Our experiments were conducted in a
controlled setting without noise and network changes, and in a real
challenging setting with highly irregular consumption patterns.

As expected, the real setting results are more inconsistent than
the synthetic ones since the leakages we used have different pro-
files and the cross-validation only has one leakage to validate per
iteration. However, we were still able to draw interesting conclu-
sions. First, the maximum disruption of the correlation happens
when the middle of the time window aligns with the beginning of
the leakage. Moreover, DCCA seems to be more sensitive to varia-
tions than PCC. The classifiers needed a minimum of 30 features
to achieve desirable results, and increasing the size of the window
does not always enhance their performance. Both our feature rele-
vance ranking method and Kruskal–Wallis H test provided good
results depending on the setting. We also believe that the reduction
of negative instances is promising, but the inconsistency of the
positive ones is preventing the classifiers from achieving desirable
results. Overall, the SVMs obtained better results than NB, but the
latter still proved to be a very competitive classifier in a real setting
and benefited the most from dataset reduction. Lastly, we believe
that our classifiers would benefit a lot from sensor expansion and
relocation.

Concluding, it is very difficult for classifiers to learn the differ-
ence between positive and negative instances. We identified several
problems that may contribute to these results, namely, (1) the low
number of leakages to learn from and consequent class imbalance,
which would eventually disappear with time since the classifiers
can be updated, (2) the lack of information regarding the size and
actual beginning of the leakage, (3) the location of leakages, (4)
poor sensor coverage, and (5) network changes and interventions
that disrupt the natural behavior of the network.

In the future, we expect to apply our solution in other Portuguese
WDNs and develop a classifier that is better prepared to handle the

nature of the gathered descriptors (correlation-based features) and
their inherent spatiotemporal dependencies. Additionally, we also
intend to comprehensively analyze the correlation disruptions and
predictive behavior to identify the location and size of leakages,
detect background leakages, support the placement of new sensors
and the detection of status’ changes in active hydraulic elements.

REFERENCES
[1] K Aksela, M Aksela, and R Vahala. 2009. Leakage detection in a real distribution

network using a SOM. Urban Water Journal 6, 4 (2009), 279–289.
[2] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh.

2017. The great time series classification bake off: a review and experimental
evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery
31, 3 (2017), 606–660.

[3] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015.
Time series analysis: forecasting and control. John Wiley & Sons.

[4] Nelson Carriço, Maria Amado, Dídia Covas, Jacinto Estima, José Borbinha, José
Figueira, Laura Monteiro, Maria Barreira, Rui Henriques, Sérgio Fernandes, and
Susana Vinga. 2018. Water Intelligence System Data Project. Active period:
2018-present. Lisbon, Portugal: Fundação para a Ciência e Tecnologia (FCT).
Public information available in https://www.fct.pt.

[5] Girish Chandrashekar and Ferat Sahin. 2014. A survey on feature selection
methods. Computers & Electrical Engineering 40, 1 (2014), 16–28.

[6] Andrew Colombo and Bryan Karney. 2002. Energy and Costs of Leaky Pipes:
Toward Comprehensive Picture. Journal of Water Resources Planning and Manage-
ment 128 (11 2002), 441–450. https://doi.org/10.1061/(ASCE)0733-9496(2002)128:
6(441)

[7] Joost CF de Winter, Samuel D Gosling, and Jeff Potter. 2016. Comparing the
Pearson and Spearman correlation coefficients across distributions and sample
sizes: A tutorial using simulations and empirical data. Psychological methods 21,
3 (2016), 273.

[8] EPA. 2019. Drinking Water Distribution Systems. https://www.epa.gov/
dwsixyearreview/drinking-water-distribution-systems Accessed in: 18 Oct 2019.

[9] Malcolm Farley and Stuart Trow. 2003. Losses in water distribution networks. IWA
publishing.

[10] Malcolm Farley, SanitationWater,Water Supply, Sanitation Collaborative Council,
World Health Organization, et al. 2001. Leakage management and control: A best
practice training manual. Technical Report. Geneva: World Health Organization.

[11] Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti A Zadeh. 2008. Feature
extraction: foundations and applications. Vol. 207. Springer.

[12] Gary Heiman. 2013. Basic Statistics for the Behavioral Sciences. Cengage Learning.
[13] Martin Hofmann. 2006. Support vector machines-kernels and the kernel trick.

Notes 26, 3 (2006).
[14] Yih-Wenn Laih. 2014. Measuring rank correlation coefficients between financial

time series: A GARCH-copula based sequence alignment algorithm. European
Journal of Operational Research 232, 2 (2014), 375–382.

[15] Ellen J Lee and Kellogg J Schwab. 2005. Deficiencies in drinking water distribution
systems in developing countries. Journal of water and health 3, 2 (2005), 109–127.

[16] Stef Lhermitte, Jan Verbesselt, Willem W Verstraeten, and Pol Coppin. 2011.
A comparison of time series similarity measures for classification and change
detection of ecosystem dynamics. Remote sensing of environment 115, 12 (2011),
3129–3152.

[17] Rui Li, Haidong Huang, Kunlun Xin, and Tao Tao. 2015. A review of methods
for burst/leakage detection and location in water distribution systems. Water
Science and Technology: Water Supply 15, 3 (2015), 429–441.

[18] Patrick E McKight and Julius Najab. 2010. Kruskal-wallis test. The corsini
encyclopedia of psychology (2010), 1–1.

[19] Ofwat. 2019. Leakage. https://www.ofwat.gov.uk/households/supply-and-
standards/leakage Accessed in: 9 Oct 2019.

[20] Boris Podobnik and H Eugene Stanley. 2008. Detrended cross-correlation analysis:
a new method for analyzing two nonstationary time series. Physical review letters
100, 8 (2008), 084102.

[21] Irina Rish et al. 2001. An empirical study of the naive Bayes classifier. In IJCAI
2001 workshop on empirical methods in artificial intelligence, Vol. 3. 41–46.

[22] Sima Valizadeh, Behzad Moshiri, and Karim Salahshoor. 2009. Leak detection
in transportation pipelines using feature extraction and KNN classification. In
Pipelines 2009: Infrastructure’s Hidden Assets. American Society of Civil Engineers,
580–589.

[23] Andrew J Whittle, Michael Allen, Ami Preis, and Mudasser Iqbal. 2013. Sensor
networks for monitoring and control of water distribution systems. International
Society for Structural Health Monitoring of Intelligent.

[24] Donald F Young, Bruce R Munson, Theodore H Okiishi, and Wade W Huebsch.
2010. A brief introduction to fluid mechanics. John Wiley & Sons.

[25] Mohammed J Zaki, Wagner Meira Jr, and Wagner Meira. 2014. Data mining and
analysis: fundamental concepts and algorithms. Cambridge University Press.

10

https://www.fct.pt
https://doi.org/10.1061/(ASCE)0733-9496(2002)128:6(441)
https://doi.org/10.1061/(ASCE)0733-9496(2002)128:6(441)
https://www.epa.gov/dwsixyearreview /drinking-water-distribution-systems
https://www.epa.gov/dwsixyearreview /drinking-water-distribution-systems
https://www.ofwat.gov.uk/households/supply-and-standards/leakage
https://www.ofwat.gov.uk/households/supply-and-standards/leakage

	Abstract
	1 Introduction
	2 Background
	2.1 Water Distribution Network Background
	2.2 Technical Background

	3 Related Work
	3.1 Correlation Measures
	3.2 Feature Selection
	3.3 Burst Leakage Detection

	4 Solution
	4.1 Dataset Description and Preprocessing
	4.2 Descriptors of Dynamics
	4.3 Predictors of Leakage Dynamics

	5 Results: Descriptive Setting
	5.1 Exploratory Data Analysis
	5.2 Correlation Analysis
	5.3 Correlation Over Time
	5.4 Correlation in Small Leakages and Different Time Windows
	5.5 DCCA Parameterization

	6 Results: Predictive Setting
	6.1 Artificial Water Distribution Network
	6.2 Real Water Distribution Network
	6.3 Conclusions

	References

