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Abstract

We explore the effectiveness of simplicial curves, a word-representation method that is context-sensitive, motivated by
its intrinsic mathematical properties (e.g., differentiation and ease of combining representations), in the multi-document
summarization task. We use the DUC 2006 and DUC 2007 multi-document summarization corpora. The generated
summaries are compared with the reference summaries using the ROUGE-1, ROUGE-2 and ROUGE-L evaluation metrics.
Compared to the ROUGE-1 score of 0.29 of the simplest chosen baseline, our method achieves a ROUGE-1 score of 0.04,
falling below our expectations. We conclude with an exploration of the obtained results and suggest other applications of
the simplicial curves method.
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1. Introduction

Automatic text summarization is a task where the goal
is to, given one or more documents, produce a small text
that accurately captures the information contained in the
documents being summarized. This can be mainly done in
two ways: a) by selecting important words or passages of
the original text to preserve in the summary — extractive
summarization, or b) by generating new words (or new
sentences with the original words) that better synthesize
what was in the original text (i.e., rephrase the text) —
abstractive summarization. Despite working towards the
same goal, these two approaches have differences in metrics
and corpora used, and implementation methods.

For this purpose, is it fundamental to have a founda-
tional framework that transforms the words of a text (such
as the ones in this sentence) into objects that can be ma-
nipulated using mathematical operations, and, as such, can
be used in computer applications. Different transformation
methods encode different aspects of language (such as syn-
tactic properties), and using one over the other is usually a
matter of what trade-off is acceptable for a particular appli-
cation. For example, if we are interested in automatically
tagging the parts-of-speech of a text, we should choose a
representation that enhances its syntactical aspects.

In this work, we are concerned with the re-exploration
of a method to represent text in a manner that deviates
from the current, well-established representation methods.
This method — simplicial curves (Lebanon et al., 2007) —
was chosen for its rich mathematical properties and the
potential for finding parallels between fundamental analyt-
ical operations (integrals, derivatives) and results in the
textual domain. Also, simplicial curves inherently encode

the sequencing of text and, since we can define an algebra
over this representation, lend themselves to composition.
Simplicial curves have an intuitive sense of a document
traversing in the space composed by its parts (often words
but, as we will see, we can admit other definitions for lex-
ical units), which can help with the explainability of the
obtained results.

Our task is to explore the effectiveness of the simplicial
curves approach in the field of abstractive multi-document
summarization (MDS — produce a textual summary from
multiple documents, possibly from different sources, and
talking about the same thing, while focusing on slightly
different aspects), as opposed to single-document summa-
rization (SDS — produce a textual summary from a single
document), using MDS datasets. We also explore different
methods of combining documents in a single representation
and extracting text from it, evaluating our results using
standard summarization literature metrics (ROUGE (Lin,
2004); see section 6).

This document is structured as follows: a) section 2
introduces historical context for different word representa-
tions in linguistic tasks; b) section 3 introduces the notion
of simplex and objects embedded in it; c) section 4 builds
an algebra of curves, showing how we can combine two
curves into a third one or transform a curve into a numeric
value; d) section 5 introduces the most used corpora in
MDS; e) section 6 introduces the most used evaluation met-
rics in MDS; f) section 7 addresses the related work done
in the MDS task, both fundamental and state-of-the-art;
g) section 8 delimits the corpora, evaluation metrics and
baselines that we have used in the MDS task; h) section 9
presents the results from our experiments; and i) section
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10 concludes the document, also pointing out some future
work to be done.

2. Background on Word Representations

In the following sections we will provide a description
of different dimensional word representations. We are
interested in different types of word representations because
they will serve as the base representation upon which the
simplex will be built.

2.1. Traditional Representations

The most basic transformation from words to a mathe-
matical object that can be manipulated is called the one-hot
approach. In this approach, words correspond to dimen-
sions in some space Nn, and a word vector is represented
by a 1 in the position for the word and 0 everywhere else.
For example, if we have a text with two words, “test” and
“red”, the vector for “test” is (1, 0) and for “red” is (0, 1).

This basic model was further improved with the use
of term-frequency (TF) (Luhn, 1957), where a word is
represented by a one-hot vector multiplied by the word’s
frequency in some document, which then is composed of
stacks of word-vectors (a matrix). Another possible defi-
nition is that a document is the sum of the vectors of the
words that are in the document. Under this model, a word
is considered important in a document if it appears many
times in it. This approach does not perform well in down-
stream applications when applied to texts where something
as simple as function words (such as “the” — the most
frequent word in English) are abundant, which are most
texts. To counter this, the TF approach was enhanced
by the addition of an “inverse-document-frequency” (IDF)
term (Jones, 1972), where the multiplicative component
of TF is weighted down by a function of the number of
documents in which the word occurs. The combination of
both methods is known as TF-IDF:

tfidf(w, d) := tf(w, d)× idf(w) (1)

tf(w, d) :=
times w appears in d

max{times t appears in d | ∀t ∈ d}
(2)

idf(w) := log
#D

#{d ∈ D |w ∈ d}
(3)

where D is a corpus, d ∈ D is a document, and w, t ∈ d are
word in that document. Note that there are other sensible
definitions for the TF function; we chose to define it as the
normalized frequency.

Representing words as TF-IDF vectors accurately mod-
eled text for many applications, but this method for word
representation results in vectors that are too sparse for
applications such as text classification and others. To coun-
teract this, Latent Semantic Indexing (Deerwester et al.,
1990) took the resulting sparse matrix and decomposed
it using Singular Value Decomposition, allowing for the
extraction of dense representations for words and docu-
ments that allowed the use of other similarity notions, e.g.,

two words/documents are similar if the cosine of the angle
between their vectors is close to 1.

2.2. Neural Representations

Although representations derived from neural networks
were already being studied (Collobert and Weston, 2008;
Turian et al., 2010; Mnih and Hinton, 2007) since 2000
with their introduction to NLP in Bengio et al. (2000),
it was in 2013 that the revolution of dense vector space
representations of words derived from a neural network was
kick-started by Mikolov et al. (2013) (here called SGNS, af-
ter the main method: “skip-gram with negative-sampling”).
In this approach, word vectors are extracted from the inner
state of a neural network after training on some proxy
task (in their case, word similarity of a random word with
the rest of the words in the enclosing sentence). The ad-
vantages of SGNS-based representations are that a) the
resulting word vectors capture A:X::B:Y (A is to X as B is
to Y) analogies by means of simple arithmetic: if we want
to solve A:X::B:? using SGNS embeddings, we can find
the vector of ? by v? = vX − vA + vB ; b) they are easy to
incorporate in downstream applications, seeing as to get a
word-embedding for a word w, all one has to do is lookup
the row of w in the embedding matrix W (serving as a
lookup table), after the neural network has been trained;
and c) they indiscriminately improved task scores on many
different NLP benchmarks (Baroni et al., 2014).

Subsequent research expanded on this trend, with vari-
ous extensions and modifications appearing over the decade.
Of note are fastText in 2017 (Bojanowski et al., 2017)
(rather than considering words to be the smallest textual
unit, instead build vectors for each character in the text; a
word vector is then the sum of the vectors of its characters),
ELMo in 2018 (Peters et al., 2018) (words have different
vector representations, depending on the context in which
they appear), and more recently BERT in 2019 (Devlin
et al., 2019) (a generalization of ELMo).

In 2014, a count-based approach (like TF-IDF) called
GloVe was presented by Pennington et al. (2014), which
aimed to compete with SGNS-embeddings in their represen-
tational power. Although their results in the word analogy,
word similarity and named entity recognition tasks indeed
showed better results than SGNS-based solutions, Levy
et al. (2015) later showed empirically that GloVe is worse
than SGNS for the word analogy and word similarity tasks
on various datasets (they do not conclude that represen-
tations derived from counting approaches are worse than
those derived from neural approaches, however), which
reveals the variance of the impact of the representation for
a given task, illustrating the importance of choosing the
appropriate word representation for the task at hand. More-
over, further research (Levy and Goldberg, 2014) showed
that SGNS are doing nothing more than factoring a Point-
wise Mutual Information matrix derived from the text. In
fact, how effective a method is in solving A:X::B:? analogies
was discovered by Ethayarajh et al. (2019) to be caused by
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variance shifts in a modified formulation of the Pointwise
Mutual Information between any two words.

Also, one major drawback of any of the above repre-
sentations (apart from ELMo and BERT, indirectly) is
that word order in a text is not preserved in the vector
representation. These so-called bag-of-words methods con-
struct their vectors as if any two words in a text could be
inter-exchanged, which is a fundamental oversight: text
is sequentially structured, and we can obtain much infor-
mation by order alone (e.g., in SOV languages we know
that the last word in a sentence is most likely the verb).
The relevance of this order information is, nevertheless,
dependent on the task.

3. Objects in the Simplex

In the following sections we describe the notion of a
simplex over an object space, and of curves in this simplex.

3.1. Vocabulary Simplex

A simplex Σn over some set C of size n is a subset of
an Rn-dimensional space where each dimension represents
an object in C, and the coordinates of each point in this
subset are non-negative and sum to one, i.e., Σn := {x ∈
Rn |xi ≥ 0,

∑n
i=1 xi = 1}. We can thus understand points

in the simplex as probability distributions over the objects
in C. We call C the collection and its objects the items.
These can be concrete (such as real words in a vocabulary)
or abstract (such as the topics of a document).

Geometrically, the simplex can be thought of as an (n−
1)-dimensional triangle, e.g., Σ3 is the surface x+y+z = 1.
Each dimension is thus a vertex in this triangle, and the
notion of probability in this space is how close (under the
L2 metric) a given point is to a vertex (see Fig. 1).

Figure 1: An example of Σ3, where each vertex corresponds to a
word. The middle point v is a distribution over each of the words.
Being equidistant from all vertices, v is a uniform distribution, that
is, v =

(
1
3
, 1
3
, 1
3

)
.

3.2. Curve Overview

Simplicial curves were first introduced by Lebanon et al.
(2007), motivated by the, at the time, lack of representation
methods to model sequential content in textual documents.
As a generalization of the bag-of-words representation, sim-
plicial curves aim to preserve the same vector-space analogy

as traditional representation methods, with the added ben-
efit of modeling words locally — i.e., the document is a
time-dependent histogram of words rather than a plain
vector of all the words in the document.

The main idea is to model a text document y (or any
sequence of discrete objects) as a continuous, sequential
mathematical object, i.e., a parametric curve, where one
can use standard calculus tools (e.g. derivatives, integrals,
metrics) to model properties of the sequence. This also
introduces the concept of time (represented by µ) in a
document, taken to be between 0 and 1. µ = 0 represents
the beginning of the curve, which maps to the beginning
of the sequence, and µ = 1 represents the end of the curve,
mapping to the end of the sequence.

The way the curve is built is flexible in that it allows
one to model the original sequence at different levels of
detail. If we choose a lower level of detail then the curve
will focus more on the individual objects of the sequence
(in the case of text, words); if we choose a higher level of
detail then the curve will tend to model the sequence as a
whole. Different representations of the same curve (or even
of different curves) can be combined to produce a single
curve that models the sequences at a varying level of detail.

A curve can be seen as a function γy from µ ∈ [0, 1]
(the point of the curve we want to query) to a member of
Σn ⊂ Rn, a point in the simplex (i.e., a distribution) over
the objects in the original space.

Intuitively, the curve is a mapping from the normalized
position of the document to a histogram of the words in
that position in the document. All curves are the same
length to allow comparisons between curves built from
different-length sequences.

3.3. Curve Construction

Given an item sequence y of length N , the method
starts by building an initial N ×#C matrix, My, where
the columns are the features of the objects (the vocabulary
space) and the rows are the vector representations of each
of them. The matrix indices are then made continuous in
time (t ∈ [0, 1]) by making My be indexed not by its row
numbers, but by a function ϕ defined as

ϕMy
(t, w) := [My]dtNe,w (4)

where [M ]i,j indicates the (i, j)’th element of the matrix.
My can be built in a variety of manners, which allows
us to leverage several base-representations and the added
benefits they contain. More details will be shown in the
following sections.

Once the continuous-access matrix representation is
obtained, we smooth the entire matrix by multiplying in
time (so only the t variable is involved) the access function
ϕMy

with some smoothing kernel Kµ,σ, where µ ∈ [0, 1] is
the center and σ > 0 is the scale of the kernel.

For simplicity, a convenient choice for a smoothing
kernel is a restricted Gaussian in [0, 1].
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The scale parameter controls the shape of the kernel,
which is fundamental to control the level of detail we want
the curve to encode. If the kernel is too wide (i.e., the
smoothing is too strong) then the multiplication will yield a
not-too-detailed view of the document (this is, a higher-level
representation of the document as a whole). If the kernel
is too narrow (i.e., the smoothing is too weak) then the
multiplication will yield a very peaky view of the document,
precisely focusing on the original words. Formally:

γσy (µ)w :=

∫ 1

0

ϕMy (t, w)×Kµ,σ(t) dt (5)

where γσy is a distribution over the original collection C
built using the items in y and γσy (µ)w is the probability
of item w from C at time µ ∈ [0, 1] in the sequence. For
convenience, we will generally drop the y and σ indices,
only using them when we need to refer to curves built from
different documents or using different kernel scales.

One way of obtaining My is via the bag-of-words, where
My is built by stacking one-hot vector representations of
the words in the order that they appear in the sequence.
To avoid the sparse representation pitfall (see section 2.1),
we apply some form of smoothing. Any classical form of
smoothing can be used so, for simplicity, we use Laplace
Smoothing by c ∈ R.

Note that the larger c is, the closer all the previously-
zero indices of the one-hot vectors will be, which means
that the corresponding point will tend towards the center of
the vocabulary simplex. Since all words will be smoothed
the same way, the resulting curve will predominantly stay
near the center of the simplex.

This approach offers two advantages: (a) it is easier to
grasp its intuition since every word is its own dimension,
and (b) it is easy to implement. However, preliminary
experimental results show that the resulting representation
may not capture important information that should be in
the summary. A possible explanation for this is that, since
a one-hot vector space has no intrinsic meaning, we are not
leveraging information contained in the vector spaces of
other forms of base representations (LDA (Latent Dirichlet
Allocation (Blei et al., 2003)) with topics, SGNS with
semantic similarity).

More generally, My can be built using pre-built vec-
tor representations such as those given by methods like
word2Vec (SGNS) (Mikolov et al., 2013) or ELMo (Peters
et al., 2018). In this way, we can adapt the benefits that
these representations provide (analogy resolution, dense
base-representations) with what simplicial curves gives us
(ordering, algebraic operations). The same normalization
precautions described above also apply in this case.

4. Curve Algebra in the Simplex

The main motivating idea is doing importance selection
in the curve space and then mapping the results back to

text. To achieve this, we need to have a way of combining
curves in various ways, emphasizing different points.

With that in mind, we can define a basic algebra in
the simplex, using familiar concepts such as addition and
concatenation, allowing us to combine different points (or
sets of points), indirectly combining the original items.

Since a curve is just a function γ : [0, 1] → Σn ⊂ Rn,
we can consider the algebra of vector valued functions, with
some additional operations to best allow the combination
of curves, as long as they remain closed in the simplex.

Let γ1 and γ2 be two curves and γ′ the result of com-
bining both in some way. We define the following:

• Curve addition

γ′(µ) =
1

2
(γ1(µ) + γ2(µ)) (6)

• Curve subtraction

γ′(µ) = softmax (γ1(µ)− γ2(µ)) (7)

• Curve concatenation

γ′(µ) = if µ <
1

2
then γ1(2µ) else γ2(2µ) (8)

• Curve conflation

γ′(µ) =
γ1(µ)⊗ γ2(µ)∑
w γ1(µ)w ⊗ γ2(µ)w

(9)

All of these generalize to a higher number of curves.
Curve addition has an intuitive motivation: just return

the curve in the geometric space between γ1 and γ2.
Conflation (Hill, 2011) is a method used to compose

different probability distributions over the same underlying
objects whilst ensuring important statistical properties
(e.g., conflation minimizes the loss of Shannon Information,
and yields a maximum likelihood estimator, among others).
The vector multiplications are done element-wise.

Curve subtraction runs the risk of yielding a negative
probability distribution, so we need to normalize it to
positive by applying the softmax function.

Concatenation also has an intuitive meaning — take the
beginning of the second curve and attach it to the end of
the first, correcting the access argument accordingly. This
can be useful for, e.g., forming a curve for a document by
sequentially composing the curves for its sentences.

Do note that it does not make sense to consider curve
scaling by some scalar in R since we would immediately
have to re-normalize, losing the scaling operation.

We can also define the curve inner-product, allowing us
to see how much two given curves “agree” with each other,
i.e., how similarly they travel in the simplex space.

• Curve inner-product

γ1 · γ2 =

∫ 1

0

γ1(µ) · γ2(µ) dµ (10)
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Since the result of evaluating a curve at a given point is
a distribution, we can also generalize common probabilistic
descriptors such as entropy or the Fisher information:

• Curve Entropy

H(γ) :=

∫ 1

0

H(γ(µ)) dµ (11)

• Curve Fisher Information

I(γσ) :=

∫ 1

0

Ew∼γσ(µ)

[(
∂

∂σ
log(γσ(µ)w)

)2
∣∣∣∣∣σ
]

dµ

(12)

We can also compare two different curves by find-
ing their distance d under some metric M, e.g., L2 dis-
tance (yielding the mean euclidean distance of one curve
to another in space), or the Jensen-Shannon metric, de-
fined as JS(P ‖Q) := 1

2 (KL(P ‖A) + KL(Q ‖A)), with
A = 1

2 (P +Q), where KL is the Kullback-Leibler diver-
gence, yielding how similar two curves are from one another,
in terms of their probability distributions.

• Curve difference under metric M

dM(γ1, γ2) :=

∫ 1

0

M(γ1(µ), γ2(µ)) dµ (13)

5. Corpora

The Document Understanding Conference1 (DUC) were
a series of challenges running from 2001 to 2007 whose aim
was to evolve the state-of-the-art in text summarization.
To this end, a corpus for MDS was published each year,
which invited competing implementations. The top-ranked
systems became good baselines for MDS. Of note are the
DUC 2006 and DUC 2007 corpora, which, for our purposes,
are comprised of, respectively, 50 and 45 document clusters
of English news from the Associated Press and the New
York Times. Each document cluster has, on average, 25
documents.

Since 2008, DUC became the summarization track of
the Text Analysis Conference2 (TAC), where the goal was
the same. The track ran from 2008 to 2011 (and uniquely
in 2014) but, in recent years, TAC has grown to focus
on knowledge-based systems. TAC challenges were more
diverse, ranging from MDS to just summary evaluation,
opinion summarization or even multilingual summarization.
Of note is the TAC 2009 corpus, which is a dataset of 44
topics and 20 documents clusters per topic. The dataset
is a subset of AQUAINT-2 (Vorhees and Graff, 2008), a
collection of 907k documents in English, comprised from
articles from October 2004 to March 2006 from Agence

1https://duc.nist.gov/ (Accessed January 20, 2021)
2https://tac.nist.gov/ (Accessed January 20, 2021)

France-Presse, Central News Agency (Taiwan), Xinhua
News Agency, Los Angeles Times, Washington Post News
Service, New York Times and Associated Press.

Recently, Fabbri et al. (2019) introduced a new dataset
for MDS along with some baselines on that dataset us-
ing MMR and end-to-end methods. It consists of 56216
documents taken from scrapped full news articles and sum-
maries from newser.com. Each summary is handmade and
has at least two or more sources from where it was obtained.
The baseline methods used were also tested in DUC and
reported worse performance than known values for DUC.
This highlights the fact that the effectiveness of different
summarization techniques is also highly dependent on the
type of text we want to summarize.

6. Evaluation Metrics

The classical metric used to automatically measure sum-
mary quality is Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) (Lin, 2004), which measures lexical
overlap between the produced summary and some reference
summary in various ways. The overlaps can be computed
at the word level (ROUGE-1), bi-gram level (ROUGE-2),
bi-gram with n words in between (ROUGE-Sn), bi-gram
with n words in between and uni-gram overlap (ROUGE-
SUn), longest common subsequence (ROUGE-L), and some
subsequent extensions considering dense vectors built from
n-grams (ROUGE-n-WE) (Ng and Abrecht, 2015) and co-
occurrence statistics (Lin and Och, 2004). While ROUGE
correlates well with human judgments for extractive sum-
marization, it does not perform as well for abstractive sum-
marization since the chosen new words may not overlap
with the reference summary, although possibly preserving
the general meaning of the text. Some work has been
done in trying to take advantage of dense representations
to measure similarity rather than semantic overlap (Ng
and Abrecht, 2015), which also generalizes the ROUGE
framework for abstractive summarization settings.

If ROUGE essentially measures the recall of the gener-
ated sentences (how much of the candidate sentence is in
the reference summary), Bilingual Evaluation Understudy
(BLEU) (Papineni et al., 2002) measures the accuracy
(how much of the reference summary is in the candidate
sentence). Although it originated in machine translation
(ranking possible translations), BLEU was applied to sum-
marization in the very first DUC challenge, but subsequent
challenges evaluated performance using ROUGE.

7. Related Work

At its core, extractive summarization is a text ranking
problem, where we have to choose the most important
words to preserve in a final, shorter text. This formulation
has a simple translation to SDS: rank and select the parts
of the original text that should appear in the summary.
However, this simplicity breaks down when we pass to the
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multi-document world: the set of documents to summarize
may not talk about the same thing at the same level of
detail, so we must identify and eliminate some redundancy.
Also, we need to ensure that the produced summary is
coherent with respect to the different source texts (Radev
et al., 2002). A common way to solve this problem is
to collapse the task into SDS: just concatenate all the
texts. This, however, also creates new problems. News
articles, for example, make an effort to have their first
sentence be the most prominent (or “summarizable”), so
the concatenated document of news articles would have
multiple “first sentences” throughout. This also destroys
the text’s narrative: the content no longer begins in the
introduction and ends in the conclusion, it now instead has
various phases where it begins and ends anew.

Multi-document summarization is a well-studied field,
featuring many different approaches with various degrees
of success, most of which fall into the pitfall of modeling it
as an SDS problem. Nonetheless, we highlight below some
recent or seminal work done in the area.

Goldstein et al. (2000) generalized the Maximum Marginal
Relevance (MMR) (Carbonell and Goldstein, 1998) ap-
proach to extractive summarization to the MDS setting.
MMR is a method for selecting sentences to include in a
summary that a) provide new information, and b) are not
similar to the already included sentences. Let s ∈ D be
a sentence in a document D, R be the set of sentences
already chosen as relevant and that have been selected to
appear in the summary, and Q be some user query. MMR
is then defined as

MMR(D,Q,R) := argmaxs∈D\R

{λ sim1(s,Q)− (1− λ) max
s′∈R
{sim2(s, s′)}}

(14)

where λ ∈ [0, 1] is a parameter controlling if we want the
selected sentence to be more relevant towards the query (as
measured by some similarity metric sim1) or more diverse
(by metric sim2) towards the already selected sentences.
In Goldstein et al. (2000), the authors applied MMR to
MDS by incorporating a series of document-independent
statistical heuristics, such as number of documents that
contain the query, the document where a selected sentence
comes from, the timestamps between document publica-
tions, among others. Testing was done using the TIPSTER
corpus (Harman and Liberman, 1993), evaluated using
both compression ratio and cosine similarity to reference
human summaries.

Erkan and Radev (2004) introduced LexRank, a graph-
based method for ranking TF-IDF (see section 2.1) rep-
resented sentences in a text document. LexRank first
constructs an undirected graph with nodes representing
sentences and edges representing the cosine similarity be-
tween sentences (where edges are only present if this simi-
larity is above some threshold). It then applies the concept
of eigenvalue centrality in graph-theory, achieved by mul-
tiplying the adjacency matrix by some initial distribution

over all the vertices in the graph until convergence. A
summary is then built by selecting the top n-th sentences,
and evaluated using ROUGE-1 on the DUC 2003 and DUC
2004 corpora.

Zhao et al. (2009) did query-focused graph-based MDS
extraction by selecting the top sentences that are closest to
the query using LexRank. Afterward, these sentences are
added to the user query, after which all the sentences are
re-ranked according to this new query, paying attention to
redundancy. This is done to reduce the information noise
in the documents, and, as such, should generate better
summaries. Testing was done in DUC 2005 and DUC 2006
using ROUGE-1, ROUGE-2, ROUGE-S, and ROUGE-SU4,
where their method is comparable to the top performing
systems in the DUC challenge for those corpora.

K̊agebäck et al. (2014) explored the viability for sum-
marization of modeling sentences with semantically-aware
representations (such as SGNS vectors, see section 2.2).
To achieve this, they represented sentences using a simple
(sentence vectors are given by the sum of the word vectors)
and a complex method (sentence vectors are given by a
recursive auto-encoder (Socher et al., 2011) that explicitly
models the word order in the sentence and the grammar
used). The dataset used is Opinosis (Ganesan et al., 2010)
(short user reviews on different topics), evaluated using
ROUGE-1, ROUGE-2, and ROUGE-SU4; they concluded
that simpler methods (i.e., sentences are the sum of their
words) outperform more complex ones.

Yogatama et al. (2015) represented each sentence by a
vector given by Latent Semantic Indexing (see section 2.1).
Given that a set of vectors (points) forms a polytope, a
summary is built by selecting the sentences corresponding
to the set of points that form the widest polytope over all
the other sentences in the document cluster, the assumption
being that the generated summary will be the one with the
highest coverage (maximum volume) and least redundancy
(points chosen are, by construction, at the boundary – see
Figure 2). Their method was evaluated on TAC 2008
and TAC 2009 using ROUGE-1, ROUGE-2, and ROUGE-
SU4, and compared against MMR and Coverage-Based
Summarization (Gillick et al., 2008), where the generated
summaries that cover more diverse bi-grams scored higher.

Figure 2: The four red dots represent the selected sentences since
the polytope spanned by them covers all the other sentences in the
document. Image adapted from Yogatama et al. (2015).

One should note that this is the same as finding the
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set of points that span the polytope with the largest area.
This is similar to an approach that we explore to construct
summaries, with the difference being that we find the set
of points that span the smallest volume polytope.

Mani et al. (2018) represented a document by a para-
graph vector (Le and Mikolov, 2014) and, for a document
cluster, its centroid is seen as the “content average” of all
the documents in the cluster. Summarization is done by
selecting sentences that minimize the euclidean distance to
the centroid of the cluster. They evaluate on DUC 2006
and DUC 2007 using ROUGE-1, ROUGE-2, and ROUGE-
SU4. The idea of averaging representations of different
objects into a final statistic is close to one of our pro-
posed approaches, the main drawback in the case of Mani
et al. (2018) is that their representation model needs to be
pre-trained on some other dataset (they chose Thomson
Reuters Text Research Collection (Lewis et al., 2004) and
CNN/Dailymail (Hermann et al., 2015) corpora).

Lebanoff et al. (2019a) proposed testing the effectiveness
of sentence fusion in abstractive summarization settings.
To this end they found that current state-of-the-art sys-
tems are not doing (either implicitly or explicitly) sentence
fusion, ending with the note that sentence fusion is not as
effective as previously thought. Evaluation was done using
the CNN/Dailymail corpus by human evaluators, where
the assessed metrics were a) faithfulness: if the summary
remains true to the original text, b) grammaticality: if the
summary is grammatically acceptable, and c) coverage: if
the summary has information pertaining to selected article
highlights. They concluded that the systems that per-
form fusion rank the lowest on faithfulness and that higher
ROUGE scores do not necessarily lead to more faithful
summaries. Within the systems that perform fusion, they
found that the systems that fuse sentences by simple con-
catenation are the ones that have the highest faithfulness.
In the other metrics, fusion systems are found to generate
readable, grammatically correct summaries, but not as
much as the state-of-the-art encoder-decoder systems.

Lebanoff et al. (2018) trained an encoder-decoder model
to learn how to fuse disparate sentences to generate the
summary in an abstractive manner, with an attention
mechanism to regulate which sentences to fuse. MMR is
also used to calibrate the selection, to account for redun-
dancy in the summary. They evaluate their performance
using ROUGE-1, ROUGE-2, ROUGE-SU4 and human
judgments on documents from DUC 2004 and TAC 2011,
comparing it with the baselines used by Liao et al. (2018)
plus an integer linear-programming model for summariza-
tion (Gillick et al., 2009). The implications of the mixture
of extractive and abstractive summarization is seen as a
point to develop further, since, despite not performing as
well as some extractive baselines, the summaries generated
were more highly ranked by human annotators in faith-
fulness and coverage. One advanced possibility is that
they are not optimizing the extractive part of the method
separately from the abstractive one.

Lebanoff et al. (2019b) used vector representations for

words that change depending on the context that the word
is inserted in (see section 2.2). With this representation,
they created a system that compresses or joins two sen-
tences – hence it is an abstractive procedure – selected by
an attention mechanism that is sensible to the fact that the
sentences may have come from different documents. Tests
were done both in SDS and MDS settings, and, for the used
MDS corpus (DUC 2004), the baseline extractive methods
(see section 8.5, plus N -LEAD, where the first N sentences
are taken from each document to form the summary — in
their case, N is the average number of sentences in the
reference summaries) fared better in ROUGE-1, ROUGE-
2, and ROUGE-L scores, indicating that just having the
awareness that sentences come from different documents
is not enough to properly select important content. Also,
for the MDS setting, they find that simpler representations
that leverage word frequency across documents (TF-IDF,
see section 2.1) outperform more complex ones.

8. Experimental Setup

This section details the datasets, metrics, and steps
taken for the summarization algorithm.

8.1. Datasets

We chose to test simplicial curves in the MDS problem
using the DUC 2006 and DUC 2007 datasets (c.f. section
5). These datasets were chosen since they are the ones
most suitable for MDS, as well as being the ones where
most MDS articles have focused on, facilitating comparison
of results. Our objective is, given a document cluster,
to produce a summary (where summary size varies with
the chosen dataset) that is acceptable (measured by some
metric — see below) when compared to some human-made
reference summary for that document cluster.

8.2. Curve Construction

Every DUC document is first converted from XML to
plain text. We chose to construct the curves at three levels:
a) the sentence level (each curve represents a sentence);
b) the document level (each curve represents a document);
and c) the mixed level (each curve represents a document,
built by concatenating smaller curves that represent the
sentences of that document). Sentences are extracted from
every document using Apache OpenNLP1. No stopwords
were removed and no stemming was done, in order to
preserve function words in the generated summaries.

The base matrices were created in two ways: a) 100-di-
mension vectors from word2Vec; and b) 10-dimension vec-
tors, obtained by applying UMAP (McInnes et al., 2018)
to the 100-dimension vectors. UMAP is a dimensionality
reduction technique that maintains positional relativity:
objects close in the high-dimensional space are mapped

1https://opennlp.apache.org/ (Accessed January 20, 2021)
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to close objects in the low-dimensional space and objects
further apart in the high-dimensional space are mapped to
distant objects in the low-dimensional space..

Curves were built with a smoothing value for the re-
stricted Gaussian kernel of σ ∈ {0.05; 0.005; 0.003; 0.001}.
These values were chosen in-line with the original article.
Finding a clear relation between smoothing value and curve
performance can be a future area of enquiry. UMAP was
run with the default parameters from the authors’ imple-
mentation.

8.3. Summary Construction

The most straightforward approach to building sum-
maries using curves is the average curve approach. The
resulting curve should intuitively model both documents:
to get a summary, it suffices to synthesize words from it.

The success of this method is highly dependent on the
underlying representation used to build My. To summarize
a single document, we can also consider curves built with
different scales for the kernel, i.e., synthesizing words from
the curve γ′y = 1

2 (γσ1
y + γσ2

y ) for document y.
We construct the summary curve by a) averaging and

b) conflating the curves for all the documents. Reconstruct-
ing the text is done by sampling uniform-spaced points
from the summary curve and retrieving the word associated
with the dimension with the highest probability (in the case
of one-hot built curves), or by training an encoder-decoder
model to map between curves to sentences.

An LSTM (Hochreiter and Schmidhuber, 1997) was
used to create a mapping from curves to sentences in the
cases where the curve dimensions do not have any extrinsic
meaning. This was done by training a neural-network to
match curve representations (dense matrices) of sentences
to a vector representation of those sentences. This vector
representation has length equal to the length of the sentence,
and the entries of the vector are the index positions in the
vocabulary of the word in the sentence.

As an example, consider the sentence “How are you,
you villain?”. If we create a curve from a base matrix
representation with 10-dimension vectors, and we sample 5
points of that curve to create a summary, the network will
have to map:

R5×10 3

 0.1 · · · 0.15
...

. . .
...

0.45 · · · 0.03

 7−→ [
0 1 2 2 3

]
Since any unlabelled collection of texts can be used

for this purpose, we trained the model in the DUC 2006
dataset, using only the original documents as the source
for our training sentences. The model was constructed
using the Keras Framework (Chollet et al., 2015) with
the Tensorflow backend. It was trained for 50 iterations
using the Sparse Categorical Cross-entropy loss and the
RMSprop optimizer. The hidden layer of the LSTM had
dimension 100 and its activation function was softmax.

8.4. Evaluation

We compare the generated summaries with the reference
summaries using ROUGE-1, ROUGE-2, and ROUGE-L,
since these are the most widely used automatic metrics in
the MDS task. Although it was also presented in section
6, we do not evaluate our summaries using SERA because
this metric has relevance chiefly in the field of summarizing
scientific articles, and not general news articles.

8.5. Baselines

We compare simplicial curves with some strong extrac-
tive (ext) and abstractive (abs) baselines that have been
applied successfully in multi-document summarization:

• SumBasic (ext) (Vanderwende et al., 2007) is a greedy
algorithm for sentence selection that chooses to in-
clude in the summary the sentence with the high-
est probability, as given by P (S) = 1

#S

∑
w∈S P (w),

where P (w) is a unigram distribution of all the words
in the corpus. This process is repeated until the
desired length of the summary is reached.

• KLSum (ext) (Haghighi and Vanderwende, 2009)
builds upon the above idea but, instead of including
in the summary the sentence with the highest prob-
ability, it selects the sentence that, when added to
the summary, most reduces the KL-divergence be-
tween the unigram distribution of the sentence and
the unigram distribution of the corpus.

• TextRank (ext) (Mihalcea and Tarau, 2004) is very
similar to LexRank (viz. section 7) but, instead of
finding the eigenvalue centrality of the sentence graph,
sentences are ranked for extraction by the PageRank
algorithm. Further, the original TextRank algorithm
builds the weighted sentence graph by considering
the weight of an edge to be the amount of lexical
overlap between two sentences.

• Pointer-Generator (PG) networks (abs) (See et al.,
2017) is a mixture of extractive and abstractive ap-
proaches: when constructing the summary, the model
decides (based on an attention mechanism) if, for the
current position of the under-construction summary,
it is better to generate a new word or to copy a word
from the source text. Both the attention mechanism
and the underlying model need to be trained using a
different corpus from the one we want to summarize.

• PG-MMR (abs) (Lebanoff et al., 2018) builds upon
the above idea, only that the summary construction
step is interleaved with MMR (section 7), where it
is used to pick K sentences to pass on to PG. After
each summary construction round, the sentences are
re-ranked and the process repeats until the summary
has the desired length.
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9. Results and Discussion

The ROUGE-1, ROUGE-2 and ROUGE-L scores for
each baseline and the proposed method are presented in
Tables 1 and 2, for the DUC 2006 and DUC 2007 datasets.
In the simplicial curves entry is the dimension of the word-
embeddings used (10 or 100). “Cat” means that the curve
was done at the document level by concatenating curves
at the sentence level. The results presented are for curves
built with smoothing kernel σ = 0.003.

DUC 2006 R-1 R-2 R-L
SumBasic 0.27 0.03 0.12
KLSum 0.27 0.03 0.13
TextRank 0.33 0.06 0.16
PG 0.24 0.04 0.13
PG-MMR 0.30 0.06 0.15

Simplicial Curves 10 0.02 0.001 0.02
Simplicial Curves 100 0.04 0.001 0.04
Simplicial Curves 100 Cat 0.05 0.004 0.04

Table 1: Baseline and curve results on the DUC 2006 dataset.

DUC 2007 R-1 R-2 R-L
SumBasic 0.29 0.04 0.14
KLSum 0.28 0.04 0.13
TextRank 0.36 0.07 0.17
PG 0.26 0.05 0.14
PG-MMR 0.32 0.07 0.17

Simplicial Curves 10 0.02 0.001 0.01
Simplicial Curves 100 0.03 0.001 0.03
Simplicial Curves 100 Cat 0.04 0.003 0.03

Table 2: Baseline and curve results on the DUC 2007 dataset.

All presented curve results were obtained by combining
curves by average. The conflation method, as discussed
in section 4, is not shown as it was not successful: the
resulting curve would always concentrate all of its mass
around one point, making the curve generate only one
word.

We can see that the ROUGE scores achieved for the sim-
plicial curves are not competitive with the baselines. One
possible explanation for this is that the curve-averaging
method generates curves that are poor information-wise,
due to the original curves’ distance apart in the 100-
dimension word-embedding space (as illustrated in Figure
3, with γ′ = 1

2 (γ1 + γ2)). This, combined with the fact
that the curves pass through the same region many times
(because of the stopwords), leads to the resulting average
curve being condensed in some specific areas and every so
often shooting off into regions with content.

We keep the stopwords because we need the function
words to generate legible text. Even if we remove the

Figure 3: Shortcoming of the curve-averaging method. γ′ has no
clear relation with γ1 or γ2.

stopwords, the overall result does not change: the resulting
curve now focuses on superfluous words between the curves.

One thing to note is the fact that the average curve
may pass through regions that do not represent the original
documents in any way. To use a standard word-embedding
example, if there are two documents that say “hot” and
“cold”, respectively, then the average curve will pass through
the “warm” region, and this would be the word that would
be generated for the summary, even though the original
documents have no connection to this term. This is also
illustrated by Figure 3.

Even so, the ROUGE scores are better if the curves
are built with higher dimension base matrices. This is
despite the fact that, in higher dimensions, the curves have
a much wider space to roam, thus aggravating the above-
mentioned shortcoming of the averaging method. We can
explain this dissonance in two ways: a) the 10-dimension
word vectors were obtained by reducing the dimension of
the 100-dimension word vectors with UMAP. This mapping
may have rendered the output vectors unfit for purpose,
even though UMAP retains object proximity relativity
(close objects in higher dimensions remain close in lower
dimensions; far away objects in higher dimensions remain
far away in lower dimensions); and b) higher dimensions
in the word-embedding space can model a higher number
of concepts, so the generated words will be richer (this
is compatible with the above shortcoming: the curves
to average have more dimensions, so the average curve
has more regions where it can pass through and not be
informative).

It is also interesting to note that constructing document-
level curves by concatenating sentence-level curves works
better than constructing document-level curves or sentence-
level curves by themselves. This is due to the resulting
curves being bigger (more information dense) because each
part of the curve explicitly models a sentence of the origi-
nating document.

Given that the ROUGE results were so poor, we did not
use the algebraic machinery developed in section 4. Our
original plan was to relate an intrinsic curve feature (e.g.,
curve entropy) with the quality of the generated summary,
as given by the ROUGE scores. However, because these
were so low, any correlation score was highly probable to
be just noise.
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10. Conclusion and Future Work

In this work we have expanded on the concept of simpli-
cial curves (Lebanon et al., 2007), generalizing it to different
base representations. We introduced the simplicial curves
method and developed an algebra for it, which we did not
use in its entirety.

We then explored the effectiveness of the method in the
task of multi-document summarization, testing whether or
not a representation that explicitly maintains sequencing
information is useful in this task. Our experiments show
that it is not, with the ROUGE-1 score of 0.04 obtained in
the DUC 2007 dataset being below our simplest baseline
(SumBasic) score of 0.29, where summaries are constructed
simply by selecting the most important sentences in a docu-
ment. It thus seems that the additional structure provided
by the simplicial curves is not being used effectively in
generating summaries – essentially resulting in noise.

Some of the tools we had prepared to deal with curves
were left unused because of the poor results we had in the
MDS task. If the results had been better – at least as
good as the most basic baseline – any impact that any
upstream change could have had, as guided by the intrinsic
evaluation methods we developed, could at least be reliably
measured.

Notwithstanding the poor results in the summarization
task, we still believe in the potential use for a representation
that explicitly encodes sequential information (like, e.g.,
ELMo (Peters et al., 2018)) and that can be manipulated
using standard and advanced tools of mathematics (unlike
ELMo). In particular, we would like to explore ways of
using curves as an intermediate representation for some
domain-specialized downstream algorithms, i.e., either sam-
ple the curve for points to use as input or use the curve
itself as input.

We would also like to keep exploring the effectiveness of
curves in different language-related tasks such as word seg-
mentation or topic modeling, as well as some non-language-
related tasks that would nonetheless benefit from having a
method for representing objects while preserving sequential
information (e.g., video processing).
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