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Abstract

Nowadays, sensors occupy a significant role in our everyday lives. Magnetoresistive sensors have
been proven to be very useful in many applications, from sensing magnetic fields to precision encoding.
As a consequence, there is a constant demand to optimize such devices and maximize their production
yield.

In any nano/microfabrication process, time is one of the most valuable resources. It is crucial to have
tools to evaluate rapidly if the produced structures are within the expected outcomes or not.

This work presents a tool for quantitative analysis of some critical parameters of Magnetoresistive De-
vices fabrication. Furthermore, the software includes an automatic curve classifier using a Convolutional
Neural Network to qualify Magnetoresistive Devices, focusing on sensors. Alongside the software for
quantitative analysis and the curve classifier for sensors, it is also briefly discussed the use of a machine
learning-based algorithm to predict the yield of a given nano/microfabrication fabrication process.

Keywords: Magnetoresistive Sensors, Microfabrication, Sensor Qualification, Machine Learning,
Convolutional Neural Network

1. Introduction
Besides being a mature technology, magnetore-

sistive sensors are an attractive topic currently pur-
sued by companies toward front end technology.
Refs. [1, 2]

In applications that need sensing magnetic fields
such as biomedical Refs. [3, 4], smart cities in
Refs. [5, 6]. Magnetoresistive (MR) sensors have
attracted much interest in particular because of
their high sensitivity, low power consumption, low
cost and small size, Refs. [7, 8].

Most of these electronics are built using silicon-
based semiconductor processes, where the device
is built using a top-down approach. There are
mainly three types of processes that can be used
to build the majority of devices: (i) Deposition of
materials (films); (ii) Lithography; (iii) Etching.

Due to the typical sizes of the elements involved,
tens of microns down to a few nanometers, strict
micro/nanometric control is essential in all of the
fabrication processes. Deviations in the process
conditions can compromise the behavior of the fi-
nal device, either electrically (e.g., Resistance Area
product, R × A) or magnetically (e.g., saturation
magnetization, MS).

Metrology is then critical for process validation
and control for process evolving multilevel steps.

One common technique to test produced MR sen-
sors is by measuring their resistance (R) across a
varying external magnetic field (H), R(H) is one
of the main figures of merit of these devices. In
an eight-inch wafer there are tens of thousands
of sensors, corresponding to tens of thousands of
R(H) sets of points for each sensor. To fully qual-
ify the produced wafer, one would have to manu-
ally classify every sensor, spending a considerable
amount of time evaluating R(H) loops. Additionally
the quality of the sensors cannot be tackled only
by evaluating easily defined numerical parameters.
The shape of the loop is also relevant, hence us-
ing machine learning algorithms to help in the clas-
sification is extremely profitable. If it takes 5s to
classify each of the tens of thousands of the R(H)
loops on a eight-inch wafer, then one would take
at least one day to qualify it completely. A faster
solution is therefore needed.

Another constant challenge that exists at micro
and nanofabrication facilities, namely at Instituto
de Engenharia de Sistemas e Computadores - Mi-
crosistemas e Nanotecnologias (INESC MN), is to
improve the yield of manufacturing processes. By
having the highest yield possible, one maximizes
the use of time, resources, and hence money.
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With this work, three different challenges were
tackled: (i) Build an easy-to-use software that can
digest ”.SMP” files and provide easy visualization
of many important parameters for MR devices as
e.g. R(H) plots, the minimal resistance, the mag-
netoresistance percentage (MR), among others;
(ii) Build a machine learning-based tool to facilitate
the analysis of large volumes of data, regarding
R(H) measurements of sensors, while providing
an automatic classification of the R(H) hysteresis
curve shape; (iii) Propose a method to predict the
yield of a micro or nanofabrication process. The
method should allow the identification of the criti-
cal steps of the manufacturing process to improve
the overall yield.

2. Magnetoresistance
The MR is a physical phenomenon where the

electrical resistance of a material or a set of materi-
als depends on the external magnetic field applied
to it. The materials response can be engineered to
have a behavior that can be used to solve different
technological challenges.

Although this phenomenon, where some mate-
rial’s resistance is dependent on the magnetic field
applied to it, was discovered in the middle of the
19th century, it was only at the end of the 20th cen-
tury after Albert Fert, Ref. [9] and Peter Grünberg,
Ref. [10], described both the Giant Magnetoresis-
tance (GMR) effect independently, that this effect
started to be used by the industry.

To characterize such devices, one important
quantity is named after the effect. The MR is de-
fined as:

MR =
RHigh −RLow

RLow
(1)

In Eq. 1, RHigh is the high state resistance, and
RLow the low state resistance.

Both groups noticed that the resistance of two
adjacent ferromagnetic (FM) layers separated by
a non-magnetic (NM) layer, typically referred to as
spacer, is dependent on the angle between mag-
netizations and the external magnetic field applied.

Physically the GMR described by A. Fert and
P. Grünberg is a consequence of the asymmetry
in the diffusive scattering of the conductions elec-
trons at NM/FM interfaces.

Depending on the type of the spacer, different
phenomena occur, Ref. [11]. The most relevant
types of spacers/phenomena are: (i) If the spacer
is a conductive NM layer, this effect gains the
name Giant Magnetoresistance (GMR); (ii) In the
case of a thin insulating spacer such as an oxide,
where the electrons can pass from one FM layer
to the other by quantum tunneling effect, the phe-
nomenon is named Tunneling Magnetoresistance
(TMR), such structures are called Magnetic Tunnel

Junctions (MTJs); (iii) There are other types of de-
vices/phenomena, such as the Anisotropic Magne-
toresistance (AMR), which is a single layer type of
structure, but with lower values of MR and smaller
linear range.

This work is focused on GMR and TMR sensors
since they are the most recent technologies and
have the highest MR values.

3. Artificial Neural Networks
Artificial neural networks (ANN) have been made

famous because of their broad spectra of applica-
tions. Refs. [12, 13]

One type of network proven to be useful in sev-
eral problems is the Convolutional Neural Network
(CNN); as the name states, this type of ANN in-
cludes one or more convolution layers.

Convolution, in the context of a neural network,
is a layer that receives its input from more than one
output of the preceding layer, which are close to
each other, meaning that they form a neighborhood
in the previous layer. After having the neighbor-
hood, a linear operation is done by multiplying the
values by a set of weights. The product is done
by multiplying the input data, which, in the present
case, will be a two-dimensional array, with a two-
dimensional array of weights called filter or kernel.
Since one uses the dot product, the outcome of
such an operation is just a value. The kernel is then
swept across the input; depending on the kernel’s
dimensions and the input, the convolution’s output
can be an array of values. Refs. [14, 15]

The convolution layer is of significant importance
when one is trying to recognize a specific feature
across one dataset. The convolution is invariant to
translation; this becomes very handy if one is trying
to detect specific features across multiple locations
in a dataset. Refs. [14, 15]

4. Transfer Curve
A transfer curve describes how the magnitude

of a physical quantity is translated into an electri-
cal signal by a given sensor. In a MR device this
curve translates the sensed magnetic field into re-
sistance values, R(H).

In Fig. 1, the transfer curve of an ideal sensor is
presented. The perfect sensor should have a lin-
ear behavior between the two resistance plateaus,
RLow and RHigh. For each point, ideally, there
should be a unique correspondence between the
magnetic field and resistance. In-between the two
states, one should have a linear region that can
be used to sense magnetic fields. Non-ideally, the
curve could present a hysteric behavior, charac-
terized by coercivity - Hc, defined as the curve’s
broadness. The magnetic field, after which the
plateaus are attained, is called saturation field,
Hsat.
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Figure 1: Transfer curve of an ideal sensor. The arrows rep-
resent the angle between the magnetization of the Free Layer
(FL) and Reference Layer (RL).

The curves can be mirrored with respect to the
y-axis; the only difference is the direction of the
applied magnetic field relative to the reference of
the sample. When fabricating a MR sensor, one
wishes to have all the sensors with a R(H) loop
similar to Fig. 1.

5. Fabricating a magnetoresistive sensor
There are mainly three families of fabrication

steps that can be used to manufacture MR de-
vices: (i) Deposition of materials; (ii) Lithography;
(iii) Etching.

In this section, fabrication particularities are ad-
dressed alongside possible sources of problems
towards the final device performance.

5.1. Thin Films Deposition
This process aims to deposit the required stack

of materials to build the desired devices; such
devices require different materials and deposition
steps.

At INESC MN, three techniques are available:
Ion Beam Deposition, Direct Current/Radio Fre-
quency Sputtering, and Magnetron Sputtering. All
of them have their target application, and all of
them have their limitations.

All the latter have a radial symmetry in the thick-
ness deposited. Such symmetry is a result of how
the beam of depositing species is created. The
thickness (t) as a function of the radius (r) to the
center of the wafer can be modulated by the Eq. 2.

t(r) = C0 + C1e
− (r−C2)2

2C2
3 , C0, C1, C2, C3 ∈ R (2)

Fig. 2 shows the deposited thickness as a func-
tion of radius for the deposition of MgO using the
Nordiko 3600, an IBD-based machine available @
INESC MN. A Gaussian-like behavior is clearly
present.
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Figure 2: Deposition and Gaussian fit of measured thickness of
a deposition of MgO in a 6” wafer at INESC MN using Nordiko
3600.

5.2. Lithography
Lithography is the step where the wanted pat-

tern is transferred onto a sample. The lithography
needs three elements, a radiation source, a pho-
toresist (PR) coated sample, and a system to con-
trol how the sample is exposed to the radiation.

At INESC MN, the techniques available are
Direct Write Laser (DWL) Lithography, Electron
Beam Lithography (EBL), and UV lithography. The
latter uses hard masks. Both the EBL and DWL
use virtual masks, allowing to design features with
minimal size up to 50 nm and 1 µm respectively.

The errors associated with this process are sub-
stantially different from what happens in the depo-
sition and etching. Consider the DWL system; the
laser is scanned across the sample using a high
precision moving stage, which moves according to
the virtual mask. The limitation in terms of fea-
ture size is due to the diffraction limits and the op-
tical/mechanical system used.

Some of the challenges of this step might result
from a non-uniform profile of the laser. That would
cause the PR not to be fully affected by the radi-
ation and hence not be correctly developed in the
developing step. Another limiting factor of this step
is the profile of the PR. While coating, different pro-
files of the PR might arise due to the amount of the
PR dispensed, erroneous spinner rotational speed,
non-optimized baking, etc.

5.3. Etching
The etching is a process through which material

is removed from the sample.
At INESC MN, there are mainly two different

types of processes available, Ion Beam Milling
(IBM) and Reactive Ion Etching (RIE).

In an IBM system, a beam of ions, typically Ar+,
is used to bombard a target material, thereby trans-
ferring their momentum to the atoms on the sam-
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ple, causing them to be removed from it.
Some of the limitations of this technique are due

to the Gaussian nature of the beam of etchant
species, the redeposition of material during the
etching, and the lateral profile of etched volumes
and trenching.

The RIE system is similar to IBM, but instead
of just transferring momentum from the ions to the
sample to release atoms/molecules, one also uses
chemical reactions to facilitate their release. There
are mainly two challenges in RIE that can compro-
mise this step: microloading and the Aspect Ratio
Dependent Etch Rate (ARDE).

If the sample is unpatterned, then one expects
the uniformity across the etched surface to have
radial symmetry, following a Gaussian profile.

Eq. 2 might be used to express the profile of an
unpatterned sample after etching in both RIE and
IBM if all difficulties except for the Gaussian nature
are discarded. In this case, the higher etching oc-
curs at the center of the beam of ions, which one
aims at the center of the wafer.

5.4. Summary of Possible Challenges and Metrology
tools

There are many features to control in a mi-
cro/nanofabrication process, Tab. 1. This, along-
side the several steps it takes to produce a given
MR sensor, makes predicting the yield of a mi-
cro/nanofabrication a challenging task.

6. Treating and Classifying Autoprober Data
A novel and faster way of interpreting the data re-

trieved from measurements done in the Autoprober
@ INESC MN, is discussed next. It is also pre-
sented a transfer curve classifier for sensors that
can distinguish between four different classes of
sensor quality.

With this in mind, the work is divided into three
stages: (i) Treating the data from the Autoprober
to obtain relevant quantities towards the analysis
of MR devices; (ii) Build an automatic classifier for
the fast analysis of R(H) loops of MR sensors; (iii)
Develop an easy-to-analyze tool to allow the visu-
alization of the relevant quantities.

I used Anaconda to tackle all the challenges
above (Python 3.8), Ref. [16]. To build the au-
tomatic R(H) classifier I used Keras/Tensorflow
Refs. [17, 18], and Plotly, Ref. [19], for the easy-
to-analyze tool.

6.1. Data Processor
In Fig. 3, one may see the setup schematic

used at INESC MN for automatically taking mea-
surements of the R(H) loop. This system re-
quires the user to input a grid of locations were
the probes should be placed (map), and hence it
allows to take automatic measurements across a

Figure 3: Autoprober setup schematic at INESC MN.

complete wafer; the system returns a file of exten-
sion ”.SMP” which is similar to a comma-separated
values (”.csv”) file, but uses semicolons as separa-
tor of data.

The file contains many columns, and each row
corresponds to a given sensor, a specific magnetic
field, and a measured resistance.

In order to use the code, the users should pro-
vide the necessary inputs like the SMPs, the col-
umn which are relevant, etc. Fig. 4 shows the in-
terface and all entry fields.

Figure 4: Autoprober Data Processor version 4.0 interface with
the default values.

The current solution includes five different func-
tions: (i) Make R(H) plots; (ii) Get MR; (iii) Get the
R min; (iv) Get R at desired field; (v) Group by In-
dex.
Make R(H) plots - Function that draws and saves
R(H) plots under ”.png” format alongside with
”.csv” file for each curve, containing current used to
generate magnetic field, magnetic field, resistance
measured and bias current.
Get MR - Function that returns a ”.xlsx” file with the
computed MR for each curve, including OC/SC fil-
tering.
Get R min - Function that returns a ”.xlsx” file
with the value of resistance of the low resistance
plateau for each curve, including OC/SC filtering.
Get R at desired field - Function that requires the
user to input a target magnetic field and returns
two different ”.xlsx” files; one file contains the two
values closest to target field and the correspondent
values of resistance, for each curve; the other file
contains the average of both resistance and mag-
netic field for each of the curves. The file with the
averages is OC/SC filtered.
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Process Possible Challenges Metrology tools @ INESC MN

Deposition

Incorrect deposition parameters

Incorrect profile of thickness or roughness

Unsuited composition of the deposited layer

Profilometer
Scanning electron microscopy

Ellipsometer
Optical microscope
X-ray diffractometer

Resistivity measurement

Lithography Miss alignment between lithography levels
Incorrect exposure to radiation

Profilometer
Optical microscope

Etching
Incorrect thickness etched

Incorrect profile of the etched layer

Profilometer
Scanning electron microscopy

Ellipsometer
Optical microscope

Resistivity measurement

Table 1: Summary of most common challenges that can happen in each of the processes.

Group by Index - Specific applications may re-
quire more than one measurement per die/chip.
When using the Autoprober one way to optimize
time consumption is to measure the same set of
pads across all dies/chips, which have the same
interdistance, in all equal dies/chips. Considering
N different dies/chips that need n measurements
taken per dies/chip, this function allows to reorga-
nize theN transfer curve plots in n different folders.

6.2. Sensor Curve Classifier
This work second goal was to build a tool to fa-

cilitate the R(H) characterization of large volumes
of data for sensing applications. I trained a CNN to
do an automatic classification of the curve shape
which is faster and cheaper then performing it man-
ually. The goal of this classifier is to sort R(H)
curves of both GMR and TMR based devices into
four different categories.

It is crucial to understand that this classification
only takes into account the shape of the curves and
not the values of resistance/magnetic field. There-
fore this should only be interpreted as complemen-
tary information.

6.2.1. Data Preparation
Data was treated before trying to train such net-

work. To be independent of the stack deposited,
there is the need to normalize both the resistance
and the applied field in all curves between the
same values. The following mathematical opera-
tion to a list of n values {x} = {x0, x1, ..., xn} is
defined:

{X} = 2.
({x} −max ({x}))

max({x})−min({x})
+ 1

{X} is the normalized list of {x} between between
-1 and 1. The function is applied to both the x and
y-axis, and thus all curves will be majored between
the same values, increasing the amount of data
for each class without losing the curve tendency.
Without this operation, a much vast database is
required to train the network, since examples for

each stack/each value of R × A, etc., would be
needed.

Other critical functions defined were upsampling
and downsampling functions. This is useful when
acquiring data in the Autoprober. Different devices
and different users may choose different amounts
of sampling points; the number of features of an
input of a CNN cannot change after its defined;
therefore, it is crucial to have upsampling and
downsampling functions to downsample or upsam-
ple data to meet the requirements of the input layer.

Only the downsampling function was used in the
studied dataset, being 70 the number of points re-
quired by the input layer of the defined network.

6.2.2. Classes and Datasets
After treating the data I sorted all R(H) loops

into four distinct categories: (i) NOK - Curves with
no visible sign of a MR behavior of the material;
(ii) A - Curves with some MR behavior of the ma-
terial, but not as expected. As the classifier was
implemented for sensor applications, the essential
criteria for this category were: (a) large and irreg-
ular coercivity along the curve (' 10 Oe) - non-
normalized plot; (b) large Barkhausen jumps in the
transfer curve (' 0.25 AU ) - normalized plot. (iii) M
- Curves where there is a MR behavior of the ma-
terial, but not of an ideal sensor. Criteria to include
curves in this category were: (a) small coercivity
along the curve (/ 10Oe); (b) no large Barkhausen
jumps in the hysteresis curve (/ 0.25 AU ). (iv) OK
- Curves where there is a MR behavior typical of
an ideal sensor. Criteria to include curves in this
category were: (a) no visible coercivity (/ 1 Oe);
(b) no Barkhausen jumps (/ 0.04 AU ).

Class Number of Occurrences

NOK 618 (55.48%)

A 325 (29.17%)

M 73 (6.55%)

OK 98 (8.80%)

Sum 1 114 (100%)

Table 2: Table of occurrences of each class in the dataset.
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(a) ”NOK” class example. (b) ”A” class example.

(c) ”M” class example. (d) ”OK” class example.
Figure 5: Normalized examples for all classes.

In order for all evaluated models to be tested un-
der the same conditions, the datasets for training,
validation, and test were kept constant. Chosen
dataset ratio distribution was 60% of all available
data for the training set, 20% for validation, and the
remaining 20% for testing. For each dataset, the
data was picked randomly , with each class having
identical distributions on all datasets. This is cru-
cial because the full dataset used is imbalanced,
as shown on Tab. 2.

One-hot encoding of the categories was per-
formed since there is no ordinal relationship exist
between the different classes.

6.2.3. Model and Training
Seven different CNNs and one ANN were tested,

using two different metrics to evaluate the models:
the regular accuracy and the F1 score.

The Adam Optimization Algorithm was chosen
to train the model, a commonly used optimizer for
such applications. All algorithm parameters had
their default values. Ref. [20]

The Categorical Cross-Entropy (CCE) was em-
ployed as the loss function, defined as:

CCE = −
output∑
i=1

yi.log (ŷi) (3)

where yi is the real label of the i − th index of the
target array, and ŷi is the model prediction (proba-
bility).

To prevent overfitting, early stopping was used.
Training the model too many epochs will result in
an overfitted while training few epochs will result
in an underfitted model, having an underfitted or
overfitted model will fail to predict the desired pat-
terns. Early stopping checks the performance of
the model in the validation dataset, once the per-
formance of the model on the validation dataset
stops improving, the training is stopped, and the
best model is saved.

6.2.4. Evaluation and Final Model
Accuracy should be used when all the classes

are equally important and when one has a bal-
anced dataset. However, the accuracy can be mis-
leading when one has an imbalanced dataset. In
imbalanced datasets, and when one cares about
the incorrectly classified examples, the F1 score is
typically used as the evaluation metric. Ref. [15]

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Where TP are the true positives, TN are the
true negative, FP are the false positives, and FN
the false negatives.
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Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 = 2.
P recision.Recall

Precision+Recall
(7)

When dealing with multiclass, some modifica-
tions to the F1 formalism is required. The F1 was
defined as the average of the computed F1 score
for each class without any weights to account for
the imbalanced dataset. This might lead to a larger
penalization if the classifier does not perform well
with the minority classes, which could be profitable
while evaluating an imbalanced dataset.

The best model in the test dataset had an accu-
racy of 0.9865, and an F1 score of 0.9623, and the
optimal model was trained in epoch number 229. It
was composed of two convolutions, two max pool,
one flatten, and two dense layers. Check Refs.
[14, 15] for insights on the layers.

After selecting the model’s architecture which
lead to the best performance, the same archi-
tecture was trained again but with a vaster test
dataset. Even though the optimal number of
epochs may change from run to run due to the pro-
cess’s stochastic nature, it was assumed to be the
same for a not so different training dataset.

Now the training dataset can have 70% of all
data, and the rest 30% can be saved for testing.
This will lead to more reliable testing; however, the
training might not be stopped in the optimal epoch
since no validation dataset for the early stooping
exists.

Fig. 6 shows that the model over classifies
curves as a class ”M”. This might result from the
fact that there is a minimal difference between this
class and some curves of the ”A” and ”OK” class.

In this final model, the accuracy over the test
dataset was 0.9672, and the F1 score was 0.9257,
giving thus good results. The model is expected
to give similar results in upcoming wafers, as long
as some requirements are fulfilled: (i) Low resis-
tance plateau must be on the curve’s left-hand side
and high resistance plateau should be on the right-
hand one. This can be achieved by merely mirror-
ing the curves; (ii) If curves have a number of sam-
pling points different from 70, either upsampling or
downsampling needs to and will occur.

6.2.5. Implementation
An easy-to-use interface for the automatic classi-

fication of sensors was implemented. Please note
that no quantitative parameter, such as MR or
Rmin, is taken into account to make such classi-
fication.
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Figure 6: Confusion matrix heatmap for the final model evalua-
tion using a test dataset with 30% of all data.

Figure 7: Autoprober Sensor Classifier version 4.0 interface
with the default values.

In order for the script to successfully run, the
user has to input the following data: (i) Folder with
the R(H) loops data (”.csv” from Sec. 6.1); (ii) Di-
rectory where the predictions should be saved; (iii)
Name for the ”.xlsx” file of predictions; (iv) Folder
with the model inside, and it should be saved under
the TensorFlow SavedModel format. The model
trained above is supplied alongside the code;

The code returns a ”.xlsx” file with classifications
for all the curves and probabilities for each class.

6.3. Data Visualizer
The Data Visualizer uses files computed by the

Data Processor/Sensor Classifier, and the map
used in the Autoprober; with this information, it
does an interactive plot which is saved in ”.HTML”
format.

In order for the script to successfully run, the
user has to input the following data: (i) Titles for
the points, they must be separated by commas; (ii)
Static translation that the Autoprober map coordi-
nates should suffer with respect to the final plot’s
coordinate system; (iii) Title to be shown in the
plot; (iv) Filename of the final .HTML file; (v) Direc-
tory with the measurements that one wishes to dis-
play; (vi) Directory which has the maps inside, ”X”
and ”Y” column should be identified in the first row;
(vii) Directory to save the ”.HTML” file; (viii) Select
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from the list the variable to visualize; (ix) Check the
”Drawn Dies Frames” if one wishes to draw die/chip
limits. Some windows will pop-up asking for rel-
evant information like dimensions and how many
are in the x and y-direction.

Figure 8: Autoprober Data Visualizer version 4.0 with the de-
fault values.

Figure 9: Autoprober Data Visualizer version 4.0 example using
predictions from the Sensor Classifier.

In all examples, by hovering the mouse over the
points, the user may see relevant information about
the plot. For instance, in the prediction example,
each class’s probability is present, Fig. 9.

7. Proposal For Predicting Sensor Yield
There are many challenges to the manufactur-

ing of a MR sensor, Sec. 5. The approach now
presented is Machine Learning based.

One of the most challenging parts of Machine
Learning is understanding what data is relevant or
not. Since this is a novel problem, one should first
define what data should be collected.

When asking someone for that, one should try
to facilitate the person that will gather the data job.
For instance, if one develops a Process Character-
ization Runsheet (PCR) to be filled alongside the
regular runsheet, it is evident that such a document
should be fast and easy-to-fill. If the document is
dull, it may fail to engage users in filling it. With
this in mind, a PCR was developed and is ready to
be implemented. For the initial approach, it is pro-
posed to start only with the analysis of lithography
and etching steps.

The etching steps may sometimes be difficult to
evaluate; this arises from the fact that some lay-
ers are so thin that it is difficult to know if one has

etched the sample as supposed or not. Some-
times, one can only rely on optical inspection and
check the contrast of colors for different materials.
When the layers are thick, one can rely on the pro-
filometry to evaluate the etch depth.

After gathering the data, it should be organized
to train the model successfully. Each process
step’s evaluation should be a feature, and the tar-
get should be the device’s classification. One
should use all the available outputs of Autoprober
Data Processor, Sensor Classifier & Visualizer be-
fore deciding on the sensor classification. The
Sensor Classifier could be used to check the shape
of the curve and another complementary informa-
tion to check if the sensor is within expected val-
ues, for instance, the MR or Rmin.

Regarding the model selection, the same ap-
proach as in Sec. 6.2.3 should be used. The sug-
gestion is to search for a similar problems and then
try different solutions to check which one yields the
highest performance over a validation dataset be-
fore training the final model.

If the model is appropriately trained, it will be
advantageous to evaluate, for instance, exclusion
zones of productions, which allows saving time.
With this approach, the users can further under-
stand which steps are the most critical of a micro
or nanofabrication process and then try to improve
them.

8. Conclusions and Future Work
In this work, easy-to-use tools that can pro-

vide a fast quantitative analysis of fabricated sam-
ples/wafers are presented. These tools include an
automatic curve classifier that can successfully dis-
tinguish between what is an appropriate MR sen-
sor response and what is not. The conjugation of
the output of the quantitative analysis and the clas-
sifier is enough to make an automatic qualification
of the sensors which are within working parame-
ters. It is expected that the curve classifier will
classify >90% of all curves correctly and hence as
prove its value.

Due to the modular nature in which the Data Pro-
cessor was built, more analysis functions could be
added to calculate other relevant parameters, such
as, for instance, the sensitivity. Future users should
tailor the code to their needs if needed.

The last challenge of this work was to propose a
technique to predict the yield of a micro or nanofab-
rication process while identifying the process’s crit-
ical steps; for that goal, a Process Characterization
Runsheet was created. The PCR allows gathering
the necessary data to accomplish this task. The
Runsheet created is for an MTJ based process, but
it can be adapted for SV. If such approximation is
implemented and the users could use it to predict
the yield.
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For the future, the code could be placed on a
central service available through the internet, this
way, users could process their files without running
the software on their machines. This is already
being pursued through the use of Google Colab,
which supports Jupyter Notebooks. Please refer to
”Cloud-based” folder, Ref. [21].

Regarding the third objective of this work, it is
necessary to engage INESC MN users to fill in the
PCR to gather the required data for successfully
implementing such model.

In the Ref. [21] a stable version of the code is
available alongside the Process Characterization
Runsheet and instructions towards the installation
of required libraries.
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