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Abstract

Amorphous solid dispersions (ASDs) are a prominent formulation to overcome the challenge of low
solubility in promising pharmacological compounds. Two important characteristics of ASDs are the drug
loading in the formulation and the existence of the spring and parachute effect. Two successful PLS
models were developed for the prediction of the drug loading: one taking into account drug and polymer,
with accuracy of 45% in an external validation set, an accuracy of 71% for a set of commercialized ASDs
and an accuracy of 81% for a set of internally developed ASDs (for threshold of 10%), and the other one
taking into account uniquely the drug, with accuracy of 50% in an external validation set, an accuracy
of 57% for a set of commercialized ASDs and an accuracy of 75% for a set of internally developed ASDs
(for threshold of 10%). These models were shown to be more accurate than the Flory-Huggins theory.
For the prediction of the spring and parachute effect, two models were developed: a random forest
model and an artificial neural network model, with an accuracies for an external validation dataset of,
respectively, 67% and 57%.
Keywords: Amorphous Solid Dispersions; Multivariate Data Analysis; Machine Learning; Partial
Least Squares; Artificial Neural Network; Random Forest

1. Introduction
In any drug, for the active pharmaceutical ingre-
dient (API) to be transported to its physiological
target, it must be released and absorbed in the gas-
trointestinal (GI) tract, where it will enter the circu-
latory system. This implies that the bioavailability
of a given drug is dependent on its ability to dis-
solve in the GI fluid (solubility) and to pass through
the intestinal membrane (permeability) [1]. Based
on this two concepts, a regulatory mechanism was
created: the Biopharmaceutics Classification Sys-
tem (BCS) (Figure 1 [2]). Nowadays, ever more
promising substances are crystalline molecules that
are usually inserted in the classes II and IV of the
BCS (low solubility).

Figure 1: Class division of compounds by BCS [2].

Poor aqueous solubility results in a low dissolu-
tion rate, which is specially problematic for drugs

with a restrict absorption window as they might dis-
solve after passing their absorptive sites [3]. Amor-
phous solid dispersions (ASDs) consist of a solid-
solid blend of the API within a polymer excipient
(the API molecules are uniformly dispersed within a
polymer matrix); the mixture is vitrified so that the
crystalline drug transforms into meta-stable amor-
phous glass [4]. Amorphous pharmaceutic prod-
ucts are characterized by its solid-state nature and
lack of distinct intermolecular arrangement without
crystalline structure and, consequently, with poor
thermodynamic stability, providing enhanced solu-
bility properties [5, 6].

Spray-dried amorphous solid dispersions (ASD
SDs) present a number of advantages for low-
solubility API delivery. They rapidly dissolve due
to their high free energy, enhance the oral absorp-
tion of poorly soluble compounds by sustaining su-
persaturated concentrations of the drug in the GI
fluid, and provide a physically stable drug form
avoiding crystallization or phase separation [7, 8].
The dissolution behaviour of ASDs is often de-
scribed by the ”spring and parachute” model (Fig-
ure 2). The ”spring” represents the initial phase
where the drug is propelled into a solution as the
polymer matrix dissolves, resulting in a supersat-
urated solution. In order to maintain the drug in
the supersaturated state long enough for it to be
absorbed, the polymer must also inhibit precipita-
tion of the drug - the ”parachute”: precipitation
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Figure 2: Schematic representation of the drug con-
centration–time profiles, illustrating the spring and
parachute effect of supersaturating drug delivery
systems [9].

inhibitors interact with the API molecules in solu-
tion, slowing down critical steps in the process of
drug crystallization [9].

1.1. ASD SD’s Key Performance Parameters

1.1.1 API properties

Key API properties include the melting tempera-
ture (Tm), glass transition temperature (Tg), par-
tition coefficient (logP ), logarithmic acid dissocia-
tion constant (pka), molecular weight, miscibility in
polymers, hydrogen bond donors and acceptors, ep-
ithelial membrane permeability, solubility in aque-
ous media, solubility in spray solvents, and chemical
stability [7, 8, 10, 11, 12, 13]. It has been demon-
strated that physicochemical properties of the com-
pounds that had fast crystal growth rates included
lower molecular weights, high Tm values, lower Tg
values, fewer rotatable bonds, lower melt entropy,
lower melt viscosity and higher crystal densities
[13, 14].

A very important aspect to be taken into account
when manufacturing ASD SDs is the crystallization
tendency of a given compound; two good parame-
ters to evaluate this propensity are the Tm/Tg ratio
and the logP . Tg represents the temperature at
which amorphous materials transition from a hard,
glassy state into a viscous state, while Tm represents
the temperature at which a given substance changes
from solid state to liquid. A high Tm implies a high
crystallization tendency due to the high thermody-
namic driving force; a low Tg poses a small kinetic
barrier to molecular diffusion and, therefore, allows
higher mobility, implying high crystallization ten-
dency. Therefore, the higher the Tm/Tg ratio, the
bigger the crystallization tendency. LogP , repre-
sents the ratio of concentrations of a compound in
a mixture of two immiscible solvents at equilibrium.
A high logP value means the compound is highly
hydrophobic, and therefore poorly soluble in water.

1.1.2 Polymer Choice

Polymers reduce the molecular mobility of the
drug by forming intermolecular interactions be-
tween drug and polymer and reduce the chemical
potential of the drug (minimizing the crystalliza-
tion driving force), resulting in a stabilization of
the ASD. An amorphous drug is usually most stable
when drug and polymer are mixed homogeneously
at molecular level. The strong interactions between
an API and a polymer via ionic interactions, hy-
drogen bonding, halogen bonding, van der Waals
forces, and hydrophobic interactions are expected
to facilitate miscibility of the drug in the polymer
and may increase physical stability. Reducing the
drug mobility in the polymer matrix is also directly
related to the parameter Tg: high Tg limits drug
mobility and, thus, phase separation. In an SDD,
the amorphous API is optimally homogeneously dis-
persed in the polymer matrix, so the dispersion ex-
hibits a single Tg value, between the polymer Tg
and the drug Tg [8].

1.1.3 API loading

The maximum drug loading in the ASD SD de-
pends on the physical and chemical stability, dis-
solution performance, and powder properties as a
function of drug loading. The maximum achiev-
able loading is often limited for drugs with high Tm
and low logP values that have a strong tendency
to crystallize from the amorphous state. Polymers
in which the drug is more miscible or that offer a
lower mobility environment can help stabilize the
drug against crystallization or phase separation. In
cases where the Tg is lower in the drug than in the
polymer (most cases), increasing the drug load will
also increase the tendency for the drug to crystal-
lize. High drug loadings can also result in poor dis-
solution properties, especially for highly lipophilic
drugs (with poor wettability in aqueous media) [8].

1.2. Prediction of ASD Stability Through
Propensity for Phase Separation: Lat-
tice Models and the Flory-Huggins The-
ory

The miscibility behaviour of these dispersions is
typically described by the Flory-Huggins theory
[15, 16], a lattice-based statistical mechanics model
where the free energy of mixing is broken into an
entropy part (that always favors mixing) and an
enthalpy part (that can facilitate or prevent mix-
ing, depending on the nature and intensity of the
interaction between the components) [17]. The ex-
pression for the Gibbs energy of mixing is shown in
Equation 1, where x1 and x2 are the molecular frac-
tions of solvent and polymer (respectively), ϕ1 and
ϕ2 are the volume fraction of solvent and polymer
(respectively), χ is the solubility parameter and V1
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and V2 are the molar volumes of the solvent and
polymer (respectively) [18].

∆G

RT
= x1 lnϕ1 + x2 lnϕ2 + χϕ1ϕ2

(
x1 + x2

V2
V1

)
(1)

The Hansen solubility parameters (HSP) [19, 20]
are an attempt to extend solubility parameter the-
ory to include polar and hydrogen-bonding interac-
tions. The solubility parameter is divided into three
partial solubility parameters: δD, descriptive of dis-
persion interactions, δP , relative to polar interac-
tions, and δH, corresponding to hydrogen bonding
interactions. The HSP can be used to predict how
miscible two molecules are through the HSP dis-
tance (Ra, equation 2): the smaller the Ra, the
more likely they are to be compatible [21].

Ra2 = 4 (δD1 − 8D2)
2
+(δP1 − δP2)

2
+(δH1 − δH2)

2

(2)

1.3. Motivation

The current ASD screening methodology employed
requires a considerable amount of time and mate-
rial resources. Presently, the initial in-silico analy-
sis addresses only the computation of API proper-
ties and the assessment of the API/polymer sys-
tem miscibility based on thermodynamic proper-
ties. Therefore, all supersaturation studies (for var-
ious API/polymer combinations and drug loads)
are carried out in vitro, usually leading to a few
promising conditions amongst many failed combi-
nations. The goal of this project was to design an
alternative workflow for the initial part of the ASD
screening process that would save time and material
resources. This workflow should allow scientists,
when receiving a new API to formulate, to assess
ASD stability and performance a priori through
statistical and machine learning models that would
predict two distinct outputs: the maximum API
load and the existence (or absence thereof) of a
spring and parachute behaviour.

2. Methodology

The variables were divided into ”API descriptors”,
”Polymer descriptors” and ”ASD variables / in-
teraction parameters”. In total, 136 observations
referring to ASD SD formulations were harvested,
comprised by combinations of 37 different APIs and
25 different polymers. The dataset includes two
outputs, ”API loading” and ”Spring and parachute
effect”. All the observations used are referent to in
vitro dissolution studies of ASD formulations – it
was chosen not to include in vivo studies due to the
high variability to those attached.

2.1. Partial Least Squares
Partial least squares (PLS) methods assume that
the observed data is generated by a process driven
by a small number of latent variables (not directly
measured variables) – this is called indirect mod-
eling [22]. A PLS model creates orthogonal score
vectors (also called components) by maximising the
covariance between different sets of variables. The
predictor and predicted variables are each consid-
ered as a block of variables. The PLS model ex-
tracts the score vectors that will then serve as a
new predictor representation, and regresses the re-
sponse variables on these new predictors [23].

The most widely used method to evaluate the
performance of a regression method is the r2, a
value between 0 and 1 (or 0% and 100%), that rep-
resents the goodness of the fit to the model, or the
percentage of explained variance by the model. An-
other very important factor to take into consider-
ation is the q2 parameter, that represents the r2

applied to the cross validation data (the term cross
validation is explained furtherly). The q2 parame-
ter represents the predictive capability of the model,
and at a certain degree of complexity will not im-
prove any further and then degrade.

2.2. Artificial Neural Network
Artificial neural networks (ANN) are brain-inspired
systems that consist of at least an input and an
output layer of neurons (or nodes), and usually one
or more hidden layers. The connections between
the nodes are called weights, and each node has as-
sociated a ”bias” term: the weights represent the
strength of a particular node, and the bias term
shifts the activation function up or down. The
activation function serves the purpose of inserting
non-linearity into the model: by calculating the
weighted sum and further adding bias to it, it con-
verts an input signal of a node to an output sig-
nal, which is used as input to the next layer. If no
activation function is applied, the output would be
merely linear, and while linear functions are easy to
solve, they have very limited modeling power [24].

2.3. Random Forest
The random forest (RF) classifier, that consists of
an assemble of decision trees, is one of the most
used supervised learning models to approach clas-
sification problems. In a random forest, each de-
cision tree makes an individual class prediction; in
the end, the class that was predicted more often is
the class predicted by the random forest [25]. The
key for the good performance of these models is the
low correlation between the individual trees; that
way, the trees protect each other from their indi-
vidual errors, as long as they don’t constantly err
in the same direction. The model uses two meth-
ods to ensure the behaviour of the independent trees
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is uncorrelated enough: bootstrap aggregation (or
tree bagging) and feature randomness [26].

2.4. Overfitting and how to overcome it

When training a machine learning model, there are
two phenomenons one has to look out for: bias and
variance. Bias (or underfitting) is an algorithm’s
tendency to pick a model that is not structurally
correct for the data, by making incorrect assump-
tions about the dataset. On the other hand, vari-
ance (or overfitting) arises from sensitivity to small
fluctuations in the training set, because the model
learned every quantitative detail of the training
data, inevitably including random noise and miss-
ing the broader regularities in the data [27, 28, 29].

The primary step to avoid overfitting is to have
a sufficient amount of data: if the training set is
too small, even a simple model will adjust almost
perfectly to it. Removing features is also very use-
ful: having irrelevant features is not only expensive
computationally and in the sense that it’s necessary
to harvest more data, but it also causes overfitting
by introducing unnecessary noise and complexity
into the model [29]. Another frequently used tool is
early stopping: when an algorithm is being trained
iteratively, it is possible to measure the performance
of the algorithm at each iteration. Early stopping
consists on stopping the training when the model
reaches the point when, at a certain number of iter-
ations, the error in the validation set starts increas-
ing, as the model is starting to overfit the data [30].
Finally, an indispensable tool to avoid overfitting
is validation, that consists on testing the model on
data the model hasn’t yet been exposed. Two of
the most common validation techniques are hold-
out validation (splitting the dataset into a ”training
set” and into a ”validation set”) and cross valida-
tion (splitting the dataset randomly into ’k’ sub-
groups, or folds; one of the groups works as the val-
idation set (hold-out fold), while the rest k-1 folds
work as a training set) [31].

2.5. Model Development

2.5.1 Partial Least Squares

The PLS models were developed in the software
SIMCA by Umetrics R©. Two separate PLS models
were developed: one that takes into account API,
polymer and interaction variables, and one that
makes the predictions solely based on the API fea-
tures. Both PLS models have as target output the
prediction of the maximum API loading. For the
PLS models, the dataset was scaled through mean
normalization so that all the values would fall into
a [-1, 1] interval.

The PLS model that takes into account API,
polymer and interaction variables had as inputs 84
observations (comprised by combinations of 37 dif-

ferent APIs and 23 different polymers) and 30 fea-
tures (or variables) descriptive of the observations.
The model was then optimized: variables which
mainly produced noise were excluded according to
the VIP (Variable Importance in Projection) value,
and outliers were excluded based on the prediction
plot (predicted output by the model versus actual
output) and the normal probability plot of residu-
als, referred to as n-plot. One of the assumptions
for regression analysis is that the residuals (error
terms, or the differences between the observed value
of the dependent variable and the predicted value)
are normally distributed, and this plot is a method
of learning whether this is a valid assumption, and
therefore to identify possible outliers. If the data
follows a normal distribution with mean µ and vari-
ance σ2, then a plot of the theoretical percentiles
of the normal distribution versus the observed sam-
ple percentiles should be approximately linear. The
validation was performed through cross-validation;
to diminish overfitting and enhance the model’s per-
formance on new unseen data, each cross validation
group consisted of the observations of a single API,
so that when the q2 valued was calculated, for each
cross-validation step the model had never been ex-
posed to that API before. Therefore, the value of k
folds was the number of APIs in the model, so this
valued changed during model optimization due to
the removal of outliers.

The second PLS model developed is meant to pre-
dict the maximum API loading in a given ASD for
a given API, without taking into account the poly-
mer (its inputs are, therefore, the API characteris-
tics). Prior to model optimization, the model had
as inputs 37 observations (and, therefore, the same
number of APIs) and 12 features (or variables) de-
scriptive of the said APIs. The model was then
optimized in the same manner as before: variables
which mainly produced noise were excluded accord-
ing to the VIP value, and outliers were excluded
based on the prediction plot and the normal prob-
ability plot of residuals. Cross validation was per-
formed; since in this model there are no two obser-
vations with the same API, the number of folds was
simply defined as k = 7.

2.5.2 Random Forest

The RF classifier model was developed in the
software MATLAB by MathWorks R©, with the
objective of predicting the output ”spring and
parachute” effect based on the variables descrip-
tive of the API, of the polymer and of the ASD
/ interaction variables. This model should predict
a class of 1 if the ASD is predicted to have good
spring and parachute effect, and 0 otherwise. The
model had as inputs 92 observations (comprised by
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combinations of 23 different APIs and 19 different
polymers) and 29 features (or variables) descriptive
of the observations. The random forest models do
not require data scaling [32]. The validation was
performed through cross-validation using 20 folds.
The maximum number of splits was defined by de-
fault as 91, and the number of trees in the model
was defined by default as 30.

2.5.3 Artificial Neural Network

The ANN model was developed in the software
MATLAB by MathWorks R©. For this model, the
data was not normalized manually; instead, the
function ’mapminmax’ was applied. This model
had the objective of predicting if the ASD would
yield spring and parachute behaviour. The model
had as inputs 92 observations (comprised by com-
binations of 23 different APIs and 19 different poly-
mers) and 29 features (or variables) descriptive of
the observations. In the ANN model, the dataset is
divided in three: the training set, where the model
is trained and the weights are updated; the vali-
dation set (hold-back validation), used to prevent
overfitting through early-stopping, and the test set,
that works as an independent test set without any
role in the model training itself, but with the pur-
pose of analyzing the performance of the model in
new, unseen data. The division was 65% to train-
ing (60 samples), 15% to validation (14 samples)
and 20% to testing (18 samples). The neural net-
work architecture was defined as one input layer
comprised of 29 nodes (the number of features); one
output layer comprised of 1 node, that outputs ei-
ther a value of 1 or a value of 0; and one hidden
layer, with a number of nodes with approximately a
medium value between the input and output layers
(15 nodes). The backpropagation algorithm used
was scaled conjugate gradient (SCG). For the hid-
den layer, the hyperbolic tangent sigmoid transfer
function (returns values between -1 and 1) was used;
for the output layer, the sigmoid transfer function
was used (maps values between 0 and 1).

3. Results and Discussion
3.1. Prediction of maximum API loading
3.1.1 PLS model – all variables

After optimization by removal of unimportant vari-
ables and outliers (18 variables and 10 outliers), the
r2 and q2 values obtained for this model were, re-
spectively, 58% and 48%. The final model is taking
as inputs 12 variables: 4 related to the polymer, 7
related to the API, and 1 interaction variable. The
prediction plot for the final model is presented in
Figure 3.

It is visible in the prediction plots (Figure 3) that,
even when recurring to cross-validation (plot B), the
data points do not fall far from the regression line.

Figure 3: Prediction plots for the final model. A –
actual values of the dependent variable versus the
predicted values for this variable; B – actual val-
ues of the dependent variable versus the predicted
values through cross validation for this variable.

In fact, even for the observations with the highest
drug loading (observations 7-11, with a real drug
loading of 80%), the model using cross-validation
(meaning that the model hasn’t been exposed to
any observations with a drug loading as high) does
an acceptable job at extrapolating, predicting val-
ues between 55% and 65%. Taking into account
that, except those observations, there are only two
observations with a drug loading of 60%, and all the
other ones have smaller values, this extrapolation is
indeed promising.

It is also worth noting that in both prediction
plots, there are more data points falling below the
trend line rather than on top; this means that it
is more common for the model to predict a drug
loading with a higher value comparing to its real
value, than to predict a drug loading value that is
inferior to the real drug loading. When harvesting
the data, when possible the observations were taken
from internal reports or literature papers where the
authors tested several drug/polymer ratios in order
to choose the highest possible API loading that con-
ferred stability to the ASD. However, in many cases
the authors did not perform these experiments; in-
stead, often a ”typical” API:Polymer ratio was cho-
sen (for example, 1:2 or 1:3). It is, then, logical
to conclude that for many observations the drug
loading that was used in the referred paper is not,
indeed, the maximum API loading allowed for that
API/polymer combination. Therefore, the fact that
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Figure 4: Prediction plots for the final API only
model. A – actual values of the dependent variable
versus the predicted values for this variable; B –
actual values of the dependent variable versus the
predicted values through cross validation for this
variable.

the model is predicting more ”higher than real” val-
ues rather than ”lower than real” may mean that,
at least in some cases, the value input as real may
simply not be the maximum possible API loading.

3.1.2 PLS model – API variables only

It is also very interesting (and possibly even more
useful) to be able to predict the maximum API load-
ing for a given API prior to any decisions about
the polymer. Therefore, a new model was devel-
oped: all the polymer variables were excluded, and
for each API, only the observation with the high-
est drug loading parameter was kept. After opti-
mization by removal of unimportant variables and
outliers (8 variables and 8 outliers), the r2 and q2

values obtained for this model were, respectively,
39% and 31%. The final model is taking as inputs
6 variables. The prediction plot for the final model
is presented in Figure 4.

It is visible in Figure 4 that, according to what
was expected due to the lower number of predictors
and observations, for the API only model the pre-
dictions are not as close to the trend line, compared
to the model with all the features. However, even
using cross validation (plot B), the maximum de-
viation between the real y value and the predicted
y value is approximately 15-20%; this means that,

Table 1: API loading predictions by the developed
models for the output ”API loading” for an exter-
nal validation dataset (observations harvested from
literature). Yellow: observations that, for the PLS,
have a difference between prediction and real value
of over 10%.

API Polymer
API

load (%)

Prediction
PLS
All

Features

Prediction
PLS

API Only

Rebamipide PVP K30 33 44 36
Taranabant HPMCAS L 10 27 23
Raloxifene PVP K30 20 38 30

Itraconazole HPMCP HP55 33 33 38
Sirolimus Eudragit E 33 33
Sirolimus HPMC 10 25

28

Andrographolide PVP K30 33 32 23
Piroxicam PVP K25 20 45 38
Tadalafil PVP/VA 64 50 38 31

Rivaroxaban Eudragit 100L 43 36 29
Ciprofloxacin HPMC E3 50 43 36

even if the model doesn’t predict exactly the max-
imum API loading for a new formulation, it cer-
tainly allows to greatly reduce the spectrum of API
loadings to experimentally test. The model is also
performing good extrapolations: the API with the
highest y value has a drug loading of 80%, and the
API with the second highest has a value of 50%; this
means that, when using cross-validation (graphic
B), the model predicts the value for the first ob-
servations based on a dataset that only goes as far
as 50%. However, the model is predicting an API
loading of over 60% for this API, which falls outside
the range in which the model was trained. It is also
worth noting that, similarly to the previous model,
there are more APIs falling below the trend line
rather than on top: the model is more commonly
predicting a superior drug loading comparing to its
real value rather than the contrary. As previously
explained, many observations come from literature
papers where the authors did not study the max-
imum API loading, but instead chose an average
API loading, which means some observations may
have as a ”real value” a drug loading that is, in fact,
not the maximum possible for that given API.

3.1.3 External validation

To further validate the results obtained, an ex-
ternal, completely independent dataset was har-
vested to be used as an external validation set
([33, 34, 35, 36, 37, 38, 39, 40, 41, 42]). The re-
sults obtained are presented on Table 1.

If a percentage of correct predictions is calculated
taking into account a cutoff of 10% difference, val-
ues of 45% and 50% are obtained for the model with
all features and the model with only the API fea-
tures, respectively. These values are merely repre-
sentative, since this validation set has only 11 obser-
vations (10 for the model with API variables only).
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Figure 5: PCA map: distribution of the observa-
tions used in model training (red) and of the com-
mercial ASDs (blue) across the first two principal
components from the PCA analysis performed.

Moreover, the 10% value is an arbitrary cutoff; if
this cutoff was altered to 15%, these accuracies go
up to 73% and 70%, respectively. This cutoff of 15%
would be perfectly acceptable: even if the model
does not yield the exact, final API loading, it allows
a great reduction of the interval of drug loadings to
experiment.

3.1.4 Additional tests

Commercial ASDs
Some tests were performed in a set of real com-

mercialised ASD formulations. If the model pro-
vided good predictions for APIs that were pre-
viously and successfully formulated as ASDs and
commercialized as such, then the confidence in the
model would increase greatly.

To begin with, the observations used to train the
PLS model and the commercial observations were
joined in a single dataset, and after removing the
variables and observations removed in the original
PLS model, a PCA with three principal components
was performed (with an R2 of 46% in the first com-
ponent, 73% in the second component and 81% in
the third component). The scores map obtained for
the two first principal components is represented
in Figure 5, where the observations used in the pro-
cess of model training are represented in red and the
commercial observations are represented in blue.

By analyzing Figure 5, one can see that the com-
mercial ASDs perfectly adjusted to the PCA map
built: there is not a single outlier in the commercial
ASDs set, and they are homogeneously distributed
amongst the training ASD observations. This gives
extra confidence in the results to reluctant clients:
nowadays, there is still a lot of reluctance in formu-

Table 2: API loading predictions by the developed
models for the output ”API loading” for set of com-
mercial ASDs. Yellow: observations that have a
difference between prediction and real value of over
10%. Purple: observations with unknown real API
loading values.

API Polymer

Prediction
PLS

API + Polymer
(%)

Prediction
PLS

API only8
(%)

Real
Formulated
API Load

(%)

Elbasvir HPMC 31 43 25
Evacetrapib HPMC 24 36 50
Torcetrapib HPMCAS L 33 36 unknown
Voxilaprevir PVP/VA 64 45 45 50
Velpatasvir PVP/VA 64 44 46 50
Telaprevir HPMCAS L 42 44 50
Ivacaftor HPMCAS H 31 37 80
Everolimus HPMC 25 41 unknown
Etravirine HPMC 31 41 unknown
Rosuvastatin HPMC 33 43 unknown
Ledipasvir PVP/VA 64 43 45 50

lating APIs as amorphous solid dispersions due to
the unpredictability of whether the formulation will
be a success; however, if the new API falls into the
confidence zone of this PCA map, it means that it
is similar both to APIs used in the training of the
model, and to APIs that were successfully formu-
lated as ASDs – therefore, the new API is likely to
be a good fit to be formulated as an ASD, and the
predictions made by the model if the API is run by
it are likely to be accurate.

Followingly, the set of commercial ASDs was run
through the models developed for the prediction of
the API loading . The results obtained, as well as
the real API load for these observations, are pre-
sented on Table 2. If a 10% threshold is taken into
account, accuracies of 71% and 57% are obtained
for the API+Polymer PLS and the API only PLS,
respectively. If the threshold is changed to 15% in-
stead of 10%, the accuracy of the PLS taking into
account API and polymer is maintained, while the
accuracy of the API only PLS also goes up to 71%.
These accuracies are merely illustrative, since they
are being calculated based on only 7 observations.
However, for most of these observations, both PLS
models do predict outputs very similar to the real
API loading formulated, which is very promising.

Internal projects – comparison with Flory-
Huggins theory

The Flory-Huggins (F-H) theory has been used
to predict the maximum API loading for a given
API/polymer combination. However, this method-
ology has some limitations, since it was originally
created for a mixture of two polymers [43]. The PLS
models developed would have some advantages over
this approach: to begin with, the models were de-
veloped specifically to predict the success of amor-
phous solid dispersions, based on observations com-
posed of APIs and polymers. Second of all, the F-H
theory is assessing only the miscibility of the two
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Figure 6: Graphical representation of the API load
prediction for 31 observations from 8 different in-
ternal reports. Vertical lines in x-axis: division be-
tween different projects. Observations shaded in
green: reports that had been used in the training
of the PLS models that, therefore, may be yielding
biased predictions for these models.

components, while the PLS models are taking into
account more variables and, therefore, are probably
evaluating more phenomenons than the F-H theory.
Finally, unlike the F-H theory, the PLS model tak-
ing into account only the API features allows the
prediction of the maximum API loading before any
assessment of suitable polymers, which would allow
the user to exclude beforehand APIs that would not
yield a good ASD, independently of the polymer.

To evaluate if the models developed are actu-
ally advantageous over the F-H approach, it was
necessary to check if the predictions of the re-
ferred models were better than (or at least as good
as) the F-H predictions. For that purpose, 31
API/Polymer combinations from 8 different inter-
nal projects (and, therefore, 8 different APIs) were
run through both PLS models to obtain an API
loading prediction, and these values were compared
with the predictions obtained by the F-H theory,
present in said reports. The results obtained are
shown in Figure 6.

The only observations where the predictions
yielded by the F-H theory were closer to the real
API loading were observation 3 and observation
7. For all the other observations, the PLS mod-
els were better at predicting the real API loading.
For the PLS model containing API and polymer
variables, only observations 3, 4, 20, 23, 24 and 25
have a ∆RealAPILoading/Prediction larger than
10% (which translates into an accuracy of 81%).
For the four projects that weren’t part of the train-
ing set, for the first one (observations 1 and 2)
both predictions were extremely close to the real
API loading (less than 5% difference), and for the
last one (observations 26-31) two of the predic-
tions (observations 29 and 30) were extremely close
to the real API loading (less than 5% difference)

and two of the predictions (28 and 31) were ex-
actly equal to the real API loading. As for the
PLS containing uniquely API features, only obser-
vations 3-4 (project 2) and 20-25 (project 7) have
a ∆RealAPILoading/Prediction larger than 10%
(meaning 2 APIs amongst 8 – accuracy of 75%). For
the four projects that weren’t part of the training
set, for project 5 (observation 15) the value pre-
dicted is extremely close to the real API value (2%
difference), being even closer than the prediction
made by the PLS model taking into account all fea-
tures; for the last project (observations 26-31), the
prediction is also extremely close to the real value
(1% difference). These results provide a very high
level of confidence to the model: not only are the
predictions made by the PLS models much more
accurate than the previously used computational
tool, but also they are extremely accurate for the
observations tested. Moreover, since these obser-
vations are from internal reports, the workflow to
obtain them is known, and therefore it is known
that the API loading formulated was indeed thor-
oughly studied and extended to the maximum, and
therefore, this validation is internally more valued
than a validation obtained from using external ob-
servations.

3.2. Prediction of spring and parachute ef-
fect

3.2.1 Random forest model

The random forest classifier was explored in the pre-
diction of the spring and parachute effect, through
the assignment of the observations to a label ”0”
(no spring and parachute effect) or ”1” (good spring
and parachute effect). The overall accuracy for the
model indicated by MATLAB was 78.3%. The con-
fusion matrix referent to this model is presented in
Figure 7.

For class ”1”, the performance seems to be very
good – the model has a TPR of 84.2%. For the class
”0”, the TPR is lower, but still promising – 68.6%.
This numbers may indicate that the model is more
frequently predicting a positive output rather than
a negative output – in practical terms, this means
that it is more probable for the model to predict
a bad ASD to be good, rather than to predict a
good ASD to be bad. For the present purpose, it
is actually an advantage for the classifier to more
frequently predict false positives rather than false
negatives – the prediction of false negatives may
lead to the scientist not testing experimentally an
API/polymer combination that may actually be
successful.

The random forest model allows one to evalu-
ate which variables are contributing more or less
to the separation into classes through parallel coor-
dinates plots. This plots show, for each variable (x
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Figure 7: Confusion matrix referent to the random
forest classifier model developed for the prediction
of the spring and parachute effect. The diagonal (in
blue) represents the TPR for each class, while the
remaining cells (in red) represent the FNR for each
class.

axis), the standard deviation (y axis) represented
in different colours for different output classes: this
way, if for a given variable the colours are distinctly
separated, or at least somewhat differentiated, that
variable is important for the prediction capacity of
the model. A non-linear algorithm such as the ran-
dom forest classifier requires a large enough dataset;
therefore, despite the use of 20-fold cross validation,
overfitting may be occurring. A possible resolution
is to remove variables that are only adding noise to
the model. After this optimization step, the accu-
racy was maintained at 78.3% and the respective
confusion matrix obtained was exactly similar to
the previous one. This, therefore, means that the
removed variables were merely adding noise and,
while removing them did not improve the perfor-
mance of the model on the training data, it may
have reduced the overfitting (this model has less
eight variables than before). Therefore, the exter-
nal validation performed furhterly was performed
on both models (before and after optimization).

3.2.2 Artificial neural network model

The predicted output was the same as in the RF
model for spring and parachute prediction. The
overall accuracy for the model indicated by MAT-
LAB was 88.0%. The confusion matrices and the
receiver operating characteristic (ROC) curves ref-
erent to this model are presented in Figures 8 and 9,
respectively. A ROC curve is a graphical represen-
tation of the TPR (y axis) versus FPR (x axis) re-
lationship at different classification thresholds. The

Figure 8: Confusion matrices referent to the several
subsets of data used in the training of the ANN
model for the prediction of the spring and parachute
effect. The diagonal (in green) represents the TPR
for each class, while the remaining cells (in red)
represent the FNR for each class.

closer the graphic is to the top and left, the better
the performance (and, in opposition, the closer to
the diagonal the less accurate).

The most relevant value belongs to the test set
(the model’s performance on a completely unseen
and independent dataset) – 72.2%. This value is
very promising: for 10 observations predicted to be
good, 7 will actually be. In practical terms, this can
be a very helpful model, since its main objective
would be to alleviate the experimental testing and
all the costs that come with it in the preliminary
ASD screening steps, and not to predict an actual
final result.

In relation to the ROC curves, in the test set, the
classifier appears to perform better in the left size
of the graphic (it is better at identifying likely pos-
itives than at identifying likely negatives), since at
the end of the plot, the curve crosses the diagonal.
The optimal threshold for FPR seems to be around
0.25 – for a balanced dataset, this value should be
around 0.5. For the present purpose it is actually
an advantage for the classifier to more frequently
predict false positives rather than false negatives,
as it has been mentioned. However, if the FPR is
too high, the model becomes superfluous.

3.2.3 External validation

To further validate the results obtained, an ex-
ternal, completely independent dataset was har-
vested to be used as an external validation set
([33, 34, 35, 36, 37, 38, 39, 40, 41, 42]). The re-
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Figure 9: ROC curves referent to the several subsets
of data used in the training of the ANN model for
the prediction of the spring and parachute effect.

Table 3: Spring and parachute effect predictions by
the developed models for this output for an exter-
nal validation dataset (observations harvested from
literature). Red: observations that are classified in
the wrong class.

API Polymer
Spring and Parachute

Effect (real)
Prediction

ANN
Prediction

RF
Prediction

RF Optimized

Rebamipide PVP K30 1 1 1 1
Raloxifene PVP K30 1 0 1 1
Sirolimus Eudragit E 1 1 0 0
Sirolimus HPMC 0 0 0 0
Tadalafil PVP/VA 64 1 1 1 1

Rivaroxaban Eudragit 100 L 1 0 1 1
Ciprofloxacin HPMC E3 0 1 1 1

Sorafenib PVP/VA 64 1 0 0 0
Sorafenib PVP K30 0 0 0 0

sults obtained are presented on Table 3.

Both random forest classifiers have predicted ex-
actly equal outputs for this dataset. Since they have
the same accuracy and exactly the same confusion
matrix, this isn’t unexpected; the removed variables
were likely to merely provide noise, but since ran-
dom forest models aren’t prone to overfitting due to
tree bagging, removing the features likely did not
change the way the model predicted the output at
all. However, it is still advantageous to have an al-
gorithm run on as little features as possible in order
to diminish the time and resources spent on obtain-
ing the necessary variables for each observation to
be tested.

Comparing the ANN and the RF models, for this
external validation set one can obtain accuracies of
56% and 67%, respectively. An accuracy of 56%
is not significant for a model with binary outputs
– it is very close to 50%, which would mean that
the predictions are merely arbitrary. However, an
accuracy of 67% is high enough to be considered
non-arbitrary. Taking into account the fact that,

naturally, this accuracy is representative due to
the limited size of the external validation set used,
this model seems quite promising for a preliminary
screening application.The random forest model was
chosen as the preferential one.

4. Conclusions

These models provide a new promising method to
greatly accelerate the initial process of ASD screen-
ing by predicting in silico two very important as-
pects of an ASD: if it will behave according to the
spring and parachute effect in order to maintain
the supersaturated condition long enough to be ab-
sorbed, and what is the maximum possible ratio of
API to polymer (API loading). The experimental
testing can be highly reduced, since ASDs unlikely
to succeed can be excluded a priori, and formula-
tions that go on to the next step of the screening
can be formulated with an API loading close to the
real maximum loading from the beginning, requir-
ing less adjustments and rectifications. The mod-
els presented allowed for the development of a new
workflow to be used by formulation scientists in the
in silico step of the ASD screening.

As further steps, adding more observations to the
datasets and balance them to prevent data skew
would be advisable. It would also be possible to de-
velop new models based on these ones that explored
the addition of other excipients, such as surfactants,
and mixtures of polymers instead of simply ASDs
with a single polymer. Developing models taking
into account in vivo data would also be a possibil-
ity; while this would have the advantage of taking
into account factors such as permeability and ab-
sorption, in vivo data has a much higher variability
and, therefore, it could make the development of
the models a much harder task.

It would also be possible to include this ap-
proach to ASD screening in an automatized, high
throughput screening strategy. If this were to be
implemented, the polymers predicted to be good
could automatically move on to the next step of
the screening and the resulting prototypes could be
formulated in a high-throughput manner with API
loadings similar to the one obtained by the PLS
model for those API/polymer combinations (this
model presented an accuracy of approximately 70-
80% for a confidence interval of 10%, so the API
loadings formulated could be in the 10% range, and
a broader range would be explored if the result was
unsatisfying). This approach would allow to use the
models without need of human experimentation,
highly accelerating the process of ASD screening,
while maintaining or ameliorating the confidence in
the in-silico results obtained.
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