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Abstract 
This dissertation aims at applying an operational research methodology, with the objective of evaluating policies 
for allocating vessels to berths and pipelines at the Sines liquid bulk terminal. This problem is part of what is 
known in the literature as the Berth Allocation Problem (BAP). The aim is to optimise the operations and costs 
of the terminal, particularly by minimising Port Operation Time (POT) and Demurrage. 
Analysing the terminal data in January 2017, it was noted the inadequate allocation of vessels to berths and 
pipelines. These are mainly due to the disregard of the variability of the POT and the Demurrages, influencing 
the evaluation of the terminal's performance. The literature review then addressed the BAP for bulk and 
container terminals, concluding the lack of exploration of this problem in bulk terminals, of simulation for its 
resolution and consideration and mitigation of the stochastic nature of the terminal parameters. 
Hence, a simulation model was developed, implemented in SIMUL8 software. Once this model was validated, 
fifteen alternative scenarios were presented, divided according to five characteristics: berth allocation, pipelines 
allocation, time horizon, uncertainty, and queue policy. 
The analysis of results was divided by time horizon. Both in terminating simulations and in long-term simulation, 
the scenarios that make allocation to pipelines flexible were selected as the best. Also, the optimization-
simulation scenarios allow a realistic assessment of the terminal's operational conditions, allowing for more 
reliable results. 
Key words: Liquid Bulk Terminal; Berth Allocation Problem; Port Operational Time; Demurrages; Variability, 
Stochastic Simulation

 

1. Introduction 
The global energy sector directly influences the 
competitiveness of modern economies. Excluding 
the electricity share, energy production has 
dramatically increased in the last two decades, as 
result of developing countries’ industrial and 
economic growth. 
Related to oil weight in the economy, it is important 
to analyse the European case. It is verified an 
opposite trend when compared to the rest of the 
world: there are several primary energy sources, but 
nuclear energy production stands out in the main 
one (Dias et al., 2016). In total, however, there is 
quite low primary energy production for needs’ 
satisfaction, indicating an European case peculiarity: 
there is a gap between production and consumption, 
leading to high dependence on importations, for 
example, on crude oil. Europe had 88.4% of 
dependence, in 2016 (Dias et al., 2016). This 
indicator shows the necessity of European seaports, 
where the oil arrives from the exporting countries, to 
be well organized and operationally efficient to 
receive it. 
The Portuguese case follows the European trend. 
From 2012 to 2017 the energy dependency level 
remained stable. It was verified a minimum value of 
72.4% in 2014 and a maximum of 79.7% in 2017 
(DGEG, 2020). 
Nevertheless, such a high value on this parameter 
indicates that importations are a crucial factor for the 
country’s energy sector, reaching the same end 
previously mentioned for the European case: 
seaports, particularly Liquid Bulk Terminals, must be 
operationally efficient. 

 
 
 
Therefore, logistics efficiency is a central aspect on 
daily port’s operation since it leads to economization 
of resources, money, and time. For that, a proper 
policy for managing the vessels and an efficient 
allocation of them to terminals’ berths and pipelines 
should be oriented to an overall process 
optimization, to facilitate subsequent activities (such 
as oil and derivatives distribution). The problem of 
managing vessels’ allocations is called, in the 
literature, as Berth Allocation Problem (BAP). 
In Portugal, Galp Energia group has a fundamental 
role in this area, holding the two largest Liquid Bulk 
Terminals in the country: Matosinhos and Sines. The 
latter, the largest one in Portugal, will have a major 
importance on energy sector’s development, 
requiring a deeper study on its operations and 
policies. 
This is the motivation for this work. The objective is 
to applicate an operational research methodology to 
Sines’ Liquid Bulk Terminal operations, to provide 
recommendations of improvements on its 
operational policies and financial issues. To achieve 
it, the minimization of terminal’s performance 
indicators such as Port Operational Time and 
Demurrages, which will be defined latter on, are 
crucial. As intermediate objectives, the search in the 
literature of a proper methodology to address the 
problem, searching for a gap in the state of art and 
the evaluation of variability of system parameters, 
are also important aspects of this work. 
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2. Case Study 

2.1 Liquid Bulk Terminals 
 
In a Liquid Bulk Terminal, there are specific aspects 
and operations that characterize it. 
When a vessel arrives at a terminal it is allocated to 
a queue to dock, where it waits its allocation to 
berths. This will depend on characteristics such as 
vessel’s length, quantity transported, among others. 
Within each berth, the vessel is allocated to a 
pipeline, considering the product type or quantity. 
The allocation of vessels to berths and pipelines is a 
major problem in this area of study. In fact, this is 
addressed in the literature as Berth Allocation 
Problem (BAP). It is widely studied, and Bierwirth & 
Meisel (2015) divided its characteristics according to 
three attributes: Spatial, Temporal and 
Performance measures. 
These Performance Measures are very important for 
the management of terminals activities, since they 
could indicate whether and where exists an 
operational problem. Therefore, it is relevant the 
definition of two of them: Port Operational Time 
(POT) and Demurrages. 
POT is defined as the vessel’s total time at the 
terminal since its arrival to its departure. Within this 
time interval, POT is divided in waiting Time for 
Docking (TD), Setup Time (ST) and Operational 
Time (OT), as mathematically translates Equation 
(1): 
 

 
 
 

TD represents how long a vessel waits to dock at a 
terminal, i.e, the time it remains at a queue to dock 
in a berth. On the other hand, ST refers to the time 
interval since the vessel docks and starts its 
operation, of reception or shipment, at the berth, 
considering all inherent vessel and pipeline 
preparations. Finally, OT represents how long a 
vessel is transferring product through the pipeline 
system. 
An illustrative example of how POT and its 
constituents relate with the vessel’s path at the 
Liquid Bulk Terminal is presented in Figure 1. 

 
1 Only for quantities less than 7000 tonnes 

Closely related with POT is the concept of 
Demurrage. For each arriving vessel, a contract is 
stablished between port’s management and the 
vessel’s responsible, comprising all rules, 
operations, specific allocations, and the Contracted 
Laytime (CL). The latter works as the maximum time 
a vessel can stay at the terminal, and, if exceed, will 
have a financial penalty for the terminal. This 
overtime is called Demurrage and is a relevant 
performance indicator since it will measure 
operational and financial losses. It is calculated as 
follows in Equation (2): 

 
With the terminal operations and the performance 
measures characterization, it is now described the 
operations and performance of the Liquid Bulk 
Terminal of Sines. 
 

2.2 Liquid Bulk Terminal of Sines 

2.2.1 Operations 
The liquid bulk terminal has 6 berths (denoted from 
2 to 7) where vessels can dock and where they carry 
out their operations through the pipeline system, 
which, in turn, is connecting the terminal with the 
refinery. The berth with the largest capacity is berth 
2 which can receive vessels with more than 70000 
tonnes of product transported. On the opposite side, 
berths 6 and 7 are exclusive for small product 
transactions.  
The capacity of the terminal is also related with its 
capacity to receive vessels. At the Liquid Bulk 
Terminal, in the year of 2017, a mean of 51 vessels 
arrived every month, with January being the month 
with more operations, with 57 vessels. 
Comprehensively, there is some variability in the 
arrival of vessels. 
Another aspect very important to analyse are the 
products handled at the terminal and its allocations 
to berths and pipelines. Sines’ liquid bulk terminal 
handles 6 types of products: Crude, LPG, Fuel, 
Gasoline, Gasoil and Naphtha. The policy of 
allocation of products to berths is presented in Table 
1. 

Table 1: Allocation policy of products to berths 

𝑃𝑂𝑇 = 𝑇𝐷 + 𝑆𝑇 + 𝑂𝑇 (1)  

{
𝐷𝑒𝑚𝑢𝑟𝑟𝑎𝑔𝑒 =  𝑃𝑂𝑇 –  𝐶𝐿, 𝑖𝑓 𝑃𝑂𝑇 > 𝐶𝐿
𝐷𝑒𝑚𝑢𝑟𝑟𝑎𝑔𝑒 =  0,                         𝑖𝑓 𝑃𝑂𝑇 < 𝐶𝐿

 
 

 

Products 
Berths 

2 3 4 5 61 71 

Crude x      

LPG  x x x x x 

Fuel  x x x   

Gasoline  x x x x x 

Gasoil  x x x   

Naphtha  x x x   
Figure 1: Relation between Port Operational Time 

and vessel's path 
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For the operation of the Liquid Bulk Terminal to be 
efficient, besides the capacity of the berths to 
operate the vessels, it is also fundamental that the 
pipeline system is appropriate for terminal’s needs. 
Sines’ Liquid Bulk Terminal has 6 pipelines, each 
one with distinct diameter. All 6 have loading arms 
that allow them to reach the berths. The loading 
arms have one operational restriction: if one is 
being used at some time, the remaining become 
unavailable until the end of the operation. 
The distribution of the loading arms of pipeline B is 
explicit in Figure 2, as an example.  

Pipeline B has one loading arm in each of berths 3, 
4, 5, 6 and 7. 
As for berths, there is also an allocation policy of 
products to pipelines, shown in Table 2. 
 

Table 2: Policy of products’ allocation to pipelines, by 
reception and shipment 

2 Pipeline 

 A B C D E F 

R C F Goil - G+N LPG 

S C - F+Goil G N LPG 

 
In general, an inefficient allocation of products to 
pipelines will impact the overall allocation of the 
terminal and the time each vessel stays in the 
system, leading to a performance decrease.  
Based on the operations performed at the Liquid 
Bulk Terminal of Sines and on the performance 
indicators defined previously, the terminal 
performance is now assessed. 
 

2.2.2 Performance 
´ 
Port Operational Time 
Based on data from January 2017, POT and its 
constituents were analysed. 
The product with the highest POT is Gasoline with 
764.6 hours, with the OT representing 48.99%, while 
TD weights 27.06%. This behaviour reveals two 
terminal’s inefficient policies: poor allocation of 

 
2 R-Reception; S- Shipment; C-Crude; F-Fuel; G-Gasoline, 
Goil-Gasoil; N-Naphtha 

vessels to berth and pipelines. On the other hand, 
Naphtha is not a product with a high total POT, 
although, since only 4 vessels operated in the 
terminal on January, the mean value of POT is 72.79 
hours. It is clear, that the allocation of this product to 
pipeline E is operationally inefficient. 
Therefore, the poor allocation of vessels to berth and 
pipelines constrain the operational efficiency of the 
terminal having a huge impact on POT. 
However, these policies, naturally, intend to 
maximize the efficiency of the terminal but fail by not 
considering the variability of system’s parameters, 
evidenced by the variability of POT. Hence, it is 
important to study this factor in a deeper way. 
 

In Figure 3, Crude exhibit the wider amplitude of 
POT values, with Total Amplitude equal to 86.04 
hours. According to quartile 75, 75% of the data are 
below 75.10 hours while the median value stand at 
52.90 hours.  
Similarly, Naphtha presents a high amplitude of 
values, with a median value of 82.58 hours. Finally, 
even though Fuel has the lowest median value, it still 
has a 50% chance of being higher than 27.40 hours. 
POT’s components TD and OT have a high 
variability, somehow explaining the Port Operational 
Time’s variability. 
 
Demurrage 
 
Finally, Demurrage is analysed. Despite being an 
operational indicator, allowing the quantification of 
how much time each vessel exceeds the contracted 
time at the terminal, it has a financial impact. First, 
its variability is analysed in Figure 4. 

Figure 2: Distribution of loading arms of pipeline B 
to berths 

Figure 3: Port Operational Time boxplot by product 
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Naphtha, Crude and Gasoline were previously 
referred to as the products with the highest and more 
variable Port Operational Time. The same pattern is 
illustrated in Figure 4, leading to   conclude that 
product with high POT tend to have high 
Demurrages: as POT increases and varies, 
Demurrages increase and varies, and the inherent 
costs will get higher and more variable. 
For this indicator, it is desirable that it is equal to 
zero. However, sometimes it is not possible, so it 
should be as lower as possible, for the costs be 
equally lower. In fact, 54.39 % of vessels had 
demurrage equal to zero, therefore, does not 
incurring in financial cost for the company. However, 
from the 45.61% that incurred in financial costs, 
26.32 % exceeded the 12 hours of Demurrage, 
incurring in high finance penalties. 
In January 2017, there were 576.7 hours of 
Demurrages in total, incurring in more than 500000€ 
in costs. 
As a conclusion, POT was quite high in January 
2017, with Crude, Gasoline and Naphtha to have the 
highest. Analysing the variability of this indicator, the 
same products with higher POT tend to have higher 
associated variability. The origin of this variability is 
somehow explained by the variability on TD and OT. 
Finally, Demurrages were also quite high, and 
products with the highest POT tend to have the 
highest Demurrages. It is concluded that there is (1) 
bad allocation of vessels to berths and (2) bad 
allocation of products to pipelines. 

3. Literature review 
According to case study analyses, on one hand, it is 
relevant to know how the papers presented in the 
literature address the Berth Allocation Problem 
(BAP), to have a background on how to deal with 
case study problem (poor allocation of vessels to 
berths and pipelines). On the other hand, it is also 
important to understand how to explore this problem 
with uncertainty associated. That said, it is expected 
to acquire knowledge to implement a methodology 
that improve the performance and minimize the 
terminal costs. 

Despite this literature review focuses on the liquid 
bulk terminals, the exponential growth of the 
importance of container terminals leads to the 
reference of these terminals as well (de Oliveira et 
al., 2012) 
The literature review timespan is from 2001 to 2019.  
 

3.1 Containers terminal 
To solve the BAP for containers terminals it is used 
three operational research methods: (1) 
Mathematical Optimization, (2) Heuristics and Meta-
Heuristics and (3) Simulation and Simulation-
Optimization. 
In the first, Mixed Integer Linear Programming 
(MILP) is used by Raa et al. (2011), Agra & Oliveira 
(2018) and Correcher et al. (2019), with several 
objectives such as minimizing handling time of 
vessels, vessels delay in berths and fuel 
consumption. 
Related with Heuristics and Meta-Heuristics, several 
methodologies were used. Among them, Greedy 
Randomized Adaptative Search Procedure 
(GRASP), Hybrid combination of Tabu Search and 
Path Relinking (PR) and Adaptative Large 
Neighbourhood Search (ALNS) was used by Lee et 
al. (2010), Lalla-Ruiz et al. (2012) and Mauri et al. 
(2016), respectively. 
Finally, related with Simulation and Simulation-
Optimization, Budipriyanto et al. (2017) explored the 
BAP for a container terminal. However, it is noted 
that most of the works in the literature are based on 
assuming a deterministic situation for arrival time of 
vessels and handling time. This work intends to use 
a Discrete Event Simulation Model to deal with 
uncertainty, formulating two alternatives: non-
collaborative response and collaborative response. 
In the second, as in Venturini et al. (2017) and 
Dulebenets et al. (2018),  it is admitted that there is 
collaboration between berths to deal with the 
uncertainty of the parameters. It was concluded that 
the collaborative strategy allows waiting time 
reduction of vessels, as well as total vessel 
turnaround time.  
Zeng & Yang, (2009) proposed a Simulation-
Optimisation model for loading operations in 
container terminals. It generates sequences through 
a Genetic Algorithm and uses simulation to evaluate 
the objective function. It uses an optimization model 
to obtain an optimal solution for the schedule of each 
container on each vessel.  
 

3.2 Liquid bulk terminal 
Related with Liquid Bulk Terminals, Robenek et al., 
(2014) solve the BAP as Umang  et al. (2013) did in 
the previous year, extending the problem by 
considering yard locations to specific cargo types 
and by considering that each vessel only carry one 
type of cargo. The problem was formulated as a 
Mixed Integer Programming, with the objective of 
minimizing the total service of each vessel. 

Figure 4: Demurrage boxplot by product 
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Although, this model could not solve the problem 
even for small size instances. 
On heuristics and meta-heuristics, Umang  et al. 
(2013) studied the dynamic and hybrid BAP for a 
bulk terminal to minimize total service time of 
vessels. There were proposed three different 
approaches to solve the problem, which latter on 
were compared based on computational results. The 
first one was a Mixed Integer Programming, aiming 
to determine the vessels’ berthing assignment along 
the quay terminal. The second was a Generalized 
Set Partitioning Problem (GSPP), which was also 
used by Buhrkal et al. (2011) to solve a discrete and 
dynamic BAP for a container terminal. The last 
approach was a Meta-Heuristics based on Squeaky 
Wheel Optimization where, in each iteration, a 
solution is constructed and analysed, with this 
solution being used to a new priority order to obtain 
the next solution. The results of these 3 
methodologies were compared and was concluded 
that the GSPP and the Meta-Heuristic, in contrast to 
the MIP, could solve a large size problem, reaching 
near-optimal solutions. 
Finally, there are no papers applying Simulation and 
Simulation-Optimization to Liquid Bulk Terminals. 
 

3.3 State of art characterization 
Papers related with the BAP show an the upwards, 
in the recent years. 
It is also noticed the discrepancy that exists between 
the studies carried out on container terminals when 
compared to bulk terminals, with 51 against 4. 
Therefore, based on that, it is possible to notice a 
clear gap in the literature that has every interest in 
being filled.  
There is also a difference between the methods 
used to solve the BAP. Heuristics, with 43 works, 
present a good tool to solve problems with several 
instances and relatively low computational time. 
Then, optimization that aims to solve the problem by 
finding optimal solutions, with 9 papers. Lastly, it is 
shown Simulation and Simulation-Optimizations with 
3  works performed, among them Budipriyanto et al., 
(2017), which applied Discrete Event Simulation. 
Finally, it is notorious the lack of work dealing with 
the uncertainty of the input parameters in the 
system. There are, among the literature review 
done, two papers that consider this factor: Shang et 
al., (2016) and Xiang et al., (2017). 
Therefore, it is possible to identify the following gaps 
in the literature: (1) few studies on Liquid Bulk 
Terminals, (2) little exploration of Simulation and 
Simulation-Optimization and (3) nonexploitations of 
parameter variability. 
All these gaps identified in the literature, fits the 
problem presented in the case study: the lack of 
study in the allocations of vessels to berths and 
pipelines, coupled with failure to consider and 
subsequently mitigate the effects of variability in 
system parameters. 

It is possible to conclude that a simulation approach 
is suitable to explore the case study undertaken. Not 
only it is little treated in the literature but also, among 
other advantages, it is adequate to treat parameter 
variability. It is indeed evident that it will be a very 
useful method to evaluate alternatives to the 
allocation policies at the Sines Liquid Bulk Terminal, 
seeking to mitigate the effects of variability on 
system performance while allowing the evaluation of 
scenarios that minimize operational indicators. 

4. Simulation model 

4.1 Key Performance Indicators 
In Sines' liquid bulk terminal system there are 
several objectives proposed, whether operational or 
financial, to access its performance. In this case, the 
Key Performance Indicators Port Operational Time 
and Demurrages  were considered to assess the 
achievement of cost minimization and service level 
maximization. 
 

4.2 Conceptual model 
Sines' Liquid Bulk Terminal is characterized in 
activities and queues. Moreover, system entities are 
characterized as (1) Permanent, which, in terminal’s 
system Berths and Pipelines are identified and (2) 
Temporary where Vessels are identified. 
Based on the activities, queues, and entities, it is 
possible to build a conceptual model that represents 
the real system. This will be drawn through (1) Life 
Cycle Diagram and (2) Activity Cycle Diagram.  
In both diagrams, activities are represented as 
rectangles and queues as ellipses. 
 
 
Life cycle diagrams 
 

Berth 

 

Pipeline 

 

Figure 5: Life cycle diagram for entity "Berth" 

Figure 6: Life cycle diagram for entity "Pipeline" 
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Vessel 

Activity cycle diagram 

This conceptual model was implemented in SIMUL8 
software and validate against real terminal’s data. 
The model proved capable of replacing the real 
system to test alternative scenarios. 

5. Results analysis 

5.1 Scenarios description 
Now that the model is validated and allows to replace 
the terminal for testing new configurations, the 
following scenarios intend to test alterations in 
products allocation to pipelines, aiming to minimize 
the Port Operational Time and Demurrages. 
To propose a solution to the problem identified at the 
Sines’ Liquid Bulk Terminal, 15 scenarios are 
developed, hosting several operational research 
methodologies: (1) Optimization 1, Optimization 2, 
and Optimization 3 denominated O1, O2 and O3; 
(2) Simulation 1, Simulation 2, and Simulation 3 
denominated S1, S2 and S3,; (2) Optimization 
Simulation 1, Optimization-Simulation 2, 
Optimization-Simulation 3, denominated OS1, 
OS2 and OS3; (3) Steady State 1, Steady State 2, 
Steady State 3 denominated SS1, SS2 and SS3; 
(4) Steady State – Queuing policy 1, Steady State 
– Queuing policy 2, Steady State – Queuing 
policy 1, denominated SS-QP1, SS-QP2 and SS-
QP3. 

Each scenario is characterized based on five 
aspects: (1) Time horizon, (2) Pipeline allocation, (3) 
Berth allocation, (4) Queue policy and (5) 
Uncertainty. Figure 9 presents all characteristics for 
all scenarios. 

5.2 Scenarios results 
The results for all scenarios are divided by time 
horizon. First, terminating simulation, then steady 
state ones, ending in queueing policy scenarios. 
 

5.2.1 Terminating simulations 
 
General results 
First, a sample of the mean POT and Demurrages of 
the 524 replications was introduced in the 
histograms of Figure 10 and Figure 11. 
As Figure 10 for POT demonstrates, both Simulation 
and Optimization-Simulation for scenarios 1, 2 and 3 
have its mode for the same classes. There is only 
one exception, scenario S3. This one has its mode 
in class on the right of the remaining, proving to 
output higher values for POT. 
Figure 11 divided scenarios S3 and OS3 into two 
distinct histograms due to the pronounced difference 
in the value range of Simulation and Optimization-
Simulation, allowing patterns to be distinguished 
more clearly. 

 
 
 

Figure 7: Life cycle diagram for entity "Vessel" 

Figure 8: Activity cycle diagram of terminal system 

Figure 9: Scenarios’ description according to its 
characteristics 

Figure 10: Port Operational Time data distribution 
histograms for terminating scenarios 
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Considering the 4 charts, the scenario with the 
leftmost peak is OS3. This is followed by S1 and 
OS1, moving to S2 and OS2. Finally, S3, as well as 
for POT, proves to be the scenario with the worst 
results, with the mode on the right of the remaining 
and a range of values higher than the others. 
Comparing Simulation and Optimization-Simulation 
in its generality, it can be observed that in scenarios 
1 and 3, the frequency of OS values is higher for 
lower value classes when compared to S. This 
pattern changes to the higher values, for both POT 
and Demurrages. 
Finally, all charts compare the 524 replicas POT with 
the optimization approach of Rato (2018) for each 
scenario. It is visible that Optimization provides 
better results on minimizing POT on each scenario, 
but the main conclusion is that these results have 
low probability to happen. This optimal value is very 
difficult to achieve because it does not consider 
delays or inefficiencies in operations. 
Related with the Demurrages, as it was mentioned, 
its values must be equal to zero for the cost being 
zero. In this field, the best scenarios are the 
optimization ones. From the Simulation and 
Optimization-Simulation scenarios OS3 is the best 
with 27 vessels with vessels with demurrage zero 
among the 57 arriving vessels. 
Although, sometimes they are not, but they should 
be as lower as possible. Figure 12 presents the 
percentages for best and worst scenario, OS3 and 
S3, respectively, of Demurrages equal to zero and 
higher than 12 hours. 
On scenario OS3, among the 57 vessels, 49.12% 
had demurrage different from zero. From these 
vessels, 62.07% had demurrage values higher than 
12 hours, increasing costs for the company. On the 
other hand, on scenario S3 87.72% of the vessels 
had Demurrages different from zero. From these 
vessels, 86.00% had demurrages higher than 12 
hours.  
 
 

Finally, based on the vessels that had not 
demurrage equal to zero, the variation of the costs 
compared to the real terminal ones are explicit in 
Figure 13, for all terminating scenarios. 

 
Scenarios S2, OS2 and S3 increase the costs for the 
company. For S2 and OS2, this is due to the very 
high demurrage of Gasoil, a product that is very 
expensive per hour of demurrage. The S3 scenario 
shows poor results for almost all products, so it was 
expected to be the costliest scenario for the terminal. 
 
Variability 
The considerations of uncertainty in setup and 
operation times through Simulation and 
Optimisation-Simulation of terminating simulation 
represents a very useful tool for the evaluation of 
changes to the Liquid Bulk Terminal. 
Boxplots on Figure 14 and Figure 15 present the 
data distribution for POT and Demurrage, 
respectively.  
Optimization-Simulation scenarios demonstrate 
lower mean values when compared to Simulation 
approach, for almost all the six products transacted 
at the terminal. On the other hand, median values 
are approximately homogeneous for Simulation and 
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Figure 11: Demurrage time data distribution for 
terminating scenarios Figure 12: Comparison of vessels with Demurrage time 

equal to zero and higher than 12 hours, for scenarios S3 
and OS3 

Figure 13: Comparison of Demurrage costs of 
terminating scenarios and real case study 
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Optimization-Simulation on scenarios 1 and 2 for 
most products. In scenario 3 the results are different, 
with Simulation and Optimization-Simulation 
revealing higher medians compared to the other 
scenarios. Finally, comparing all scenarios it is 
possible to state that inter quartile amplitude is 
always lower for Optimization-Simulation approach 
than for Simulation. Among the three OS scenarios, 
OS3 presents the lowest inter quartile amplitude 
overall. Fuel, LPG, and Naphtha have better results 
for scenario OS3 in all statistics, beneficiating from 
the no pipeline allocation. Gasoline, due to the 
alteration from pipeline C to pipeline E, have better 
results for scenarios S2 and OS2. It also has great 
results for scenario OS3. Gasoil have its best 
results for scenario OS1, since it allocated to 
pipeline C instead of pipeline D in scenarios S2 and 
OS2. It also presents good results for scenario OS3. 
 

5.2.2 Steady State simulations 
In this section the results for the steady state 
scenarios SS1, SS2 and SS3 are presented. From 
the experience of Chapter 2 and the previous section 
of terminating simulations, POT and Demurrages 
have the same conclusions. Based on that, for this 
section it will only be analysed the Port Operational 
Time results. 
Firstly, to know the POT value that results from the 
steady state simulation of each scenario, it is 
necessary to introduce the averages and their trend, 

to determine the limit of the average series, 
corresponding to the POT value of each scenario. 
Therefore, Figure 16 presents the trend of the 
average POT of all 20 replicas for all vessels that 
berthed, for the 3 scenarios. 
Scenario SS3 converges to the lower POT values, 
with 35,064 hours. 

However, this is an average value for all vessels and 
does not accommodate the inherent and important 
variability. Hence, the following boxplots in Figure 17 
demonstrates the variability associated with 
scenarios' POT. 

Scenario SS3 exhibits the lowest average and 
median of all scenarios, while scenario SS2 presents 
the lowest interquartile range, followed by SS3 and 
SS1. However, although SS3 has a slightly higher 
variability than SS2, it is noticeable that this is for 
lower values. 
 

5.2.3 Queueing policy simulations 
Based on the scenario SS3, the influence of queue 

policies on this indicator will now be tested. For this 

purpose, as mentioned, 3 scenarios derived from 

SS3 are developed: SS-QP1, SS-QP2 and SS-QP3. 

The results for these new scenarios are presented in 
Figure 18, comparing them with the SS3 scenario. 

Figure 16: Mean Port Operational Time of steady state 
scenarios over time 

Figure 17: Port Operational Time boxplot of steady state 
scenarios 

Figure 18: Mean Port Operational Time of Queueing 
policy scenarios over time 

Figure 14: Port Operational Time boxplots of terminating 
scenarios, divided by product 

Figure 15: Demurrage boxplots of terminating scenarios, 
divided by product 
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Based on the above values, there are no significant 
differences between the POT averages of all 
scenarios. However, statistical analysis will be 
carried out later to prove or not this statement. This 
brings us to the analysis of the variability for the three 
scenarios. 
Based on Figure 19, it can be observed that scenario 
SS-QP2, where the highest quantities are prioritized, 
presents the smallest average and median POT, but 
has the second highest interquartile variability. It 
also presents the highest number of outliers.  
Among the four scenarios represented, SS-QP3, 

where Gasoline and Gasoil are prioritized in the 
queue for docking, presents a mean POT of 34.93 
hours, with the lowest interquartile amplitude of 
10.641 hours. 
The queueing policy scenarios SS-QP1, SS-QP2 
and SS-QP3 show lower POT mean value than the 
original SS3, although only SS-QP3 shows lower 
interquartile amplitude. 

 

5.3 Selection of the best scenarios 
 
Terminating simulations 
 
For the selection of the best terminating scenario, 
that is, the scenario that minimizes the Port 
Operational Time and Demurrage, it is now made a 
comparison between all scenarios and real terminal 
outputs, for both KPI.  
Based on a methodology of Carson & Nicol, (2014) 
the best scenario is OS3, where Optimization-
Simulation is used with the flexibility of product 
allocation to pipelines. 
 
Steady state simulations 
The best steady state scenario is now calculated.  
Based on the Bonferroni methodology present in 
Carson & Nicol, (2014), the confidence intervals are 
constructed. 
 

𝐶𝐼95%(𝑆𝑆1 − 𝑆𝑆2) =  [0.7817;  5.6814] 

𝐶𝐼95%(𝑆𝑆1 − 𝑆𝑆3) =  [5.3095;  9.3517] 

𝐶𝐼95%(𝑆𝑆2 − 𝑆𝑆3) =  [3.1638;  5.0344] 

 
The most important conclusion is the existence of 
statistical evidence that scenario SS3 has average 
POT values lower than the others. Therefore, this 
reveals itself as the best tested scenario for the 
Liquid Bulk Terminal in the long term. As in the 
terminating simulation scenarios, the scenario where 
there is no prioritization of pipelines to products is 
the one the results in the best scenario overall. 
 
Queueing policy scenarios 
The same methodology as for steady state 
scenarios was used. The confidence intervals are 
presented: 
 

𝐶𝐼95%(𝑆𝑆3 −  𝑆𝑆 − 𝑄𝑃1)

=  [−1.071;  1.239] 

𝐶𝐼95%(𝑆𝑆3 −  𝑆𝑆 − 𝑄𝑃2)

=  [−1.153;  1.153] 

 

𝐶𝐼95%(𝑆𝑆3 − 𝑆𝑆 − 𝑄𝑃3)

=  [−1.116;  1.890] 

 

𝐶𝐼95%(𝑆𝑆 − 𝑄𝑃1 − 𝑆𝑆 − 𝑄𝑃2)

=  [−1.988;  1.591] 

 

𝐶𝐼95%(𝑆𝑆 − 𝑄𝑃1 −  𝑆𝑆

− 𝑄𝑃3) =  [−0.576;  1.183] 

 

𝐶𝐼95%(𝑆𝑆 − 𝑄𝑃2 − 𝑆𝑆 − 𝑄𝑃3)

=  [−1.170;  2.173] 

It is concluded from the Confidence Intervals that 
there is no significant evidence that scenarios SS-
QP1, SS-QP2 and SS-QP3 show better results than 
scenario SS3, nor that any of them overlap with the 
other, since all these confidence intervals contain 
zero. Therefore, this Confidence Intervals do not 
exclude the possibility that there are no differences 
between the queueing policy scenarios' POT 
averages. 

6. Conclusion 
Firstly, a theoretical introduction was made on the 
Global, European, and Portuguese context of energy 
and oil industry. It was obvious that a good terminal 
organization is crucial on this sector. 
Then it was explicit the characteristics and 
operations of a Liquid Bulk Terminal in general and 
the Liquid Bulk Terminal of Sines in particular, 
ending in access its performance. It was observed a 
problem on the allocation of vessels to berths and 
pipelines. Variability on the data was not considered 
when scheduling the terminal’s operation, another 
noteworthy aspect. 
So, a literature review was performed based on the 
BAP. Several operational research methodologies 
were studied, concluding that there are few studies 
on Liquid Bulk Terminals, very little exploration of 
Simulation or Simulation-Optimization and 
nonexploitations of parameter variability. Therefore, 
a simulation approach is appropriate to solve the 
problem of the Liquid Bulk Terminal of Sines, and to 
propose alternative scenarios to its operations. 

Figure 19: Port Operational Time boxplots of Queueing 

policy scenarios 
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Hence, a conceptual model was performed to model 
the terminal’s operations. This model was 
implemented in SIMUL8 software. 
The model was validated, and 15 scenarios were 
proposed to address new terminal’s allocations. 
Scenarios were divided in three time horizon: one 
month of January 2017, terminating simulation of 
January 2017 and steady state simulations. For the 
terminating simulations horizon, general results and 
variability of output data was analysed. In the end, 
scenario OS3, where Optimization-Simulation was 
used with flexibilization of prioritization of pipeline 
allocation to products was considered the best. 
For the steady state scenarios, flexibilization of 
pipeline allocation also proves itself as the best 
scenario. Finally, the results of queueing policy 
scenarios were analysed, and it was concluded that 
no queueing policy presents better results than 
another, and than the original FIFO. 
Throughout this work, there were limitations that 
could be overcome and others that limited its 
performance. Within these, there is the little 
availability of data. It was only possible to use data 
for January 2017, which made the inference of 
operational and setup time quite difficult. The lack of 
knowledge of the existence of operational 
restrictions was also an obstacle.  
There is also future work on the problem addressed 
in this dissertation. Regarding the selection of best 
scenarios, it would be very interesting to use a 
decision support model that considers more than 
one objective. 
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