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Abstract

Placing data replicas in edge nodes is a key strategy to offer low latency to clients and to improve network

utilization. In the case of immutable objects, data placement is only constrained by the limited capacity

of edge nodes. However, for mutable objects, one also needs to consider the cost of keeping replicas

consistent, which then varies with the data consistency model: a replica placement algorithm that per-

forms well for weakly consistent replicas may perform poorly when strong consistency is required. In

this thesis, we present Cathode, a replica placement algorithm that is tailored for the requirements of the

edge environment, all the while being consistency-aware, making placement decisions based on client

demand, storage costs, and the costs of keeping replicas consistent. In the underlying system, differ-

ent objects may use different consistency models and Cathode makes placement decisions accordingly.

Because optimal replica placement is known to be an NP-hard problem, Cathode resorts to an heuristic

that is decentralized and scalable, providing fast convergence, but also achieving high quality deploy-

ments. The extensive performance evaluation reported in this thesis shows that it outperforms previous

state-of-the-art replica placement algorithms.
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Resumo

A colocação de réplicas de dados em nós na periferia de rede é uma estratégia-chave para prover

uma baixa latência aos clientes, e para tornar a utilização da rede mais eficaz. No caso de objectos

imutáveis, a colocação de réplicas é apenas limitada pela capacidade de armazenamento dos nós. Con-

tudo, quando se considera objectos mutáveis, também é necessário ter em conta o custo de manter as

réplicas consistentes, custo este que varia com o modelo de consistência: um algoritmo de colocação

de réplicas que seja eficaz com dados que usam consistência fraca, pode tornar-se ineficaz quando

opera sobre um sistema em que é usado um modelo de consistência forte. Nesta dissertação, apre-

sentamos o Cathode, um algoritmo de colocação de réplicas adaptado aos requisitos dos ambientes de

execução e armazenamento na perifieria da rede, que efectua decisões que se baseiam em factores

como a popularidade dos dados, os custos de armazenamento, e os custos que advêm de garantir

a consistência das réplicas. Mesmo que no sistema subjacente sejam suportados múltiplos modelos

de consistência, o Cathode é capaz de calcular configurações de réplicas que reduzem estes custos

e, consequentemente, melhorem o desempenho do sistema. Sendo que o problema da colocação de

réplicas é NP-Completo, Cathode recorre a uma heurı́stica que opera numa estrutura descentralizada e

permite uma convergência rápida, mas ao mesmo tempo, calcula soluções que melhoram, em grande

escala, o desempenho do sistema. Apresenta-se uma avaliação do sistema, que mostra como o Cath-

ode supera outros algoritmos de colocação de réplicas do estado da arte.

Palavras Chave

Armazenamento em Edge, Colocação de Dados, Replicação, Consistência de Dados
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In this dissertation we address the problem of data placement in edge computing, and we study

techniques that can be used to place replicas of relevant data on edge devices. We consider the case

where objects are mutable, and the costs of maintaining replicas may vary according to the consistency

criteria. To the best of our knowledge, previous systems haven’t designed a scalable structure that is able

to gather information relating to the costs of keeping replicas consistent, and able use this information to

reduce such costs. Furthermore, previous replica placement systems for the edge, focus on providing

efficiency, at the detriment of utility. This dissertation explores the qualities and limitations of various data

placement algorithms from different contexts, and proposes a novel design for a scalable consistency-

aware replica placement algorithm for the edge, that provides high utility without sacrificing efficiency.

1.1 Motivation

Edge computing is defined as a paradigm in which servers are placed close to the edge of the network,

in order to assist applications that are running in resource-constrained devices [1]. There are two main

advantages of edge computing [2]: firstly, edge nodes can provide assistance with much lower latency

than the cloud, because servers are physically closer to the devices; and secondly, edge nodes can

shield the cloud from most requests, by serving the requests locally.

An example of an application area where edge computing may prove helpful is the area of vehicular

networks. Current vehicles have multiple sensors that can capture information not only about the oper-

ation of the vehicle itself (such as fuel consumption), but also about the environment (temperature, road

condition, etc). If this data can be effectively collected, it can prove itself useful to many parties: the

information can be used by makers to schedule vehicle maintenance and to improve vehicle design, city

planners can use the information to design better road systems, etc. Furthermore, vehicles can also be

consumers of this information: for instance, a vehicle can leverage the data collected by other vehicles

regarding road congestion, accidents, or other hazards, to plan alternative routes [3]. In this setting,

edge nodes can help in collecting information from the vehicles, by aggregating it from multiple devices

in an area, before sending it to the cloud. Edge nodes can also make this information available to local

vehicles, that may then access it with low latency.

In this work we address the problem of data placement for edge computing. In short, the data

placement problem consists in finding a suitable allocation of data objects to edge nodes, subject to a

number of constraints, such that one can maximize the utility of these placements for the system. In the

simplest case, data objects are immutable and, therefore, there is no significant drawback for creating a

new replica of an object on a given edge node, as long as there is local demand and the edge node still

has storage capacity. However, for mutable objects, one should also consider the costs associated with

keeping the multiple replicas consistent: when a replica is updated, the changes need to be propagated

3



to other replicas; and if the number of replicas is large, this can put a significant burden on the system.

Thus, for mutable objects, factors such as the number of replicas and the read/write ratio, become

important for optimizing the placement of those replicas.

Although the topic of data placement for edge computing has been addressed before in the liter-

ature [4–7], most systems assume that all objects offer the same consistency model, and that this

consistency model is enforced by some static, pre-defined, replica consistency algorithm. It is therefore

unclear how these algorithms perform when the edge storage uses different consistency criteria. This

is unfortunate, as there is a growing interest in designing systems for edge computing that can support

multiple consistency criteria [8–11].

This dissertation presents Cathode, a replica placement algorithm for the edge, that is consistency-

aware, and that makes data placement decisions based on client demand, storage-constraints, and

the costs of keeping replicas consistent. Different objects can use different consistency models and

Cathode makes placement decisions accordingly. Because optimal replica placement is known to be

an NP-hard problem, Cathode resorts to an heuristic that is decentralized and scalable, avoiding the

bottlenecks associated to solutions that have a single point of control. The heuristic that was designed

is inspired by the one used in D-Rep [4], a decentralized placement algorithm for the edge, however,

ours presents substantial improvements. In D-Rep, nodes make decisions based on limited information

regarding other nodes in the system; this makes the algorithm scalable but unable to effectively compute

a placement solution that yields high utility. Cathode also allows for somewhat decentralized decision

making but, since nodes that replicate the same objects are allowed to share their views of where

replicas are most required, Cathode is able to aggregate the necessary information to consider the

costs of keeping replicas consistent, and yield a higher utility. This way, Cathode is able to approximate

(and even surpass) the utility provided by solutions such as Holistic-All [12], which is able to calculate

high quality solutions but requires more time to converge in systems of larger size, due to the way it

collects information and computes the placement solutions. To the best of our knowledge, Cathode is the

only data placement algorithm that provides a scalable operational structure to support multiple replica

consistency protocols, without any prior assumption on the underlying topology or on the semantics of

the algorithms.

Cathode mainly targets applications such as smart cities, where the data access patterns are likely to

exhibit strong geographical locality. For instance, vehicles in a city may access data regarding the traffic

conditions in the areas around them or to which they are headed. Vehicles in the same areas will likely

access the same data, and depending on their context, may access this data with varying consistency

guarantees, as exemplified in [8].

We have extensively evaluated Cathode against the aforementioned solutions, D-Rep and Holistic-

All. Our results show that Cathode is able to approximate the convergence speed of Holistic-All for

4



smaller systems, and surpass the convergence speed of D-Rep for larger systems, achieving excep-

tionally better results in networks of larger diameter, which makes it an interesting approach, even when

all objects use the same consistency criteria. Furthermore, while D-Rep and Holistic-All are unable to

provide satisfactory results when objects operate under different consistency protocols, Cathode is able

to leverage its consistency-aware features to provide high utility in all scenarios. As we have discovered

in our experiments, when strong consistency models are used, such as quorum consensus, while Cath-

ode is able to achieve utility gains of approximately 1.2×, the other aforementioned algorithms will, in

some cases, even reduce the utility down to 0.6×. Aside from this improvement, in some environments,

such as large grid networks, Cathode is able to greatly surpass the quality of this type of algorithms in

real time, because of its fast convergence, improving the utility by a factor of 1.7×, even when using the

same consistency model that is directly supported by Holistic-All and D-Rep.

1.2 Contributions

This dissertation analyzes, implements and evaluates strategies to design a consistency-aware replica

placement service to operate on the edge of the network. The main contribution of this dissertation is a

novel replica placement algorithm that is consistency-aware, and that makes data placement decisions

in a decentralized and scalable way, while still achieving high utility and convergence speed.

1.3 Results

This work produced the following results:

• The specification of Cathode, a consistency-aware replica placement algorithm for the edge;

• An implementation of Cathode on the PureEdgeSim [13] simulator;

• An extensive experimental evaluation of Cathode and comparison against two other state-of-the-

art replica placement algorithms.

1.4 Research History

This work was developed in the context of the Cosmos research project, that aims at finding techniques

to offer causal consistent storage for edge computing scenarios. Techniques to manage the placement

of data replicas in edge nodes are expected to be a key component in the final COSMOS architecture.
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This work was partially supported by the FCT via project COSMOS (via the OE with ref. PTDC/EEI-

COM/29271/2017 and via the “Programa Operacional Regional de Lisboa na sua componente FEDER”

with ref. Lisboa-01-0145-FEDER-029271) and project UIDB/ 50021/ 2020.

1.5 Organization of the Document

The rest of the document is organized as follows: Chapter 2, firstly, provides a formulation of the prob-

lem, with an introduction to key concepts, and secondly, reviews several systems related to our work.

Chapter 3 describes the design of the proposed solution, Cathode, specifying the system model, the

algorithm and its implementation, also addressing the implementations of the other algorithms consid-

ered for evaluation. Chapter 4 details the evaluation of Cathode, presenting the results obtained in the

experiments, along with a discussion of the results. Chapter 5 concludes the document, outlining the

main findings, and unveiling a possible direction for future work.
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This chapter delves into the background and definitions of the problem and analyses the related work.

In Section 2.1 we explore the characteristics of edge computing environments. Section 2.2 defines the

replica placement problem and in Section 2.3 we explore how data consistency relates to the placement

problem. Finally, Section 2.4 explore various systems that are relevant to our work, and their limitations

are discussed in Section 2.5.

2.1 Edge Computing and Related Paradigms

The emergence of technologies and applications for mobile computing and the Internet of Things (IoT),

has driven computation towards dispersion, as opposed to centralization. With the growing quan-

tity of data generated at the edge of the network, in order to assess the issues of high-bandwidth,

geographically-dispersed, low-latency applications, several paradigms have been proposed in which the

data is stored, processed, and acted upon close to these devices. These paradigms may define different

architectures of nodes spanning from the cloud, where datacenters of high computational capacity and

storage space are located, to the edge of the network, where weaker devices operate. In [1], several

edge computing paradigms are highlighted, out of which, for exemplification, we selected the following:

• Edge Computing, in which computations are performed in nodes as close as one hop from IoT

devices (data sources), extending their capabilities, in a ubiquitous manner.

• Fog Computing, which also decentralizes computation and storage, but presents a multi-tier model,

providing progressively increasing resources along a hierarchical succession of nodes, located

between the IoT devices and the cloud data centers.

• Multi-access Edge Computing, known also as Mobile Edge Computing, which provides resources

through the Radio Access Network (RAN) infrastructure. This model is expected to benefit signifi-

cantly from the, now developing, 5G platform, which will allow for edge computing to be accessible

to a wide range of mobile devices, with reduced latency.

• Cloudlet Computing, which uses computers or clusters of computers, known as cloudlets, with

virtualization capabilities. Tasks are taken from mobile clients, and divided among the cloudlet

nodes in their proximity, which in themselves, might also be composed of clustered mobile devices.

Despite presenting some differences, these concepts have been used interchangeably in previous

literature, and demonstrate how the system models vary within the edge computing paradigm. Despite

the fact that each system is, in its majority, composed of nodes that are less resourceful than the cloud

datacenters, there can still be found a large variance in the storage capabilities and network reach of the

nodes, and how these communicate with one another, according to the architecture, network topology
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and routing algorithms. Along with these factors, there can also be seen differing characteristics from

application to application, such as the amount of data involved, the frequency and locality of requests,

and the consistency requirements of each operation. Seeing that the aim of this work is to define

a general replica placement scheme for the edge, we must take these differences into account, by

exploring strategies that can be applied to various scenarios; and since these architectures may be

composed of a large number of nodes, a replica placement system for the edge should also be scalable,

but still provide utility.

2.2 The Replica Placement Problem

Data replication is widely used in distributed systems and it can bring many advantages, such as fault

tolerance, load balancing, and lower data access latency. In this work we consider the use of data repli-

cation in the context of edge computing with the primary goal of reducing the latency clients experience

when accessing data.

2.2.1 Replica Placement as an Optimization Problem

We can abstract the problem of deciding which replicas are placed in which edge nodes as an optimiza-

tion problem that aims at minimizing a system wide cost function. In this case, the cost is correlated with

the access latency for edge clients. If the data is placed in a remote location, and the access latency is

large, the cost is high; conversely, if the replica is placed in the edge node used by the client, the latency

is small and the cost is low. The cost of a given data placement x can be formulated as follows [14]:

C(x) =
1

Λ

I∑
i=1

J∑
j=1

λipjdij(x) (2.1)

where Λ is the total request rate of all nodes, I is the set of nodes, J the set of objects, λi the request

rate of node i, pj the probability that object j will be requested in any node, and dij(x) is a cost value

represented by the shortest distance from i to a node that contains j, under placement x.

If latency is the sole factor to be considered when computing these costs, the best strategy would be

to place a replica of every item at every edge node. Naturally, in a real scenario, this is neither feasible

nor desirable. First, edge nodes have limited resources, thus data placement must be performed under

the constraint that the assignment needs to respect the capacity of individual edge nodes. Also, there

are costs involved in maintaining data replicas. First, when a replica is deployed, data needs to be

transferred from another replica (most likely, from a datacenter in the cloud) to the target edge node, a

task that consumes network resources. Then, the replica must be kept up to date in face of updates,

which, in some systems, involves propagating any changes among all the existing replicas. The cost of
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keeping a replica up to date therefore depends on several factors, such as the frequency of updates,

and the data consistency criteria that needs to be enforced. Thus, the replica placement optimization

problem should consider both the cost reductions that can be gained by creating a new replica (due to

the lower access latency) and the cost increases that result from the additional data propagation that

may be required to create and maintain the replica updated.

A more realistic formulation, which accounts for these updates and their costs, can then be expressed

as:

C(x) =
1

Λ

I∑
i=1

J∑
j=1

λipj ((1− αj)dij(x) + αjuij(x)) (2.2)

subject to

J∑
j=1

pij(x)sj ≤ Si ∀i (2.3)

where αj is the write ratio for object j and uij(x) is the cost associated with propagating the updates

performed on object j, by node i, given the data placement assignment x, Si is the storage capacity of

node i, sj is the volume of object j, and pij is a boolean that states if object j is replicated on node i

under assignment x.

2.2.2 Solving the Optimization Problem

It has been shown that an optimization problem expressed by Equations 2.2 and 2.3 can be mapped

to the multiple knapsack problem [14] and is, therefore, NP-Hard. Thus, practical solutions of the data

placement problem are solved by heuristics that approximate the optimal solution. The most straightfor-

ward way of applying an heuristic is to centralize all the execution and information in a single node, that

can run the replica placement algorithm locally, and then, according to its decisions, instruct other edge

nodes to fetch or discard replicas.

Unfortunately, the centralized solution has a number of drawbacks. In particular, in most cases, the

access patterns (i.e. how often each object is accessed in each edge node, and the corresponding

read-write ratio) are not static and known a priori. Instead, access patterns are dynamic and need to

be estimated in run time. As a result, the placement of replicas needs to be recomputed frequently.

While access patterns can be captured on-line by the edge nodes, a centralized solution requires this

information to be shipped on a regular basis to a single node, which can easily create a bottleneck in the

system. Therefore, there is an interest in studying an heuristic that can be implemented by distributed

algorithms, where the load associated with collecting information regarding the access patterns can be

distributed among multiple nodes, along with the execution of the placement decisions.
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When using heuristics that can be executed in a distributed manner, the following criteria should be

considered:

• Approximation Quality, which defines how well the algorithm approximates to the optimal solution

(or equivalently, the utility that the algorithm can achieve within its capabilities).

• Efficiency, which is split into the computation and communication overheads. The computation

overhead represents the complexity of computation necessary to perform a decision and apply it

to the system. The communication overhead represents the amount of communication between

nodes that is needed not only during the execution of the placement algorithm - to send the infor-

mation needed for performing the placement decisions - but also after the placement algorithm, for

keeping the system up-to-date with the new replica locations.

• Convergence speed, which defines how fast and effective the scheme is at converging to a stable

solution. A stable solution is reached when the system stops optimizing, by reaching the best

possible solution for the current workload, within the heuristic’s capability.

• Elasticity, which defines how well the algorithm adapts the placement of replicas to workloads in

which the request patterns change over time.

Each scenario and environment in which a replica placement algorithm may operate, will have priori-

ties in terms of these criteria. For example, in some environments, efficiency is not a problem, and so an

algorithm can perform more complex operations to achieve better approximation quality, with less regard

for the computation and communication overheads that may arise. It is therefore important to define the

criteria that is most important for an edge environment.

Addressing this, given the highly dynamic nature of edge environments [15], we can confidently

determine that data placement should be elastic. This means that the placement algorithm must run

frequently and thus, it should also be efficient and converge quickly. Alongside, edge systems essentially

consist in using many nodes of small capacity, that are placed close to clients, instead of using only a few

nodes of large capacity, that are placed far from clients (in large datacenters). Thus, a replica placement

algorithm for the edge should be scalable and consider efficiency thoroughly, in order to be prepared

to handle a large number of nodes. In previous literature, it is possible to find algorithms that provide

high approximation quality, but that are not efficient and have difficulties in adapting to large systems.

On the opposite side, there can be found highly elastic algorithms that achieve efficiency, but at the cost

of sacrificing quality. We investigated several of these solutions, to find out the best way to design a

placement algorithm for the edge. The most relevant ones to our work are explored in Section 2.4.

11



2.3 Taking Data Consistency in to Account

Ideally, one would like a replicated system to exhibit the same behaviours as a centralized, non-concurrent

system, where each operation is executed in isolation, and all operations appear to execute in a serial

order that respects external time. This intuitive behaviour is captured by linearizability [16]. The algo-

rithm for atomic register emulation on message passing systems presented in [17] (ABD), has shown

that it is possible to implement a linearizable register in a non-blocking and fault-tolerant manner. How-

ever, ABD requires both read and write operations to update a majority of replicas, which is prohibitively

expensive in most settings. More practical implementations require all updates to be performed on a

master replica and use locks to ensure atomic visibility [18]. However, even these implementations can

be too expensive for most latency-constrained applications, that may be willing to trade consistency for

faster data access.

To circumvent the costs of linearizability (and of other strong consistency approaches, such as seri-

alizability [19]), a wide range of weaker data consistency models have been proposed in the literature.

These models are particularly relevant in geo-replicated scenarios such as the ones observed in the

edge computing paradigm, because of their higher scalability. An example of such a model is the causal

consistency model, which has already been efficiently implemented in edge networks by Gesto [20].

In [21] the authors elaborate on how modern distributed database systems (DDBSs) have to perform

decisions regarding the trade-off between latency and consistency, and exhibits the differences on how

several of these systems handle this trade-off. The authors describe three alternatives in which data

replication may be implemented:

1. Updates are sent to all replicas at the same time;

2. Updates are sent to an agreed-upon location first (master replica), and then applied to the rest.

3. Updates are sent to an arbitrary location first, and then applied to the rest.

In the case of the second alternative, the replication may be synchronous, when the master replica

waits until all replicas are updated, or asynchronous, when the updates are propagated in the back-

ground, and the master continues its operation. The system can then route all reads to the master node,

which may increase latency, but prevents consistency issues; or the system can route reads to the near-

est replica, which reduces latency but, in some cases, results in consistency issues. These approaches

are also present in the third alternative, with similar problems.

A combination of synchronous and asynchronous operations can also be used. Consider R as the

number of nodes that participate in a synchronous read, W as the number of nodes that participate in a

synchronous write, and N as the number of replicas. Configuring R and W such that R + W > N , will

therefore yield a quorum-like protocol. However, since in quorum protocol the latency of an operation is
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as high as the latency to communicate with the farthest of the R (or W ) replicas, these parameters are

often configured such that R+W ≤ N , opting for a lesser consistency level.

Several modern distributed storage systems, such as Cassandra [22] and DynamoDB [23] use such

a combination of synchronous and asynchronous operations. Furthermore, in various failure cases, or

due to rerouting, updates of a data item are not always sent to the same node, resulting in a different

way by which requests may be propagated, and consequently, also a different latency. Cassandra has

been used as the base for the storage module of the Cloudpath [9] platform, which specifies a multi-tier

architecture, with nodes spanning from the cloud to the edge of the network. In this system, updates are

propagated following an eventual consistency model, but stronger consistency levels may be achieved

by the clients, in the application level, by having the requests sent to higher tier nodes, instead of the

closest (lesser latency) nodes. Further development of this storage system added the option to use

session consistency in the operations performed by the clients, providing yet another form of handling

requests [10].
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(a) Communication between nodes before the creation of a replica in C.
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(b) Communication between nodes after the creation of a replica in C.

Figure 2.1: The effects of creating a new replica, on different consistency protocols.

The relevance of supporting multiple consistency models in the paradigm of edge computing has

been further validated in [8], which proposes a data storage model that allows for different consistency

levels in requests, depending on the context in which a client is inserted. This means that there are

13



several consistency models being used in the system at the same time, and, as is easily noticeable, the

different consistency criteria will represent different costs. Consider the example in Figure 2.1, in which,

initially, there is a single replica of an object in node D. Two consumers access this replica. Consumer

A is in a context which requires weak consistency, and therefore it merely needs to access the closest

replica; consider also a consumer B, in a context that requires strong consistency, and therefore it must

access a majority quorum of replicas. If a new replica is created in node C, as we may observe in

Figure 2.1b, the latency of requests from node A decreases. However, requests from node B will now

have to also contact C to have quorum, which increases latency. Thus, in this type of systems, a replica

placement algorithm should take into consideration the global improvements/detriments in cost coming

from each operation, according to their consistency models, and how they are carried out by the system.

In the work developed by Gao et al. [11], a data replication algorithm is proposed for the edge service

architecture, which tunes the consistency of each read/write to achieve the ideal trade-offs between low

latency, high availability, and strong consistency. However, selecting the right consistency model for an

operation is a problem orthogonal to the topic of this thesis. Furthermore, in most cases, the consistency

model is driven by the application semantics. Therefore, we have rather focused on the problem of

finding the best placement for the replicas, given one or several target consistency models that have

been previously chosen and used in the system.

2.4 Replica Placement Systems

In this section we review the existing literature on replica placement, focusing on schemes that, despite

considering varying system models, present viable applications to the edge paradigm. Along with the

criteria we have mentioned previously (Section 2.2.2) regarding the quality of the heuristic, we can also

characterize each approach to the replica placement problem, by how the systems themselves operate.

For this, the following criteria has been considered:

• Distribution, which roughly characterizes where the decisions and computations take place. On

one end, we have centralized algorithms that perform these actions on a central node, possibly

taking into account the whole of the network. On the other end, we have fully distributed algo-

rithms, in which each node executes placement decisions in a parallel, with a limited view of the

network, which normally results in rougher approximations to the optimal solution, but higher effi-

ciency. In between, there are also decentralized algorithms, which decentralize the operation to

multiple nodes, but not in a fully distributed way. An example of this type of distribution is item-wise

decentralization, in which there is a single node performing the placement decisions for each item.

• Replication degree, which can be fixed, restraining the number of replicas for each item to a pre-

defined value, or adaptive, changing the number of replicas according to item demand. Performing
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placement with adaptive degrees is more complex than with fixed degrees, but achieves more

optimal results, particularly in skewed and dynamic workloads.

• Routing, which may be classified as replica-aware or replica-blind. Replica-aware routing schemes

have knowledge on the locations of replicas, directing requests according to these locations, and

adapting to changes in their placement. These schemes have the advantage of reducing request

latency, but may require the nodes to synchronize with each other and update their routing ta-

bles, whenever there are changes in the replica locations, also achieving lower efficiency when

performing replica lookup.

Replica-blind schemes, on the other hand, route requests regardless of replication. If a request,

when being propagated through its path to the original file location, reaches a node with a replica,

then the request is satisfied by this node, reducing latency. Therefore, these schemes are limited

to replicating items in the request paths, but don’t require any synchronization, achieving high

efficiency.

• Decision factors, which are the factors considered when performing the placement decisions.

Some of the factors that should be considered in the edge paradigm, are the popularity of re-

quests for each item at each node, the latency between nodes and item replicas and the storage

cost of each node. Alongside, we have seen prior, the cost of keeping replicas consistent is also a

factor of interest.

There is quite an extensive amount of literature on the data placement problem but most of these

system aim at different settings, and despite implementing interesting features, they cannot be easily

adapted to edge computing. On the other hand, most systems that were designed for edge scenarios are

tailored to specific applications. For instance, [24] defines a replica placement strategy designed for IoT

workflows, while [25] defines a strategy for scientific workflows. These types of workflows focus on data

processing tasks, and are modelled as dependency graphs which define the data dependencies between

these tasks. The placement algorithms then apply strategies that are designed for these scenarios

where tasks and data are generated at sensors and IoT devices and have to pass through a set of

nodes for processing. As such, they have limited applicability to the general case. In our work we strove

to abstract from specific workflows and applications that can be used within the edge paradigm, and

focused on building a system that considers the general characteristics of the edge, and performs well

within the criteria we defined in Section 2.2.2.

In the next sections we describe several prior solutions that provide interesting approaches to the

replica placement problem as we have defined it. Some of these solutions define their process as

replica placement, while others define it as cooperative caching. We consider these definitions as anal-

ogous and as so, we collocate them in the same category. We do not, however, consider on-demand
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caching techniques. This type of caching, was shown in [26] to have good performance with content that

showcases ephemeral popularity; in this case, where most content is only requested once, a basic cache

on kth request policy was shown to provide the most benefits that are likely to be achievable in these

types of workloads. In spite of this, when we consider workloads from applications that present less

ephemeral content, when we consider the costs of storing replicas, the memory restrictions of the edge

nodes, and the possible consistency protocols that may operate in the system; it is evident that these

on-demand caching schemes have serious limitations, by operating in each node independent of one

another. On the other hand, cooperative caching, as we will see in the following examples, allows nodes

to collaborate with one another (e.g. sharing information about an object’s popularity), which enables

the creation of only the necessary replicas to benefit the system, and also enables the accountability of

various other factors.

2.4.1 EAD File Replication

The Efficient and Adaptive Decentralized (EAD) File Replication System [27] uses an algorithm that

optimizes replica placement in a dynamic workload environment. It does so by placing replicas in the

nodes that are subject to more frequent queries, in a decentralized way.

The algorithm works by running consecutive optimization rounds. In round t, each node periodically

computes qft , the query rate of each file f , whose lookups are initiated or forwarded by that node. If qf is

bigger than a threshold (that depends on the average query rate of the system), the node is considered

a traffic hub for f , and a replication request is submitted to one of its file servers.

A file server node, which may hold the original file or a replica, periodically computes the visit rate

of its files (query load lt). If the load surpasses a threshold above the node’s capacity, then it decides

to create new replicas. First, the node verifies if it received any replication requests from traffic hubs.

If so, it orders these requests according to the qf of each request, and accepts the requests until the

predicted load is bellow the threshold. However, if the list of replication requests is empty, the files

are instead replicated to the neighbour nodes that most frequently query for file f . In case the file

server is not overloaded, it will accept replication requests only if the estimated benefit of file replication

(considering the query rate, and the resource consumption of forwarding the query from the requesting

node to the server) outweighs the storage cost. Each replica node, excluding the original file server,

may also remove f , if qf falls under a minimum load threshold during a certain number of consecutive

rounds.

By placing replicas in the query paths from requesters to file servers, the scheme allows the usage

of a Distributed Hash Table (DHT) lookup strategy, and replica-blind deterministic routing, keeping this

process highly efficient. However, since this approach restricts replication to a specific set of nodes, it

results in lesser approximation quality, when we consider the cases where the replica could be placed
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closer to its requesters. When there is a node join/leave, since the network topology changes, and traffic

may follow different paths, replica nodes might, in such events, witness lower visit rates for some files. To

deal with this churn issue, the system may transfer replicas between the neighbours of the node which

has joined/left, in order to place these files in the predicted new traffic hubs of the network.

The scheme is able to dynamically adapt to time-varying file popularity and node interest. Further-

more, it mostly only requires synchronization in the case of node churn, leading to a low communication

overhead. High replica utilization is ensured, but approximation quality is hindered by using replica-

blind routing, restricting placement to query hubs. Convergence, however, is fast, since replicas are

immediately placed in the best destinations that can be calculated by the algorithm, in a parallel fash-

ion. However, the decision factors are restricted to the file popularity and congestion of the links of

each node, not accounting for other factors that influence clients’ experience, such as the access costs

(latency of the requests).

2.4.2 Congestion-Aware Caching (CAC)

In CAC [28] the authors investigate cooperative cache management policies that account for link capacity

constraints and network congestion. The work is based on the observation that popularity-based caching

may not provide the best average latency. This is due to the fact that less popular items, if not cached,

may also incur a large overhead on their retrieval, if the retrieval requests are routed through highly

congested links. Based on this observation, the proposed scheme aims at caching content that is both

popular and whose retrieval is costly, bandwidth-wise.

First of all, the system makes an assumption that each response to a request, follows the opposite

path of the corresponding request. Then, each node keeps track of the number of flows (active requests)

currently passing over its links, and uses this information for estimating the available link bandwidth for

new requests. File popularity is also estimated in each node, for each and every file whose requests

pass through the node. These values are then used by the node to calculate the gain of replicating

each file in that node, which is inversely proportional to the minimum available link bandwidth along

the upstream path (from the content source to the consumer node). When a content delivery response

arrives to the node, it then autonomously decides whether to cache the content, according to the gain

that can be attained. Technically, no synchronization is required, since items are replicated on the

request path, allowing for replica-blind routing. However a congestion-aware search protocol is proposed

by the authors, which allows nodes to forward their requests to replicas in less congested paths.

By accounting for link congestion, this scheme is able to reduce the average delay in a fully dis-

tributed way, despite reducing the cache hit rate and possibly increasing the number of routing hops. By

employing the search protocol, traffic is displaced from the possibly more congested default paths, to

alternative, less congested routes, also contributing to the avoidance of unnecessary replicas in those
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same paths. This way, even though replication is performed on the request paths, routing is somewhat

aware of replicas, improving the approximation quality of the algorithm.

Convergence is fast, since replicas are placed immediately on their optimal destinations. However,

when a replica is created in a node due to congestion, the node doesn’t keep track of the available link

bandwidth to the original object. In a dynamic environment, this value could eventually improve, but

because it isn’t tracked, a replica may be kept indefinitely in a node, whether or not it is beneficial to the

system, which contributes to a sub-optimal performance. This could be improved by using an age-based

tactic, such as the one presented in the scheme we will discuss next.

2.4.3 Age-Based Cooperative Caching (ABC)

In ABC [29] the authors leverage the coupling between routing and caching, by proposing an adaptive

replication mechanism that pushes popular contents to the network edge, in a fully distributed way, with-

out requiring extensive computations, nor message exchanges between nodes. The scheme distributes

the contents hierarchically, replicating the most popular contents at the network edge, while the least

popular are only placed closer to the sources, focusing on the improvement of the average cache hit

rate and load reduction at central storage units.

When an object is first requested from its source (origin) node, an initial age value is calculated in

the neighbour node through which it is routed back to the requester. This value determines the lifetime

of the replica, and is proportional to its estimated popularity, which is the observed access frequency in

the source node. If there is space left for the item, it is cached in the aforementioned neighbour node.

In the opposite case, if there’s an expired item (which reached the end of its age-defined lifetime), it is

replaced by the arriving one. The item then continues to be routed from the source to the requester

with its age value piggybacked, and every node through which it passes doubles the value for its age,

unless it surpasses a predefined max age parameter. This way, the scheme prioritizes item popularity

and distance from the source nodes, with items being replicated along the path from the requester to

the source, with decreasing importance, and also according to their popularity.

The clear advantage of using such a placement tactic is the efficiency, since there is no need for

synchronization, just like in the previously described schemes, where replicas are also placed on the

routing paths of their correspondent requests. The scheme also takes into account the access costs

from nodes to the original items, but this cost is accounted in terms of node hops and not on the actual

experienced latency. Another issue relies on the fact that the popularity factor, in the age values, is

calculated only in the source nodes, which may result in inaccuracies, where items which have a global

high popularity, are replicated, with an high age value, in edge nodes located in regions where they might

only be requested a couple of times. This curbs approximation quality, and since nodes suffer from the

departure of popular contents, when they reach their expiration date, a stable solution is never reached.
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2.4.4 Associated Data Placement (ADP)

In ADP [30], a replica placement system for the cloud, the objective is to account for the associations

between different data objects, and improve the co-location of associated data. Two algorithms are

modelled, the first not allowing replication, and the second, allowing replication with fixed degrees for

each data object. We focus on the study of the second algorithm, being more relevant to our context.

As a precursor of this algorithm, the authors in [31] presented a data placement system that iteratively

moves an object closer to both its clients and other objects it communicates with, but in contrast with [30],

the group association problem is relaxed to pair-wise relations, and aside from this, the system uses

physical distance between nodes as a decision factor, focusing on the actual geo-distribution of cloud

datacenters, instead of the actual observed latency of the connections between these nodes.

The system model of ADP assumes that geographically distributed nodes may request sets of spe-

cific replicas of a data object, from each other. These sets are called request patterns. Each placement

decision requires global knowledge of these request patterns. The decisions are therefore performed in

a centralized unit. In a time period, the request rate of each set (and each single replica) are measured

and/or predicted. These are then used to calculate 2 metrics:

• Co-location of associated data, whose value is proportional to the number of replicas in each

request set that is not handled by the same node.

• Localized Data Serving, whose value is proportional to the number of requests where the request-

ing node is not the one holding the data.

The objective is to minimize a weighted sum of both of these metrics, whose weights are defined

by a trade-off parameter. A constraint for balance is also applied, by setting upper and lower limits in

the number of replicas stored in each node, according to average of all nodes. The placement is then

formulated as a hypergraph partition problem. For the initial replica placement, a simple greedy method

is applied, in which, for each data object, the k nodes with the highest request rate are used to store the

replicas of the object. After this step, the scheme runs a loop, performing, in each round, a placement

decision, but also a routing decision. The routing decision maps, for each request set performed by each

node, each request of the request set to the adequate replica nodes. This decision is made considering

the request patterns, and the coverage of the sets by each replica node, aiming to minimize the number

of nodes contacted. When a replica is migrated, the routing decisions concerning it have to be calculated

again, and routing is performed by iteratively choosing the nodes that cover the highest number of items

in the request pattern. This enables fetching several items from a single node, and reducing the request

paths, but the computation overhead that comes from calculating these factors represents a weakness

for this algorithm.
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The placement decision itself is performed by building a hypergraph in which the vertex set is com-

posed by the nodes and the replicas, and the hyperedge set contains all the request sets/patterns, each

assigned a weight proportional to its frequency. Alongside, all the pairings between each node and each

replica are also weighted according to request frequency. This hypergraph is then partitioned, minimiz-

ing the cut weight. A scheme for replica migration, specific for dealing with dynamic workloads, is also

proposed, in which only a maximum numberK of replicas may be migrated in each round, performing an

incremental adjustment. This incurs that several rounds must go by, before reaching the stable solution.

As we can see, this one of the most complex algorithms we have analysed, and although it is some-

what resilient to dynamism, and achieves a great approximation to the optimal solution by having a global

view of the network, its centralization aspect hurts scalability when we combine dynamic workloads with

a large number of nodes. The algorithm accounts for very interesting decision factors, however the com-

putation overhead to perform each placement decision is much higher than in the previously analyzed

schemes, and there is a high communication overhead due to the necessary data collection to build the

hypergraph, and due to the synchronization phase after each placement decision.

2.4.5 AutoPlacer

AutoPlacer [32] is a replica placement system, developed for a cluster environment. The system oper-

ates solely on the migration of replicas, considering a fixed replication degree. In this work, the authors

developed a way to efficiently implement replica-aware routing, which is accomplished as follows: When

a replica is migrated, its location is placed in a relocation map. Since the map can grow too large to be

efficiently distributed, the authors propose a structure that allows for efficient storage, and fast lookups.

This structure is named Probabilistic Associative Array (PAA).

The replica placement scheme itself executes in rounds, and each optimization round consists in the

following sequence:

1. The top-k most-accessed data items (hotspots), at each node, are calculated. Once some hotspots

have been identified (and relocated) in a given round, new hotspots are sought in the next round,

since in the presence of static workloads, the top-k lists at each node may stagnate.

2. Each node gathers access statistics on any hotspot items it supervises and finds the optimal

placement for those items, solving a relaxed version of the cost function minimization problem.

3. Each node computes the PAA for the relocated items it supervises.

4. Each node disseminates its PAA among all nodes, which then assemble the received PAAs, locally

building an object lookup table.

5. The relocated items are transfered.
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To find the location of an item’s replicas, each node first queries the PAA, whose response, despite

being deterministic, may contain innaccurate information, however it guarantees that no false negatives

are provided. If the node does not find any location for an item in the PAA, this means that the replicas

have the default placement, and a hash-based routing scheme can be used to find a replica. The PAA

is able to reduce space by classifying keys according to available values within them (for example, a key

may contain the user that created the item). It then comprises a set of rules that take these values from

a key, and output its correspondent replica set. The accuracy of this structure is then controlled by a few

adjustable parameters, allowing the system administrator to define the trade-off that is most adequate

for the underlying system’s goals.

To deal with dynamic workloads, the system starts a new epoch each time there is an abrupt change

of the access patterns, restarting the execution of the optimization algorithm with a new lookup table.

This is not optimal for a workload with a progressively changing distribution, undetected by the simple

threshold verification. Likewise, choosing to only optimize k items for each node in each round impairs

the celerity at which the system converges to a stable placement solution, but despite this, the system,

eventually, effectively approximates to the optimal solution.

While optimization is done in a fully distributed fashion, the fact that every node has to synchronize

with each other in each round, represents an overhead in communication, which is hardly a problem in

the context the algorithm was developed for, but would affect its performance in other contexts (such as

edge computing). The replication degree is fixed, and hence, the replica number is not adjusted, which

hinders elasticity. Despite all this, the system proves its success at achieving efficient storage and fast

lookups in a replica-aware routing scheme.

2.4.6 Distributed Cache Management in ICNs

In Sourlas et al. [12], the authors devise several distributed cooperative cache management algorithms

directed at Information-Centric Network (ICN)s, and compares them in terms of performance and com-

plexity. The aim is to minimize the overall network traffic cost, by adaptively assigning (and re-assigning)

object replicas to nodes, based on their time-varying request popularity and distance to their consumers.

The network is modelled as a graph of nodes, connected by their communication links. It is assumed

that a replica-aware routing mechanism is in place, routing requests to the nearest replica. Considering

V as the set of nodes, M as the set of data objects, H as the current configuration, which maps each

object to a set of nodes, with hmv being a variable that indicates whether object m is replicated in v, and

Nm
v as the set of nodes accessing m through its replica at v, the total network traffic cost is given by:

T (H) =

M∑
m=1

∑
v∈V :
hm
v =1

∑
u∈Nm

v

rmu dvu
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where rmu is the request rate for m, generated by u, and dvu the communication cost from v to u. The

vector ru is an estimation based on the observed request patterns within a given time window, used to

forecast future rates. The objective is to minimize this cost function, without violating each node’s storage

constraints, whilst maintaining, at least, one replica of each data object, in the system. To achieve this,

the authors propose several heuristic solutions which vary in the amount of knowledge each node needs

about the network, and the required level of coordination between nodes. These algorithms are executed

in rounds, and maintain execution as long as they detect possible performance gains.

The Cooperative algorithm requires each node to maintain a global view of request patterns, and the

current configuration. For this, the nodes must perform an all-to-all update each time the algorithm is

run. Then, at each iteration, each node v estimates:

• For each object m that it replicates, the global performance loss lmv . This value is computed as

the cost difference between a new configuration, in which m is removed from v, and the current

configuration.

• For each object o that is not replicated in v, the expected global performance gain gov, achieved by

caching o in v, is also calculated.

In this system, the caches are always kept full, and thus whenever a replica is created, another is

removed. The node then considers the object with maximum performance gain, i, as the candidate

for insertion, and the object with minimum performance loss, k, as the candidate for replacement. The

local maximum relative gain, bv, is calculated and a report message Rep(b, v, i, k) is sent to the other

nodes. After receiving these messages, each node obtains the network-wide lowest cost configuration,

updating H accordingly, and applying its changes to the system.

The Holistic algorithm requires no coordination of the actions of each node, which perform their

decisions autonomously. It differs from the Cooperative algorithm, by assuming that only a single node

may modify the global configuration at a given time. This way, in each iteration, a single node v is in

charge of placement. This node then computes the maximum gain placement b, and broadcasts the

report message, Rep(b, v, i, k). After receiving this message, each node immediately updates H, and

the changes are applied. The process is repeated, sequentially, for each node in the system.

The Holistic-All algorithm, on the other hand, is proposed by the authors, from the observation that,

more than one replacement per node, in each iteration, can be beneficial to the system by speeding

up convergence to a stable solution. Just like in the Holistic algorithm, in each iteration, a single node

is in charge. However, instead of computing only one placement, the node computes all the beneficial

placements, by selecting, from all possible objects in M , the set of candidates that minimize the total

traffic cost.

The authors have also defined the Myopic algorithm, which differs from all the others in the fact that
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it assumes that each node v has no information about the demand patterns at the other nodes. Then

each node performs placement decisions only with local information, independently from other nodes.

The advantage of this approach is clearly the lower computation and communication overhead, with

no information collection. However, its entirely local view of request patterns may result in low quality

solutions, and high redundancy.

All of the algorithms adapt to dynamic workloads, by working with adaptive replication degrees and

constantly gathering information about the varying popularity of objects. The Cooperative and Holistic-All

algorithms don’t have the problems of the Myopic algorithm, but take a long serial number of commu-

nication rounds to optimize all nodes, which hinders convergence speed, especially when the number

of nodes is large. The Cooperative algorithm also specifically requires the communication between all

nodes after computing the candidates in each of them, resulting in lower efficiency.

After studying this work, we have concluded that Holistic-All seems to be the one achieving the best

performance, according to our criteria, despite its high overheads. This algorithm essentially represents

a decentralized way to compute high quality solutions, and high convergence speed in small systems,

but has scalability problems due to its inefficient operation.

2.4.7 Decentralized Replica Placement (D-ReP)

In D-Rep [4], the authors propose a dynamic algorithm for replica placement in the paradigm of edge

computing. This algorithm takes into account the popularity of the data objects, the latency between

nodes (access costs) and their storage costs. This algorithm considers all nodes as Internet as a

Service (IaaS) providers, and aims at pushing the contents from the cloud to the edge (increasing the

proximity of replicas to the data consumers), in a fully distributed and efficient way.

In D-Rep, the cost function is defined as the number of requests for each replica, multiplied by the

latencies of these requests (much like in the previously analyzed algorithms of Section 2.4.6), summed

up with the storage costs of the placed replicas. The authors developed a very lightweight heuristic

approach for minimizing this function, by delegating to each node the task of performing the placement

decisions relative to their currently stored replicas in an autonomous way.

Each node h executes an instance of the placement algorithm, and is aware only of itself and its

immediate neighbours. As so, a node h, computes, for each neighbour n of h:

• latencynh, which is the latency from n to h.

• unit pricen, which is the unit storage price of each neighbour node.

• num requestsknh, which is (for each replica k that is stored in the node) the frequency of requests

for k, coming from neighbour h.
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The algorithm is executed in epochs, where an object may be duplicated or migrated from node h to

a neighbour n. If the total latency cost, according to the number of requests in the last epoch, is larger

than the storage cost for that replica in n, the object is duplicated. If this condition does not hold, the

migration condition is tested. For this condition, the algorithm calculates the reduction in storage cost

from the removal of the replica in h, and estimates an augment in the latency cost. This augment comes

from the assumption that the latency of requests coming from the other neighbours i 6= n will increase,

due to the removal of the replica. The estimation of this value is very simple, but lies on an assumption

that may not hold true, which may stop the algorithm from performing beneficial migrations. Finally, the

algorithm evaluates a condition to remove each replica. This is done by estimating, in the creation of the

replica, its expected utilization. This value is then compared against the current number requests, and

the replica is removed if it reaches a lower-bound.

In D-Rep, placement is fully distributed and executed with very reduced information, displaying a

very low computation overhead per node. The algorithm can adapt to dynamic workloads, but its limited

horizon of information may lead to the creation of unnecessary replicas and high fluctuation. Routing

is only aware of replicas in certain cases, since the authors define a lightweight solution for replica

discovery. On the other hand, the fact that, in a single epoch, replicas can only be forwarded from a

node to one of its neighbours, means that several epochs are required for a replica to reach its optimal

location, which results in a slow convergence.

2.4.8 QoS-Aware Replica Placement

In Tang et al. [33] the authors define a Quality of Service (QoS)-Aware replica placement problem, with a

cost model that accounts for replica storage costs and update costs. This model regards the placement

of the replicas for a single object, and it can then be intuitively extrapolated to a system that operates

with multiple objects. Every node v in the network has a QoS requirement q(v), specifying an upper

bound on the access costs (latency of requests). These access costs are the distance d(v, u), from

v to the closest node u that holds a replica of the requested object. The objective of the QoS-aware

placement problem is to find a placement solution that satisfies the QoS requirements of all nodes, while

minimizing the replication cost. This cost is a weighted sum of the storage costs of all placed replicas,

and the update costs, which refer to the necessary communication to update the replicas. For updates,

the model assumes that the network is organized in a tree structure, rooted at the source (origin) node

of the object. When a write operation is performed, the request is sent to the source node, which then

propagates the updates to every replica, through the aforementioned tree structure. Therefore, the

update costs rise with the number of replicas and their latency to the origin.

Building on the previous model, the system proposed in Cheng et al. [34] also considers the storage

costs and update costs. Furthermore, this work also takes into account the access costs, which are
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represented by the distances between the consumers and replicas. The set of consumers served by

a replica node u is denoted SS(u), and the sum of the workloads W (vu) from each consumer v of the

replica in node u, must not surpass u’s capacity constraint, C(u). The replication strategy is considered

feasible if no replica nodes are overloaded and the QoS requirements are satisfied. The objective of the

scheme is to find a feasible strategy that minimizes the storage, update and access costs.

The first algorithm presented is named Greedy-Remove. The algorithm assigns a replica of the ob-

ject, to each and every node, and subsequently removes each replica, according to the largest possible

cost reduction. In the first iteration, the service set SS(v) of each replica node v contains only itself, since

the closest replica to v is in v. These sets are then adjusted for every pair of nodes, while maintaining

feasibility, considering two separate cases:

• Case 1: The replica is removed from node v by shifting all nodes in SS(v) to the service set SS(u)

of another replica node u. This is only possible when u is within the QoS range of every node in

SS(v), and the workload addition doesn’t exceed C(u).

• Case 2: A portion of the workload of v is shifted to another replica node u, by moving only some

of the nodes in SS(v) to SS(u). While in case 1, replicas are removed according to the reduction

in storage costs, update costs, and access costs, in this case the only affected factor is access

costs, since we are only dealing with workloads.

A second algorithm, Greedy-Add, was also proposed, starting with an empty replication set, and

adding replicas greedily, not only until the strategy respects the QoS restrictions, but, until the total

cost is impossible to reduce. This algorithm is more computationally efficient than Greedy-Remove, but

achieves slightly less optimal results. Nevertheless, both algorithms are computationally heavier than

most of the schemes we’ve analyzed.

These strategies, when applied to a global system, with several objects, make for an item-wise de-

centralized scheme, where the placement decisions can be performed at the source nodes for each data

item. The goal of the algorithm is to satisfy latency constraints, and reduce costs without considering

request patterns, therefore it isn’t made to support dynamic workloads.since the algorithm calculates

the near-optimal solution in a single round, convergence is fast. There is awareness of the underlying

network topology, and an assumption that updates are propagated through a tree structure. Routing is

replica aware, due to the fact that requests are routed to the nearest replica, but since the authors do

not provide information on how synchronization and replica discovery would be implemented, we make

no assumptions on the communication overhead.
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2.4.9 Write-Aware Replica Placement (WARP)

In [35] the authors propose a replica placement algorithm for the cloud that accounts for the costs of

keeping replicas consistent. The algorithm defines the operations of several consistency models and

evaluates delay (access costs) and reliability for each possible operation. This algorithm regards the

placement of replicas for a single object. The authors detail the calculations that are necessary to

perform the placement decisions, but abstain from describing where the calculations should be per-

formed. By omission, we may assume that, for each item, a single origin node is responsible for these

calculations, making an item-wise decentralized scheme. The system model assumes several cloud

datacenters (DC) each with an arbitrary number of nodes. The data regarding a cloud application A is

then replicated among multiple partition groups. Each partition group g ∈ G has a single leader lg, and

several masters and slaves. mg then represents a master in g, and sg represents a slave.

When a write operation W is requested by a client, the request is sent to the closest master, which

forwards it to the leader. The leader then transmits the updates to all masters, and each master relays

the updates to its slaves, asynchronously. The transmission delay of the W operation for time interval t,

from client c near DCi is then represented by:

di(W, t) = d(c,mg, t) + d(mg, lg, t) + d(lg,mg, t) + d(mg, c, t) (2.4)

where d(c,mg, t) denotes the delay from the client to its master, d(mg, lg, t) the delay from the master to

the leader, etc. . A read operation, on the other hand, may be performed in multiple ways, depending

on the consistency protocol used by the algorithm. The authors consider 3 consistency protocols: Weak

Consistency (WC), in which the users simply obtain the object from the closest slave; Strong Consis-

tency (SC), in which the users should get the last version of the object; and Bounded Consistency (BC),

in which the latest version is obtained when slaves are not sufficiently up-to-date. For each of these

consistency protocols, a read operation is defined, along with the cost function for the transmission

delay, much as in Equation (2.4). The total cost function then takes these delay cost functions, along

with the number of operations for each consistency protocol, and calculates the average delay for all

datacenters. The cost function is then subject to several constraints, which: indicate the required QoS

for all operations, limit the number of replicas in a DC, limit the number of slaves to the processing rate

(computational capacity) of their masters, and limit the number of masters to the processing rate of their

leaders.

Firstly, the authors define a leader selection algorithm, which uses the delay cost functions and the

frequency of operations to calculate the best leaders for each partition. Likewise, the replica placement

algorithm also uses the delay cost functions to calculate weights for masters and slaves (wm andws), that

represent the average delay of all operations that use, respectively, masters and slaves. For example,
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Weak Consistency read operations only access the closest slave, and so they are only used in the

equation to calculate ws, and not wm. After these weights are calculated, the DC with the lowest ws

value becomes DCslave and the DC with lowest wm becomes DCmaster. Slaves and master replicas

are then placed in each of these two DC ’s according to the number of read and write operations.

This algorithm requires a whole lot of information about the system, regarding the delays between

datacenters and the operations performed in each of them. In systems with a large number of nodes,

this is less feasible and may lead to larger storage and computation overheads, since we may assume,

by omission, that the calculations regarding the placement of each replica are not computed in par-

allel, but performed in a single origin node of that replica. Convergence is somewhat fast, since the

best achievable solution is calculated in a single round. However, the algorithm only considers replica

creation, disregarding replica removal, since, as the authors note, this would add additional complexity.

This makes it much less elastic, since replicas that become unnecessary are not removed. Routing is

replica-aware, and we make no assumptions on the communication overhead, since the authors do not

specify how all the necessary information to execute the algorithm, is made available.

2.5 Discussion

The aforementioned schemes were each developed for different systems, and considering different

goals. Each of them succeeds in some factors and flounders in others. In Table 2.1 we can see a

comparative overview of these schemes, where we lay out how well each of them performs according to

the performance criteria, and how the systems differ from each other, according to their characteristics.

Performance Criteria is classified by: High Performance (FFF), Medium Performance (FF), and Low

Performance (F).

Placement schemes that use replica-blind routing, such as [27, 29] are very efficient, but are re-

stricted to placing replicas along the request paths, hindering approximation quality. EAD [27] also only

considers the popularity of data objects, and node congestion, not accounting for factors such as the

experienced latency from the data consumers to the data objects (or, equivalently, the access costs).

ABC [29] considers the distance between consumers and data sources, but its mechanisms may per-

form inaccurate estimations, and convergence may be impossible due to the constant removal decisions

that may come to remove useful replicas. CAC [28] attempts at maintaining efficiency, while improving

quality, and accounts for network congestion, however, it still places replicas along request paths, which

prevents the scheme from achieving a significantly more optimal solution. Along with that, it also suffers

from weak elasticity, since a replica may be kept indefinitely on a node, regardless of its usefulness.

To deal with the inefficiencies of replica-aware routing, AutoPlacer [32] develops a probabilistic struc-

ture to store and query the information efficiently. However, the replica placement scheme itself requires
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Placement Systems

Performance Criteria System Characteristics

Approximation
Quality

Comp.
Overhead

Comm.
Overhead

Convergence
Speed Elasticity Distribution Replication

Degree Routing Decision Factors

EAD [27] FF FFF FFF FFF FFF
Decentralized

(item-wise) Adaptive Replica-blind Object popularity,
Node congestion

CAC [28] FF FFF FFF FFF F
Fully

distributed Adaptive Mixed
Object popularity,
Link congestion

(used bandwidth)

ABC [29] F FFF FFF F FFF
Fully

distributed Adaptive Replica-blind
Object popularity,
Consumer-source
distance (hops)

ADP [30] FFF F F F FF Centralized Fixed Replica-
aware

Object popularity,
Co-location of

associated data

AutoPlacer [32] FFF FF F FF FF
Fully

distributed Fixed Replica-
aware Object popularity

Holistic-All [12] FFF F F FF FFF Decentralized Adaptive Replica-
aware

Object popularity,
Access costs

D-Rep [4] FF FFF FFF F FFF
Fully

distributed Adaptive Mixed
Object popularity,

Access costs,
Storage costs

Cheng et al. [34] FFF F N/A FFF F
Decentralized

(item-wise) Adaptive Replica-
aware

Access costs,
Storage costs,
Update costs,
Load balance,

QoS

WARP [35] FF F N/A FFF F
Decentralized

(item-wise) Adaptive Replica-
aware

Access costs,
Update costs,
Consistency

models, Node
processing rate,

QoS

Table 2.1: Comparative overview of the existing replica placement schemes.

an all-to-all communication process, and the replica degree is fixed, limiting its elasticity to dynamic en-

vironments. ADP [30] computes near-optimal solutions, but it is centralized, requiring very complicated

computations, and the collection of data from all nodes; which makes it infeasible in the edge computing

paradigm. The fact that the algorithm considers the co-location of associated data, is very interesting,

however, it requires a somewhat global view of the system. Because of this, it is hard to develop an

efficient solution for this cost model, while achieving high approximation quality.

Holistic-All [12] is distributed, has high elasticity and represents one of the best alternatives to achieve

high approximation quality, but not without sacrificing efficiency. This is because it requires a long serial

number of communication rounds, which is a big problem in systems with a high number of nodes, and in

a large diameter networks (where the latency between nodes is high). On the other opposite, D-Rep [4]

trades approximation quality for efficiency. This algorithm has been designed specifically for the edge

and requires very little communication among nodes, however, the approximation quality is hindered by

the fact that each node works with partial information, and, since it requires multiple optimization rounds

to approximate the global optimum, convergence is also, consequently, hindered.

As we have mentioned, one of the main causes of the development of edge systems, is to reduce

the delay from consumers to content. Thus, the aim of a placement scheme for the edge is always to

place data objects closer to the nodes that request it the most, which depends on factors such as object

popularity, and distance from consumers to replicas. This distance can be defined as the experienced
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latency, or access costs, hence, we can affirm that both of these factors (object popularity and access

costs) are accounted for in [4,12,34,35]. However, only one of these strategies considers the possibility

of differential consistency in requests. Cheng et al. [34] considers update costs, associated with the

write operation, but it assumes a specific topology and routing algorithm. WARP [35], on the other

hand, accounts for the costs of multiple consistency models, independent of routing, but requires a very

large amount of information regarding the network and the state of each node, along with extensive

calculations. Since the authors do not provide a specification for how to obtain the information and

effectively distribute the calculations, the algorithm presents difficulties in its application to the edge

paradigm (and the same can be said for Cheng et al. [34]). Alongside, it only considers replica creation

and disregards replica removal, which thwarts its elasticity.

To the best of our knowledge, there are no replica placement systems for the edge (nor for other

contexts) that provide a viable and scalable structure to compute placement solutions that account for

the costs of keeping replicas consistent, according to multiple consistency protocols. D-Rep, being one

of the most relevant replica placement algorithms for the edge, operates in a fully distributed structure,

in which each node has a very limited horizon of information. This design makes it difficult to extend the

system to consider the costs of different consistency protocols, which would require the nodes to fetch

more information. In this thesis we have developed Cathode, an algorithm that provides an operational

structure that is able to gather and use the necessary information to perform placement decisions that

consider these costs, in a scalable and flexible fashion. Cathode operates in an item-wise decentralized

fashion, just like [27, 34, 35], and provides several parameters that allow the system administrator to

customize the system’s operation to the priorities of the underlying system. Cathode also highly focuses

on providing fast convergence (which is a necessity in a dynamic environment such as the edge), while

attempting to balance quality and efficiency.

Summary

This chapter has provided the background and definitions of the replica placement problem. We have

explored how the problem can be applied to the edge and explored the importance of considering the

multiple consistency protocols that can be used in these systems. We have described several replica

placement systems that present relevance to our work, highlighting their operation, capabilities, and

limitations, and finally, we have explained how Cathode places itself in this world. In the next chapter we

delve into the design and implementation of Cathode.
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This chapter introduces Cathode, a decentralized consistency-aware replica placement algorithm

for the edge. In Section 3.1 we present the design goals for the algorithm. Section 3.2 describes the

system model and Section 3.3 explains how Cathode supports the consistency models, and defines

their operations. Then, Section 3.4 showcases the cost function and decision factors that the system

accounts for, and Section 3.5 delves into the algorithm that aims to minimize the cost function. In Section

3.6 we present an analysis of the algorithm, its problems and applicability, and finally, in Section 3.7 we

provide a description of the implementation of Cathode that was used in our evaluation.

3.1 Goals

As we have seen in the previous chapter, in the area of replica placement, some systems have focused

on improving approximation quality, while sacrificing efficiency, such as Holistic-All [12], while others

opted for efficiency at the detriment of quality, such as D-Rep [4]. The latter algorithm is one of the most

relevant attempts at building a general replica placement system for the edge/fog paradigm, however,

it makes use of a very small horizon of information. When designing Cathode, one of the goals was to

broaden the horizon of information, in order to have better approximation quality, but without completely

sacrificing efficiency. This is accomplished by having a near global, but approximate, view of the prob-

lem. Alongside, the overall structure of Cathode shall allow it to support different consistency models,

adapting the placement of replicas according to the observed latencies of each operation. The objective

is to distribute the extensive calculations required to account for these factors, all the while considering

both the creation and removal of replicas, providing the necessary elasticity for it to adapt to dynamic

changes in the request patterns.

3.2 System Model

This section presents a description of the system model, detailing how the nodes are organized in the

network, and how objects are deployed.

3.2.1 Node Network

We assume that the system is composed of a set of N edge nodes N = {n1, n2, . . . , nn}. Each node ni

has a known capacity in terms of storage, denoted capacity(ni), and a unit storage cost storageCost(ni),

which defines the cost of storing a single data unit in that node. We assume that edge nodes are

connected by a multi-hop network, such that any edge node can communicate with any other edge

node. Nodes can communicate to serve client requests, and to coordinate placement decisions. The

communication between any two edge nodes ni and nj is subject to some (average) delay denoted
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δ(ni, nj). We assume that these delays are known by Cathode. The manner in which these values are

measured is orthogonal to our contribution: E.g. nodes can ping other nodes to estimate the delays

between each other, or rely on some external monitoring infrastructure to obtain this information.

3.2.2 Data Objects

We assume that the system must handle the deployment of a set of O objects O = {o1, o2, . . . , oo}.

Each object oi has a known volume, denoted vol(oi), representing the amount of storage capacity it

consumes when it is stored in a given edge node. Each data object oi supports a set of operations op1
i ,

op2
i , . . ., opk

i ; and each operation may have a different cost, according to its semantics (whether it is a

read operation or a write operation, which consistency model it supports, etc) and to the current data

placement.

3.2.3 Clients and Requests

We assume clients are not aware of the data placement. Clients are attached to a given edge node,

and send requests to that node, awaiting for the response without observing the inner processes of the

system. Each request is characterized by a target object oi and the specific operation opk performed on

that object. Since the replica placement system only cares about which objects are requested by which

nodes, we do not model the inner parameters of the operations, which are application-dependent.

To give an example of how a request is handled, consider the case of a simple read operation. If the

object is replicated on the edge node to which the request was submitted to, the edge node performs

the operation and replies to the client. Otherwise, the edge node forwards the request to some other

node that replicates the object, collects the reply, and forwards it back to the client.

Since we assume that clients are attached to the closest edge nodes, we can abstract the system

model from clients, and think of requests as emerging in nodes. These requests can then be satisfied

in those same nodes, or may require communication and cooperation with other nodes, depending on

the current placement of data, and on the consistency protocol being used. This way, Cathode is only

aware of the set of communicating edge nodes, N .

3.2.4 Object Deployment

Each object may be replicated in multiple edge nodes. The set of nodes that store the replicas of a given

object may change in time, according to how the replica placement algorithm adapts to the changes in

the workload (number of clients, frequency of request, etc). It will then be the role of Cathode to define

which edge nodes replicate each object.
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Figure 3.1: Example of a deployment for a data object.

We assume that for each object oi there is a single edge node that serves as a source replica for the

object, denoted src(oi). The full set of edge nodes that keep a replica of a given object oi, including its

source, is denoted replicas(oi). The replica of object oi in node n is denoted replica(oi, n). The edge

nodes that perform requests for given object, are denoted the consumers(oi). The deployment of an

object is a tuple defined by the identifier id of the source and the set of replicas:

deployment(oi) = (id(src(oi)), replicas(oi)) (3.1)

In Figure 3.1 we can see the example of a deployment, which node A is the source node, nodes

B and C, with the green outline, are the other replicas, and the nodes with a dotted outline (F , G,

and E), are the consumers of the data object, which perform operations in either the source or any

of the other replicas. In the context of the edge/fog, the placement of the src can be done in multiple

ways, depending on both the underlying architecture, and the application that is running. For example, it

can be thought of as the node in which geographically-local data originates. In scenarios like vehicular

networks (as presented in [36]), road-side units store the information regarding road hazards in the

area. These road-side units, in our model, can be considered the src of the data regarding those

regional road hazards. This is called georeferencing. Another example, in hierarchical fog networks

such as the layered architecture present in [7], the src of several objects, relevant to a region, can be a

more reliable higher tier node, with greater computation and storage capacities. This said, the algorithm

used to assign the source node to a given data object is, hence, orthogonal to our work. Currently, we

assume the source does not change its position in the run time of the system. Cathode can be extended

to dynamically re-assign the source of an object based on current demand. However, extensions to
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support such tasks are not discussed in the paper and are postponed for future work, since they add

extra complexity to the problem.

3.3 Operations and Consistency Models

As we have stated, each data object oi supports a set of operations, and these operations are often

attached to consistency models. For example, if an object supports a weak consistency model, it should

support a read operation and a write operation that guarantee weak consistency.

Each operation on an object oi, as it is evident, will differ in cost, according to both the semantics of

the operation, and the current deployment of oi. We therefore assume that the cost of a given operation

opk
i on object oi, when it originates in a given edge node n, can be expressed as a function of n and of

the object deployment deployment(oi):

cost(opk
i , n) = costfunctionk

i (n,deployment(oi)) (3.2)

The costfunctionk
i thus allows to model the costs of different replica consistency protocols, and the

cost may be modelled as a range of different factors (e.g. latency, network congestion, number of com-

munication messages, etc.), depending on what the system administrator wants the replica placement

system to optimize.

3.3.1 Example Cost Functions

We illustrate the use of cost functions with a concrete example. Consider that the user wants to optimize

the system for latency, and that, therefore, the cost of each operation is the latency required to execute

that operation. Consider also an object that supports a primary-backup consistency protocol, where the

source of the object plays the role of the primary replica. To support this protocol, we define a write

operation named WRITESOURCE and a read operation named READCLOSEST.

The WRITESOURCE operation is executed by sending the update to the primary, then having the

primary send the update, in parallel, to all replicas, waiting for all the acknowledgements from these

replicas and, finally, sending back an acknowledgement message to the edge node that executed the

operation. The latency of the WRITESOURCE operation can be captured by the following cost function:

wcost(n,deployment(o)) = 2[δ(n, src(o)) + max
∀j∈replicas(o)

δ(src(o), j)] (3.3)

The READCLOSEST operation is executed by performing the read locally, if the node n maintains a
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replica of the object, or by sending the read request to the nearest replica. The latency of the READ-

CLOSEST operation can be captured by the following cost function:

rcost(n,deployment(o)) = 2 min
∀j∈replicas(o)

δ((n, j) (3.4)

Note that an object may allow several consistency models, and thus, several types of operations,

each with their own semantics. It will then be the role of Cathode to optimize the placement of that object,

accounting for the observed costs of each operation, according to their cost functions. In Section 3.7 we

detail an implementation of Cathode, and provide more examples of operations and their cost functions.

3.4 Optimal Placement

In this section we describe the problem and the total cost function. The main objective of the replica

placement will be to reduce the value of the total cost. We assume that each node n, in each epoch,

keeps track of the frequency fn(opk
i ) of each type of operation opk

i that originates in it (i.e., requests

received from attached clients).

In order for the replica placement system to estimate these values, time is divided in intervals of the

same duration, named epochs. The fn value can then be estimated by using an Exponential Moving

Average (EMA) technique, such as the one employed in [27]. In this technique, the fn value of a given

epoch e will then be the weighted sum of the recorded value in epoch e and the fn value computed in

epoch e − 1 (the previous epoch). A larger weight for the value recorded in epoch e means that the

newest observations of the request patterns have larger influence, while a larger weight for the fn value

computed in e− 1 means that the history of observations has larger influence on the current fn value.

The cost of maintaining a given deployment for an object oi is defined as:

cost(deployment(oi)) = oCost(deployment(oi)) + sCost(deployment(oi)) (3.5)

with oCost representing the operations’ cost:

oCost(deployment(oi)) =
∑
∀n

∑
∀k

cost(opk
i , n) · fn(opk

i ) (3.6)

and sCost representing the storage cost:
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sCost(deployment(oi)) =
∑
∀n

hni · storageCost(n) · vol(oi) (3.7)

where hni is a binary which takes the value of 1 when a replica of oi is stored in n, and 0 otherwise.

The total cost of the system is the cost of maintaining the deployments of all objects:

totalcost =
∑
∀i

cost(deployment(oi)) (3.8)

Building up from the definitions above, the optimal placement is a set of object deployment solutions

that would minimize the totalcost, while respecting the capacity constraints at each node. The capacity

constraint can be expressed as:

∀n : capacity(n) ≥
∑

∀i:n∈replicas(oi)

vol(oi) (3.9)

Since this optimization problem is NP-Hard, as we have mentioned in Section 2.2, we resort to an

item-wise decentralized heuristic strategy to approximate the optimal solution, which we describe in the

next section.

3.5 Data Placement Algorithm

On a first level, we decentralize the placement algorithm, by letting the source of each object be in charge

of the decisions regarding the deployment of that object. On a second level, the calculations needed for

those same decisions, are distributed among the replicas and consumers of the object. The algorithm

operates in epochs. During the course of an epoch, information is gathered in these nodes, and then, at

the end of the epoch, an optimization round commences. The replicas then send their information to the

source of the object, which then operates the placement process that focuses mainly on two sequential

phases: a shrinking phase, in which unnecessary/disadvantageous replicas are removed; followed by an

expansion phase, in which replicas are created in the positions which bring more benefit to the system.

In the following sections we provide a detailed description of this process. As a companion of the text,

we also provide an illustration of the process in Figure 3.2.

3.5.1 Information Collection

As we have stated, the algorithm operates in epochs, and in each epoch, each node n estimates fn(opk
i )

for each operation opk
i on object oi, that has been requested by that node. Hence, n is considered a

consumer of each object oi (i.e. n ∈ consumers(oi)).
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Alongside, the node n also computes two data structures for each object oi that it replicates (each

object oi for which n ∈ replicas(oi)). These structures are called the candidateSet, and the summaryTu-

ple.

3.5.1.A candidateSet

The candidateSet of replica(oi, n) is a set of kcand consumers of that replica, that are considered the

best candidates in which to create a new replica of oi.

To compute this set, the replica node n needs to estimate, for each consumer m, the following values:

• an(oi,m), the frequency of requests from consumer m, regarding object oi, that n satisfies (or

equivalently, the access frequency of m to replica(oi, n));

• δ(m,n), the average observed latency of m to n.

These values are updated at every access to the replica of oi in n. In the general case, each time

replica(oi, n) receives a request from a node m, an(oi,m) is incremented, and the observed latency is

computed into the average value δ(m,n). For each m, both values are then used to compute a weight,

wn(oi,m), that represents a predicted benefit for creating a replica in m:

wn(oi,m) = an(oi,m) · δ(m,n) (3.10)

The candidateSet of replica(oi, n) is the set of tuples (m,wn(oi,m)) of the kcand consumers with the

largest wn(oi,m).

3.5.1.B summaryTuple

The summaryTuple of the replica of oi in n (replica(oi, n)) provides a summarised representation of

the consumers of replica(oi, n). To compute this set, the replica node n needs to calculate, for each

consumer m, the following values:

• an(oi), the frequency of requests that it satisfies for that object, or equivalently, the access fre-

quency to replica(oi, n);

• consumers(oi, n), the set of consumers that accessed replica(oi, n), in the current epoch;

• δn(oi), the average latency of the set consumers(oi, n) to n.

Each time replica(oi, n) receives a request, the identifier of the consumer node is added to the set

consumers(oi, n). The an(oi), and δn(oi) values, on the other hand, are computed, respectively, by
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summing up the values an(oi,m), and computing the average of the values δ(m,n), which we have de-

scribed above (Section 3.5.1.A). These values are then used to compute a weight wn(oi) that represents

the predicted weight of the set consumers(oi, n) on the total cost of the deployment:

wn(oi) = an(oi) · δn(oi) (3.11)

The summaryTuple(oi, n) is then composed by the set of consumers and the predicted weight of the

set:

summaryTuple(oi, n) = (consumers(oi, n), wn(oi)) (3.12)

3.5.1.C Sending the information

After both the candidateSet(oi, n) and the summaryTuple(oi, n) are computed during the course of an

epoch, they are sent, at the end of the epoch, from n to src(oi). This is the Step 1, represented in

Figure 3.2a. Once the src(oi) receives this information from all the replicas, it coordinates the replica

placement algorithm, starting with the candidate selection process.

3.5.2 Candidate Selection

As stated before, the placement process is constituted by a shrinking phase, in which replicas are re-

moved, and an expansion phase, in which replicas are created. Consider an object oi. In both phases

several nodes are considered to remove/create replicas, and various combinations of removals/creations

are evaluated in the process. In the shrinking phase, the nodes that will be considered in the computa-

tions are the ones belonging to replicas(oi), which is expected to be a relatively small set of nodes. In

the expansion phase, the nodes that will be considered in the computations belong to consumers(oi).

Since it is expected that consumers(oi) >> replicas(oi), we have devised a way to reduce the number

of nodes considered in the expansion phase, in order to reduce the computation overhead.

This is done by the src(oi), which takes the candidateSet(oi, n) of each replica node n, and calcu-

lates the global kcand consumers with the largest weights. The resulting set of consumers contains the

candidates that will be considered for replica creation, and is denoted by candidateSet(oi).

3.5.3 Shrinking Phase

The goal of the shrinking phase is to check if it is possible to reduce the cost of the current deployment

by removing one or more replicas. It does so by estimating, for every combination of kcomb (≥ 1) replicas

of oi (from the set replicas(oi)), the cost of an alternative deployment where that combination of replicas
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Figure 3.2: Example of the execution of the algorithm, for an object OBJ1.
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is removed. The gain that can be achieved by selecting a target deployment, is the difference of the cost

of the current deployment and the estimated cost of the target deployment.

For example, in Figure 3.2 the current deployment has 3 replicas: A, B, and C. Considering kcomb = 2,

an alternative deployment is achieved by removing replica B, (REM(B)), another by removing replica C,

(REM(C)) , and the last by removing replicas B and C, (REM([B,C])). The removal of the source is not

considered since it is the node coordinating the placement decisions.

Cathode, after estimating the gain gain(oi, dx(oi)) for each alternative deployment dx of the object

oi, will select the target deployment with the largest estimated gain and, if the estimated gain is above

some minimal threshold Tgain, that deployment is selected, by removing the corresponding replica(s).

However, in order to avoid overloading the src when estimating the costs/gains, we parallelize the

computation of these costs by distributing it across the nodes of a set participants(oi). For now let

us assume that the set of participants is equal to the set of consumers, therefore, participants(oi) =

consumers(oi). The set of consumers is known by the source, from computing the union of the sets

consumers(oi, n). (Note: these sets are obtained from the summaryTuple(oi, n) that the source received

from each replica n)

consumers(oi) =
⋃

n∈replicas(oi)

consumers(oi, n) (3.13)

In Section 3.5.7 we detail how the participant set can be reduced, but for now, let us assume that

this is how it is calculated. After computing the set, the src will contact the nodes in participants(oi), as

seen in Figure 3.2b. Note that, normally, the replica nodes of an object are also consumers of that same

object, however, to simplify our illustration, in Figure 3.2 we assume that both replicas B and C are not

consumers of the object.

After the participants receive the message from the source, they will each calculate their part of

the oCost(dx(oi)) for each alternative deployment dx(oi). Note that the formula of the oCost (seen in

Equation 3.6), defines it as the total sum of the costs of the operations requested by each consumer.

Therefore, it is possible for the consumers to locally compute their own contribution to this cost function,

and then send it to the src, which will aggregate the results.

As an example, consider node m as a consumer of object oi. As we have stated in Section 3.4,

node m will have estimated the frequency values, fm(opk
i ). Consider that, in an epoch, this value is 4

for READCLOSEST (RC) operations and 2 for WRITESOURCE (WS) operations. Node m will then have

to compute the following oCost value for each alternative deployment dx of object oi:

oCost(dx(oi),m) = costfunctionRC
i (m, d)× 4 + costfunctionWS

i (m, d)× 2 (3.14)

Each participant, after computing the partial oCost values for each alternative deployment dx(oi),
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and computing the partial oCost value for the current deployment dcur(oi), will send these values to the

source node (Step 3 in Figure 3.2c). The source will then aggregate the values and estimate the total

operation cost oCost(dx(oi)) of each deployment:

oCost(dx(oi)) =
∑

∀m∈participants(oi)

oCost(dx(oi),m) (3.15)

This cost, is summed up with the total storage cost sCost(dx(oi)), giving us the cost(dx(oi)), as seen

in Equation 3.5. The source then takes these values, and compares them to cost(dcur(oi)), computing

the gain(oi, dx(oi)) for each deployment. The largest gain deployment is picked (if it is above the minimal

threshold Tgain) and denoted shrinkedDeployment(oi). Afterwards, the expansion phase commences.

3.5.4 Expansion Phase

The goal of the expansion phase is to check if it is possible to reduce the cost of shrinkedDeployment(oi),

by adding one or more replicas. As in the shrinking phase, this is performed by estimating the possi-

ble gains that can be achieved by selecting alternative deployments that, in this case, include 1 to

kcomb more replicas than shrinkedDeployment(oi). These new potential replicas are picked from the

candidateSet(oi), which was computed as described previously in Section 3.5.2. In the example of

Figure 3.2d, we represent the candidates with a green outline.

The expansion phase is then executed in a way that is analogous to the shrinking phase. The

src contacts the participants (Step 4, in Figure 3.2d), the costs are computed in a distributed way,

sent to the src (Step 5, in Figure 3.2e), which then estimates the gains for each deployment, selecting

the deployment with the highest gain, if the estimated gain is above the minimal threshold Tgain. This

deployment is denoted optimizedDeployment(oi).

3.5.5 Applying the Deployment

After the expansion phase, the replica removals and creations are applied to the system. The source

checks the divergence between the current deployment dcur and optimizedDeployment(oi). For re-

movals, a message is sent to the corresponding replica nodes, to remove their replicas of oi (Step

6a in Figure 3.2f). For creations, the messages, which are sent to the new elected replica nodes, in-

clude a copy of oi and a gain(oi, dcre(n)) value (Step 6b in Figure 3.2f). This gain value is not of the

actual deployment that was picked by the src, but of the deployment dn which creates a single replica in

the corresponding node n. (Note that, since kcomb ≥ 1, these values are always calculated). This value

represents, essentially, the gain of creating this replica, and its use is explained in Section 3.5.6.

Along with contacting the nodes in which replicas are removed and the nodes in which replicas are

created, the source, at the end of an optimization round, also contacts the other remaining replica nodes.
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Figure 3.3: Creation of an object in a node with full storage.

It sens to each remaining replica node n, a message containing the gain of removing the corresponding

replica, gain(oi, drem(n)). This is seen in Step 6c of Figure 3.2f. These gain values, of course, are

expected to be low, or even negative (depending on the Tgain parameter), and their use is explained in

Section 3.5.6.

3.5.6 Storage Constrains

When a target node receives, from the source node of a given object oi, an instruction to create a

replica for that object, the target starts by checking its storage constraints. If the creation of the new

replica would exceed its storage capacity, the target node needs to do the following additional checks

before creating the replica: The target node sorts all local replicas according to their associated removal

gain value (defined in the previous section (Section 3.5.5)); Starting from the lowest gain replica, it puts

replicas in a discard set, until it has released enough space for the new replica that needs to be created;

Then, the target computes the gain (which is probably negative) of removing the discard set:

gain(REM(discard set(n)) =
∑

∀oj :discard set(n)

gain(oj , drem(n)) (3.16)

This value is compared with the gain that the new replica brings, gain(oi, dcre(n)). The new replica is only

created if the estimated gain of the replacement is above the threshold Tgain. This process is represented

in Figure 3.3, where node H receives a creation request, but its storage is full. The volume of the new

object is 5 units, and so the discard set also constitutes a volume of 5 units, and is composed of two

objects. The algorithm will compare the gains of the new creation with the gains of the discard set and

act accordingly.

3.5.7 Paticipant Reduction

According to what was stated in the prior sections, for the placement of an object oi, in both the shrinking

and expasion phases, src(oi) contacts the nodes in the set consumers(oi). However, in some scenarios,

the number of consumers for an object may be quite large, and contacting each and every one of these
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consumers represents a communication overhead. To prepare Cathode for these scenarios, we have

devised an optimization, with the goal of reducing the number of consumers that must be contacted in

these phases.

This is done by taking each summaryTuple(oi, n), and picking the consumer sets with the largest

weights. Then, instead of the source node contacting every set consumers(oi, n), from each and every

replica node n, it only contacts the sets with the largest weights.

Let wtotal(oi) be the sum of the weights wn(oi) of each and every set consumers(oi, n) (these values

are obtained from the respective summaryTuples). Let participants(oi) be the final set of consumers to

be contacted by the source. Let wpart(oi) be the sum of the weights in the set participants(oi). The final

set is computed by adding the consumers(oi, n) sets with the largest weights into participants(oi), until

the following condition is verified:

wpart(oi) > Tpart · wtotal(oi) (3.17)

In this equation, Tpart ∈ [0, 1] is a parameter which regulates the amount of participants in the place-

ment computations. Lower values lead to less participants, thus, less nodes to be contacted and more

efficiency, but fewer approximation quality. Higher values, on the other hand, lead to lesser efficiency,

but greater approximation quality.

Note that there can be alternative ways to reduce the participants in the algorithm, by calculating

wh differently. In our design, the weight is calculated as a factor of request frequency and latency, so

we cut the consumers that have less predicted weight on the total cost equation, which means they are

less important for achieving high approximation quality. If the objective was to cut the consumers that

are located farthest from the source, then wh could be calculated merely as an inverse of the latency

of the consumers to the source. This is a completely valid approach which may potentially improve the

time efficiency of both the shrinking and expansion phases, since the farthest nodes from the source

would not need to be contacted. However, approximation quality could be impaired, since these nodes

can have a large influence on the total cost. In our design of Cathode, we have decided to aim for

approximation quality, and thus, we chose the former approach, instead of the latter.

3.6 Analysis of Cathode

In this section we provide an analysis on Cathode, regarding its overheads, regarding the orthogonal

problems that are part of the replica placement system itself, and regarding the applicability of Cathode to

real scenarios. We start with an examination of the overheads in terms of communication, computation,

and metadata. Secondly, we provide a brief analysis of some orthogonal problems, and finally, we

provide some examples on how Cathode may be applied to various architectures within the category of
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edge/fog systems.

3.6.1 Communication Overhead

In our analysis regarding the communication overhead of the algorithm, we focus on latency and the

steps required to complete a single round of the algorithm, since it is the aspect that primarily affects its

performance.

Each iteration of the algorithm requires several communication steps. We define a communication

step as a moment in which communication between nodes is needed (for the algorithm to progress),

and performed accordingly. A step includes several messages which, in theory, are sent simultaneously.

These steps occur between sets of nodes that replicate or consume given item oi:

• Firstly, replicas(oi) start the optimization round, sending information to src(oi). (1 communication

step);

• Shrinking phase ensues, and src(oi) delegates work to consumers(oi). Then, these nodes, after

computing the results, send them to src(oi). (2 communication steps);

• Expansion phase ensues, and src(oi) delegates work to consumers(oi). Then, these nodes, after

computing the results, send them to src(oi). (2 communication steps);

• The optimized deployment is applied to the system, with src(oi) contacting the consumers in which

replicas are to be created, and, at the same time, contacting replicas(oi) (1 communication step).

The algorithm is thus composed by 6 communication steps. The latency of each step depends then,

of course, on the latency between the nodes in the network, especially between the source node and

the sets of consumers and replicas. Of course, since replicas are placed in the nodes of consumers(oi),

then we can say that the latency of the steps essentially depends on the latency between the source

and the consumers. This latency, in itself, depends on the scenario in which the system is deployed. In

Section 3.6.5, we discuss some examples of viable scenarios.

3.6.2 Computation Overhead

When the algorithm is executed, computations are performed in several occasions. The bulk of these

computations, however, occur during the shrinking and expansion phases, particularly in the calculation

of the partial costs by the consumers. These partial costs, as we have previously detailed, are repre-

sented by oCost(dx, n), for a deployment dx and a node n, in which they are being computed. The oCost

values must be calculated for each deployment considered in these phases. In the shrinking phase, the

number of possible deployments is the following:
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nDeplsshr =

kcomb∑
k=1

(
size(replicas(oi))

k

)
(3.18)

In the expansion phase, on the other hand, the number is the following:

nDeplsexp =

kcomb∑
k=1

(
kcand

k

)
(3.19)

The computation of the oCost itself then considers all the cost functions of the possible operations.

The calculation of these cost functions depends both on the cost function and on the available informa-

tion for the nodes. For example, consider the wcost function defined in Equation 3.3. When wcost is

calculated in a consumer node n, if the distance from the source to the the replicas is not immediately

known by n, then n must consult a local index, or obtain the information remotely. The form by which

the information is obtained is out of the scope of this thesis, and so, we abstain from analysing the over-

head of computing the cost functions themselves. Hence, in our analysis we merely consider that the

calculation of oCost function is influenced by the operations’ cost functions, and must be calculated, by

each participant, nDeplsshr times in the shrinking phase, and nDeplsexp times in the expansion phase.

We can thus conclude that the number of calculations in each phase is proportional to its nDepls value,

and that it is in these values that resides the problematic of the computation overhead.

As it is evident, these numbers depend greatly on the kcomb and kcand parameters, and can raise

significantly when these parameters are set to high values, increasing the overhead. The configuration

of these parameters, nonetheless, will always depend on the characteristics of the system. It is of the

responsibility of the system administrator to set them according to the goals and characteristics of the

system.

3.6.3 Metadata Overhead

We separate our analysis of the metadata overhead in bookkept metadata and transmitted metadata.

The former refers to the metadata (relating to the algorithm) that must be stored in each node in order

for the algorithm to be executed, while the latter refers to the metadata (relating to the algorithm) that

must be transmitted between the nodes. Firstly we analyse the latter, and then the former.

3.6.3.A Transmitted Metadata

Metadata is transmitted at various stages of the algorithm, however, in some cases, the size of this

metadata is very small and hardly depends on any factors or parameters of Cathode. In our analysis

of transmitted metadata we focus on the most relevant cases, where the size of the metadata is larger

and can be influenced by the system state. In some of these cases, it may also be influenced by the
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decisions made by the system administrator, as we are about to see.

In the information collection stage, prior to candidate selection (Step 1 of Figure 3.2), each replica

must send the candidateSet and the summaryTuple to the source replica. We assume, for simplification,

that all identifiers and weight values are stored as integers. The space required for these structures is

thus defined by the following equations:

scandidateSet = kcand × (2× size(integer)) (3.20)

ssummaryTuple(oi, n) = (|consumers(oi, n)| × size(integer)) + size(integer) (3.21)

From these equations we can see that the space required for the candidateSet will always depend

on the kcand value, which is defined by the system administrator, while the space for the summaryTuple

solely depends on the amount of consumers that access the replica. As an example, consider that 100

consumers accessed the replica in the last epoch, and kcand = 20. Considering the size of an integer

as 4 bytes, the size of the candidateSet will be merely 160B, while the size of the summaryTuple will be

404B.

The other stages in which a considerable amount of metadata is sent between the nodes are during

the shrinking and expansion phases, more specifically, when the participants return the results to the

source (Steps 3 and 5 of Figure 3.2). In this case, the participants will have to send a set of oCost

values, whose length is equal to nDeplsshr in the shrinking phase, and nDeplsexp in the expansion phase

(whose functions are displayed in Section 3.6.2). The space required for transmitting the oCost values

in the shrinking phase, soCostShr, and in the expansion phase, soCostExp, is thus defined by:

soCostShr = nDeplsshr × size(integer) (3.22)

soCostExp = nDeplsexp × size(integer) (3.23)

Again, in this case, the size of the metadata will highly depend on parameters that shall be tuned by

the system administrator. As an example, consider that the number of replicas of a given object is 50.

Consider also that kcomb = 2 and that kcand = 20. If an integer’s size is 4 bytes, then soCostShr will be,

approximately, 5 Kilobyte (KB), while soCostExp will be 840 B.
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3.6.3.B Bookkept Metadata

The space snode required for bookkeeping in a node n is made up of the space required to store infor-

mation regarding n both as a consumer of data objects (sconsumer), and as a replica node of data objects

(sreplica). Just as before, in this analysis we focus on the most relevant aspects that will influence the

overhead of metadata, and refrain from details.

As a consumer, n must store the frequencies fn(opk
i ) of each type of operation that it requests to

other nodes. This means, that for each type of operation, n stores the identifier (id) of that operation

and its frequency value. On the other hand, as a replica node, n must store for each object oi that it

replicates, the information used to compute the candidateSets and the summaryTuples. This is, for each

object oi, and for each consumer m, n must store the the consumer’s identifier, the access frequency

an(oi,m), and the observed latency δ(m,n).

We assume, for simplification, that all identifiers and frequency values are stored as integers, and

that latency values are stored as doubles. Accordingly, the space snode required for bookkeeping in a

node n, is defined by the following set of equations:

snode(n) = sconsumer(n) + sreplica(n) (3.24)

sconsumer(n) =

 ∑
∀i:n∈consumers(oi)

reqOpTypes(n, i)

× (2× size(integer)) (3.25)

sreplica(n) =
∑

∀i:n∈replicas(oi)

 ∑
m∈consumers(oi,n)

(2× size(integer) + size(double))

 (3.26)

where reqOpTypes(n, i) is the number of types of operations that n requests for given object i.

To illustrate with an example, consider a node n that requests 1000 objects, that performs 2 types

of operations on each object, and that stores the replicas of 1000 objects, which are each periodically

requested by 100 consumer nodes. Considering the size of an integer as 4 bytes, and the size of a

double as 8 bytes, the space necessary for bookkeeping consumer metadata (sconsumer(n)) in this node

would be of 16 KB, while the space necessary for bookkeeping replica metadata (sreplica(n)) would be

of, approximately, 1.6 Megabyte (MB).
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3.6.4 Orthogonal Problems

In this section we briefly discuss some of the problems that are part of the replica placement system,

but which are not the focus of our work, and therefore we consider orthogonal to the contributions of this

thesis. In these paragraphs we aim at giving insight into these problems and how they can be tackled.

3.6.4.A Replica Discovery

In the design of Cathode we assume that there is an underlying replica discovery system that allows

consumers to have knowledge of where the replicas are located. These systems can be implemented

in many different ways. In the example of D-Rep [4], the authors propose a very simple and lightweight

solution, in which, when a replica is created in a node n2, the closest replica node to n2 (which we name

n1), sends a notification to the consumers that have requested the replica from n1, in the last epoch.

Furthermore, from the example of Autoplacer [32], we know that there are ways to efficiently store the

information necessary for replica-aware routing. In that particular data placement system, the authors

achieve this by creating a probabilistic data structure that allows for efficient look-ups and storage of

replica-related information.

3.6.4.B Knowledge of Latency Values

Cathode assumes that each consumer has all the necessary information regarding latency values to

perform the cost calculations in each round. In weak operations, like READCLOSEST, in which only the

closest replica is contacted by the consumer, this information is easily collected by having the consumer

measuring the RTT of the request. However, in operations like WRITESOURCE (whose cost function is

detailed in section 3.3.1), collecting the necessary information is not so obvious. Such can be achieved

in a number of different ways, e.g., by having the source/replicas propagate the experienced latency

values in the responses to the consumers.

In this thesis, we will not delve into how this information can be stored and collected, since it would

mean to develop a whole underlying system, which should be orthogonal to Cathode. However, since

such a system can further contribute to the validation of Cathode, these problems should be tackled in

future work.

3.6.4.C Data Object Granularity

Currently, the granularity of each object is defined by the system administrator, and should follow the

logic of the application. We expect the application to cluster fine grain objects into reasonable sized data

partitions that are each treated as a single object by the algorithm. This way, Cathode would collect

statistics for each of these partitions, instead of keeping track of the individual objects in each partition.
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Furthermore, in the expansion phase, when a new replica is created, all the objects of the partition would

be replicated on the new replica node; while in the shrinking phase, when a replica is removed, all the

objects of the partition would be removed from the node. This allows to keep the bookkeeping costs of

Cathode within some target limits defined by the system administrator.

3.6.4.D Fault Tolerance and Partitioning

Fault tolerance is also another problem that is orthogonal to our contributions. As we have seen, Cathode

has one of the replicas (the source replica) playing a special role in the algorithm. If this replica fails, a

leader election algorithm should elect another replica as the new source. In face of a network partition,

the algorithm would elect a source in each partition, so that placement decisions can be executed in

both partitions, in parallel, without blocking the placement algorithm. When the network partition heals,

the leader election mechanism would ensure that only one source remains active. This can also be

implemented in different ways, which we do not develop in this thesis.

Note that some data consistency models, namely strong consistency models, may block operations

in the presence of network partitions. For instance, some operations may require a majority of replicas,

and thus, may block when operating in partitions where there is only a minority of replicas. This is

unavoidable, and has been captured by the now well known CAP theorem [37]. However, in this case

scenario, Cathode will still continue to adjust placement for all objects that use weak consistency and

that remain live during the partition.

3.6.5 Applicability of Cathode to Edge Architectures

Cathode is flexible enough to be applied to a variety of systems, however, it was specifically designed to

perform well in edge/fog scenarios. The architecture defines a source node for each object, which acts

as the coordinator for the decisions regarding the placement of its replicas. This type of architecture is

not far off from the architectures of other edge systems, such as Gesto [38], a data storage system for

the edge, that enables causal consistency in a scalable manner. Gesto’s architecture is composed of

three tiers. The highermost tier is composed of the datacenters in the cloud, which store all application

data. The lowermost tier is composed of the partial replicas of the application state, located in edge

cloudlets within regions. Then, in each region, a broker unit composes an intermediate layer, being

responsible for the metadata management in that region, and the communication between the cloud

and the cloudlets. It is then intuitive to see the parallel between the role of broker units in Gesto, which

manage the metadata of data objects, and the source nodes in Cathode, which manage the replicas of

data objects.

We have already talked about the Cloudpath platform [9] in Section 2.3. This is another multi-tier

architecture for data storage, establishing a node hierarchy from cloud to edge. In this platform, stronger
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Figure 3.4: Examples of system architectures and how Cathode may be deployed.

consistency operations may be achieved by forwarding requests to higher tier nodes, which maintain a

higher level of consistency. For example, an operation that is forwarded to a city-level node, provides a

consistent view for all the consumers (lower-tier edge nodes) in the city. Cathode can be deployed in

such an architecture, by placing the source of the data in the city-level node (Figure 3.4a), which then

manages the placement of data replicas within that city, distributing computations among the lower-tier

nodes, and aggregating their results. In these systems, communication between lower-tier nodes and

their higher-tier master node is frequent and necessary for synchronization (in the example of Cloudpath,

updates are periodically propagated to higher levels of the hierarchy); Thus, for such a system to function

well, it is expected that the latency between, e.g., the lower-tier edge nodes and the city-level node,

must be relatively low. Therefore, when applying Cathode to those systems, the latency between source

(city-level) and the consumers (lower-tier) is expected to be low, and, consequently, the communication

overhead should be tolerable.

Another viable manner in which Cathode may be deployed is within the lower-tier layer itself. In a

smart city scenario, edge nodes may be installed at various spots in the city, each managing an area,

while generating, collecting, and storing data. The sources of data objects in this case can be any

node within the city (Figure 3.4b). These edge nodes might reduce latency by communicating between

each other in a grid-like network, instead of having to establish connections through higher tier nodes.

However, in such networks, the latency between source and consumers may vary greatly. In scenarios

where a high number of consumers are distant to the source, the parameter Tpart can be set to a lower

value, reducing the number of consumers to be contacted. Note that this does not mean that the farthest

consumers will not be contacted; but that the only nodes to be contacted will be only the most important

ones (as it was explained in Section 3.5.7).

In some smart city applications, each node may be the source of data that specifically regards the
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area which is delegated to that node. For example, in [36], the authors propose an edge data collection

system for vehicular networks, in which road-side units store the information regarding road hazards in

an area. This concept can be applied to smart city scenarios, where the road-side units take the form of

edge nodes distributed across a city, each being the source of the road hazard data of the corresponding

area. In these types of applications it is intuitive that a great part of the consumers of the data generated

in an area, will be consumers located in neighbouring areas. We call this a locality-driven workload.

In the example of the road hazard application, it makes sense that the clients, which should take the

form of smart vehicles, will want to access road hazard information from neighbouring areas, and the

same would apply to any other data regarding traffic conditions. Applications such as Tripadvisor, where

users search for nearby interest locations also display such a workload. Assuming the edge nodes in a

city communicate between each other through their neighbours, in a grid-like network, it is expected that

Cathode will perform placement decisions with especial communication efficiency in these locality-driven

workloads, since the consumers are very near from the sources.

3.7 Implementation

In this section we describe the implementation of Cathode that was used in our evaluation process. To

perform this evaluation we also implemented two other state of the art replica placement algorithms,

namely D-Rep [4] and Holistic-All [12], whose implementation we shall also describe here. D-Rep was

chosen due to the fact that it is, in our view, the most relevant generic replica placement algorithm made

specifically for the edge. Holistic-All is another decentralized replica placement algorithm, but represents

a polar opposite of D-Rep in terms of what criteria it prioritizes.

While Holistic-All aims at achieving high approximation quality, at the cost of requiring a slower, more

coordinated operation, D-Rep aims at reducing the amount of coordination required to optimize place-

ment, sacrificing approximation quality in the process. Cathode, however, strikes a balance between the

two approaches, all the while being able to account for the different operations and consistency models

used in the system, in order to provide higher quality solutions.

We start this section by providing a brief description of the development environment, then describ-

ing the various consistency models that were implemented, along with their corresponding operation

types and cost functions. We finish the section by providing an overview on how each algorithm was

implemented, focusing on the differences between our implementation and their original description.

3.7.1 Development Environment

The prototypes of the algorithms have been implemented in Java (OpenJDK 8). As a base for the

implementation, the PureEdgeSim framework [13] was used. This is a simulation framework based on
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CloudSim Plus, designed to simulate cloud and edge computing environments. This framework was

extended with several general classes that are then used by all the algorithms. Each algorithm then

has its own implementation under the general framework, extending it with its own protocol. It is also in

the general framework, that the various operations (implementing several consistency models) can be

found. We delve into these operations in the following section.

3.7.2 Operations and Consistency Models

In our framework we include just two major classes of operations: READ operations, that do not change

the state of the object, and WRITE operations, that do change the state of the object. For each of

these operation classes we then implemented multiple operation types, according to various consistency

criteria. We have included four different consistency algorithms in our framework:

• linerizability: We consider the non-blocking implementation of atomic registers proposed in [17].

In this implementation, writes are performed in a majority of replicas, and reads are implemented

by, first, reading a majority of replicas, and second, writing back the value (that was read) to a

majority of replicas. This write-back phase is required to ensure consistency among multiple reads

that are executed in concurrence with a write operation. This consistency model uses the following

operations: READWRITEMAJORITY and WRITEMAJORITY.

• strong consistency primary-backup: In this implementation all writes are performed directly at the

source replica, which then propagates the update to all the other replicas, waits for acknowledge-

ments, and returns to the client. Reads are performed on the nearest replica. This consistency

model uses the following operations: READCLOSEST and WRITESOURCE; these operations have

been described in detail in Section 3.3.1.

• strong consistency quorum: In this implementation both reads and writes are performed on a

quorum of replicas. We use a majority quorum for both operations, i.e., each quorum includes the

(r/2+1) replicas that are closer to the client. This consistency model uses the following operations:

READMAJORITY and WRITEMAJORITY.

• weak consistency: In this implementation, the read and write operations are always performed on

the nearest replica. Updates are propagated to other replicas in the background. This consistency

model uses the following operations: READCLOSEST and WRITECLOSEST.

The cost functions for each of these operations are depicted in Table 3.1 (for a rationale of these

cost function, see Section 3.3.1). Note that all of these cost functions only account for the experienced

latency of the synchronous operations (in which a node has to await for responses, in order to proceed).

As it is obvious, cost functions can also account for factors such as the network congestion caused
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Operation Cost Function

WRITESOURCE 2[δ(n, src(o)) + max∀j∈replicas(o) δ(src(o), j)]

READCLOSEST 2min∀j∈replicas(o) δ((n, j)

WRITECLOSEST 2min∀j∈replicas(o) δ((n, j)

READMAJORITY 2max∀j∈closestQuorum(n,o) δ((n, j)

WRITEMAJORITY 2max∀j∈closestQuorum(n,o) δ((n, j)

READWRITEMAJORITY 4max∀j∈closestQuorum(n,o) δ((n, j)

Table 3.1: Cost functions of the implemented operations

by asynchronous updates. This could be implemented by simply extending the cost functions we have

defined, however, to simplify the evaluation process, we solely considered the factor of latency.

3.7.3 Algorithms

In general, the implementation of all the algorithms follows their description, however, in order to per-

form a fair comparison, some of their features were tweaked to fit into the general framework we have

developed. In this section we analyse the main differences between the description and implementation

of the algorithms.

3.7.3.A Creations, Removals, Replacements

In our implementation, we consider three types of decisions regarding replica placement:

• Creations, in which a replica is created in a node;

• Removals, in which a replica is removed from a node;

• Replacements, in which a replica is removed from a node, and replaced by a new replica of another

object.

In the case of Cathode, only creations and removals are considered, with the implementation being

similar to its description. In the case of D-Rep and Holistic-All, however, there are a few differences.

D-Rep, according to its description, considers creations, removals and replacements, and as so, we

implemented all three of them. However, in the description of D-Rep, the authors note that, for the

removal of a replica, D-Rep estimates a factor that determines the expected replica utilization. This

factor is then compared with its current observed utilization, and the replica is removed if a lower bound

is reached. Since the authors do not specify how this is implemented, we opted to implement a precise

estimation process, which accounts for information about the system in its totality. This way, we consider
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that the algorithm operates in a best case scenario, so that in our evaluation, its performance is as good

as possible. It is our aim to prove that, even when running this perfect estimation on removals, the

performance of D-Rep is still excelled by Cathode.

Holistic-All, on the other hand, also considers creations, removals and replacements. This deviates

from its description, in which it only considers the replacement of replicas in a full cache. In our imple-

mentation, along with replacements, Holistic-All considers the benefits of simple creations and removals,

which are calculated in an analogous way, putting the algorithm on a fair ground with Cathode and D-

Rep, while hardly adding any complexity. Just like in D-Rep and Cathode, we have extended Holistic-All

to consider storage costs when calculating the gains of each possible deployment. This also does not

add any overhead to the performance of the algorithm.

3.7.3.B Replica Discovery

Since neither Cathode nor Holistic-All define an algorithm for replica discovery discovery, we have not

implemented such a feature in any of the algorithms. We thus assume that, in all algorithms, the con-

sumers of an object know, a priori, where all the replicas are located, and, therefore, requests are

always sent to the nearest replica. This way, for the same deployment, the form by which requests are

propagated is the same for each algorithm.

Summary

This chapter addressed Cathode, a decentralized consistency-aware replica placement algorithm for

the edge. By collecting information from various nodes, this algorithm is able to have an ample view

of access patterns, which it uses to calculate deployments that present a high benefit for the global

system. Alongside, its item-wise decentralized structure also allows it to account for the costs of multiple

different consistency protocols. Unlike other algorithms that sacrifice efficiency for quality, Cathode tries

to maintain efficiency, by distributing computation intensive tasks among multiple nodes, all the while

providing multiple customization parameters to the system administrator, which may be used to adapt

the operation of the algorithm to the goals of the system. In the sections above, we have provided

a detailed description of the algorithm, an analysis of its overheads, problems, and applicability; and

finally, we went over some of the details of its implementation along with the implementations of two

other algorithms that were used in our evaluation process.
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This chapter presents the experimental evaluation of Cathode’s performance and compares it with

the performance of Holistic-All [12] and of D-Rep [4]. We aim to show that Cathode manages to strike

a balance between the advantages of these two algorithms, and surpass their performance in certain

edge scenarios. Additionally, we assess the gains that can be achieved by Cathode, derived from the

fact that it considers the different operations and consistency models used by the underlying system.

In Section 4.1 we present the main goals of the evaluation, and describe the experimental setup in

Section 4.2. Section 4.3 then presents a short analysis and selection of the system parameters that were

used in the evaluation. In Section 4.4 we present and discuss the results of the experiments regarding

convergence speed; in Section 4.5 we analyse how the algorithms perform in terms of approximation

quality; in Section 4.6 we delve into the results regarding the capacity of the algorithms to adapt to dy-

namic workloads; and in Section 4.7 we analyse the performance of the different algorithms with multiple

consistency protocols. Finally, we discuss and relate the results of each experiment in Section 4.8.

4.1 Goals

The evaluation process of Cathode mainly aims at answering the following questions:

• What is the quality of the deployments provided by Cathode and how fast is it at converging to a

stable solution, when compared to other placement algorithms?

• How well does Cathode adapt to dynamic workloads, when compared to other placement algo-

rithms?

• Do the semantic-aware mechanisms of Cathode bring advantages over simpler oblivious ap-

proaches?

4.2 Experimental Setup

Our evaluation is performed by simulating the execution of the algorithms, using the PureEdgeSim frame-

work [13], as we mentioned in the prior chapter. In this section we delve into some of the details of the

experimental setup, that are indispensable to comprehend the results we present in the rest of the chap-

ter.

4.2.1 Time Measurement

The evaluation we have performed is purely a comparison of Cathode to the other replica placement

algorithms. Therefore, to represent time, we use an abstract unit named epoch, whose value is not
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absolute, but relative. As we have stated prior, the algorithms we evaluate are “round-based”. These

rounds occur at the end of a time window, an epoch, during which statistics, regarding, for example, the

access patterns and latencies between nodes, are registered by the nodes. An optimization round then

executes placement decisions based on the information collected during the last epoch, computing a

new deployment.

In our evaluation, we use these epochs as a measure of time. However, the (real) time interval that

corresponds to an epoch would depend on factors such as the request rate of the underlying system. In

our evaluation, which focuses on evaluating the quality of deployments, the request rate is not a factor

that exerts large influence on the performance metrics. This is because it merely affects the values

that go into the placement problem’s cost function, and not the way the cost function itself is computed.

Because of this, in our experiments, we have setup the duration of the epoch to be long enough to collect

a mere average of 30 (new) client requests at each edge node.

Note that, this way, the epoch is merely an abstract time window with the same duration for each

algorithm, independent of its operation and speed. Note also that, in the default case, at the end of

each epoch, an optimization round starts; however, if the current optimization round isn’t finished by the

time the new epoch ends, then no new optimization round is started; what happens, instead, is that the

current optimization round continues running until it is finished, and then, only at the end of the next

epoch, a new optimization round is started. As we are about to see, this case is common in Holistic-All,

which often takes multiple epochs to finish an optimization round.

In the evaluation of D-Rep, the authors have studied how the duration of epochs affected the effec-

tiveness of the placement algorithm. This type of evaluation is not relevant our goals, thus we have not

performed it, however, as a reference, the evaluation of D-Rep has shown that epochs of 4 to 7 minutes

provide satisfactory results [4].

4.2.2 Object Size and Storage Constraints

In our experiments we considered a system of 1000 objects. To simplify the experiments we assume that

all objects have roughly the same size and therefore we assign a unitary storage cost to each replica.

We also do not impose any hard limit to the maximum number of objects that each edge node can store

(even though our algorithm is able to take these limits into account). Our option to not impose such a

limit, is in order to perform a fair comparison with D-Rep, since the latter does not specify behaviour

on how to deal with hard limits in the storage capacity of nodes. Note that there is always a storage

cost associated with each replica, which acts as a discouraging factor for creating replicas, and an

encouraging factor for removing replicas. This way, even when operating in workloads where the oCost

values always encourage replication, the algorithm will still refrain from creating replicas in every single

node.
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4.2.3 Network Topology

In the evaluation process we consider two network topologies, which allows us to analyse how Cathode

performs in different architectures:

• Scale-free networks: In a scale-free network model the number of edges k originating from a given

node exhibits a power-law distribution. This model is widely used, due to it capturing the properties

of many human-made networks, such as the Internet. These networks are characterized by having

a few highly connected hubs which reduce the average distance between nodes. Such a model

was used, for example, in the original evaluation of D-Rep [4].

• Grid networks: In the grid (lattice) network model, nodes are deployed in a two dimensional grid,

with each node having, at most, 4 neighbours. This network model can capture some edge net-

works, in which low-tier edge nodes may be placed along the roads, or areas, of a city. These

networks are characterized by their large diameter, with each node being connected to very few

nodes, in a uniform way. Network hubs are absent in this model.

4.2.4 Workloads

In the evaluation process we consider two different types of workloads, which allows us to analyse how

Cathode performs in different scenarios:

• Client-driven workload: In this workload, clients access objects according to their own interests,

regardless of their position within the network. This workload captures applications such as so-

cial networks, news websites, etc., and it has been observed that these workloads are highly

skewed [39, 40]. In this workload, every time a node makes a request, it selects which object it is

going to access, by sampling a Zipf-like distribution that is attributed to that node with an exponent

α ranging between 0.7 and 0.8, an interval that can represent several types of environments as

shown in [39].

We divide this workload type in two subtypes, homogeneous and heterogeneous. In the homo-

geneous client-driven workload, the global distribution of requests also follows a Zipf law. In the

heterogeneous client-driven workload, clients have independent distributions from one another,

making the global distribution less skewed.

• Locality-driven workload: In this workload objects are geo-referenced and clients access objects

based on their own geographic positions. This workload captures, for example, recommendation

applications, such as Tripadvisor, where users search for nearby restaurants, museums, etc., or

applications in which vehicles search for road conditions in their proximity. In this workload, each

object is assigned to a given location and the edge node closest to that location is designated to
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be the source node for that object. In this workload, every time a consumer node makes a request,

it selects which object it is going to access following a skewed distribution in which the skew is

based on the distance between the consumer and the object (consumers access nearby objects

more frequently than far away objects).

Despite Cathode featuring full support for multiple consistency models, D-Rep and Holistic-All will

only be prepared to work within a weak consistency model, as we defined it in Section 3.7.2. We

show the advantages of Cathode in this regard in section Section 4.7. However, in order to showcase

how Cathode still manages to surpass the performance of the other algorithms in the weak consistency

model, we have performed all the other experiments (Sections 4.2, 4.4, 4.5 and 4.6) solely allowing

weak consistency operations.

(a) Scale-free network, homogeneous client-driven workload, N=100

(b) Grid network, locality-driven workload, N=100

Figure 4.1: Cost function after 1 and 5 epochs of runtime, for several parameter configurations of (kcomb, kcand)
(static workloads).
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4.3 Configuring the Parameters of Cathode

Before performing our comparative evaluation of Cathode against the other algorithms, we must first set

its configuration parameters to the values that will bring the most benefit in the workloads/topology we

are operating with. As we have seen, the operation of Cathode can be tuned by four parameters:

• Tgain, the minimum gain (cost reduction) that justifies adding or deleting a replica;

• kcand, that controls how many candidates are considered in the optimization process;

• kcomb that controls how many combinations (of creations/removals) are considered in the optimiza-

tion process;

• Tpart, a threshold that indirectly controls the amount of participants in the optimization process.

The value of Tgain is application dependent, as it defines the minimum gain that can bring business

benefits. This value can be used to refrain from performing new deployments whose resulting gain is

barely positive. Because in the evaluation we wanted to observe the full optimization potential of the

different algorithms, we let all algorithms perform new deployments as long as the gain is positive, so

we set Tgain = 0.

The other threshold, Tpart, affects the approximation quality, with lower values leading to less partic-

ipants in the optimization process, which may reduce the overheads of communication, but may also

decrease quality. Essentially, this parameter constitutes a simple way to reduce network congestion and

the latency (experienced in the shrinking/expansion phases), in specific scenarios where these turn out

to be a problem. Since we aim to prove that Cathode is able to surpass the convergence speed of other

algorithms, even when all consumers participate in replica placement, we have set this parameter as its

maximum value, Tpart = 1.

At last, kcand and kcomb affect the convergence speed, with higher values leading the algorithm to

consider more deployments, and thus, more information, in each epoch. However, it also increases the

amount of computational resources consumed by the algorithms, as we have seen in Section 3.6.2.

Thus, to make Cathode as lightweight as possible, the point is to pick low values for these parameters,

while still allowing the algorithm to make fast progress. To determine a good configuration of these val-

ues, instead of evaluating every possible combination, we merely picked several plausible configurations

and measured the cost function of the deployment computed by Cathode after 1 round of the algorithm,

and after 5 rounds of the algorithm, for a static workload. The results are depicted in Figure 4.1. In gen-

eral, the parameter that appears to exert more influence is kcomb. As can be observed, in both networks,

the the most noticeable performance improvement, is when kcomb is switched from the value of 1 to 2.

Despite this, the result after 5 epochs is fairly similar for all configurations, hinting at the fast convergence

of Cathode, which we will study further on in this document. It is possible to see that increasing kcomb
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above 2 or increasing kcand above 10 does not bring significant improvements. Thus, in our experiments

we have used (kcomb = 2, kcand = 10).
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(a) Scale-free network, homogeneous client-driven workload,
N=100
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(b) Scale-free network, homogeneous client-driven work-
load, N=500
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(c) Grid network, locality-driven workload, N=500
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(d) Grid network, heterogeneous client-driven workload,
N=500

Figure 4.2: Evolution of the cost function during 10 consecutive epochs (static workloads).

4.4 Convergence Speed

To evaluate the convergence speed of Cathode we set-up an initial deployment in which there is a single

replica of each data object (the source). Clients will then access objects using one of the workloads

described in Section 4.2.4, while the system runs for several epochs. We then plot the evolution of the

cost function as the experiment progresses. Note that, in this experiment, the workload is static, so the

access patterns stay constant along the epochs.

Figure 4.2 depicts the evolution of the cost function in time, for a varying number of nodes, using

different combinations of network topologies and workloads. One of the first observations that can be

made is the fact that Holistic-All presents a more gradual progress than D-Rep and Cathode. This is

because, in the latter two, the optimization process is fairly quick and finishes in the same epoch it

started. However, after applying a deployment, D-Rep and Cathode are designed to wait a full epoch

to observe the requests patterns, in order to run the optimization process again. In contrast, Holistic-All
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deploys replicas gradually, and a single optimization process can span several epochs, as it tries to find

the best possible deployment, with a global view of the problem.

As shown in Figures 4.2a and 4.2b, Holistic-All and D-Rep work best in scale-free networks. This

happens because these networks have a low diameter, which translates to less hops between the nodes,

and good results can be achieved quickly by placing data in well connected hubs. Conversely, on grid

networks, D-Rep performs poorly because the placement decisions performed in each node consider

a very limited horizon of information (observing only the state of its neighbours), and hence, the algo-

rithm fails to capture the global system behaviour, resulting in lesser quality deployments. Then, these

deployments are often temporary, since each node, in an epoch, can only propagate a replica to its

neighbours. Thus, for a replica to reach its optimal location, it may have to hop through multiple nodes,

taking multiple epochs to reach its destination.

Figures 4.2c and 4.2d show that Holistic-All also has a much slower convergence on grid networks.

Figure 4.2a, on the other hand, shows that Holistic-All performs better in networks with a small number

of nodes. This can be explained by the fact that Holistic-All requires nodes to wait, for several serial

rounds, for the placement decisions performed in other nodes. This process turns out to be quite in-

efficient in systems with a large diameter and a large number of nodes. As we have seen, Cathode is

able to outperform both Holistic-All and D-Rep on large diameter networks, in both the locality-driven

workloads and the heterogeneous client-driven workloads. This happens because, on one hand, the

information and communication needed to run the algorithm is less than in Holistic-All, with calculations

being executed in parallel in the consumer nodes. On the other hand, placement is performed using a

data horizon that allows the algorithm to place replicas exactly where they are needed, instead of having

to propagate these replicas from neighbour to neighbour, as it is done in D-Rep. This way, Cathode is

able to place the most ”important” replicas, in their optimal locations, in a single epoch. Another aspect

to note is the fact that Cathode is able to reduce cost further in grids than in scale-free networks. This

is observed due to the fact that, in a grid network, because of its large diameter, initial costs are larger

than in a scale-free network, since consumers are farther from replicas. Thus, there is more potential

for cost reduction in grid networks.

4.5 Approximation Quality and Scalability

Approximation quality has been defined as the degree to which a placement algorithm can approximate

to the optimal solution of the total cost function. We assess this quality in Figure 4.3, which shows the

total cost values of the final deployment, for several system sizes. These final costs were measured in

relation to the initial cost, after 10 epochs of runtime with static workloads. It can be observed that, on

scale-free networks, in all of the algorithms, the quality of the solution is less affected by the system
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(a) Scale-free network, homogeneous client-driven workload
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(b) Grid network, locality-driven workload

Figure 4.3: Final cost after 10 epochs of runtime, as a function of system size (static workloads).

size. This is because the quality of the solution mainly depends on the placement of replicas on the few

network hubs, whose number grows logarithmicaly. Despite this, as it can be seen, even in scale-free

networks, the performance of Holistic-All is affected by the number of nodes, with Cathode achieving a

cost 10% lower than Holistic-All when N = 500. On grid networks, on the other hand, a larger system

size directly translates to a larger diameter, and thus, a higher costs. As we have seen, convergence is

slower in large grid networks both for Holistic-All and D-Rep, therefore, even after 10 epochs, the quality

of the deployments provided by these algorithms is still considerably worse than that of Cathode, which,

by epoch 10, has already converged to a somewhat stable solution.

In Figure 4.4 we have the number of replica creations performed in the same network/workload pairs

of Figure 4.3. As we can see, Cathode is the most conservative algorithm, creating the least number of

replicas in each case. This is explained by the fact that Cathode attempts at calculating the deployment

that appears to be the most optimal in the present workload. On the other hand, Holistic-All, in the

same epoch, may consider several replacements for the same object, depending on the node that is in

charge at each moment. However, out of the three algorithms, D-Rep is the one that creates the most

replicas in larger systems. Again, this is because replicas need to hop through multiple nodes, in order

to reach their locations. In Holistic-All, we can also see that the evolution of the number of creations
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Figure 4.4: Number of replica creations in 10 epochs of runtime, as a function of system size (static workloads).

starts to flatten for higher numbers of nodes, which happens due to the fact that Holistic-All’s operation

is slower in large systems. There are several disadvantages for an algorithm that creates a large amount

for replicas. Firstly, when replicas are created, they must be transfered between nodes, which incurs an

overhead. Secondly, replicas will take up the storage capacity in a node, which can be a problem in real

systems. Both of these disadvantages depend on the size of the objects, which in itself, is related to

their granularity, and the application that is running on the system. Another problem of creating a larger

number of replicas arises when dealing with dynamic workloads. In the next section we will explore how

this problem is relevant and especially affects the approximation quality of D-Rep.

4.6 Adaptability to Dynamic Workloads

We will now analyse the performance of the different algorithms when dealing with dynamic workloads.

For these experiments we let each algorithm run for 10 epochs. However, in each epoch, the set of

objects accessed by some clients is changed. The way we change the access pattern is as follows. Let

Interestsc be the set of objects that is accessed by a consumer c during a given epoch. At the end of

each epoch, we change a fraction f of these sets, in order that some of the objects to be accessed are
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(a) Scale-free network, homogeneous client-driven workload, N=100
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Figure 4.5: Final cost after 10 epochs, as a function of the dynamic factor (dynamic workloads).

different. The new (changed) sets in each epoch are generated from a Zipf distribution correspondent to

that epoch. In a real system these may represent sudden new interests, for data, that arise for a limited

time and quickly fade away. In Figure 4.5, the resulting final cost for a system of 100 nodes, is depicted

as a function of the fraction of change f . Note that if f = 0, the workload is static, and if f = 1 the

workload changes drastically during the experiment.

As we have seen before, scale-free networks are ”easier” to optimize. Thus, in these networks, all

algorithms can adapt the deployment in face of dynamic workloads, with reasonable performance. It is

worth noting that, despite this, Cathode still manages to achieve a better performance than the others,

maintaining virtually the same final cost from f = 10% to f = 90%. In grid networks, however, the

differences are more noticeable. As f rises, even in a system of only 100 nodes, D-Rep and Holistic-

All seem to not be able to adjust fast enough to dynamic workloads, and the cost of the deployment

increases. In sharp contrast, Cathode still offers considerable benefits even in highly dynamic workloads,

reducing cost in almost 20%, after 10 epochs, when f = 90%. Again, the convergence speed plays a

significant role in how the algorithms are able to adapt to the changes in these dynamic workloads. If

an algorithm takes many epochs to achieve high quality deployments, then it can never keep up with the

changing interests of the consumers. In the case of Holistic-All, a single optimization round can endure
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Figure 4.6: Final cost after 10 epochs with different consistency protocols (static workloads).

multiple epochs, in which Holistic-All is operating on the information available at the time it started the

optimization process. This means that, in dynamic workloads, Holistic-All will calculate deployments

with outdated information, that may at certain points be barely representative of the consumer interests.

D-Rep, is also affected by the convergence speed, for the same reasons we stated in the prior sections,

but aside from that, it has another problem. D-Rep always creates a higher number of replicas than

Cathode, as we have seen in Figure 4.4. In scale-free networks, most of the replicas will tend to be

created in the network hubs, which are optimal locations, thus making it easier to adapt to dynamic

workloads, since network hubs are easy to reach and very useful. In grids, however, when the workload

changes, many replicas will be made useless. Therefore, they can come to represent high storage costs

(sCost), with no reduction of operation costs (oCost). Contrasting these two algorithms, as we have

explained, Cathode tries to place the most important replicas in their optimal positions in a single epoch,

hence its positive results.
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4.7 Consistency-Awareness

We now explore the advantages that can be obtained by explicitly considering multiple consistency

protocols of the system, in the operation of the placement algorithm. Figure 4.6 shows the cost of

the final deployment of each algorithm, for the 4 different replica consistency protocols described in

Section 3.7.2, in a system of 100 nodes, with a static workload (75% reads and 25% writes). In both

networks, a homogeneous client-driven workload was used, which better showcases the performance

of the algorithms when using different consistency models.

When using weak consistency, Cathode offers approximately the same utility as Holistic-All (in fact, it

performs slightly worse). However, when other consistency models are used Cathode is able to outper-

form both Holistic-All and D-Rep. One interesting result is the fact that, when quorum strong consistency

or linearizability are used, both D-Rep and Holistic-All degrade the performance of the system. This

happens because these algorithms have no way of correctly assessing the costs involved when a new

replica is added to a quorum based algorithm. Instead, D-Rep and Holistic-All only account for the flow

of information, assuming a weak consistency model. In this type of model, creating a new replica always

reduces the latency experienced in the system. However, this is not the case when a quorum based

replication scheme is used. Contrasting D-Rep and Holistic-All, Cathode is able to decrease costs by

17% on average, when quorum strong consistency, or linearizability are used, due to the fact that it is

aware of the semantics of the operations, taking into account the cost function and frequency of each of

them.

4.8 Discussion

What motivated the development of Cathode was the absence of a consistency-aware replica placement

algorithm for the edge, that operated in a scalable way that would allow for high convergence speed. In

the evaluation process, we expected Cathode to outperform previous systems in terms of convergence

speed, and we expected that this factor would be crucial to the overall approximation quality of these

algorithms, especially when operating in large diameter networks, and when dealing with dynamic work-

loads. Also, we expected Cathode to be effective at reducing costs with different consistency protocols.

From the experimental results, we have shown that our expectations meet with reality.

Despite Cathode having a fast convergence in all scenarios, it is in large grid networks that it man-

ages to excel the other algorithms. This property of Cathode is due to the fact that it attempts to place

the most important replicas in their optimal locations, in a single epoch. Such a strategy is useful espe-

cially in grids, where there are no network hubs, and nodes are far from each other. This same property

(convergence speed) was shown to highly affect approximation quality, especially when the workload is

dynamic, in which Cathode presents improvements from other algorithms in all types of networks and
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workloads. We have also seen how Cathode is more conservative, creating much less replicas (in some

cases, half of the replicas created by other algorithms), despite achieving better quality deployments.

Finally, Cathode is able to reduce costs in all consistency protocols, contrary to previous algorithms

which are consistency-blind. This support for multiple consistency protocols is made possible because

of the operational structure of Cathode, in which a single node (source) is responsible for the deployment

decisions of an object, however, the computations necessary for these decisions are distributed among

multiple other nodes.

Summary

This chapter presented the experimental evaluation of Cathode. With the use of simulation software we

tested Cathode against two previous algorithms, using various combinations of workloads and network

topology. We evaluated several factors, namely, convergence speed, approximation quality, adaptability

to dynamic workloads, and the performance with different consistency protocols. The results showcase

that Cathode is able to achieve higher quality deployments in a shorter amount of time than the other

algorithms in grid networks, while showcasing approximately the same performance as these algorithms

in scale-free networks. When dealing with dynamic workloads, Cathode achieves better quality in every

scenario, always being able to reduce costs, while the other algorithms increase costs in some cases.

The same is true when using stronger consistency protocols, like linearizability and quorum-consistency,

in which Cathode is able to reduce costs in an average of 17%, while the other algorithms increase costs.
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5.1 Conclusions

In this dissertation, we have addressed the problem of replica placement in the edge computing paradigm.

Most of the previous work either didn’t consider the possibility of optimizing placement for multiple con-

sistency protocols, or didn’t provide a distributed and scalable way to do it. Furthermore, replica place-

ment systems either focused on the quality of their deployments, or on efficiency. In this report, we have

described the design, implementation and evaluation of Cathode, a replica placement algorithm that pro-

vides a scalable operational structure to achieve high quality solutions, and support multiple consistency

protocols. In an experimental evaluation, Cathode was compared with two state of the art solutions. The

results show that these solutions are outperformed by Cathode in most of the explored scenarios. When

they do outperform Cathode, the quality of the latter is always within, approximately, 5% of the quality

achieved by the other algorithms. In some environments, such as large grid networks, Cathode is able

to greatly surpass the quality of the other solutions in real time, because of its fast convergence, occa-

sionally improving the utility by a factor of 1.7×. Furthermore, while the other solutions fail at reducing

costs in certain consistency models, Cathode succeeds.

5.2 Future Work

In our analysis of Cathode we delved into some orthogonal problems, which are worth exploring in the

future. Currently, the system assumes that there is an underlying replica discovery system where con-

sumers know where the closest replicas are located, which allows them to perform the cost calculations

of alternative deployments. The system also assumes that the nodes are informed regarding the latency

from the source to some of the replicas. It is of interest to explore how this information can be collected

and stored by the nodes in an efficient way. Alongside, since network partitions are commonplace in the

edge, and can disrupt the functioning of Cathode, it would be relevant to develop a partition tolerance

system that mitigated these disruptions.

Due to time constraints, the evaluation of Cathode was entirely based on simulations and synthetic

workloads. One of the plans for future would be to perform tests with real workloads and develop a real

deployment of Cathode. Furthermore, in our evaluation, we explored 4 different consistency protocols,

namely weak consistency, primary-backup based strong consistency, quorum-based strong consistency,

and atomic registers. As future work it would be interesting to explore other weak consistency models,

such as causal consistency and session guarantees.
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