
1

Development Environment for a RISC-V processor:
Cache

João Vieira Rodrigues de Almeida Roque Electrical and Computer Engineering Department
Instituto Superior Técnico

Lisbon, Portugal
joao.v.roque@tecnico.ulisboa.pt

Abstract—Despite the recent advent of open-source hardware,
the available open-source caches have low configurability, limited
lack of support for single-cycle pipelined memory accesses, and
use non-standard hardware interfaces and Hardware Description
Languages. In this work IOb-Cache, a high-performance con-
figurable open-source Verilog cache is proposed and developed.
The cache is designed modular and composed of 3 modules. The
Cache-Memory module contains the memories and the cache’s
main controller. The Front-End and Back-End modules isolate
the cache design from the processor and memory interfaces,
respectively, which enables the fast adoption of new processors or
memory controllers. Currently the Front-End module supports
the native interface and the Back-End module supports the
native and the standard Advanced eXtensible Interface (AXI)
interfaces. The cache can be configured to define the number of
ways (k) in set-associative designs (k = 1 selects a direct-mapped
design), the number of lines and words per line, the replacement
policy, etc. The write-policy is currently fixed to Write-Through
Not Allocate policy with an internal buffer, limiting the write
accesses to word-sized data. The back-end can be configured to
read bursts of multiple words per transfer to take advantage of
the available memory bandwidth. To the best of our knowledge,
IOb-Cache is currently the only configurable Verilog cache that
supports pipelined Central Processing Unit (CPU) interfaces and
the popular AXI memory bus interface. IOb-Cache is integrated
into IOb-SoC Github repository, which has 16 stars, and is being
used in 38 projects (forks).

Index Terms—Open-source, Cache, Highly Configurable,
Pipeline, AXI, Native.

I. INTRODUCTION

AS open-source processors such as the RISC-V archi-
tecture become adopted by the industry and compete

with commercial solutions such as ARM, the community
rushes towards creating the ecosystem for these CPUs to
thrive on. These include not only different CPU architectures
with different performance, size, and power consumption, but
also efficient memory systems, peripherals, and interfaces
of all sorts. The software part is even more important as,
without compelling user applications and programming tools,
no sustainable business can be built with open-source CPUs.

One such key component is a truly configurable cache
module, able to support multiple architectural trade-offs. After
analysis of the available open-source caches, one finds limita-
tions of the interfaces (no support for de facto standards such
as AXI [1]), lack of support for single-cycle pipelined mem-
ory accesses, and use of exotic and non-standard Hardware
Description Language (HDL), limiting the use of simulation
and synthesis tools.

Hence, the need to develop a high-performance configurable
cache using a standard bus interface and a standard HDL such
as Verilog [2] became evident for IObundle, a company started
in 2018 with the aim of developing domain-specific RISC-V
Intellectual Property (IP) systems for low power embedded
devices. The candidate carried out this work both in the scope
of his master’s dissertation and as a trainee at IObundle.

The development of a high-performance configurable open-
source cache in Verilog with the popular Advanced eXtensible
Interface 4th generation (AXI4) interface [1] in the back-
end, and with better features than the existing ones is the
main objective of this dissertation. To attain this objective the
following sub-objectives are pursued:

• Support pipeline architectures. The cache must fulfill 1
request per clock cycle while keeping stalls to a bare
minimum. This requires a well designed datapath to cor-
rectly implement the cache operation while guaranteeing
that loads and store instructions execute in one cycle. A
new request and the response to the previous request must
be superimposed, given the 1-cycle latency of the RAM
modules that constitute the cache memories.

• Modular design. The cache must be composed of 3
modules: front-end; cache core and back-end. This makes
it easy to replace the front-end and back-end interfaces,
while keeping the core functionality intact, if needed.

• The back-end must implement the Native and AXI
interfaces. The flexibility of the back-end interface is
indispensable as it can be connected to higher level
caches using the Native interface or to 3rd party memory
controllers which are likely to be using an AXI interface.

• The back-end must be configured with a different data-
width from that of the front-end (asymmetric memory) to
take advantage of the available memory bandwidth. Many
memory controllers allow wide data buses from designs
that need to work at a lower frequency while using a
much higher frequency to communicate with the external
memory.

In search of HDL open-source cache designs, the most
relevant ones are found on the Github platform. The caches
on Github are chosen based on their popularity (stars and
forks): airin711’s Verilog-caches [3]; prasadp4009’s 2-way-
Set-Associative-Cache-Controller [4]; and PoC.cache, which
is part of the Pile-of-Cores (PoC)-Library [5], one of the most
popular HDL libraries.

2

The airin711’s Verilog-caches repository houses 3 dif-
ferent set-associative caches: 4-way with Least-Recently-
Used (LRU) replacement policy; 8-way with Pseudo-Least-
Recently-Used (PLRU) and a run-time configurable 2-to-8-
way with PLRU replacement policy. All caches have 4 words
per line and only allow configuring the number of lines.

The prasadp4009’s Verilog cache repository is a 2-way set-
associative cache that uses the LRU replacement policy. Unlike
the airin771’s caches, it allows configuration of the number of
cache lines and words per line, as well as the width of both
address and data.

Both caches the airin711’s and prasadp4009’s caches use
write-back write-allocate policy, native memory interface and
are unable to either invalidate or flush a cache line. The biggest
difference between the two is the fact that airin711’s caches
require the data memory to be 128-bit wide so that the entire
line or memory block can be accessed in a single word transfer.
The prasadp4009’s cache requires the data memory width to
be word-sized, using a counter to receive the memory block
or transfer the cache line.

Unfortunately, there is a big issue, which makes these two
caches poor choices with more advanced architectures: they
need at least 2 clock cycles to process requests, even if the data
is already in the cache. These caches implement a Finite State
Machine (FSM) that controls all their functions, including the
communication with the processor and to the main memory.
They only allow requests when their FSM is in the initial
state, and have special states for the read and write accesses
because of the RAM’s 1 cycle read latency upon a cache hit.
In the read or write access, if a hit occurs, they acknowledge
the request and go back to the initial state. This causes the
undesirable 1 clock-cycle latency.

The third cache that was investigated, PoC.cache [5], does
allow 1 read-access per clock cycle, which is a big im-
provement over the others. It is also highly configurable,
with various synthesis parameters that characterize the cache
dimensions, even allowing 3 types of mapping: direct, set-
associative, and full-associative. It uses the LRU replace-
ment policy, an effective but costly policy, especially when
compared to others that are cheaper but closely effective.
Despite only having a native memory interface, it has access
to adapters for other commonly used memories, especially
SDRAMs.

The disadvantages of PoC.cache are described in this para-
graph. PoC.cache uses a control FSM, which during a read-
access, only changes state on a miss. This requires the hit to be
checked in the same cycle a request is made. The tag and valid
memories are therefore implemented with distributed RAM
and registers, respectively. In the presence of a hit, PoC.cache
acknowledges the request, but the data is only available in the
next clock cycle. In the following clock cycle, when the data
is available, it can receive a new request. This allows the cache
to operate with the 1 read per clock cycle. Write accesses on
the other hand require a change of state in the FSM, resulting
in a minimum of 1 write per 2 clock cycles. The cache uses
a write-through write-not-allocate policy but does not have
a write-through buffer. Instead, it accesses the main memory
directly. This means each write-access is dependent on the

write-access time of the memory interface controller, which is
a big issue given that the write-through policy is expected to
generate significant traffic.

Despite being highly configurable, its main memory inter-
face is limited to the size of the cache line. The cache expects
to load a line in a single transfer, meaning the memory’s data-
width needs to be line-sized. This is not a negative point since
it maximizes the main memory’s bandwidth, but may limit the
memory options. One severe limitation is when implementing
a multi-level cache, as the higher-level cache needs to have a
word-size of the lower-level’s line width. The lack of a write-
through buffer is also a big limitation since this cache needs
to stall during a write-access while the higher-level cache is
fulfilling another request.

PoC.cache is written in VHSIC Hardware Description Lan-
guage (VHDL), unlike the other caches that are written in
Verilog. Depending on the synthesis and simulation tools, one
language can be advantageous over the other but they are
semantically equivalent. Most open-source tools only allow
one HDL, generally Verilog, so the entire project needs to use
the same language.

Compared to the presently developed IOb-Cache system,
PoC.cache also lacks (1) a front-end module to avoid the
need to implement an FSM for processor-cache communi-
cation; (2) a configurable back-end module that controls the
communication with the main memory, freeing the main-
controller of unnecessary delays; (3) a universally adapted
memory interface like AXI. All these lacking features, plus the
fact it written in VHDL, have motivated IObundle to develop
a new open-source cache in Verilog.

II. IOB-CACHE

IOb-Cache [6] is a configurable open-source pipelined-
memory cache, designed in synthesizable Verilog HDL [2],
for System-on-a-chip (SoC) implementation.

IOb-Cache is a very configurable IP core: it offers 2
different interfaces for the back-end memory, Native and AXI
(4th generation), whose can be different from that of the front
end (asymmetric implementation); it can be implemented as
Directly mapped or K-Way Set-Associative; there are multi-
ples line replacement policies to choose from, depending on
the performance-resources needs. It uses a fixed write-through
not-allocate policy,

Performance-wise, it allows 1 request/clock-cycle
(pipelined). Each of the following chapters will describe its
respective modules, behavior, and implementation.

A. IOb-Cache: top-level

The top-level integrates all the IOb-Cache modules, and is
represented in the Fig. 1.

The Front-End connects the cache to a Master (processor).
The ports always use the Native Interface, using a valid-ready
protocol.

The Back-End connects the cache (master) to the main-
memory (slave). Its interface depends on the choice of the
top-level module: Native (iob cache) or AXI (iob cache axi).

3

data_wdata_reg

valid

addr

wdata

wstrb

rdata

ready

data_valid

data_valid_reg

data_addr

data_addr_reg

data_wstrb_reg

data_rdata

data_ready

ctrl_valid

ctrl_addr

ctrl_rdata

ctrl_ready

write_valid

write_addr

write_wdata

write_wstrb

write_ready

replace_valid

replace_addr

replace

read_valid

read_addr

read_rdata

Front-End

Cache-Memory
Back-End

Cache-Control

read_hit
write_hit
read_miss
write_miss

wtbuf_full

wtbuf_empty invalidate

mem_valid (Native)

mem_addr (Native)

mem_wdata (Native)

mem_wstrb (Native)

mem_rdata (Native)

mem_ready (Native)

axi_ar* (AXI)

axi_aw* (AXI)

axi_r* (AXI)

axi_w* (AXI)

Native Interface (iob-cache)

AXI4 Interface (iob-cache-axi)

AXI Write-Channel

AXI Read-Channel

IOb-Cache

Data-Memory

Write-Through
Buffer

CTRL_CACHE(1)

axi_b* (AXI)

Fig. 1. IOb-Cache top-level module diagram.

The Cache-Memory is shown in between the Front-End and
Back-End, and contains all the cache’s memories and its main-
controller.

Cache-Control is an optional module for an L1 cache that
allows performing tasks such as invalidating a data cache,
requesting its Write-Through Buffer’s status, or analyzing
its hit/miss performance. If the ”CTRL IO” macro is set,
interfaces for invalidating the cache or observe the Write-
Through-Buffer’s status are implemented without the Cache-
Control module, which is useful for cascading higher-level
caches.

To configure the cache, many available synthesis pa-
rameters. “FE ADDR W” (Front-End Address Width) de-
fines how many bytes are accessible in the main memory.
“FE DATA W” (Front-End Data Width) defines the cache
word-size, needs to be multiple of 8 (byte). “N WAYS” sets
the number of ways (power of 2), if 1 the cache is direct-
mapped, if more it is set-associative mapped. “LINE OFF W”
(Line Offset Width) defines the number of cache lines.
“WORD OFF W” (Word Offset Width) defines the number
of Words per cache line. “REP POLICY” (replacement pol-
icy) sets the replacement policy in use in a set-associative
cache. The policies available are LRU, Pseudo-Least-Recently-
Used: Most-Recently-Used based (PLRUm), and Pseudo-
Least-Recently-Used: (binary) tree-based (PLRUt). “WT-
BUF DEPTH W” (Write-Through-Buffer Depth Width), de-
fines the number of positions in the write-through buffer’s
FIFO. “BE ADDR W” (Back-End Address Width) defines
the width of the back-end address port, but the additional
bits aren’t accessible (access depends on FE ADDR W).
“BE DATA W” (Back-End Data Width) defines Back-End’s
memory word-size, needs to be multiple of FE DATA W.
“CTRL CACHE” implements Cache-Control module, used
for performance measurement, write-through buffer status
and cache invalidation. “CTRL CNT” implements Cache-
Control’s counters needed for performance measurement (hit
and miss counters).

B. Front-End
The Front-End module interfaces the processor (master) and

cache (slave). In the current design, it splits the processor

bus to access the cache memory itself or the Cache-Control
module (if present). It also registers some bus signals needed
by the cache memory. Its interface is represented in Figure 2,
detailing the internal structure. The signals with the “data”
prefix are sent to Cache-Memory, and with “ctrl” to Cache-
Control.

valid

addr

wdata

wstrb

rdata

ready

data_wdata_reg

data_valid

data_valid_reg

data_addr

data_addr_reg

data_wstrb_reg

data_rdata

data_ready

Reg

ctrl_valid

ctrl_addr

ctrl_rdata

ctrl_ready

MUX

OR

Front-End

Fig. 2. Front-End module diagram.

The cache requires that during a request (valid), the master’s
inputs are maintained until the cache signals its conclusion by
asserting the ready signal. During the assertion of the ready,
a new access can be requested.

The signals required for memory writing and the ready’s
combinational path are registered. This way, the necessary
input data is still available while ready is asserted.

The cache always returns entire words since it is word-
aligned. This means the access is word-addressable, so the
byte-offset of the CPU address signal (last log2(FE DATA W

8)
bits) is not connected to the cache.

In a system with a different CPU interface, only this module
requires modification to allow compatibility.

If the optional Cache-Control is implemented, this module
also works as a memory-map decoder to select which unit is
being accessed, the memory or the the control unit, using then
Most Significant Bit (MSB) of the port ”addr”.

C. Cache-Memory

Cache-Memory is a module that contains the cache’s main
controller and memories. The available memories are the Tag
memory, the Valid memory, the Data memory, the write-
through buffer, and, if applicable, the Replacement-Policy
memory.

Its main controller accesses specific back-end modules
using a handshake valid-ready approach. The ready-signal
(data ready) is always asserted excepts after valid is asserted,
where it becomes 0 until the request’s conclusion.

Depending on the choice of parameters, the cache’s imple-
mentation will either be direct-mapped or set-associative based
on the number of ways given by N WAYS.

4

data_wdata_reg

data_valid

data_valid_reg

data_addr

data_addr_reg

data_wstrb_reg

data_rdata

data_ready

write_valid

write_addr

write_wdata

write_wstrb

write_ready

replace_valid

replace_addr

replace

read_valid

read_addr

read_rdata

read_hit
write_hit
read_miss
write_miss

wtbuf_full

wtbuf_empty invalidate

Data-Memory

Write-Through Buffer

Cache-Memory

Data-Memory
Data-Memory

Data-Memory

Tag
Memory

Tag
Memory

Tag
Memory

Tag
Memory

Valid
Memory

Valid
Memory
Valid

Memory
Valid

Memory
Valid

Memory

Replacement
Policy

CTRL_CTRL(1)

N_WAYS > 1

combinational
path

Fig. 3. Cache-Memory module diagram.

Before the Cache-Memory’s behavior and design descrip-
tion is presented, the implementation of each memory will be
explained.

The Tag memory is inferred using RAMs. There is one Tag
memory per cache way. Each of these has Tag-sized width,
and depth equal to the total number of cache lines.

The Valid memory is composed of an array of 1-bit registers
(register-file), one for each way. Each array’s length equals the
number of cache lines. This choice of implementation was a
simple design choice to set its contents to 0 during either a
system reset or a cache-invalidate.

The Tag memory has a 1 clock-cycle read latency (Random-
Access Memory (RAM)), therefore the valid memory’s output
signal needs to be delayed, either by applying a 1-bit output
stage-register or using the registered address “data addr reg”.
The latter was chosen because it requires less logic and has
no impact on timing. Both Tag and Valid memories’ outputs
connect to comparators for producing hit/miss results required
for memory accesses.

The Data memory is implemented by one RAM for each
way and (word) offset. Each RAM has a width FE DATA W
(cache word-size) and a depth of 2LINE OFF W (number of
cache lines). Since the write-strobe signal selects which bytes
are stored, each RAM requires a write enable for each byte.
Some synthesis tools can only infer single-enable Block
Random-Access-Memory (BRAM)s [7] [8], therefore a RAM
will be inferred for each byte.

The Write-Though Buffer is implemented using a syn-
chronous FIFO [9]. It requires the data to be available on
its output a clock cycle after being read.

To address the words in the cache’s memories, the input
address signals are segmented as described in Figure 4.

offset [WORD_OFF_W]addr

Front-end word-address

index [LINE_OFF_W]tag [TAG_W]

FE_ADDR_W-1 FE_BYTE_W

Fig. 4. Address signal segmentation.

The address (data addr) is only used for the initial address-
ing (indexing) of the main memories: Valid, Tag, and Data.
On the next clock cycle, the stored address (data addr reg)
will be checked to see if a ”hit” occurred (word available in
cache), and identifying it within the cache line.

The hit check uses the signal ”way hit”. Each of its bits
indicates a hit in the respective way. The hit is the result of a
tag match.

If any bit of the ”data wstrb reg” signal is enabled, it is a
write-request, otherwise it is a read-request.

During a read-request, if a hit is produced, the respective
word is already available in Data-Memory’s output, so the
request can be acknowledged.

The Data memory allows input Data from both the Front
and the Back-End. This selection is done using the signal
”replace”, which indicates if the replacement on a cache line
is in action. While “replace” is not asserted, all accesses are
from the Front-End. During a read-miss, the signal “replace”
is asserted, which will start the Back-End Read-Channel
controller, responsible for line-replacement.

Both Tag and Valid memories are updated when the “re-
place valid” (read-miss) signal is high, forcing a hit in the
selected way. This allows the replacement process to act simi-
larly to a regular write hit access, reducing the necessary logic.
The replaced data, “read data”, is validated with “read valid”,
and positioned in the cache line using “read addr”, which
depends on the size of the line and the back-end’s word-size.
The replacement can only start if there are not currently write
transfers to the main-memory.

The signals ”write valid” and ”write ready” constitute a
handshaking pair for Cache-Memory to write to the Back-
End Write-Channel. The former indicates the Write-Through
Buffer is not empty, validating the transfer. The latter indicates
that the Back-End Write-Channel is idle and thus enables
reading the Write-Through Buffer.

The requirement that the replacement only starts after the
write transfer is to avoid coherency issues, i.e. storing outdated
data in the cache line.

Write requests do not depend on the data being available
in the cache, since it follows the write-not-allocate policy.
Instead, it depends on the available space in the Write-Through
Buffer, which stores the address, write-data, and write-strobe
array.

During a write-hit, to avoid stalling, the Data memory uses
the registered input signals to store the data, so the cache can
receive a new request.

If a read follows a write-access, Read-After-Write (RAW)
hazards can become an issue. The requested word may not be
available at the memory output, since it was written just the
cycle before. This word will only be available in the following
clock-cycle, therefore the cache needs to stall.

5

Stalling on every read-request that follows a write-hit access
can become costly performance-wise. Hence, to avoid this cost
a simple technique has been employed: the cache stalls only
if one wants to read from the same way and (word) offset that
has been written before. This results in RAW only signaling
when the same Data memory’s (byte-wide) RAMs are being
accessed.

All the above conditions are implemented in the main con-
troller circuit. The signals data ready is given combinatorially
by Equation 1.

data ready = (write access AND !buffer full) OR
OR(read access AND hit AND !RAW)

(1)

A stall occurs if ”data ready” is 0 after the request, other-
wise the request is acknowledged.

Because a new request can be issued in the same cycle as
the previous is acknowledged, the registered request signals
are used for the tag comparison, memory-writing and word-
selection.

Since the line-replacement controller uses the way hit sig-
nal, the hit signal is 1 only when signal replace is de-asserted,
as this signal already has a delay to compensate for the Data
memory’s RAM 1 clock cycle read-latency.

D. Replacement Policy

The line replacement policy in a k-way set-associative
cache is implemented by this module. Different available re-
placement policies can be selected using the ”REP POLICY”
synthesis parameter. The module has three main components:
the Policy Info Memory (PIM), the Policy Info Updater (PIU)
datapath, and the Way Select Decoder (WSD).

The PIM stores information of the implemented policy. Note
that replacement policies are dynamic and use data from the
past, so memory is needed. The PIM has as many positions as
the number of cache sets, addressed by the index part of the
main memory address. The width of the PIM depends on the
chosen policy. The PIM is implemented using a register-file
so that during a system reset or cache invalidation, it can be
set to default initial values.

When a cache hit is detected, the information stored in the
PIM is updated based on the information previously stored for
the respective set and the newly selected way. This function
is performed by the PIU. When a cache miss is detected the
information for the respective cache set is read from the PIM
and analyzed by the WSD to choose the way where the cache
line will be replaced.

The currently implemented policies are the Least-Recently-
Used (LRU) and the Pseudo-Least-Recently-Used (tree and
Most-Recently-Used (MRU)-based).

1) Least-Recently-Used: The Least-Recently-Used policy
(LRU) needs to store, for each set, a word that has N WAYS
fields of log2(N WAYS) bits each. Each field, named ”mru[i]”,
represents how recently the way has been used by storing a
number between 0 (least recently used) and N WAYS-1 (most
recently used), thus requiring log2(N WAYS) bits. In total it
requires N WAYSlog2(N WAYS) bits per cache set.

for each mru

[i]

way_hit [i]

mru[i] > mru[hit] ?

mru[i] = mru[i] -1mru[i] = mru[i] mru[i] = N-1

1 (Yes)

1 (Yes)0 (No)

0 (No)

Fig. 5. LRU Encoder datapath flowchart.

The way each mru[i] is updated is represented in Figure 5.
Summarizing, when a way is accessed either by being hit or
replaced, it becomes the most recently used and is assigned.
The other ways with higher mru values than the accessed
way get decremented. The ones with lower mru values are
unchanged. The selected way for replacement is the one with
the lowest ”mru” index. This can be achieved by NORing each
index, as implemented in Equation 2.

way select [i] = !OR(mru[i]) . (2)

2) Pseudo-Least-Recently-Used: MRU-based: The PLRUm
is simpler than the LRU replacement and needs to store, for
each set, a word that has N WAYS bits only. Each bit mru[i]
represents how recently the way has been used, storing a 0
(least recently used) or 1 (most recently used), thus requiring
log2(N WAYS) bits.

mru = mru OR way_hit

all bits “1” ?

mru = mru mru = way_hit

1 (Yes)0 (No)

Fig. 6. PLRUm Updater datapath flowchart.

The way each mru[i] is updated is represented in Figure 6.
Summarizing, when a way is accessed either by being hit or
replaced, the respective bit is assigned 1 meaning it has been
recently used. When all ways have been recently used, the
most recently assigned remains asserted and the others are
reset. This is done by simply ORing the way hit signal and
the stored bits, or storing the way hit signal if all have been
recently used. To select a way for replacement, the not recently
used way (mru[i]=0) with the lowest index is selected. This can
be implemented by the following logic equation, Equation 3.

way select [i] = !mru[i] AND (AND(mru[i-1:0]) (3)

3) Pseudo-Least-Recently-Used: binary tree-based: The
PLRUt needs to store, for each set, a binary tree with
log2(N WAYS) levels and N WAYS leaves, each represent-
ing a cache way. Each level divides the space to find the way

6

in two, creating a path from the root node to the chosen way,
when traversed by the WSD. Each node is represented by a
bit b[i] where 0 selects the lower half and 1 selects the upper
half of the space. For a 8-way example, the binary tree is
represented in Figure 7.

b[0]

b[1]

b[4]b[3] b[6]b[5]

b[2]

7 6 5 4 3 2 1 0way select

1 0

0

0000 0

01 1

1 1 1 1

111 110 101110 100 011 010 001 000

level 0

level 1

level 2

Fig. 7. PLRU binary tree.

To update each node b[i], the first step is to get the slice
way hit[i] from the vector way hit, relevant for computing
b[i]. Figure 8 shows how to compute way hit[i] for the first 3
notes, b[2:0]. After computing slice way hit[i], the algorithm
shown in Figure 9 is followed. The process is straightforward.
If the slice is not hit (all its bits are 0), then b[i] remains
unchanged. Otherwise, b[i] is set to 0 if the hit happens in the
upper part of the slice and to 1 if the hit happens in the lower
part.

way_hit_upper [0]

N_WAYS/2 -1N_WAYS - 1 N_WAYS/2

way_hit_lower [0]

0

N_WAYS/2 -1N_WAYS - 1 N_WAYS/2

way_hit_upper [1] way_hit_lower [1] way_hit_upper [2] way_hit_lower [2]

0

way_hit [0]

way_hit

way_hit [1] way_hit [2]

way_hit

...

Fig. 8. Computing way hit slices.

get way_hit [i]

way_hit_lower [i]

b [i] = 1

1 (Yes)

1 (Yes)

0 (No)

b [i] = b [i]b [i] = 0

0 (No)

way_hit_upper [i]

Fig. 9. PLRU way updater.

To select the way for doing the replacement, the binary tree
needs to be decoded. This can be done by iterating from the
tree levels, from root to leaves, using the b[i] values to point

to the next node until the leaf is reached. As explained before
the leaf index is the chosen way.

E. Back-End

The Back-End module is the interface between the cache
and the main memory. There are currently 2 available main
memory interfaces: Native and AXI. The native interface
follows a pipelined valid-ready protocol. The AXI interface
implements the AXI4 protocol [1], [10].

Although the AXI interface has independent write and read
buses, the native interface only has a single bus available.
In the native interface, the difference between a write and
read access depends on the write-strobe signal (mem wstrb)
being active or not. This requires additional logic to select
which controller accesses the main memory. There is no risk
of conflict between the read and write channels: reading for
line replacement can only occur after all pending writes are
done.

The Back-End module has two controllers, the Write-
Channel controller and the Read-Channel controller. The
Write-Channel controller reads data from the Write-Through
Buffer and writes data to the main memory while the buffer
is not empty. The Read-Channel controller fetches lines from
the main memory and writes them to the cache during a cache
line replacement.

1) Write-Channel Controller: The native interface’s con-
troller follows the control flow displayed in Figure 10. The
controller stays in the initial state while waiting for the write-
through buffer to have data. The write-through buffer uses a
FIFO, and the FIFO starts the controller when it is not empty.
When that happens, signal write valid asserts, and the FIFO
gets read.

S
0
: waits for write-thought buffer

write_ready = write_valid

S
1
: transfers data to back-end memory

mem_valid = 1
write_ready = mem_ready & write_valid

write_valid = 0
(buffer empty)

write_valid = 1
(buffer not empty)

mem_ready = 0
(waiting for memory)

mem_ready = 1
&

write_valid = 1
(transfer done, buffer not empty)

mem_ready = 1
&

write_valid = 0
(transfer done, buffer empty)

reset

Fig. 10. Back-End Write-channel Native Control-flow.

In the following clock cycle, the required data is available in
FIFO’s output and the transfer can occur. After each transfer,
the FIFO is checked, and if it is not empty, it is read again
so the data can be transferred in the following clock cycle.
This keeps happening until there are no more available data
in the Write Through Buffer, and the controller goes back to
its initial state.

The write-through buffer can only be read after each transfer
is completed (mem ready received). Currently, there is no way
to pipeline these transfers, which are limited to 1 word per

7

every 2 clock cycles. While the controller is in the initial state,
the memory’s write-strobe signal is 0 to not disturb the Read-
Channel controller.

The AXI-Interface (Figure 11) has similar behavior but
follows the AXI4 protocol. The address valid-read handshake
needs to happen before any data can be transferred. After the
data is transferred, it is checked to see if it was successful
through the response channel (B channel): if axi bresp does
not have the OKAY value (an AXI code), then the transfer
was unsuccessful and the data is transferred again.

S
0
: waits for write-thought buffer

write_ready = write_valid

S
1
: AXI write-address handshake

--
axi_awvalid = 1

write_valid = 0
(buffer empty)

write_valid = 1
(buffer not empty)

axi_awready = 1
(address handshake)

reset

S
2
: AXI Data transfer

--
axi_wvalid = 1

S3: AXI write response verification

axi_bready = 1
write_ready = transf. OKAY* & write_valid

axi_wready = 0
(waiting for data transfer)

axi_bvalid = 0
(waiting for response handshake)

not OKAY*
or

OKAY*
&

write_valid = 1
 (buffer not empty)

* - OKAY is axi_bresp = 00, received when axi_bvalid = 1

OKAY*
&

write_valid = 0
 (buffer empty)

axi_wready = 1
(data transfered)

axi_awready = 0
(waiting address handshake)

Fig. 11. Back-End Write-channel AXI Control-flow.

If the Back-End’s data width (BE DATA W) is larger than
the front-end’s (FE DATA W), the data buses require align-
ment. The address signal becomes word-aligned, discarding
the back-end’s byte offset bits. These discarded bits are used
to align both the write data and strobe (Figure 12).

Write Data and Strobe alignment

Back-end word address

FE_ADDR_W - 1 FE_ADDR_W - 2 FE_ADDR_W - 3Front-end word addressaddr

wstrb

Back-End write-strobe

wdatawdatawdata

Back-End write-data

sel

...

wdata

wdata

FE_BYTE_WBE_BYTE_WFE_ADDR_W

Fig. 12. Back-End Write-channel alignment.

This results in Narrow transfers [1, p. A3-49], allowing the
smaller words to be transferred to a larger bus. The Write-
Channel data width is, therefore, limited to the cache’s front-
end word-size. For example, in a 32-bit system, connected to
a 256-bit wide memory, each transfer will be limited to 32-bit
anyway.

2) Read-Channel Controller: The native interface’s con-
troller follows the control flow displayed in Figure 13. The
controller stays in the initial state S0 while waiting for

the request of a line replacement. When signal “replace” is
asserted, the controller goes to state S1 requests a word block
from the memory and writes it to the cache line at 1 word
per cycle after it arrives at the back-end. It requests the base
address of the main memory’s memory block and uses a word
counter to count the received words. After the last word is
received the controller goes to state S2 for a single cycle to
compensate for Data-Memory RAM’s read latency. Afterward,
it goes back to its state S0, de-asserting signal ”replace”.

S
0
: waits for line-replacement ack.

replace = 0

replace_valid = 0
(no replacement requested)

replace_valid = 1
(replacement requested)

reset

S
1
: Data transfer/Load cache-line

--
mem_valid = 1
word_counter += mem_ready
replace = 1

S
2
: Read latency compensation

replace = 1

mem_ready = 0
or

mem_ready = 1
&

word_counter != 1...11
(waiting for data or complete replacement)

mem_ready = 1
&

word_counter = 1...11
(entire line replaced)

Fig. 13. Back-End Read-channel Native Control-flow.

If the back-end’s data width (BE DATA W) is multiple the
front-end’s (FE DATA W), the number of words counted is
proportionally shorter. If the back-end’s data width is the same
size as the entire cache line, the burst length is 1 and therefore
the word counter is not used.

The AXI Interface controller (Figure 14) has a similar
behavior but uses AXI4 burst transfers. The AXI burst param-
eters are derived for synthesis, using the front-end and back-
end data widths, and the cache line’s offset width. Instead of
using a word counter, the signal axi rlast is used to know
when the line has been fully replaced. During the burst, each
beat (transfer) increments signal read addr automatically.

Unlike the Write-Channel controller, the response signal,
”axi rresp”, is sent during each beat (transfer) of the burst.
This requires the use of a register which sets in the case at
least one of the beats was unsuccessful. After the transfers,
the verification of this register can be done at the same time
as the read latency compensation.

F. Cache-Control

The Cache-Control module can optionally be implemented
using the synthesis parameter ”CTRL CACHE”. It is used
to measure the cache performance, analyze the state of its
write-through buffer, or invalidate its contents. Additionally,
the parameter ”CTRL CNT” implements counters for cache
hits and misses, for both read and write accesses.

The Cache-Control functions are controlled by memory-
mapped registers [11, p. 627], selected through “ctrl addr”.
The addresses of the software accessible can be found in the
cache’s Verilog and C header files.

8

S
0
: waits for replacement request

replace = 0

S
1
: AXI read address handshake

--
axi_arvalid = 1
replace = 1

replace_valid = 0
(no replacement requested)

replace_valid = 1
(replacement requested)

axi_arready = 1
(address handshake)

reset

S
2
: AXI Data transfer/Load cache line

--
axi_rready = 1
replace = 1

S
3
: Data verification and read latency

compensation

replace = 1

axi_rvalid = 0
or

axi_rvalid = 1
&

axi_rlast = 0

(waiting for data and line replacement)

At least 1 data-transfer
(during S

2
)

 wasn't successful

Successful
transfers

axi_rvalid = 1
&

axi_rlast = 1
(entire line replaced)

axi_arready = 0
(waiting address handshake)

Fig. 14. Back-End Read-channel AXI Control-flow.

The ports write hit, write miss, read hit, and read miss
work as enables that cause the respective counters to incre-
ment. The counters can be reset by hardware (global system
reset) or by software.

III. RESULTS

This chapter presents results on IOb-Cache’s performance.
A comparison between IOb-Cache and other open-source
caches is also presented.

A. Performance

The Dhrystone [12] benchmark is a useful tool for mea-
suring the performance of processors, using the Dhrystones/s
score. The frequency-independent Dhrystone score is called
Dhrystone Mega Instructions per Second (MIPS)/MHz or
simply DMIPS. Here the Dhrystone benchmark is used to
indirectly evaluate the cache as the performance of the sys-
tem translates the performance of the cache if the processor
remains the same. To do that, the Clocks-per-Instruction (CPI)
measurement is taken while running the benchmark, as it
provides a more direct indication of the cache performance
compared to the DMIPS figure.

To efficiently test the cache, a pipelined processor is re-
quired, with a performance close to 1 CPI when using an ideal
RAM. This way it is possible to analyze the average delay of
the cache during memory accesses.

The Dhrystone benchmark has one shortcoming for testing
the various policies, it is a small program that can be fitted
entirely inside an instruction cache of common size. This
shortcoming becomes an advantage for testing the pipeline
operation, since it after full it behaves like a RAM, in a system
connected to a larger SDRAM. Being a RAM, the correct
pipeline operation happens with consecutive loads and stores
which should take 1 cycle per instruction. A correct cache
design allows for 1-cycle loads and stores whereas a poorer
design will need 2 cycles for load/store instructions.

Cache system size clock cycles CPI
48 B (16+16+16) 513926 12.971
2 KB (0.5+0.5+1) 185163 4.673

8 KB (2+2+4) 51298 1.294
32 KB (8+8+16) 42397 1.070

TABLE I
FPGA EMULATION OF DHRYSTONE SSRV (IOB-SOC) 32-BIT AT 50

MHZ. 100 RUNS. 2-LEVEL CACHE SYSTEM, SIZES ARE FOR L1-INSTR +
L1-DATA + L2-UNIFIED.

The tests are run in IOb-SoC [13], using the SSRV [14],
[15] multi-issue superscalar RISC-V processor. Despite being
multi-issue, the processor was limited to 1 instruction per clock
cycle in the tests, which is a simple setup but allows testing
the cache. Connected to the IOb-SoC’s internal memory (RAM
only and no cache), it achieved CPI=1.02, running for 40445
clock cycles. The cache is implemented following a 2-level
cache system: an L1-Instruction and L1-Data caches connected
to a L2-Unified cache.

The FPGA system is implemented in the XCKU040-
1FBVA676 Field-Programmable Gate Array (FPGA) [16],
which is part of the Xilinx’s Ultrascale FPGA family. The
system is run at 50 MHz, 1/4 of the Memory Interface’s fre-
quency, so it requires the implementation of the synchronous
AXI-Interconnect with a 1:4 clock ratio. Some results are
presented in Table I.

During these tests, some results were observed, such as in a
2-way set-associative cache, PLRUt is the best choice since it
requires less stored bits while offering the same performance.
Using a set-associative in the L2-Unified cache represents
the largest performance improvement. The PLRUm policy
displays the highest performance in all three caches, while the
LRU policy gives the worst performance. This occurs because
of the cache’s limited size and the fact the PLRU policies lack
memory since there is no time locality to exploit. 32 KB cache
is large enough to fit the dhrystone program.

B. Resources and Timing

Table II displays the synthesis and timing results of IOb-
Cache using the Native interface for 2 different clock frequen-
cies: 100 and 250 MHz. The results for IOb-Cache with AXI
Back-End are similar and differ only in 15 LUTs and 2 Flip-
Flop (FF)s.

The implementation differs for the 2 clock frequencies. The
used memory is enough for BRAMs to be inferred for both
the Tag and Data memories. For 100 MHz, the critical-path
is from Tag memory output to a Data memory write enable
signal. This path is caused by the signal way hit, which results
from the tag comparison and respective validation, and needs
to be connected to write enable bits on a write-hit access.
However, for 250 MHz the synthesis tool deliberately decides
to implement the Tag-Memory with Look-Up-Table Random-
Access-Memory (LUTRAM)s, with a stage register at the
output, to be able to meet the timing constraint.

Data-Memory infers RAMB18 blocks for each byte in the
cache line. Since the RAMB18 block is 18-bit wide, roughly
half of it is wasted.

9

Ways R.Policy Lines Words/line LUT LUTRAM FF RAMB36 RAMB18 WNS
100 MHz (10 ns)

4 KB
1 128 8 431 0 249 1 33 4.047
4 PLRUm 16 16 1727 1068 2407 1 0 3.212

8 KB
2 PLRUt 128 8 1025 0 509 1 66 2.977

16 KB
4 PLRUm 128 8 1940 0 1154 1 132 2.158

32 KB
4 PLRUm 256 8 2961 0 2187 1 132 1.199
1 1024 8 1638 0 1145 1 33 4.003

250 MHz (4 ns)
4 KB

1 128 8 510 40 269 1 32 0.398
4 PLRUm 16 16 1730 1068 2407 1 0 0.024

8 KB
2 PLRUt 128 8 1084 80 549 1 64 0.228

16 KB
4 PLRUm 128 8 1974 160 1234 1 128 0.103

32 KB
1 1024 8 1714 272 1162 1 32 0.523
4 PLRUm 256 8 2981 304 2289 1 128 -0.120

TABLE II
IOB-CACHE (NATIVE) RESOURCE AND TIMING ANALYSIS.

C. Open-Source Caches

In this chapter, the IOb-Cache is compared with the con-
figurable PoC.cache design included in the PoC-Library [5]
library of open-source cores. PoC.cache is the most compet-
itive open-source cache one was able to find, so the other
caches are not evaluated here as clearly they cannot compete
with IOb-Cache or PoC.cache. The comparison between the
two caches is available in Table III below.

In addition to the information in Table III, the follow-
ing remarks are needed. The data-width of the back-end of
PoC.cache is fixed to the cache line’s size, and therefore
not configurable to be smaller such as in IOb-Cache. The
PoC.cache tag and valid memories are implemented with
distributed LUTRAM and registers, respectively, to combina-
torially check for a hit and achieve 1 read per clock cycle.
Lastly, despite using the Write-Though policy, PoC.cache does
not have a buffer and accesses the main memory for write
transfers, which is comparatively slower.

Based on the information in Table III, the following con-
clusions can be drawn. There are 2 points where PoC.cache is
better than IOb-cache: (1) the implementation of the cache
invalidate function and (2) the implementation of a fully
associative cache. PoC.cache can invalidate individual lines
whereas IOb-Cache can only invalidate the entire cache.
PoC.cache can be configured as fully associative (single set)
cache and IOb-Cache needs at least 2 sets. However, besides
its theoretical interest fully associative caches are seldom used
in practice.

In the remaining features, IOb-Cache is better than

PoC.cache: configurable back-end size with AXI4 interface
as an option; write-through buffer and independent controller
for fast, most of the time 1-cycle writing (PoC.cache only
supports 1-cycle reads); more replacement policies to choose
from; a modular design that allows changing both front and
back-ends without affecting the cache’s core functionality.

Both PoC.cache and IOb-cache have the same issue of
implementing the Tag-Memory and Policy Info Module using
registers, and thus consuming more silicon area than necessary.
However, because IOb-Cache is designed to work with the
1-cycle read latency of RAM, it can easily be upgraded to
replace these memories with RAMs while PoC.cache needs
more drastic design changes.

IV. CONCLUSIONS

In this thesis IOb-Cache, a high-performance configurable
open-source cache is developed. IOb-Cache is being used in
dozens of projects. It is currently integrated into the IOb-SoC
Github repository, which has 16 stars and is being used in 38
projects (forks). In the Github cloud community, it is currently
the only Verilog cache found by its search tool, with this level
of configurability, that supports pipelined CPU architectures,
and the popular AXI4 bus interface.

The cache is composed of 3 modules: Front-End, Cache-
Memory, and Back-End. The Front-End interfaces the proces-
sor with the cache. The Cache-Memory contains the memo-
ries and the cache’s main controller. The main controller is
implemented by a streamlined datapath that evaluates every
necessary condition for read and write-accesses. The Back-End

10

PoC.cache IOb-Cache
HDL VHDL Verilog

Configurability
n. ways, lines, words Yes Yes
back-end width No Yes

Mapping
Direct Yes Yes
Set-Assoc. Yes Yes
Full-Assoc. Yes No

Policies
Write write-through write-through
W.T. Buffer No Yes
Replacement LRU LRU, PLRUs

Back-End Connectivity
Native Yes Yes
AXI No AXI4

Implementation
Main-control FSM Data-path
Data-Memory BRAM BRAM
Tag-Memory LUTRAM BRAM
Valid-Memory Register Register
Rep-Pol. Mem Register Register
Invalidate Yes Yes

Performance
clk/read (hit) 1 1
clk/write 2 1
Ready during valid after valid req.
Read-Data avail. after ready during ready
New req. after ready during ready

TABLE III
COMPARISON BETWEEN POC.CACHE AND IOB-CACHE.

implements Native and AXI interfaces, allowing flexibility
in connecting to 3rd party memory controllers (likely using
an AXI interface), and other cache levels (likely using the
Native interface). The Native interface follows a pipelined
valid-ready protocol, while the AXI4 interface is a full master
bus implementation. Each interface has a specific controller
for write and read-accesses. The Back-End’s Write-Channel
module is responsible for the write accesses: it reads data from
the write-through buffer and writes them to the main memory.
The Back-End’s Read-Channel module fetches lines from the
main memory and writes them to the cache during a cache line
replacement. An optional module called Cache-Control can be
selected. This module implements cache performance meters,
and analyses write-through buffer states and cache invalidates.
These functions are controlled by the CPU using memory-
mapped registers. When the Cache-Control module is present,
the Front-End module acts as a splitter between accesses to
Cache-Memory or the Cache-Control modules, also through
memory-mapping.

A. Achievements

In this work, several important achievements deserve to be
highlighted. The the following list highlights them.

• The cache supports pipelined memory loads and stores,
honoring 1 request per clock cycle. Given the 1-cycle
latency present in RAMs, a request can be served while
processing the next, which results in a throughput of 1
request per clock-cycle and latency of 2 clock cycles for
hit addresses.

• The cache has a modular design that allows keeping its
core functionality independent from its interfaces intact,
implemented by the Front-End and Back-End modules.

• The cache can pass high frequency (250 MHz) timing
requirements for a Xilinx Ultrascale FPGA, in a large
number of configurations, including the 32 KB direct-
mapped or the 8KB 4-way set-associative configurations.

• If large enough, the results show that its performance is
close to that of having a fast on-chip RAM connected to
the CPU. Using the multi-issue superscalar SSRV CPU,
which has CPI=1.02 when connected to an SDRAM, the
cache achieved CPI=1.07.

B. Future Work

IOb-Cache can still be further improved beyond the devel-
opment time allocated to it. The main improvements are listed
below in decreasing priority:

• Increase resource efficiency by reducing the amount of
logic and memory used. Both the Valid-Memory and PIM
modules would be more efficiently implemented with
RAM; the Valid Memory could be merged with the Tag-
Memory adding only 1 bit to its width.

• Implementation of the Write-Back Write-Allocate policy,
to optimize bandwidth and the general performance for
some applications.

• Improve the Cache-Control module, allowing cache line
invalidates

• Cache Coherency, a dedicated module, and interface to
implement a cache coherency algorithm would signifi-
cantly expand the usability of IOb-Cache.

REFERENCES

[1] ARM. AMBA AXI and ACE Protocol Specification, 2020. Accessed on
December 2020.

[2] IEEE 1364-2005 – IEEE Standard for Verilog Hardware Description
Language, November 2005.

[3] airin711: Verilog caches, April 2016. Accessed on December 2020.
[4] prasadp4009: 2-way-Set-Associative-Cache-Controller, March 2016.

Accessed on December 2020.
[5] Poc - Pile-of-Cores. Accessed on December 2020.
[6] IOb-Cache, December 2020. Accessed on December 2020.
[7] Recommended hdl coding styles, quartus ii 9.1 handbook, volume 1,

November 2009. Accessed on October 2020.
[8] Intel Quartus Prime Standard Edition User Guide: Design Recommen-

dations. Accessed on October 2020.
[9] IOb-memories, December 2020. Accessed on December 2020.

[10] Xilinx. UG1037: Vivado Design Suite - AXI Reference Guide, July 2017.
Accessed on December 2020.

[11] Arlindo Oliveira Guilherme Arros, José Monteiro. Arquitectura de
Computadores – dos Sistemas Digitais aos Microprocessadores. IST
Press, 2nd edition, July 2009.

[12] Alan R. Weiss. Dhrystone benchmark: History, analysis, ”scores” and
recommendations. November 2002.

[13] IOb-SoC, December 2020. Accessed on December 2020.
[14] risclite. Superscalar-riscv-cpu, 2018. Accessed on October 2020.
[15] IOb-SSRV, September 2020. Accessed on October 2020.
[16] Avnet, Inc. Kintex UltraScale KU040 Development Board, 2015.

