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Resumo

Nesta tese estudamos a dinâmica semiclássica de sistemas quânticos não-Hermíticos no espaço

de fases. A dinâmica semiclássica não Hermitíca de estados coerentes Gaussianos é descrita por

um sistema de equações para o movimento do centro e da métrica associada ao pacote de ondas, à

qual chamamos a geometria intrínseca do estado. A inclusão de uma parte não Hermítica leva à não

conservação da norma, que pode ser interpretada como perda ou ganho de energia. Neste trabalho,

propomos um novo método de desacoplar o sistema de equações que simplifica substancialmente

o problema. Aplicamos este método a exemplos específicos como a partícula livre em tempo imagi-

nários e o oscilador harmónico em tempo imaginário. Além disso, um método de análise numérica

é proposto para integrar a equação de Schrödinger com Hamiltonianos não-Hermíticos. O método é

adaptado para a equação de evolução no tempo para a função de Wigner, permitindo então compa-

rar os resultados da aproximação semiclássica com a evolução no tempo de um dado estado inicial,

ditado pela equação de Schrödinger. Por fim, uma conexão é feita entre o formalismo de otimização

estocástica para uma certa classe de sistemas de controlo e a evolução semiclássica gerada por um

Hamiltoniano não-Hermítico quântico. Um exemplo de um Hamiltoniano quadrático é explorado onde

mostramos a existência do limite de tempo infinito para o centro e para a métrica do pacote de ondas.

Palavras Chave

Hamiltonianos não-Hermíticos, aproximação semiclássica, método de passo-separado de Fourier,

sistemas de controlo estocásticos.
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Abstract

In this thesis we study the semiclassical dynamics of non-Hermitian quantum systems on phase

space. The non-Hermitian semiclassical dynamics of Gaussian coherent states is described by a sys-

tem of equations for the motion of the center and of the metric associated with the wave packet, which

we call the intrinsic geometry of the state. The inclusion of a non-Hermitian part leads to the non

conservation of the norm, which can be interpreted as either energy loss or gain. In this work, we pro-

pose a new method of decoupling the system of equations which substantially simplifies the problem.

We apply this method to specific examples like the free particle in imaginary time and the harmonic

oscillator in imaginary time. Furthermore, a numerical analysis method is proposed for integrating

the Schrödinger equation with non-Hermitian Hamiltonians. The method is adapted to the time evo-

lution equation for the Wigner function, thus allowing one to compare the results for the semiclassical

approximation with the time evolution of a given initial state, dictated by the Schrödinger equation.

Lastly, a connection is made between the formalism of stochastic optimization of a certain class of

control systems and the semiclassical evolution generated by a quantum non-Hermitian Hamiltonian.

An example of a quadratic Hamiltonian is explored where we show the existence of the infinite time

limit of the center and the metric of the wave packet.

Keywords

Non-Hermitian Hamiltonians, semiclassical approximation, split-step Fourier method, stochastic

control systems.
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1
Introduction

In Physics, one is usually interested in analyzing a given subsystem of the Universe and such a

system is never fully isolated. One often then has to turn to the theory of open quantum systems

(OQS) [3]. Nowadays, this theory serves as the backbone to modern research in quantum mechanics

and its applications. OQS are very important for example in the fields of quantum information and

computation. Here, although results are usually derived using the regular closed system quantum

mechanics, one needs models that take into account that a quantum computer is an OQS and may

have unwanted interactions that may change the dynamics.

Due to the typically very large amount of degrees of freedom of the environment it is often un-

feasible to search for a description of the system plus environment solely based on unitary quantum

mechanics. As such, there are several formalisms that try to explain the behavior of OQS and in this

work we will focus on the non-Hermitian Hamiltonian (NHH) formalism.

One possible way to mimic the behavior of OQS is to consider an effective Hamiltonian that con-

tains an imaginary term used to model the exchange of energy with the environment. This approach

is called non-Hermitian quantum mechanics, which is a field that has been attracting a lot of visi-

bility in recent years. The study of NHH raised in interest in 1998, when Carl Bender and Stefan

Boettcher showed that PT-symmetric (parity-time symmetric) non-self adjoint Hamiltonians could have

real eigenvalues [2]. As such, one does not need to enforce the more restrictive condition of hermitic-

ity to get a real energy spectrum. Since then, examples of such Hamiltonians have been observed

in the field of Quantum Optics [17], where new breakthroughs in light-wave dynamics have been de-

vised thanks to the unusual effects that show up when studying NHH. Examples of these applications

as well as an introduction to the field of non-Hermitian optics can be found in [10]. However, PT-
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symmetric Hamiltonians are just a small subset of the theory of NHH [26]. By extending quantum

mechanics to handle NHH one can also shed light into physical processes like resonance phenom-

ena in metastable states or even speed up numerical calculations in unitary quantum mechanics [27].

Furthermore, an emergent field that relies on the study of NHH is topological photonics [31], where

topological concepts are used to control the dynamics of light, and NHH play a role as being the

source of gain and loss in these optical systems.

One particular area of interest is the semiclassical limit of non-Hermitian dynamics [14–16]. Start-

ing first by studying how NHH behave in the coherent state approximation it has been shown that, for

both the state [14], and for the Wigner function of the state [15], one gets a generalized system of

equations that describes the phase space evolution of the center of the state and of the associated

metric [16]. In a recent work [29], a new method of solving this coupled system of equations has been

proposed.

In the present work an equivalence between a class of stochastic optimal control systems and a

class of non-Hermitian Hamiltonians has been found. Stochastic control theory has a wide range of

applications nowadays, be it in robotics to accurately calculate a robot’s course of actions [37] or even

in finance, to model the dynamics of financial markets [1]. In particular, for a certain class of control

systems it is possible to describe the dynamics of the value function using the formalism developed

in this thesis. This study thus shows new methods to simulate and study these controlled systems

under a new perspective, that of the non-Hermitian quantum formalism.

The main purpose of this thesis is to explore both numerically and analytically the dynamics and

geometry underlying the system of equations that describes the semiclassical dynamics of a non-

Hermitian system. Furthermore, we also relate the non-Hermitian formalism to the field of controlled

stochastic systems. In the following subsection we introduce the NHH formalism and give some

background that will be used later. Following that, we will specify the objectives of this work as well

as give an outline of the rest of the thesis.

1.1 Non-Hermitian Hamiltonians

Non-Hermitian Hamiltonians can be regarded as effective Hamiltonians where the imaginary part

leads to a certain type of behavior one is attempting to model. Some examples of applications are

in OQS, used to mimic the interaction with the environment; in systems with gain and loss like lasers

and optical media; and to exhibit finite lifetime in interactions (something that Hermitian quantum

mechanics cannot handle) [25]. The move from Hermitian to non-Hermitian dynamics causes several

changes which we will briefly mention across this section.

Given a general non-Hermitian Hamiltonian, denoted by Ĥ, we have that (Ĥ + Ĥ†)/2 is an Her-

mitian operator, meaning that it is equal to its conjugate transpose, and that (Ĥ − Ĥ†)/2 is an anti-

Hermitian operator, meaning it is equal to the negative of its conjugate transpose. Moreover, summing

the Hermitian operator with the anti-Hermitian operator yields Ĥ. So, a general non-Hermitian Hamil-
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tonian operator can be written as:

Ĥ = Ĥ − iΓ̂, (1.1)

with both Ĥ, Γ̂ being Hermitian operators.

If we assume, for simplicity, that the operators are time independent and that Ĥ is diagonalizable

and has a discrete spectrum then we can always write a general state in the basis of the eigenstates

of Ĥ:

|ψ〉 =
∑
n

cn |ψn〉 , (1.2)

with cn ∈ C. Furthermore we note that, for a non-Hermitian but diagonalizable Ĥ, we have:

Ĥ =
∑
n

En |ψn〉
〈
ψ̃n

∣∣∣ , (1.3)

where, in general, the left and right eigenvectors differ from one another. The fact that left and right

eigenvectors may differ from one another follows from the definition of |ψn〉 and
〈
ψ̃n

∣∣∣:
Ĥ |ψn〉 = En |ψn〉〈

ψ̃n

∣∣∣ Ĥ = En
〈
ψ̃n

∣∣∣⇔ Ĥ† ∣∣∣ψ̃n〉 = E∗n
∣∣∣ψ̃n〉 .

(1.4)

From above, we see that the
∣∣∣ψ̃n〉 are the right eigenvectors of Ĥ† whereas |ψn〉 are the right eigen-

vectors of Ĥ. If Ĥ was Hermitian then we would have |ψn〉 =
∣∣∣ψ̃n〉. However, as we are dealing with

non-Hermitian Hamiltonians, with complex eigenvalues, we no longer have that equality.

We also have the partition of unity and orthogonality equations for the eigenvectors of the Hamil-

tonian: ∑
n

|ψn〉
〈
ψ̃n

∣∣∣ = 1 (1.5)

〈
ψ̃n

∣∣∣ψm〉 = δnm (1.6)

Having said that, we can deduce the time evolution of such a state, making use of the Schrödinger

equation:

i~∂t |ψ〉 = Ĥ |ψ〉 ⇔
∑
n

(∂tcn) |ψn〉 = − i
~
∑
n

cnEn |ψn〉 =⇒ |ψ(t)〉 =
∑
n

cne
− i

~Ent |ψn〉 , (1.7)

where Ĥ |ψn〉 = En |ψn〉, with En ∈ C.

The first aspect one notices when studying NHHs is the fact that time evolution is no longer unitary.

For example, assuming that the system is initially at the normalized ground state, |ψ0(0)〉 = |ψ0〉 ,

calculating the norm of the time evolved state one obtains:

〈ψ0(t)|ψ0(t)〉 = e−
2
~ Γ0t, (1.8)

where Γ0 = Im E0. For Γ0 6= 0 this clearly shows an either increasing or decreasing norm for this

state.
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A particularly useful representation is the Heisenberg picture [9], obtained from Schrödinger’s

equation and its complex conjugate. For an operator Â that does not depend explicitly on time, the

Heisenberg picture is:

i~∂tÂ(t) =
[
Â(t), Ĥ

]
− i
{
Â(t), Γ̂

}
, (1.9)

where [., .] denotes the commutator of two operators and {., .} the anticommutator of two operators.

A unique feature of NHH is the existence of singular points, in certain families of Hamiltonians,

where both the eigenstates and eigenenergies coalesce [21, 23]. At these points the Hamiltonian

is no longer diagonalizable and its eigenvectors no longer span the full Hilbert space. This is dif-

ferent from the usual degeneracy that occurs in Hermitian Hamiltonians because here not only the

number eigenvalues but also the number of linearly independent eigenvectors decreases. This is not

surprising because the non-Hermitian Hamiltonians may not be diagonalizable.

In this work we will study non-Hermitian Hamiltonians in the semiclassical limit, in which the evo-

lution they generate has an interesting geometric interpretation.

1.2 Objectives

As mentioned above, complex Hamiltonians can be useful tools to study open quantum systems

and are an alternative to the more widely studied formalisms like the Lindblad superoperator formal-

ism. Furthermore, as proposed in the present thesis, complex Hamiltonians can also be used in the

important field of stochastic control. This approach may shed new light and be more appropriate in

certain cases.

The current literature on NHH is able to obtain approximately the semiclassical dynamics of NHH

by solving a coupled system of equations for the centers and for the intrinsic geometry of coherent

states, proposed in [14–16], which in general is very complicated and computationally expensive.

There is another method [29] to approach the system of equations and decouple the equations for

the centers from the equation for the geometry, possibly opening up new kinds of systems to be

analytically solvable as well as enabling other numerical methods to be used.

Thus, the aim of the present work is to use this aforementioned new method of handling the cou-

pled system of equations in order to model open quantum systems and certain stochastic controlled

systems.

Specifically, the objectives are as follows:

• Further exploration of the geometry underlying the system of equations obtained for the coher-

ent state semiclassical evolution generated by NHH in [15, 16];

• Solve the system of equations developed in [15, 16] using the method suggested in [29] in some

systems where previously it was not possible to analytically obtain results;

• Find numerical methods to compute solutions of both the exact and semiclassical equations in

the context of non-Hermitian Hamiltonians;
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• Explore a connection between the fields of stochastic differential equations and non-Hermitian

Hamiltonians.

1.3 Thesis outline

In chapter 2, we provide the necessary background to understand the rest of the work. In partic-

ular, we introduce the fields of symplectic and Kähler geometry, the Wigner function formalism in the

context of coherent states, the system of equations for the semiclassical evolution of a localized state

[15, 16] as well as a brief introduction to the field of stochastic control.

In chapter 3, we explore the system of equations proposed in [15, 16] in specific examples and

describe their underlying geometry. Furthermore, we also describe a method of handling the system

of equations that allows one to analytically solve previously unsolvable examples. Finally, we derive

the general equation of motion for the Wigner function for some class of Hamiltonians.

In chapter 4, we present the theoretical background for the numerical methods used to solve the

exact evolution equation of a given system as well as their semiclassical evolution according to the

equations proposed in [15, 16]. We then apply the method developed in some examples.

Finally in chapter 5, we apply the methods developed beforehand to study a connection between

the fields of controlled stochastic differential equations and non-Hermitian Hamiltonians.

5



6



2
State of the art

The aim of this chapter is to make a literature review of the topics necessary to the present work.

Specifically, we briefly describe Kähler Geometry and the Wigner function formalism. Following that,

we describe the system of equations developed in [15, 16] for the motion of the center, the metric

and the multiplicative factor of a coherent state. Finally, we end by introducing the field of stochastic

optimal control.

2.1 Symplectic and Kähler geometry

Symplectic manifolds [8] provide the natural setting for the Hamiltonian formulation of classical

mechanics. They also provide the appropriate setup to study the semiclassical approximation of

quantum dynamics. A symplectic manifold is a smooth manifold, M , with a closed nondegenerate

2-form ω, called the symplectic form. For the case of classical dynamics on M = R2n this symplectic

form is defined as:

ω = dq ∧ dp =

n∑
j=1

dqj ∧ dpj (2.1)

This symplectic form plays a role analogous to the metric in Riemann manifolds. Whereas in Rie-

mann manifolds the metric allows to measure lengths and angles here the symplectic form measures

areas of symplectic surfaces in phase space and defines the volume form, called the Liouville form,

Ω = ωn/n! .

One useful foundational theorem in symplectic geometry is Darboux’s theorem, which states that

locally we can always find a coordinate system where the symplectic form takes the usual expression
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ω = dq ∧ dp =
∑
j dqj ∧ dpj . This non unique system of coordinates is called a system of canonical

coordinates.

Before moving forward we introduce the concept of Hamiltonian vector fields. Given a function

from the manifold to the real numbers, f : M → R, we can obtain a unique vector field Xf , called

the Hamiltonian vector field corresponding to f . In canonical coordinates, (pi, qi) , this vector field is

represented by:

Xf = −
n∑
i=1

∂f

∂qi

∂

∂pi
+

n∑
i=1

∂f

∂pi

∂

∂qi
. (2.2)

We will need to consider also complex structures J on the symplectic manifold (M,ω) [30]. At

every point, J is a linear transformation of the tangent space such that J2 = −1p, i.e. the identity at

point p ∈M . J is a type (1, 1) tensor field that satisfies an integrability condition NJ = 0, with:

NJ(X,Y ) = [X,Y ] + J([JX, Y ]) + J([X, JY ])− J([JX, JY ]), (2.3)

for any vector fields X,Y . Algebraically, this complex structure J : TpM → TpM plays the role of the

imaginary unit, where TpM is the tangent space at p. For example, for vectors tangent to M at p, one

can define complex scalar multiplication as (a + ib)v = av + bJ(v),∀v ∈ TpM . Note that, for a man-

ifold to have a complex structure, it is required that the manifold is even dimensional. As symplectic

manifolds are always even dimensional, that restriction does not pose a problem. Since J2 = −1p,

it has eigenvalues ±i that define conjugate eigenspaces of holomorphic and anti-holomorphic direc-

tions. In fact, from the holomorphic and anti-holomorphic coordinates, zj and zj , we can define other

directions, uj , vj from their real and imaginary parts, using the so called Wirtinger derivatives [22]:

∂

∂zj
=

1

2

(
∂

∂uj
− i ∂

∂vj

)
∂

∂zj
=

1

2

(
∂

∂uj
+ i

∂

∂vj

)
.

(2.4)

We can thus also rewrite any vector field, W in this basis

W =

n∑
j=1

(
Wuj

∂

∂uj
+Wvj

∂

∂vj

)
=

n∑
j=1

(
Wzj

∂

∂zj
+Wzj

∂

∂zj

)
. (2.5)

The symplectic form and the complex structure are said to be compatible if we require that the

complex structure is a symplectic transformation, i.e. iff:

ω (Ju, Jv) = ω (u, v) ,∀u, v ∈ TpM. (2.6)

For the matrix representation of the complex structure on canonical symplectic coordinates this means

that JTΩJ = Ω with Ω being the matrix of the symplectic form, defined as:

Ω =

(
0 −1
1 0

)
, (2.7)

in the basis (pj , qj). For the remainder of the present work we will, unless otherwise stated, always
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assume we are in the ordered basis (pj , qj).

Note that Eq. (2.6) implies that the tensor g defined as:

g(u, v) = ω(u, Jv),∀u, v ∈ TpM, (2.8)

is a symmetric tensor, defined on TpM . If g is positive definite, i.e a metric, then (M,ω, J, g) is called a

Kähler Manifold [28]. In a Kähler Manifold, the above three structures exist in such a way that they

are mutually compatible with each other. Thus, knowing any pair of them allows one to determine the

third.

Equivalently, in the matrix representation we have that:

G = ΩJ, (2.9)

with G being the matrix representation of the metric g, J the complex structure and Ω the symplectic

matrix defined above.

2.2 Wigner distribution

In this work we will study non-unitary quantum dynamics in the semiclassical limit. With this goal in

mind, we now proceed to briefly introduce the concepts of Gaussian coherent states and their Wigner

representation, which serve as a representation of localized states (or wave-packets).

For an harmonic oscillator, a coherent state is defined to be the unique eigenstate of the annihi-

lation operator â with associated eigenvalue α ∈ C. It is a state with minimum uncertainty, that is,

it saturates Heisenberg’s uncertainty principle. Thus, they are often used as a good bridge between

classical and quantum physics.

Since their proposal [13] coherent states have been generalized for arbitrary Lie groups. A good

review can be found in Ref. [32]. Here, however, we will only consider coherent states for harmonic

oscillators.

An n-dimensional normalized Gaussian coherent state in the Schrödinger representation is de-

fined as:

ψ(q) =
(det ImB)

1
4

(π~)n4
exp

[
i

~

(
P · (q −Q) +

1

2
(q −Q) ·B(q −Q)

)]
, (2.10)

where the vector Y = (P,Q) ∈ Rn × Rn is the center of the state, and the matrix B ∈ Mn(C) is

symmetric, with ImB > 0 to ensure the state is normalizable.

It is possible to pass to a phase space representation of the state using, for example, the Wigner

representation [5], originally proposed by Wigner [38]:

W (q, p) :=
1

π~

ˆ ∞
−∞

dyψ∗(q + y)ψ(q − y)e2ipy/~. (2.11)

The Wigner representation is fundamental to study phase space quantum mechanics. The role

9



of the Wigner representation is analogous to a probability density function 1 as expectation values

for functions of position and momentum can be calculated from it. This is possible because we can

obtain both the q and p probability distributions for a pure state from the following integrals:

|ψ(q)|2 =

ˆ ∞
−∞

dpW (q, p)∣∣∣ψ̃(p)
∣∣∣2 =

ˆ ∞
−∞

dqW (q, p) ,

(2.12)

where ψ̃(p) is the Fourier transform of ψ(q). It worthy of note that, for Gaussian states, the Wigner

distribution is always positive and Gaussian. The function is bounded, − 1
π~ ≤ W (q, p) ≤ 1

π~ , but in

the limit ~ → 0 this bound disappears and the Wigner function collapses to the probability density in

coordinate space [7].

Its time evolution is given, for an Hamiltonian of the form Ĥ = 1
2m p̂

2 + V (q̂) by [5]:

∂W (p, q, t)

∂t
= − p

m

∂W (p, q, t)

∂q
+

+∞∑
s=0

(
−~2

)s
(2s+ 1)!

(
1

2

)2s
∂2s+1V (q)

∂q2s+1

∂2s+1W (p, q, t)

∂p2s+1
. (2.13)

This approach to quantum mechanics is interesting because it makes quantum mechanics as

similar as possible to classical Hamiltonian mechanics. As we will see, in the semiclassical limit we

will obtain behavior very similar to the classical Hamiltonian dynamics.

It can be shown that the Wigner function of a Gaussian coherent state of the form of Eq. (2.10) is

[15]:

W (y) = (π~)−n exp

[
−1

~
(y − Y ) ·G(y − Y )

]
, (2.14)

where y = (p, q) and Y = (P,Q). The matrix G is obtained from B by:

G =

(
1 0

−ReB 1

)(
(ImB)

−1
0

0 (ImB)

)(
1 −ReB

0 1

)
. (2.15)

We note that G is nondegenerate, positive and symmetric and can be seen as describing a con-

stant metric on phase space [15]. Furthermore, it can be seen that it is also a symplectic metric, i.e.,

GΩG = Ω where Ω is the symplectic structure on phase space defined in Eq. (2.7). Due to this, using

Eq. (2.8) it is possible to define a complex structure J , with J2 = −1 and ΩJ = G. Consequently, ev-

ery coherent state (Eq. 2.10) endows the phase space with a flat Kähler structure. Having explained

the concepts of non-Hermitian Hamiltonians, coherent states and Kähler geometry we are now in a

position to understand the system of equations derived in [15, 16].

2.3 The semiclassical approximation for non-Hermitian Hamilto-
nians

In their paper on the evolution of wave packets [15] (described by Gaussian coherent states),

Graefe and Schubert derive a system of coupled equations for the time evolution of the Wigner func-

1It cannot really be a probability density function as it can be negative-valued.
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tion of a NHH given by Ĥ = Ĥ − iΓ̂. They start by inserting a Gaussian ansatz for the time dependent

Wigner function:

W (t, y) =
α(t)

(~π)n
exp

(
−1

~
(y − Y (t)) ·G(t)(y − Y (t))

)
. (2.16)

Arriving at the following system of equations for the time dependent parameters α(t), G(t), Y (t):

Ẏ = Ω∇H(Y )−G−1∇Γ(Y )

Ġ = H ′′(Y )ΩG−GΩH ′′(Y ) + Γ′′(Y )−GΓ′′Ω(Y )G

α̇

α
= −2

~
Γ(Y )− 1

2
Tr [Γ′′Ω(Y )G]

, (2.17)

where Ω is the usual symplectic matrix as defined in Eq. (2.7), the vector Y (t) is the center of the

Wigner wave packet, the metric G(t) which is obtained from the complex matrix B(t) (see Eq. (2.15)

), Γ′′Ω := ΩtΓ′′Ω and the notation A′′ denotes the Hessian matrix of A(y) at y.

Notice that the above system of equations is highly coupled and this makes finding its analytical

solution difficult except for trivial cases. However, noticing that this evolution takes place in a Kähler

manifold, we can rewrite the first dynamical equation for the center of the wave packet using Eq. (2.9):

Ẏ (t) = Ω∇H(Y )−G−1∇Γ(Y ) = XH(Y )− J(t)XΓ(Y ). (2.18)

Notice that J has to depend on time because the metric depends on time and the symplectic structure

does not. We see from Eq. (2.18) that, if the Hamiltonian was Hermitian, we would have obtained the

classical Hamilton equations as the classical limit for the evolution of these quantum states. However,

in the presence of a non-Hermitian term we can see that this evolution no longer corresponds to the

flow of a simple Hamiltonian vector field. Instead, the evolution has a component which is mediated

by the metric/complex structure. We note that this dependence on the metric for the evolution of

the center is unprecedented in unitary quantum mechanics and is an effect only observable when

studying NHH.

One important simplification is achieved by decoupling in Eq. (2.17) the equation for the center

from the equation for the metric. One rewrites the above equation in terms of functions z that are J(t)

holomorphic [29], and for those functions z we have that:

ż = XH(z)− J(t)XΓ(z) = XH(z)− iXΓ(z) = XH(z). (2.19)

That is, a equation solely dependent on the time dependent function z. We define φt from Yt = φt(Y0),

where Y (t) is the solution of Eq. (2.18). Then, solving equation (2.19) would allow one to obtain the

pullback φ∗t (z0) that defines the time evolution for the center Y (t). The pullback φ∗t (z0) is defined from:

zt = z0 ◦ φt = φ∗t (z0) . (2.20)

Then, using φ∗t (z0) one can calculate the time-dependent complex structure and thus the metric, G(t).

Doing so, we are able to obtain the Wigner function W (p, q, t) except for the factor α(t) which can be

found by solving the last equation in Eq. (2.17). On subsection 3.3.2, we go into more detail on how
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to obtain both the motion of the center as well as the motion of the complex structure, in the two

dimensional phase space.

Even in cases which cannot be analytically solved, the above system can be computationally im-

plemented to obtain numerical simulations and results. In the following image we can see a simulation

done by Graefe and Schubert [15] on the comparison of the exact numerical propagation of a Wigner

function and the semiclassical approximation using Eqs. (2.17). They considered an anharmonic

oscillator with damping, with its corresponding Hamiltonian being:

Ĥ =

(
1

2
− i 1

10

)
(p̂2 + q̂2) +

1

8
q̂4 , (2.21)

and obtained the following figure:

Figure 2.1: Normalized exact Wigner function (top row) versus the semiclassical approximation (bottom row) at
different times ( t = 1, 2.5, 4). The white line shows the motion of the center of the wave packet. Image and
simulation done by Graefe et al in [15].

As we can see, on the bottom figure, the semiclassical approximation, which is obtained by solving

Eq. (2.17), quite remarkably captures the motion of the center and of the general shape of the

localized state, when compared to the respective exact motion, seen on the figures at the top. In

particular, we remark that the semiclassical equations (2.17) will always result in a Wigner coherent

state. As such, the Wigner function will always be non-negative. Whereas, on the plots at the top,

showing the exact numerical propagation under the quartic oscillator, we do see zones where the

Wigner function is negative valued.

In the next chapter, we explore this system of equations under specific examples as well as com-

pare both analytical methods of obtaining the solutions for the system. However, before that, we will

briefly introduce the field of stochastic differential equations, which will be relevant for chapter 5.
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2.4 Stochastic optimal control

2.4.1 Introduction

The field of stochastic optimal control is a branch of optimal control theory. The idea behind optimal

control is that, for a given system that can be controlled through some variables, we want to find the

optimal choice of control in order to maximize or minimize a given cost function. These systems can

range from robotic arms trying to open doors to airplanes trying to lower their fuel consumption by

controlling the thrust of the engines.

Stochastic optimal control is the extension of optimal control theory where we take into considera-

tion the fact that both the measurements as well as the control can be affected by noise, which usually

takes form of a Gaussian random variable.

In the present section we will study systems whose evolution is described by a stochastic differen-

tial equation of the form:

ẋt = f(xt, t) +G(xt) (ut + ξt) , (2.22)

where xt ∈ Rn is the state of the system, f(xt, t) ∈ Rn describes the passive dynamics, G(xt) ∈

Rn×p is the control matrix, ut ∈ Rp the control variables and finally ξt ∈ Rp is Gaussian white noise

with variance matrix Σξ.

The differential form of the above equation reads:

dxt = (f(xt, t) +G(xt)ut) dt+G(xt)dWt , (2.23)

where dWt is a Wiener process. A Wiener process, Wt, is a continuous random process such that

W0 = 0 and its increments,Wt+u−Wt, are Gaussian and independent, that is, they are independent

of past values of Ws, s < t and they follow a Gaussian distribution with mean 0 and variance u.

For simplification, on the remainder of this section the index t indicates a dependency on the time

and state of the system, i.e. ut = u(xt, t). Our objective is to optimize a given predefined cost

function of the trajectory Ti of the system that at time ti is in the state xti and ends at time tN in the

state xtN . This cost function is defined as:

R(Ti) = φtN +

ˆ tN

ti

rtdt , (2.24)

where φtN = φ(xtN ) represents a final cost/reward at time tN and where rt denotes the instantaneous

cost at time t.

The idea of stochastic optimal control is to minimize the above cost function through the control

variables ut. We define the value function as the minimum of the expected value of the cost function:

V (xti) = Vti = min
uti:tN

ETi [R(Ti)] , (2.25)

where this expected value is taken over all trajectories that start at xti .

It can be shown that the value function satisfies the so called Hamilton-Jacobi-Bellman equation
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(HJB) [11, 34]:

− ∂tV = min
u

[
rt + (∂xV )

T
Ft +

1

2
tr
((
∂2
xxV

) (
GtΣtG

T
t

))]
, (2.26)

where we have the boundary terminal condition V (tN ) = E [φ(tN )], ∂xV is the gradient vector of V ,

∂2
xxV is the Hessian matrix of V and Ft = f(t,xt) +G(xt)ut.

As we will see, from the HJB equation (Eq. (2.26)), it is possible to derive an equation similar

to the Schrödinger equation for a given class of controlled systems. For a given Hamiltonian the

solution of the Schrödinger equation for a Gaussian initial states can be found, in the semiclassical

approximation, by solving Eq. (2.17), which yield the motion for the center and the metric associated

with the Gaussian state.

2.4.2 Deriving a Schrödinger-like equation from the HJB equation

Following [36], we consider an instantaneous cost of the form:

rt = q(xt, t) +
1

2
uTt Rut , (2.27)

which has a state dependent part and a quadratic term on the control and where R is a positive

definite matrix.

Substituting this cost function in (2.26), taking the gradient of the part we want to minimize with

respect to ut and setting it to zero enables us to get an expression for the optimal control:

u(xt) = −R−1GT
t (∂xV ) . (2.28)

Moreover we can substitute the expression for the optimal control in the HJB equation (2.26) to

get:

− ∂tV = qt −
1

2
(∂xV )

T
GtR

−1GT
t (∂xV ) + (∂xV )

T
ft +

1

2
tr
((
∂2
xxV

) (
GtΣtG

T
t

))
, (2.29)

which is a second order nonlinear partial differential equation.

By making a change of dependent variable [36]:

Vt = −λ logψt , (2.30)

as well as using the assumption that λR−1 = Σ we obtain the following linear equation for ψ:

− ∂tψ =
1

2
Tr
(
∂2
xx (ψt)GtΣG

T
t

)
+ fTt (∇xψt)−

1

λ
qtψt , (2.31)

with the terminal boundary condition ψtN = exp (−φ(tN )/λ). The assumption used is the statement

that a high variance control input implies cheap control cost whereas small variance control yields

high control cost [36].

By relabeling the parameter λ→ ~ and multiplying (2.31) by ~ we can see that the above equation

has a Schrödinger-like form for a real wave function with a non-Hermitian Hamiltonian associated with
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it:

− ~∂tψ =
1

2
~2 Tr

(
∂2
xx (ψt)GtR

−1GT
t

)
+ fTt ~ (∇xψt)− qtψt . (2.32)

In chapter 5, we identify the Hamiltonian corresponding to Eq. (2.32) and we study several exam-

ples of controlled systems under the NHH formalism.
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3
Analytical methods

The aim of the present chapter is to develop the analytical framework to obtain the semiclassical

dynamics of non-Hermitian Hamiltonians from the proposed system of equations in [15]. Before

that, however, we first discuss the geometry of the squeezed coherent states and its dependence

on the parameters of the wave function. Then, we describe the usual way of solving the system,

followed by proposing a different way of looking at the system of equations and solving it. We present

several examples, using both methods of analytically solving Eq. (2.17). Finally, we derive the partial

differential equation for the time evolution of the Wigner function and show it explicitly for some types

of Hamiltonians.

3.1 Geometry of the Wigner states in 2-dimensional phase space

In this section we explore, for two dimensional phase space, the geometry of the localized Wigner

states which we use on the rest of this work. Specifically, we study how changing the parameters of

the wave function alters the resulting Wigner state.

As discussed in the previous chapter, we are dealing with localized Gaussian coherent states

which are given, in n-dimensions, by Eq. (2.10). In the two dimensional phase space, the matrix B is

a complex number, B = a + ib , a, b ∈ R, whose imaginary part must be positive, b > 0. In this space

the Wigner function is given by Eq. (2.14) with the matrix G being:

G =

(
1
b −ab
−ab

a2

b + b

)
. (3.1)
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We can see that G is a real symmetric matrix. In fact, we see that the parameter B naturally induces

the metric G, appearing in the expression for the corresponding Wigner function. We can also see

that it is positive definite by calculating:

yTGy =
1

b
(y1 − ay2)

2
+ by2

2 , y ∈ R2 , (3.2)

and seeing that, as we always have b > 0, then we always have yTGy > 0,∀y ∈ R2\{0}. Furthermore,

it also has determinant equal to one. Reciprocally, we can also define the parameter B from just two

components of G in the following way:

B = a+ ib = −G12

G11
+

i

G11
. (3.3)

Looking at the form for Eq. (2.14), we will now see how the parameters affect the shape of the

Gaussian. Without loss of generality, we will consider the Gaussian to be centered at the origin,

because the center Y only translates the function across the phase space. If, for example, B = 2 + i,

we obtain the following plot:

Figure 3.1: Contour plot of the Wigner function, given by Eq. (2.14), when we set B = 2 + i.

From Fig. 3.1, we see that the Gaussian function becomes squeezed in a given direction and

stretched in another, which appears to be at a π
2 angle from the former. As G is a symmetric matrix,

its eigendecomposition can be given as G = QΛQ−1 where Q is an orthogonal matrix, Q−1 = QT ,

and Λ is a diagonal matrix with the eigenvalues of G as its components. Furthermore, because G is
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also positive definite, we also know that its eigenvalues are all positive. Thus, if we were to write the

Wigner state in the eigenbasis we would have:

W (y) = (π~)−n exp

[
−1

~
yTQΛQ−1y

]
= (π~)−n exp

[
−1

~
wTΛw

]
, (3.4)

where w = (w1, w2) is a vector in the eigenbasis of G. If Λ is ordered by the magnitude of its

eigenvalues, from lowest to highest, λ1, λ2 then we have:

W (w) = (π~)−n exp

[
−1

~
(
λ1w

2
1 + λ2w

2
2

)]
, (3.5)

and so the larger eigenvalue, λ2, would correspond to the direction of larger squeeze and vice-

versa. Moreover, as the determinant of a matrix is invariant under basis transformations, and because

detG = λ1λ2 = 1 we have that λ1 = λ−1
2 . Thus we either have both directions without any squeeze or

we have one direction with squeeze with the other one being stretched. If we have a squeezed state

then, because Q is orthogonal, the eigenvectors of G are also orthogonal to each other.

It remains to show how the squeezing and angle are related to the parameterB = a+ib = reiθ , θ ∈

(0, π). To do that we simply solve the equations for the eigenvalues and eigenvectors to obtain both

the smallest eigenvalue, λ, and the angle, α, of the corresponding eigenvector direction. We obtain

the following:

λ =
csc(θ)

(
−
√

2r2 cos(2θ) + r4 + 1 + r2 + 1
)

2r

tanα =
2r cos(θ)√

2r2 cos(2θ) + r4 + 1 + r2 − 1

. (3.6)

If we plot the expression for λ as a function of r and θ we obtain Fig. 3.2.

Figure 3.2: Plot of the smallest eigenvalue as a function of the magnitude and angle of the parameter B.
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We can see that the value for this eigenvalue ranges from one to zero. Likewise, the other eigen-

value will range from one to infinity. We also plot the tangent of the angle of the eigenvector cor-

responding to this eigenvalue in Fig. 3.3a. We see that for most values the tangent remains near

zero. However, for values of r below one and near θ = π
2 , we see that the tangent will either tend to

positive or negative infinity. On Fig. 3.3b we plot the hyperbolic tangent of Fig. 3.3a in order to see

the discontinuity in detail.

Figure 3.3: Plots regarding the tangent of the angle of the eigenvector with the smaller eigenvalue.

(a) Plot of the tangent of the angle of the eigenvector corre-
sponding to the smaller eigenvalue.

(b) Sigmoid plot of the tangent of the angle of the eigenvector
corresponding to the smaller eigenvalue with the contours of
Fig. 3.2 on top.

Looking at both Fig. 3.2 as well as Fig. 3.3b, we see that we can obtain any angle for a given

value of λ. This is due to the fact that each contour line of λ crosses the discontinuity in the tangent

plot. This discontinuity arises when the real part of B crosses zero and the imaginary part is such

that r < 1. We can see this from the expression for G when Re(B) = 0 :

G =

(
1
b 0

0 b

)
. (3.7)

From the above we conclude that the momentum direction is the one associated with the 1
b eigenvalue

meaning that a = 0, b < 1 =⇒ r < 1. Under those assumptions, we see that the smallest eigenvalue

is in the position direction, when α = π
2 . When b > 1 the smallest eigenvalue is in the momentum

direction, where the angle is zero.

3.2 Analyzing the system of equations

Let us analyze the three equations that were proposed in [14–16] to describe the dynamics for a

given NHH in the semiclassical approximation. The system was already presented in Eq. (2.17) but

for completeness we write it again in order to describe it. Thus the system of equations, for a NHH of
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the form Ĥ = Ĥ − iΓ̂, is as follows:

Ẏ = Ω∇H(Y )−G−1∇Γ(Y )

Ġ = H ′′(Y )ΩG−GΩH ′′(Y ) + Γ′′(Y )−GΓ′′Ω(Y )G

α̇

α
= −2

~
Γ(Y )− 1

2
Tr [Γ′′Ω(Y )G]

, (3.8)

where Ω is the usual symplectic matrix defined in Eq. (2.7), the vector Y (t) = (P (t), Q(t)) is the

center of the Wigner wave packet, the metric matrix G(t) is obtained from the initial state matrix B

(see Eq. (2.10) ) and α(t) is a time-dependent coefficient associated with the initial phase of the

Wigner distribution. We also denote by A′′ the Hessian matrix of A(y) at y and Γ′′Ω := ΩTΓ′′Ω.

Upon further inspection of Eq. (3.8), we can see that, for the evolution of the center of the Wigner

state, we have a regular Hamiltonian flow for the Hermitian part of the Hamiltonian but with an added

contribution from the non-Hermitian part. This contribution from the non-Hermitian part is a gradient

flow into the minima of Γ [15]. This implies that, were we to choose Γ with no minima, for example

Γ = −q2 − p2, then the anti-Hermitian term would drive the motion of the localized state away from

the origin and exponentially so. As for the metric, we see that its evolution equation depends on the

center Y (t), making this equation coupled if the Hamiltonian is not quadratic. Lastly, for the coefficient

α(t), we can see that its magnitude will in general no longer be unitary and this corresponds either to

an increase or decrease in the overall probability due to the non-Hermitian term of the NHH. This is

further corroborated by the fact that the dynamics of α(t) only depend on Γ and has no dependence

on the Hermitian term of H.

Let us now prove that the equation of motion for the metric G(t) preserves its symmetry, as long as

the real and imaginary parts of the Hamiltonian we choose are such that H(p, q),Γ(p, q) ∈ C2(R2,R).

With this, we see that both the Hessian matrix of the real part of the Hamiltonian as well as the one

of the imaginary part are symmetric. This follows directly from Schwarz’s theorem. Furthermore,

we know that, in the basis (P,Q) the symplectic form Ω is such that ΩT = −Ω = Ω−1 and so if we

transpose the second equation in Eq. (3.8), where we define that Ġ(t) = f(G(t)), we obtain:

ĠT (t) = (H ′′(Y )ΩG−GΩH ′′(Y ) + Γ′′(Y )−GΓ′′Ω(Y )G)
T

= f(G(t))T

= (GTΩTH ′′(Y )T −H ′′(Y )TΩTGT + Γ′′(Y )T −GTΩTΓ′′(Y )TΩGT ) =

= H ′′(Y )ΩGT −GTΩH ′′(Y ) + Γ′′(Y )−GTΓ′′Ω(Y )GT = f(GT (t))

. (3.9)

An informal argument for assuming that the symmetry of G(t) is preserved is now presented. From

the above equation, we see that if we start with an initial symmetric GT0 = G0 then we have that, for

an infinitesimal dt:

G(dt) ≈ G(0) + dtf(G(0)) = G(0)T + dtf(G(0)T ) ≈ G(dt)T , (3.10)

meaning that we will always evolve to a matrix that is also symmetric. Doing these dt steps infinitely

many times would lead us to conclude that G(t)T = G(t).
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3.3 Solving the system of equations

3.3.1 The direct method

The simplest method of solving the system of equations is to try to solve directly the equations

for the motion of the center and the metric of the state. This is not always straightforward because

both of these equations are coupled to each other, meaning that there is a dependence on a given

equation of the solutions for the other. This makes the process of analytically solving the system of

equations cumbersome barring some special cases.

One class of Hamiltonians for which it is possible to analytically solve the equations is for quadratic

Hamiltonians. This is due to the fact that the Hessian matrices for both H and Γ do not depend on the

coordinates of the center. Thus, we solve the matrix differential equation and obtain the dynamics for

G(t). Afterwards, we substitute G(t) in the equation for the center and solve it to obtain the motion of

the center, Y (t). Lastly, we use both Y (t) and G(t) to obtain the dynamics of the coefficient α(t), that

multiplies the exponential factor in Eq. (2.14).

3.3.2 Alternative method of decoupling the equations for the center from the
equations for the intrinsic geometry of the state

Another option, is to make use of the Kähler structure underlying the system, in particular Eq.

(2.9) in order to write the following:

G = ΩJ ⇔ G−1GJ = G−1ΩJ2 ⇔ J = −G−1Ω⇔ JΩ = G−1 . (3.11)

With the above, we can rewrite the equation for the evolution of the center into Eq. (2.18).

It follows from [24, 29] that a solution to the coupled system of equations for the center and the

intrinsic geometry of the Gaussian coherent states can be found as follows: First, we calculate the flow

in C2 of the complex vector field −XH : (pt, qt). Then, we find the unique, if it exists, diffeomorphism

ϕ̃−XHt : R2 → R2 such that:

(
ϕ̃−XHt

)∗
(z0(p, q)) = e−tXHz0(p, q) = zt(p, q) = z0(pt, qt) , (3.12)

where z0 denotes the global complex coordinate defining J0. After that, the solution of Eqs. (2.17) is

given by ϕt =
(
ϕ̃−XHt

)−1

, i.e.:

Yt = ϕ∗t (Y0) (3.13)

Gt = Ω
(
ϕ−1
t

)∗
(J0) . (3.14)

The intuition behind this method is that, we evolve the state using the complex vector field −XH.

However, for the centers of the state, the opposite is true i.e., they should evolve not with −XH but in

the opposite direction of the evolution of the state, which corresponds to XH, as seen in Eq. (2.19).
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We remark that, for real Hamiltonians we have:

(
ϕ−XHt

)−1

= ϕXHt , (3.15)

however, for complex Hamiltonians the same cannot be said. Arguments from geometric quantization

[24, 29] seem to indicate that, for non quadratic Hamiltonians, the equations for the motion of the

center as described by this methodology might give a better approximation than the ones described

in Eqs. (3.8).

3.3.3 From holomorphic coordinates to J and G

To apply this method we need to choose an appropriate complex coordinate such that we reobtain

the initial complex structure and, consequently, the initial metric. We know that, if we were to choose

the complex J−holomorphic coordinate z = x+ iy then, in the (x, y) basis, the complex structure is:

J =

(
0 −1

1 0

)
. (3.16)

The method to calculate J is by noticing that, from the definition of z and z̄, we have:dz = dx+ idy

dz̄ = dx− idy
⇔

(
dz

dz̄

)
= M

(
dx

dy

)
, (3.17)

where M is the matrix encapsulating the transformation from dz, dz̄ to dx, dy. And so, using Eq. (2.4),

we can rewrite the definition of J :

J = i
∂

∂z
⊗ dz − i ∂

∂z̄
⊗ dz̄ , (3.18)

to obtain the standard complex structure.

However let us now analyze the case where we have z = x+ (a+ ib)y, or another linear transfor-

mation of coordinates. In that case we have:dz = (b+ ia)dx+ idy

dz̄ = (b− ia)dx− idy
⇔

(
dz

dz̄

)
= M

(
dx

dy

)
⇔

(
dx

dy

)
= M−1

(
dz

dz̄

)
, (3.19)

like before. However, in order to obtain the expressions for ∂z, ∂z̄ we need to consider a test function,

F (x, y) = U(x, y) + iV (x, y). The differential of this test function is given by:

dF =
∂F

∂x
dx+

∂F

∂y
dy = dz

(
M−1

11

∂F

∂x
+M−1

21

∂F

∂y

)
+ dz̄

(
M−1

12

∂F

∂x
+M−1

22

∂F

∂y

)
:=

∂F

∂z
dz +

∂F

∂z̄
dz̄ ,

(3.20)

and so we have that: (
∂z

∂z̄

)
=
(
M−1

)T (∂x
∂y

)
. (3.21)

Using the above we can now, for example, see how J is written in the basis (p, q) when we have

the complex coordinate z = p+ (−a− ib)q. Substituting Eq. (3.19) and Eq. (3.21) into Eq. (3.18) thus
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gives:

J =

(
−ab

a2+b2

b

− 1
b

a
b

)
=⇒ G =

(
1
b −ab
−ab b+ a2

b

)
, (3.22)

where in the last step we used Eq. (2.15). Notice that we obtain precisely the form for the metric

matrix as in Eq. (2.9). With this calculation we are able to pass from a given complex structure to its

corresponding complex coordinate and vice-versa:

z = p+ (−a− ib)q ⇔ G =

(
1
b −ab
−ab b+ a2

b

)
, in the basis (p, q) (3.23)

We remark that scaling the entire complex coordinate by a real factor does not affect the resulting

metric nor the complex structure. Moreover, a global scale by a complex number also does not change

the inherent complex structure. This in turn means that we can either start with a complex coordinate

of the form z = p + (−a − ib)q or with w = − 1
a+ibp + q as they correspond to the same metric and

complex structure. This remark may be helpful in certain examples where a given choice of initial

complex coordinate might simplify the process of obtaining the solution.

3.4 Examples

In order to fully understand how the alternative method compares to the usual one, in this section

we proceed to apply both of the methods previously mentioned on some examples. Specifically, we

discuss both the regular and the imaginary free particle and the harmonic oscillator in imaginary time.

3.4.1 Free particle in imaginary time

In this example we consider a free particle evolving in imaginary time, i.e., we consider the follow-

ing Hamiltonian:

H = − i
2
p2 =⇒ Γ =

p2

2
, (3.24)

with corresponding gradient and hessian:

∇Γ = (p, 0) Γ′′ =

(
1 0

0 0

)
(3.25)

This specific Hamiltonian is interesting to study because we have a way of solving the dynamics of

the evolution of the state that is not based on Eq. (3.8) and, through it, we can make an observation

regarding the imaginary time evolution of states.

3.4.1.A Explicit method of solving the Schrödinger equation

The method that works for this specific case makes use of fact that we can derive explicitly how

the operator et
∂2

∂x2 acts on a function f(x).
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In fact, consider the quantum operator version of the Hamiltonian, H:

Ĥ = − i
2
p̂2 . (3.26)

Then, by the Schrödinger equation, we have that a wave function ψ0(x) evolves in the following

form:

ψt(x) = exp

[
− i
~
Ĥt

]
ψ0(x) = exp

[
i
~t
2

∂2

∂x2

]
ψ0(x) = exp

[
it′

∂2

∂x2

]
ψ0(x), (3.27)

with t′ = t~/2.

The system is initially in a Gaussian state of the form of Eq. (2.10). In appendix A we show how

the operator et
′ ∂2
∂x2 acts on a function f(x), yielding:

ψt′(x) = et
′ ∂2
∂x2 ψ0(x) =

ˆ ∞
−∞

dyψ0(y)

(
1

4πt′

) 1
2

e−(x−y)2/4t′ (3.28)

In order to make the calculations clearer we assume that the state is centered at the origin and

that the parameter B = ib. Thus we have:

ψ0(x) =

(
b

π~

) 1
4

e−
bx2

2~ , (3.29)

and as the integral is of a Gaussian function it is solvable, giving the following form for ψt(x):

ψt(x) =

(
b

π~

) 1
4
(

~
2bt′ + ~

) 1
2

exp

[
−x

2

2

(
b

2bt′ + ~

)]
=

(
b

π~

) 1
4
(

1

bt+ 1

) 1
2

exp

[
−1

~
x2

2

(
b

bt+ 1

)]
,

(3.30)

where in the end we resubstituted t′ = ~t/2. Note that this state is no longer normalized for positive

t, with the norm going to zero as t→∞. Moreover, note that b→ b
1+bt which gives rise to the metric:

G(t) =

(
t+ 1

b 0

0 b
bt+1

)
. (3.31)

This example is interesting because, through it, we can see that the imaginary time evolution of

quantum states is analogous to having that state evolve as if were a solution to the heat equation.

In particular, t → it for the free particle makes it so that increasing t leads to the spreading of the

localized state across the phase space.

However, for more complicated Hamiltonians this connection is more complicated to discern as

we have contributions from real time evolution as well as imaginary time evolution.

3.4.1.B Direct method of solving the system of equations for the center and geometry

Under this Hamiltonian we have the following simplified system of equations:

Ẏ = −G−1∇Γ(Y )

Ġ = Γ′′(Y )−GΓ′′Ω(Y )G

α̇

α
= −2

~
Γ(Y )− 1

2
Tr [Γ′′Ω(Y )G]

, (3.32)
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which we now proceed to solve.

We start by solving the metric equation. If we assume that G is of the form:

G(t) =

(
g1(t) g3(t)

g3(t) g2(t)

)
, (3.33)

then the equation for its time derivative is:

Ġ(t) =

(
1− g3(t)2 −g2(t)g3(t)

−g2(t)g3(t) −g2(t)2

)
. (3.34)

We start by solving the equation for g2(t). It is a separable equation with solution:

g2(t) =
g2(0)

1 + g2(0)t
. (3.35)

From this solution we can also obtain the solution to the equation for g3(t), as it is also separable, and

we get:

g3(t) =
g3(0)

1 + g2(0)t
. (3.36)

Lastly we can obtain the solution for g1(t) from the last one by solving another separable differential

equation:

g1(t) =
g1(0) + t+

(
g1(0)g2(0)− g3(0)2

)
t+ g2(0)t2

1 + g2(0)t
=
g1(0) + 2t+ g2(0)t2

1 + g2(0)t
, (3.37)

where in the last step we used the fact that the initial metric matrix had detG(0) = 1.

Rounding all solutions together we obtain:

G(t) =
1

1 + g2(0)t

(
g1(0) + 2t+ g2(0)t2 g3(0)

g3(0) g2(0)

)
. (3.38)

We can check that this matrix has detG(t) = 1,∀t ∈ R+
0 . In fact, in this case, because we can see

see that the determinant of the metric is invariant, we could obtain any one of the components if we

knew the other two.

The inverse of the metric matrix is:

G(t)−1 =
1

1 + g2(0)t

(
g2(0) −g3(0)

−g3(0) g1(0) + 2t+ g2(0)t2

)
, (3.39)

and, with the above, we now solve the equation for the motion of the center:(
Ṗ (t)

Q̇(t)

)
=

1

1 + g2(0)t

(
−g2(0)P (t)

g3(0)P (t)

)
, (3.40)

whose solution is: P (t) = P (0)
1+g2(0)t

Q(t) = Q(0) + P (0)g3(0)t
1+g2(0)t

. (3.41)

At t = 0 we have Y (0) = (P (0), Q(0)) and when t → +∞ we have, by taking the limit of Eq. (3.41),
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that Y (t→ +∞) = (0, Q(0) + P (0)g3(0)
g2(0) ).

By making a change of variables, it is possible to show that the position coordinate of the center

depends solely on the momentum one, i.e., we can show that:

Q(P (t)) = Q(0) +
g3(0)

g2(0)
− g3(0)

g2(0)
P (t) , (3.42)

where the values for the constants are taken when t = 0. Thus, we have shown that the trajectory in

phase space for the motion of the center is a line segment with slope equal to g3(0)
g2(0) . Using Eq. (3.1)

we can see that the slope, in terms of the parameter B = reiθ of the initial Gaussian state, is given by

− cos θ
r . Given the fact that the parameter B lies on the upper half complex plane this implies that all

slope values are possible under this Hamiltonian.

As an example, in Fig. (3.4) we can see the trajectory across time for a state with initial center

Y (0) = (3, 2) and initial metric G =

(
1 −1

−1 2

)
.

Figure 3.4: Time trajectory for the center of a state with initial center Y (0) = (3, 2) and initial metric induced by
the parameter B = 1 + i, when evolved using the Hamiltonian in Eq. (3.24)

As predicted by Eq. (3.41), we expect the center to move towards the point Y (t→∞) = (0, Q(0)+

P (0)g3(0)
g2(0) ) = (0, 1

2 ) as t → ∞. We can confirm that in the above figure. Furthermore we also can see

that the trajectory follows a line segment with the predicted slope.

Lastly, to conclude this example we just need to solve the equation for the parameter α(t), which

begins at one, as the initial state is always considered to be normalized. So, substituting the solutions

above in the third equation in Eq. (3.32) and solving it, yields:

α(t) =
exp

[
− P (0)2t

~(1+g2(0)t)

]
√
g2(0)t+ 1

, (3.43)

which is an exponentially decreasing function. We can interpret this loss of "probability" as some sort
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of loss of energy of the system to the environment.

3.4.1.C Alternative method of solving the system of equations for the center and geometry

Having solved this in two other ways, let us now put in practice the alternative method. The

complex vector field −XH, in this example reads:

−XH = ip
∂

∂q
. (3.44)

Choosing a general initial complex structure or metric amounts to, as discussed in subsection 3.3.3,

choosing the following initial complex coordinate:

z0 = p− (a+ ib)q , (3.45)

where we see that: q = − 1
b Im(z)

p = Re(z)− a
b Im(z)

(3.46)

Furthermore, let us now apply the Hamiltonian complex flow to our holomorphic coordinate:

zt = e−tXHz0 = eitp
∂
∂q (p+ (a+ ib)q) = p− (a+ ib)(q + itp) =: pt − (a+ ib)qt . (3.47)

In order to find, pt, qt we use Eqs. (3.46) which yield:qt = q + a
b pt

pt = p(1 + a2+b2

b t)
⇔

(
pt

qt

)
=

(
1 + (a

2

b + b)t 0
a
b t 1

)(
p

q

)
, (3.48)

where we now must invert the above matrix to get ϕt:

ϕt =

 1

1+
(
a2

b +b
)
t

0

−
a
b t

1+
(
a2

b +b
)
t

1

 . (3.49)

Finally, from the above we can directly obtain:

Yt =

(
P (t)

Q(t)

)
= ϕ∗t (Y0) =


P (0)

1+
(
a2

b +b
)
t

Q(0)−
a
b P (0)t

1+
(
a2

b +b
)
t

 , (3.50)

which is exactly the same motion for the center as the one obtained in Eqs. (3.41), noticing that

g2(0) = a2

b + b and g3(0) = −ab .

Now, for the complex structure Jt we note that we had, in Eq. (3.47), that:

zt = p(1 + bt− iat) + q(−a− ib) . (3.51)

Now, following the process described in subsection 3.3.3, we can find the complex structure associ-
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ated with zt and obtain Gt from it. Doing this process, yields:

G(t) =

 t2(a2+b2)+2bt+1

t(a2+b2)+b − a
t(a2+b2)+b

− a
t(a2+b2)+b

a2+b2

t(a2+b2)+b

 , (3.52)

which is precisely the same matrix as in Eq. (3.38). We managed to, algebraically, get both the

motion of the real center of the Wigner function and the motion of the intrinsic metric. To do so, we

just needed to calculate the complex Hamiltonian vector field and apply it to an initial holomorphic

coordinate. From thereon, we followed the procedure developed in subsection 3.3.2 to arrive at the

same results as the ones obtained through the direct method of solving the entire Eq. (3.8).

3.4.2 Free particle

As a sanity check, let us observe the predicted dynamics for a wave packet under the formalisms

previously introduced in the regular free particle. Thus, the Hamiltonian is H = p2

2 .

For a regular wave packet centered at (P (0), Q(0)) we expect that, as time increases, the center

of the Wigner function moves towards the point (P (0), Q(0) + tP (0)). Furthermore, we also expect

the position wave function to spread with time.

In Eq. (2.10), when the parameter B is purely imaginary we have the following metric:

G =

(
1
b 0

0 b

)
, (3.53)

and thus we can see that if we decrease b this leads to the wave packet being more stretched, when

projected to the position basis.

In this specific case the solution of Eq. (3.8) is straightforward. In this case the equations are not

coupled due to the fact that Γ = 0. As such, the equations of motion for the center follow the usual

Hamiltonian flow: Ṗ = −∂H∂Q = 0

Q̇ = ∂H
∂P = P

=⇒

P (t) = P (0)

Q(t) = Q(0) + P (0)t
. (3.54)

Meaning that we obtain the expected motion for the center. As for the metric we solve the differential

equation for G(t) in the same manner as the example before, obtaining, in the general case:

G(t) =

 t2(a2+b2)+2at+1

b − t(a
2+b2)+a

b

− t(a
2+b2)+a

b
a2

b + b

 , (3.55)

which in our case as a = 0 reduces to:

G(t) =

(
bt2 + 1

b −tb
−tb b

)
. (3.56)

Notice that, from Eq. (3.3), we can see that as time increases the imaginary component of B goes to

zero. This in turn means that the position wave function spread is also growing with time. Thus we

see that we obtain the predicted behavior under this formalism.
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We could also redo the same calculations using the alternative method. Starting with z0 = p− ibq

and −XH = −p ∂∂q , we obtain:

zt = p(1 + ibt)− ibq , (3.57)

whose inherent complex structure leads to the same metric as the one obtained before.

3.4.3 Harmonic oscillator in imaginary time

We now consider an Hamiltonian of the following form:

H = −i
(
p2

2
+
x2

2

)
, (3.58)

which corresponds to an harmonic oscillator in imaginary time. When calculating the equation for

G(t):

G(t) =

(
g1(t) g3(t)

g3(t) g2(t)

)
, (3.59)

using Eq. (3.8), we obtain: 
ġ1(t) = 1− g1(t)2 − g3(t)2

ġ2(t) = 1− g2(t)2 − g3(t)2

ġ3(t) = g3(t) (−g1(t)− g2(t))

, (3.60)

which is a system of three non linear ordinary differential equations. We could not figure how to solve

this system analytically in the direct case. However, if we assume that g3(0) = 0 then we can solve it.

3.4.3.A Direct method of solving the system of equations for the center and geometry

Let us assume thatG(t) is a real analytic function. In that case, the Taylor series for the component

g3(t) around the origin is:

g3(t) =

+∞∑
n=0

g
(n)
3 (0)

n!
tn . (3.61)

As G(t) is real analytic then g1(t), g2(t) as well as their derivatives are well defined and exist. Fur-

thermore, suppose we have g3(0) = 0. By Eq. (3.60) we also know that ġ3(0) = 0. And so, we can

differentiate again the equation for ġ3(t) in Eq. (3.60) to get:

g̈3(t) = −ġ3(t)(g1(t) + g2(t))− g3(t)(ġ1(t)ġ2(t) + g1(t) + g2(t)) , (3.62)

which again at t = 0 gives g̈3(0) = 0. In general we see that, if we keep differentiating we will obtain

an expression of the form:

g
(n)
3 (t) =

n−1∑
k=0

g
(k)
3 (t)Fn−1−k(g1(t), g2(t)) , (3.63)

where:

Fk(g1(t), g2(t)) =

k∑
m=0

(
Cmg

(m)
1 (t) +Dmg

(m)
2 (t)

)
, Cm, Dm ∈ R, (3.64)
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meaning Fk is made up of sums of terms which depend on, at most, the k derivatives of g1(t), g2(t).

All of this to argue that, if we set t = 0 we can recursively see that all derivatives are zero.

Thus, we are prone to conclude that, if g3(0) = 0 then g3(t) = 0 and thus the equations to solve

for the metric reduce to: ġ1(t) = 1− g1(t)2

ġ2(t) = 1− g2(t)2
. (3.65)

The above are two decoupled Riccati equations. A Riccati equation is an ordinary differential

equation that is quadratic on the unknown function. It suffices to solve the equation for just one of the

components of the matrix. To see why we define f(t) = 1
g1(t) and so:

ḟ(t) = − 1

g1(t)2
ġ1(t)⇔ ġ1(t) = − ḟ(t)

f(t)2
. (3.66)

Substituting both f(t) and ḟ(t) on the equation for ġ1(t) gives:

− ḟ(t)

f(t)2
= 1− 1

f(t)
⇔ ḟ(t) = 1− f(t)2 , (3.67)

where in the last step we just multiplied the entire equation by −f(t)2. This means that 1
g1(t) also

obeys the same equation as g1(t). Also, because g3(t) = 0 then the parameter B = a + ib has to be

purely imaginary, which leads to an initial metric G(0) = diag
(

1
b , b
)
. This means that g1(0) = 1

g2(0)

meaning that the function f(t) that we had defined is in fact g2(t). We have thus proved that we only

need to solve the equation for one of the components of the metric, with the other being henceforth

completely determined.

Equation (3.66) is separable and solvable by partial fraction decomposition:

df

1− f2
= dt

⇔ df

1 + f
+

df

1− f
= 2dt

⇔ log

(
1 + f

1− f

)
= 2t+ C

⇔ f(t) =
Cet − e−t

Cet + e−t
,

(3.68)

and, when we substitute C for the initial condition of f(t) we get:

f(t) =
f(0) cosh(t) + sinh(t)

cosh(t) + f(0) sinh(t)
. (3.69)

If, f(t) = g1(t) then f(0) = 1
b and we get:

g1(t) =
b sinh(t) + cosh(t)

b cosh(t) + sinh(t)
, (3.70)

which gives the metric:

G(t) =

(
b sinh(t)+cosh(t)
b cosh(t)+sinh(t) 0

0 b cosh(t)+sinh(t)
b sinh(t)+cosh(t)

)
. (3.71)
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Substituting this onto the equation for the center in Eq. (3.8) and solving it yields:P (t) = P (0)
b sinh(t)+cosh(t)

Q(t) = bQ(0)
b cosh(t)+sinh(t)

, (3.72)

which is a motion that, as t→ +∞, tends to the origin no matter the initial conditions.

Finally, we solve the equation for the factor α(t) to obtain:

α(t) =

√
2b exp

(
− sinh(t)

(
P (0)2

b sinh(t)+cosh(t) + bQ(0)2

b cosh(t)+sinh(t)

))
√

(b2 + 1) sinh(2t) + 2b cosh(2t)
(3.73)

As a specific example, we take an initial Wigner function, given by Eq. (2.14), withG = diag(1/2, 2)

and (P,Q) = (2, 0). Under the harmonic oscillator in imaginary time, the evolution for the center is:

Figure 3.5: Plot for the motion with time of the momentum component of the center of a coherent Wigner function
(Eq. (2.14)) with time. The initial function has initial metric G = diag(1/2, 2) and center (P,Q) = (2, 0).

where we did not plot the position component as it remains at its initial position. Moreover, the solution

for the metric with time is:

G(t) =

(
2 sinh(t)+cosh(t)
sinh(t)+2 cosh(t) 0

0 sinh(t)+2 cosh(t)
2 sinh(t)+cosh(t)

)
, (3.74)

where we can see that, for large t it is approaching the identity matrix.

In fact, no matter the initial conditions for the center or metric we always observe the same be-

havior. The center moves towards the origin whereas the metric tends towards the identity matrix.

Thus, this system always tends towards the coherent Wigner function at the origin, with no squeezing

present. The only difference is that the factor α(t) is tending towards zero as time increases.

The above general motion follows directly from the fact that both sinh(t), cosh(t) approach et/2 as

time increases. However, Eq. (3.71) was only derived assuming an initial metric. To obtain a generic

expression for an arbitrary initial parameter, B = a+ ib, b > 0 we must turn to the alternative method.
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Doing so will allow us to confirm the claim that the metric will always approach the identity matrix for

large enough time.

3.4.3.B Alternative method of decoupling the systems of equations for the center and the
geometry

We will now apply the alternative method to a general choice of initial metric. The complex vector

field −XH, in this example reads:

−XH = ip
∂

∂q
− iq ∂

∂q
. (3.75)

Like before, choosing a general initial complex structure or metric amounts to choosing the following

initial complex coordinate:

z0 = p− (a+ ib)q . (3.76)

We now want to apply the Hamiltonian complex flow to our holomorphic coordinate. To do that,

however, we first note that:

ṗt =
∂

∂t

(
e−XHtp

)
= e−XHt (−XHp) = −iqt (3.77)

q̇t =
∂

∂t

(
e−XHtq

)
= e−XHt (−XHq) = ipt . (3.78)

To solve the above system we differentiate ṗt to get:

p̈t = −iq̇t = pt , (3.79)

whose general solution is given by a linear combination of two exponentials, et, e−t or, equivalently

by a linear combination of cosh(t), sinh(t). We take pt = A cosh(t) + B sinh(t) and substitute in the

equation for q̇t to get:

q̇t = iA cosh(t) + iB sinh t =⇒ qt = iA sinh(t) + iB cosh(t) + C . (3.80)

Now we know from the initial conditions that:

p0 = p = A

q0 = q = C + iB

ṗ0 = B

−iq0 = B

⇔


A = p

B = −iq

C = 0

. (3.81)

The motion of the complexified center is thus:pt = p cosh(t)− iq sinh(t)

qt = q cosh(t) + ip sinh(t)
, (3.82)

which we proceed to use to obtain:

zt = e−tXHz0 = (p cosh(t)− iq sinh(t))− (a+ ib) (q cosh(t) + ip sinh(t)) . (3.83)
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In order to find, pt, qt as defined in z0 = pt − (a + ib)qt, we again make use of Eqs. (3.46) which

yield: (
pt

qt

)
=

(
cosh t+

(
a2

b + b
)

sinh t a
b sinh t

a
b sinh t cosh t+ 1

b sinh t

)(
p

q

)
, (3.84)

where we, before inverting the above matrix, substitute the initial conditions for the metric to get:(
pt

qt

)
=

(
cosh t+ g2(0) sinh t −g3(0) sinh t

−g3(0) sinh t cosh t+ g1(0) sinh t

)(
p

q

)
, (3.85)

where we now invert the above matrix to get ϕt:

ϕt =
1

cosh2 t+ sinh2 t+ (g1(0) + g2(0)) sinh t cosh t

(
cosh t+ g1(0) sinh t g3(0) sinh t

g3(0) sinh t cosh t+ g2(0) sinh t

)
.

(3.86)

Finally, from the above we can directly obtain:

Yt =

(
P (t)

Q(t)

)
= ϕ∗t (Y0) , (3.87)

which becomes:(
P (t)

Q(t)

)
= 1

cosh2 t+sinh2 t+(g1(0)+g2(0)) sinh t cosh t

(
cosh t+ g1(0) sinh t g3(0) sinh t

g3(0) sinh t cosh t+ g2(0) sinh t

)(
P (0)

Q(0)

)
(3.88)

from which one can check that, if we set g3(0) = 0 we obtain the same motion for the center as in Eq.

(3.72).

Finally, for the complex structure Jt we note that we had, in Eq. (3.83), that:

zt = p(cosh t+ b sinh t− ia sinh t) + q(−a cosh t− ib cosh t− i sinh t) . (3.89)

Now, following the process described in subsection 3.3.3, we can find the complex structure associ-

ated with zt and obtain Gt from it. Doing this process, yields:

G(t) =

 (a2+b2) sinh2(t)+b sinh(2t)+cosh2(t)

(a2+b2+1) sinh(t) cosh(t)+b cosh(2t) − a
(a2+b2+1) sinh(t) cosh(t)+b cosh(2t)

− a
(a2+b2+1) sinh(t) cosh(t)+b cosh(2t)

(a2+b2) cosh2(t)+b sinh(2t)+sinh2(t)

(a2+b2+1) sinh(t) cosh(t)+b cosh(2t)

 . (3.90)

Using this method not only are we able to reobtain the same metric as calculated previously, we

also confirm that indeed if g3(0) = 0 then g3(t) = 0. Furthermore, we were also able to get the general

expression for the time evolution of G(t). I was not able to obtain Eq. (3.90) using the direct method,

not even with the help of the software Mathematica. We remark that numerical solutions for Eqs.

3.8 were obtained in order to confirm that the dynamics that were calculated through this method

correspond to the dynamics of Eq. (3.8).

This example illustrates the usefulness of the alternative method in facilitating the process of solv-

ing the dynamics of both G(t) and Y (t) analytically. We simply need to solve the complex dynamics

for the center, which no longer is coupled to G(t). Finally, we can then extract the inherent complex

structure from the complex coordinate as well as the real center of the Wigner function. We are able
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to turn a problem which involves solving a coupled system of five differential equations into one of

solving a coupled system of two differential equations, followed by algebraical manipulations.

3.5 Time evolution of the Wigner function

In this section we derive the equation for the time evolution of the Wigner function under a non-

Hermitian Hamiltonian. We start by taking the partial derivative of Eq. (2.11) with respect to time:

∂W (x, p)

∂t
=

ˆ +∞

−∞

1

π~

[
∂ψ∗(x+ y)

∂t
ψ(x− y) + ψ∗(x+ y)

∂ψ(x− y)

∂t

]
e2ipy/~dy . (3.91)

Now, we substitute the partial time derivatives for both the wave function and its complex conjugate

using Schrödinger’s Equation. We notice that, as we are dealing with non-Hermitian Hamiltonians

we must take caution when calculating the complex conjugate of the Schrödinger’s equation. For

Ĥ = Ĥ − iΓ̂, where both Ĥ, Γ̂ are Hermitian, we have:

∂ψ(x, t)

∂t
= − i

~
Ĥψ(x, t) = − i

~

(
Ĥ − iΓ̂

)
ψ(x, t)

∂ψ∗(x, t)

∂t
=
i

~
Ĥ†ψ∗(x, t) =

i

~

(
Ĥ + iΓ̂

)
ψ∗(x, t)

. (3.92)

Using the previous equations on Eq. (3.91) and joining terms we get:

∂W (x, p)

∂t
=

i

π~2

ˆ +∞

−∞

[(
Ĥψ∗(x+ y)

)
ψ(x− y)− ψ∗(x+ y)

(
Ĥψ(x− y)

)
+

+
(
iΓ̂ψ∗(x+ y)

)
ψ(x− y) + ψ∗(x+ y)

(
iΓ̂ψ(x− y)

)]
e2ipy/~dy ,

(3.93)

which describes exactly the time evolution for the Wigner function.

Due to the linearity of the integral we can construct a generic expression for the time derivative

of W (x, p) by studying specific examples of both Ĥ and Γ̂. Then, we can sum the contribution of

each term for the total partial time derivative. On the remainder of this section we show the resulting

equation for some choices of real and imaginary part for the Hamiltonian Ĥ. One can confirm the

derivation for an Hermitian Hamiltonian on [5].

3.5.1 Hamiltonian dependent on position operators

In this section, we adopt the methodology used in [5] for the Hermitian case and extend it to be

able to compute both Hermitian and non-Hermitian functions of the position operator.

For the Hermitian case, assume that Ĥ = V (x̂). Then, by Eq. (3.93) we have:

∂W (x, p)

∂t
=

i

π~2

ˆ ∞
−∞

dye2ipy/~ (V (x+ y)− V (x− y))ψ∗(x+ y)ψ(x− y) . (3.94)

Writing the Taylor series of the potential function around the point x we get that:

V (x+ y)− V (x− y) =

+∞∑
n=0

1

n!

∂nV (x)

∂xn
(1− (−1)n) yn =

+∞∑
s=0

2

(2s+ 1)!

∂2s+1V (x)

∂x2s+1
y2s+1 , (3.95)
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which when substituted in the previous equation yields:

∂W (x, p)

∂t
=

+∞∑
s=0

2i

π~2

1

(2s+ 1)!

∂2s+1V (x)

∂x2s+1

ˆ ∞
−∞

dyy2s+1e2ipy/~ψ∗(x+ y)ψ(x− y) = (3.96)

=

+∞∑
s=0

2i

π~2

1

(2s+ 1)!

∂2s+1V (x)

∂x2s+1

(
~
2i

∂

∂p

)2s+1 ˆ ∞
−∞

dye2ipy/~ψ∗(x+ y)ψ(x− y) = (3.97)

=

+∞∑
s=0

1

(2s+ 1)!

1

22s
(−~2)s

∂2s+1V (x)

∂x2s+1

∂2s+1W (x, p)

∂p2s+1
. (3.98)

As for the non-Hermitian case, with Γ̂ = V (x̂) we would have, by Eq. (3.93):

∂W (x, p)

∂t
=
−1

π~2

ˆ ∞
−∞

dye2ipy/~ (V (x+ y) + V (x− y))ψ∗(x+ y)ψ(x− y) . (3.99)

This time, the Taylor series is written as:

V (x+ y) + V (x− y) =

+∞∑
n=0

1

n!

∂nV (x)

∂xn
(1 + (−1)n) yn =

+∞∑
s=0

2

(2s)!

∂2sV (x)

∂x2s
y2s , (3.100)

which, when substituted in the previous equation yields:

∂W (x, p)

∂t
=

+∞∑
s=0

−2

π~2

1

(2s)!

∂2sV (x)

∂x2s

ˆ ∞
−∞

dyy2se2ipy/~ψ∗(x+ y)ψ(x− y) = (3.101)

=

+∞∑
s=0

−2

π~2

1

(2s)!

∂2sV (x)

∂x2s

(
~
2i

∂

∂p

)2s ˆ ∞
−∞

dye2ipy/~ψ∗(x+ y)ψ(x− y) = (3.102)

=

+∞∑
s=0

1

(2s)!

1

22s−1
(−1)s+1~2s−1 ∂

2sV (x)

∂x2s

∂2sW (x, p)

∂p2s
. (3.103)

3.5.2 Hamiltonian dependent on momentum operators

In this section we consider the case where the Hamiltonian is simply a function of the momentum

operator. It is useful to consider another way of writing the Wigner function, which is obtained through

the momentum space wave function ϕ(p) (see appendix C):

W (x, p) =
1

π~

ˆ ∞
−∞

dyϕ∗(p+ y)ϕ(p− y)e−2ixy/~ . (3.104)

Moreover, we also Fourier transform the Schrödinger equation to obtain its form in momentum space.

If Ĥ and Γ̂ are given by some function of the momentum operator then the Fourier transform is:

i~
∂ϕ(p)

∂t
=
(
Ĥ(p̂)− iΓ̂(p̂)

)
ϕ(p) = (H(p)− iΓ(p))ϕ(p) . (3.105)

We remark that Eq. 3.104, in conjunction with the Schrödinger equation and its conjugate for

the momentum wave function, give exactly the same partial time derivative obtained in the previous

section, provided that we set p → −x. The only changes that we need to make is to note that, when

we derived in order to p in Eq. (3.96) and Eq. (3.101), we will now get an extra minus sign on the

expression for the series.
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This means that, for an Hermitian Hamiltonian where Ĥ = S(p̂), we have:

∂W (x, p)

∂t
=

+∞∑
s=0

1

(2s+ 1)!

1

22s
(−1)s+1~2s ∂

2s+1S(p)

∂p2s+1

∂2s+1W (x, p)

∂x2s+1
. (3.106)

And, for an anti Hermitian Hamiltonian, H = −iΓ̂, such that Γ̂ = S(p̂), we have:

∂W (x, p)

∂t
=

+∞∑
s=0

1

(2s)!

1

22s−1
(−1)s+1~2s−1 ∂

2sS(p)

∂p2s

∂2sW (x, p)

∂x2s
(3.107)

3.5.3 Summary of results

In the following table we summarize the correspondences derived so far both for Hermitian and

non-Hermitian operators. In the table, the notation Ĥ = Ĥ − iΓ̂, where both Ĥ, Γ̂ are Hermitian

operators, is used to specify the Hermitian and anti Hermitian parts of the Hamiltonian.

Hamiltonian Time Evolution (∂tW (x, p))
Ĥ = S(p̂)

∑+∞
s=0

1
(2s+1)!

1
22s (−1)s+1~2s ∂

2s+1S(p)
∂p2s+1

∂2s+1W (x,p)
∂x2s+1

Γ̂ = S(p̂)
∑+∞
s=0

1
(2s)!

1
22s−1 (−1)s+1~2s−1 ∂

2sS(p)
∂p2s

∂2sW (x,p)
∂x2s

Ĥ = V (x̂)
∑+∞
s=0

1
(2s+1)!

1
22s (−~2)s ∂

2s+1V (x)
∂x2s+1

∂2s+1W (x,p)
∂p2s+1

Γ̂ = V (x̂)
∑+∞
s=0

1
(2s)!

1
22s−1 (−1)s+1~2s−1 ∂

2sV (x)
∂x2s

∂2sW (x,p)
∂p2s

Table 3.1: Table with correspondences between operators and their contribution for the time evolution of the
Wigner function

With the work done on the previous sections we are now able to write the time evolution equation

for a large number of Hamiltonians, Hermitian or not. For instance if Ĥ = p̂2

2m −
i
2 x̂

2 then we would

get:
∂W (x, p)

∂t
= − p

m

∂W (x, p)

∂x
− 2

~
V (x)W (x, p) +

~
4

∂2W (x, p)

∂p2
. (3.108)

Furthermore, we can also confirm that for an Hermitian Hamiltonian Ĥ = 1
2m p̂

2 + V (x̂), we reobtain

the usual Wigner function time evolution equation, Eq. (2.13).
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4
Numerical methods

The aim of this chapter is to describe the numerical methods used to simulate the dynamics of

both wave functions and Wigner distributions under non-Hermitian Hamiltonians. Firstly, we derive

a method to numerically approximate the Schrödinger evolution of a wave function when subject to

a non-Hermitian Hamiltonian. We then adapt this method to be able to simulate the evolution of a

Wigner function under a non-Hermitian Hamiltonian. After that, we compare how a semiclassical

approximation, Eq. (3.8), performs when compared to the quantum evolution. We illustrate several

examples.

4.1 Numerical method for the exact equations

In this section we describe how to computationally simulate the dynamics of the Wigner func-

tion under a NHH. The simplest possible method one may consider is to numerically simulate the

Schrödinger evolution of an initial wave state. And subsequently, obtain the Wigner transformation

of the wave function for each instant of time. Such algorithm has two distinct parts where numerical

error can affect the accuracy of results: the numerical solution of the Schrödinger equation and the

numerical integration to obtain the Wigner function from the wave function.

In order to avoid compounding numerical errors we tried to find a method which requires us to

only solve the dynamics of the Wigner function. Furthermore, as most methods are only developed

for Hermitian Hamiltonians, we needed to adapt the method to be able to be used with NHH.

In the following subsection we present an introduction to the split-step Fourier method [20], which

can be used to numerically simulate the time propagation of a wave function.
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4.1.1 Split-step Fourier method - Schrödinger’s equation

The Schrödinger Equation is given by the following expression:

i~
∂ψ(x, t)

∂t
= Ĥψ(x, t) , (4.1)

where ψ(x, t) is the complex valued wave function of the system and Ĥ is the Hamiltonian of the

system. A formal solution to the previous equation is:

ψ(x, t) = e−itĤ/~ψ(x, 0) . (4.2)

If the Hamiltonian consisted of the sum of two operators, Ĥ = Â + B̂, such that they commute,

then we could write:

ψ(x, t) = e−itÂ/~e−itB̂/~ψ(x, 0) , (4.3)

effectively splitting the evolution of the wave function into two separate steps. The cold truth is that,

usually, Ĥ = p̂2

2m + V (x̂). This means that the two operators that make up the Hamiltonian do not

commute and they cannot be easily split.

In some cases we could use the Baker-Campbell-Hausdorff formula [18] to perform this splitting:

exp
[
Â
]

exp
[
B̂
]

= exp

[
Â+ B̂ +

1

2

[
Â, B̂

]
+

1

12
[A, [A,B]]− 1

12
[B, [A,B]] + · · ·

]
. (4.4)

However, numerically implementing an algorithm to perform the BCH formula on any given Hamilto-

nian is a rather daunting task. Thankfully, there is also another formula, called the Lie product formula

or the Trotter product formula [19], which states:

eÂ+B̂ = lim
N→+∞

(
eÂ/NeB̂/N

)N
. (4.5)

In the context of time evolution of a wave function, let us divide the Hamiltonian into an operator

solely dependent on the momentum operator, Â , and another operator that depends only on the

position operator, B̂. Then the time evolution operator from t′ = 0 to t′ = t can be written as:

e−itĤ/~ = e−it(Â+B̂)/~ ≈
(
e−iÂt/N~e−iB̂t/N~

)N
+O

(
1

2

[
Â, B̂

] t2

~2N2

)
. (4.6)

Numerically, this suggests a method to perform the time evolution in increments dt = t/N . In each

time step we would split the Hamiltonian and apply each operator to the wave function separately. By

Eq. (4.4), we can see that by performing this splitting we are introducing errors on the order of O(dt2).

It remains to show how we would apply each operator separately and in a computationally efficient

manner. Notice that e−iV (x̂)t/~f(x, t) is a formal solution for:

∂f(x, t)

∂t
= − i

~
V (x̂)f(x, t) = − i

~
V (x)f(x, t) . (4.7)

As such, for operators dependent solely on the position operator we can apply the operator to the

wave function simply by multiplying the wave function by a factor exp (−iV (x)dt/~).
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For operators dependent on the momentum operator, for example B̂ = 1
2m p̂

2, by the same logic

as before we would have that the exponential of − i
~ B̂t is a formal solution for:

∂f(x, t)

∂t
= − i

2m~
p̂2f(x, t) =

i~
2m

∂2f(x, t)

∂x2
. (4.8)

We define the Fourier transform on position space of f(x, t), written f̃(k, t) = F [f(x, t)], as:

f̃(k, t) =
1√
2π

ˆ ∞
−∞

dxf(x, t)e−ikx . (4.9)

Note that wave functions must vanish at infinity meaning that, integrating by parts, we have:

ˆ ∞
−∞

dx
∂ψ(x, t)

∂x
e−ikx = (ik)

ˆ ∞
−∞

dxψ(x, t)e−ikx = (ik)F [ψ(x, t)] . (4.10)

The above suggests a rule for converting derivatives of wave functions into factors (ik) when passing

from position space to momentum space.

If we make the Fourier transform of Eq. (4.8) we get:

∂f̃(k, t)

∂t
=

i~
2m

ˆ ∞
−∞

dx
∂2f(x, t)

∂x2
e−ikx = − i~

2m
k2f̃(k, t) , (4.11)

where in the end we used the rule derived beforehand. In momentum space, performing the action of

the operator thus can be performed exactly as in the position case, just using the Fourier transform

of the wave function. That is, we multiply the Fourier Transform of the function f(x, t) by the factor

exp
(
−i~k2dt/2m

)
.

Summing up, in order to calculate numerically the time evolution of a wave function under an

Hamiltonian of the form Ĥ = 1
2m p̂

2 + V (x̂) we do the following:

1. We have the wave function at a specific time t, ψ(x, t).

2. Fourier transform the wavefunction in the position variable and multiply it by the phase factor

e−
i~
2mk

2dt which is the contribution from the momentum term for the evolution;

3. Invert the Fourier Transform and multiply the wave function by the phase factor e−i
V (x)

~ dt which

is the contribution from the position term for the evolution;

4. The result is an approximation for the wave function at t+ dt.

Algebraically we can write the above as:

ψ(x, t+ dt) ≈ e−i
V (x)

~ dtF−1
[
e−

i~
2mk

2dtF [ψ(x, t)]
]
, (4.12)

where F−1 denotes the inverse Fourier transform. To numerically simulate Schrödinger’s time evolu-

tion we will make use of the Fourier Transform (FT) and its numerically efficient calculation method the

Fast Fourier Transform (FFT), which calculates the Discrete Fourier Transform (DFT). On appendix B

we make the connection between the FT and the DFT.
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To be able to realize the method we have to discretize both the spatial and temporal domains.

The temporal domain suffers a discretization, as previously mentioned, into steps of length dt, which

influence the error due to the approximate splitting of the time evolution operator. On the other hand,

to be able to apply the split operators to the function, as well as to describe the function itself, we

need to discretize the position space into a grid. We use a grid that has 2n cells, because for data in

powers of two the FFT algorithm has maximum speed. This discretization also introduces errors on

the functions that we try to describe on the grid, which include the operators with which we are acting

on the wave function. As long as the derivatives of the functions used do not explode, we should not

expect a large amount of error from this source. Furthermore, by discretizing the grid we will make it

impossible for the center to have certain coordinates, like being at the point (P,Q) = (0, 0), instead

staying on the nearby cells. This effect will be seen on a later example.

The advantages of this method are the fact that it is easy to implement and has been shown

to yield very fast results when compared to other methods, like finite-difference methods [35]. The

disadvantages are that, for systems with large dispersion this method fails due to finite size effects.

This disadvantage, however, does not concern us in this work as we are dealing with initial localized

states, which remain localized for some period of time. As long as we do not attempt to do analysis

at large periods of time we should not be concerned.

As an example of the implementation of this method, in the following image we can see a density

plot of the time evolution of a wave function under the harmonic oscillator, Ĥ = p̂2/2 + x̂2/2. The

initial wave function is an unnormalized coherent state of the form of Eq. (2.10) where (P,Q) = (0, 1),

B = i and we set ~ = 1.
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Figure 4.1: Plot of the time evolution of the probability amplitude of an initial coherent state, |ψ(x, t)|2 , centered
at (P,Q) = (0, 1) and with B = i, under the Harmonic oscillator Ĥ = p̂2/2 + x̂2/2. On the horizontal axis is
the position variable. On the vertical axis is the time. The color represents the magnitude of |ψ(x, t)|2. Each
horizontal slice with constant ti corresponds to a plot of |ψ(x, ti)|2.

As we can see we obtain the expected behavior for an harmonic oscillator with angular frequency

ω = 1. As ω = 1, then the period is T = 2π. Furthermore, we see the expected motion of a coherent

state under the quantum harmonic oscillator [33]. The probability amplitude simply suffers a shift with

time with the center of the coherent state oscillating between x = ±1 with a period of 2π.

4.1.2 Split-step Fourier method - Wigner’s distribution time evolution

The method we adopted to numerically obtain the time evolution of the Wigner function is an

adaptation of the previous method. There are several uses of this method in the literature, see for

example, Ref. [4] and Ref. [12].

As seen in section 3.5, the time evolution equation for an arbitrary non-Hermitian Hamiltonian,

written in terms of functions and partial derivatives of the Wigner function, has a form that is highly

dependent on the choice of Hamiltonian Ĥ. Specifically, for Hamiltonians which only depend on p̂2

and on potential functions V (x̂), i.e. Hamiltonians of the form:

H = λ1p̂
2 + V (x̂)− i

(
λ2p̂

2 + U(x̂)
)
, λ1, λ2 ∈ R , (4.13)
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we have that, using Table 3.1, the partial time derivative of the Wigner function is:

∂W (p, q, t)

∂t
=− 2λ1p

∂W (p, q, t)

∂q
+
~λ2

2

∂2W (p, q, t)

∂q2
− 2

~
U(q)W (p, q, t)

+

+∞∑
s=1

1

(2s)!

1

22s−1
(−1)s+1~2s−1 ∂

2sU(q)

∂q2s

∂2sW (p, q, t)

∂p2s
+

+

+∞∑
s=0

1

(2s+ 1)!

1

22s
(−~2)s

∂2s+1V (q)

∂q2s+1

∂2s+1W (p, q, t)

∂p2s+1
.

(4.14)

We can see that the expression is still a linear partial differential equation. As such, we could define

it as being the action of some linear operator, Ẑ, on the Wigner function. This linear operator can be

decomposed into three different operators. The first, Â, is simply a multiplication of a function with the

Wigner function, similar to the potential function term on the Schrödinger equation. The second, B̂,

which is a differential operator where the partial derivatives are with respect to position. The last one,

Ĉ, is simply a differential operator where the partial derivatives are with respect to momentum. In

fact, as partial derivatives with respect to momentum commute with functions of the position variable

we can consider the first and last operators as part of the same differential operator, i.e.
[
Â, Ĉ

]
= 0.

From Eq. (4.14) we would see that:
Â = − 2

~U(q)

B̂ = −2λ1p
∂
∂q + ~λ2

2
∂2

∂q2

Ĉ =
∑+∞
s=1

1
(2s)!

1
22s−1 (−1)s+1~2s−1 ∂

2sU(q)
∂q2s

∂2s

∂p2s +
∑+∞
s=0

1
(2s+1)!

1
22s (−~2)s ∂

2s+1V (q)
∂q2s+1

∂2s+1

∂p2s+1

(4.15)

On the previous section, we presented a method that allows one to simulate with precision the

time evolution of a wave function, by splitting the time evolution operator into two factors, one acting

on position space and one acting on momentum space. We will proceed in exactly the same manner

to build a method for numerically obtaining the Wigner function at a later instant of time. Thus, we

want to split the evolution operator into two separate exponential operators and then proceed to apply

them to the Wigner function. Furthermore, because the operator that only has derivatives in order to

momentum commutes with the operator that just multiplies functions of position we can perform the

following split:

e(Â+Ĉ)t = eÂteĈt = eĈteÂt , (4.16)

which can be seen directly from Eq. (4.4). For small time increments, dt = T/N , we will want to split

the time evolution operator into two different operators, by making use of the Trotter formula (see Eq.

(4.5)) once more:

eẐt = e(Â+B̂+Ĉ)t ≈
(
e(Â+Ĉ) t

N eB̂
t
N

)N
=
(
eÂt/NeĈt/NeB̂t/N

)N
. (4.17)

Notice the equality in the last step, which implies that we can perform the act of multiplying a func-

tion with the Wigner function before or after applying the exponential of Ĉ, without introducing error.

However, by approximating the splitting we once again will have errors on the order of O(dt2).

With the splitting done we just need to calculate how each operator acts on the Wigner function.
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The action of the exponential of the operator Â is similar to the one seen in Eq. (4.7). If Â = − 2
~U(q)

then we just need to multiply the Wigner function by a factor exp (−2U(q)/~). However, the operators

B̂, Ĉ are made up of derivatives of the Wigner function with respect to position and momentum,

respectively. As such, we will Fourier transform the Wigner function in either the position or momentum

variable to transform the derivative terms into factors of ik, where k is the frequency variable for either

the position or momentum variables. Specifically, for B̂, we Fourier transform the Wigner function on

the position variable, W̃ (p, k) = Fq [W (p, q)], where Fq indicates that the Fourier transform is with

respect to the position variable. We assume the form for the operators as shown in Eq. (4.15), and

follow the exact same procedure in deriving Eq. (4.8) and Eq. (4.11). Doing so, the action of the

exponential operator eB̂t on the Wigner function W (p, q) is given by:

exp

[(
−2λ1p(ik) +

~λ2

2
(ik)2

)
t

]
W̃ (p, k) , (4.18)

where W̃ (p, k) = Fq [W (q, p)]. Similarly, the the action of the operator Ĉ on the Wigner function is

given by:

exp
[(∑+∞

s=1
1

(2s)!
1

22s−1 (−1)s+1~2s−1 ∂
2sU(q)
∂q2s (ik)2s +

∑+∞
s=0

1
(2s+1)!

1
22s (−~2)s ∂

2s+1V (q)
∂q2s+1 (ik)2s+1

)
t
]
W̃ (k, q) , (4.19)

where W̃ (k, q) = Fp [W (q, p)], i.e., the Fourier transform of W (q, p) on the momentum variable.

We are now in a position to state the procedure to simulate the time evolution of a Wigner function

under a NHH:

1. We start with the Wigner function at a specific time t, W (p, q, t);

2. Fourier transform the Wigner function in the position variable and multiply it by the exponential

factor in Eq. (4.18) where t = dt ;

3. Invert the Fourier Transform on the position variable;

4. Fourier transform the Wigner function in the momentum variable and multiply it by the exponen-

tial factor in Eq. (4.19) where t = dt ;

5. Invert the Fourier Transform on the momentum variable;

6. Multiply W (p, q) by the exponential factor exp (−2U(q)dt/~);

7. The result is an approximation for W (p, q, t+ dt).

Similarly to the previous section, we expect that this method is well suited for use with localized

Wigner functions. For numerically propagating an initial localized Wigner functions in time, we can

trust on the obtained results until the dispersion on the Wigner function is large. With this we mean,

when the dispersion is such that the Wigner function starts approaching the walls of the grid used

to perform the calculations, i.e. having non-zero values near the walls. When that happens, due to

finite size effects, we lose precision when performing the discrete Fourier transforms. It is useful to

state that this method has a run time on the order of O(TN2), where T is the total time to evolve the
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state and N = 2n is the total number of cells per dimension of the grid. As for memory, the biggest

contributor is the 2n × 2n grid, with an average usage of 22n+4 bytes.

We remark that we can obtain the parameter α(t) by integrating the Wigner function across the

entire domain. The center is obtained by tracking, at each instant of time, the point of the Wigner

function with highest value. As for the metric, one possible method to numerically obtain it is to

numerically calculate the level curves of the Wigner function. Then, from the center point we could

slide along a given level curve until we maximized the distance from the center of the state to the level

curve. From the maximum, we can calculate the angle that the vector coming from the center has with

the horizontal axis, thus giving us the angle α described in section 3.1. Furthermore, from the value

of the wave function at the center, as well as at the point which maximizes the distance for a given

level curve, we can estimate the value of the smallest eigenvalue of the coherent state, by assuming

that the function is given by the Eq. (2.14). The estimate for the smallest eigenvalue is given by:

exp

(
−1

~
λd2

)
=
W (M)

W (C)
, (4.20)

where λ is the estimate for the smallest eigenvalue, C is the center of the Wigner function, M is the

point which maximizes a previously chosen level curve and d is the distance between M and C. Then,

using the calculations done in section 3.1, one could invert these relations to find the parameter B

which would best describe the current Wigner function, and from which we could derive the metric via

Eq.(2.15).

This algorithm for obtaining the metric was not implemented for several reasons. Firstly, the algo-

rithm for searching for the level curves of a Wigner function would be resource intensive and would

need to run almost every time step, in order to describe the motion of the metric with precision. Sec-

ondly, as we will see on the last example, when the considered system ceases to be quadratic we

no longer have a well defined coherent state to which we could attribute the obtained metric. Lastly,

the level curves of an initial Wigner state under a non quadratic Hamiltonian might cease to be con-

vex. This last reason does not seem to be a problem because one could simply choose a level curve

closer to the center in order to enforce convexity. However, if we try to obtain level curves closer to

the center, the errors due to the discretization of space would start to greatly affect the estimate.

As an example of the implementation of the method, we again show the evolution of a coherent

state under the Hermitian harmonic oscillator, Ĥ = 1
2

(
p̂2 + x̂2

)
. The initial Wigner function is of the

form of Eq. (2.14), with n = 1, G = 1 and center at (P,Q) = (5, 0). We set ~ = 1 and, running the

simulation, at t = 3.14 we obtain:
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Figure 4.2: Plot of the numerical propagation of a Wigner function, W (p, q, t), at a time t = 3.14. The time
evolution is of an initial Wigner coherent state, with center at the point (P,Q) = (1, 0) and metric G = 1. The
Hamiltonian used was the harmonic oscillator, Ĥ = 1

2

(
p̂2 + x̂2

)
. In white, we see the motion of the center from

its initial point until the current time of t = 3.14.

In the above figure, we once again, observe the expected motion for a coherent state on phase

space. The Wigner function maintains its shape across time, simply rotating around the origin. Like

in the previous section, the angular frequency of the harmonic oscillator is ω = 1, thus giving a

period of T = 2π. This corroborates with what we see in the figure, where at approximately t = π

we see that the center completed half a rotation around the origin. In the next figure, we show the

time dependence for the components of the center, for both the exact numeric propagation and the

semiclassical propagation of an initial Wigner function.

Figure 4.3: Plots for the components of the center for the exact propagation of an initial coherent Wigner function
and for the semiclassical approximation. On the left is the momentum component of the center. On the right is
the position component of the center. The initial Wigner coherent state has center at the point (P,Q) = (1, 0)
and metric G = 1.

In the above figure, we notice the sinusoidal appearance of both components of the center. Fur-

thermore, we also remark that both curves agree completely with one another, as they effectively are
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on top of each other. This is the expected behavior because the semiclassical approximation in Eq.

(2.17) is exact for quadratic Hamiltonians.

In the above example, we have an Hermitian quadratic Hamiltonian, as Γ̂ = 0. Therefore, the

example does not fully cover the possible dynamics for Wigner functions under NHH. In the next

section we shall see the dynamics of two different Hamiltonians, with non zero Γ̂, in more detail.

4.2 Comparing the exact Wigner time propagation with the semi-
classical approximation

In this section, we shall analyze the dynamics of several non-Hermitian Hamiltonians. To achieve

that, we will use the numerical propagation of a Wigner function obtained using the method developed

in section 4.1. Furthermore, we shall make the comparison with the numerical solution of the system

in Eq. (3.8), which yields the motion for both the center and the metric of an initial coherent Wigner

state of the form of Eq.(2.14).

4.2.1 Harmonic oscillator in imaginary time

The system of equations in Eq. (3.8) was derived using second order terms of the time evolution

equation for the Wigner function. As such, the semiclassical approximation, i.e. Eq. (3.8), is exact

for any quadratic non-Hermitian Hamiltonian. Nevertheless, we shall explicitly confirm that with this

example.

We take as our Hamiltonian:

Ĥ = − i
2

(
p̂2 + x̂2

)
=⇒

Ĥ = 0

Γ̂ = 1
2

(
p̂2 + x̂2

) , (4.21)

which is the usual harmonic oscillator but evolving in imaginary time. In section 3.4, we solved an-

alytically Eq. (3.8) for a Wigner coherent state with initial metric G diagonal. As such, to further

corroborate the results found, we too, in this example, shall assume that the initial Wigner coherent

state, of the form of Eq. (2.14) has G = diag( 1
2 , 2) and center (P,Q) = (2, 0). The results obtained

are displayed in the following figure:
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Figure 4.4: Plot of the numerical propagation of a Wigner function, W (p, q, t), at a time t = 1. The time evolution
is of an initial Wigner coherent state, with center at the point (P,Q) = (2, 0) and metric G = diag(1/2, 2). The
Hamiltonian used was the anti Hermitian harmonic oscillator, Ĥ = − i

2

(
p̂2 + x̂2

)
. In white, we see the motion of

the center from its initial point until the current time.

In the above figure we can observe that, an initial state which was larger in the momentum direction

than in the position direction, moved towards the origin whilst the shape of the localized state became

uniform. This behavior was exactly the predicted one in subsection 3.4.3. As a matter of fact, looking

at figure 3.5, we can see that, at t = 1, the momentum component of the center should be roughly

at P = 0.5. This is also seen on the next figure, where the momentum and position components

of the center are plotted. The next plot includes both the exact numeric propagation as well as the

semiclassical numeric solution arising from Eq. (2.17).

Figure 4.5: Plots for the components of the center for the exact propagation of an initial coherent Wigner function
and for the semiclassical approximation. On the left is the momentum component of the center. On the right is
the position component of the center. The initial Wigner coherent state has center at the point (P,Q) = (2, 0)
and metric G = diag( 1

2
, 2).
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In the above plot, we confirm that the motion for the momentum component of the center is in

agreement with the one predicted by the semiclassical approximation in Eq. (2.17). However, it is

noteworthy to discuss what is happening on the plot of the position component of the center. The

particular spatial discretization chosen for this example was a 1024 × 1024 grid. Thus, the length of

each cell is 1
1024 ≈ 10−2. As the system cannot numerically be at zero, due to the spatial discretization,

the position component stays on the cell/cells closest to the origin. This is further corroborated by the

fact that, if we do increase the size of the grid, say, by a factor of two, then the plot on the right side is

very similar to the present one but with the center being away from the origin by 1
2048 .

4.2.2 Quartic oscillator with damping

We now proceed to numerically simulate the Hamiltonian in Eq. (2.21), Ĥ =
(

1
2 − i

1
10

)
(p̂2 + q̂2) +

1
8 q̂

4, in order to check if we obtain the same dynamics using the method developed in this section.

As such, we consider an initial Wigner state with center (P,Q) = (5, 0) and initial metric G = 1.

We numerically propagated the state and we also numerically solved Eq. (3.8), with the help of

Mathematica. At t = 2.5 we observe:

Figure 4.6: Plots of the numerical and semiclassical propagation of a Wigner function,W (p, q, t), at a time t = 2.5
and for ~ = 1. The time evolution is of an initial Wigner coherent state, with center at the point (P,Q) = (5, 0)
and metric G = 1. The Hamiltonian used was Ĥ =

(
1
2
− i 1

10

)
(p̂2 + q̂2) + 1

8
q̂4.
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(a) Density plot of the numerical propagation of the Wigner
function. In black, we see the motion of the center from its
initial point until the current time.

(b) Contour plot of the numerical solutions to Eq. (3.8). In
white, we see the motion of the center from its initial point until
the current time.

We can compare the above figures to the middle figures in Fig. 2.1 and the behavior displayed on

both appears to be the same. The Hamiltonian considered was an Hermitian quartic oscillator with

an additional anti-Hermitian harmonic term. As such, the expected motion would be an oscillation

around the origin, with some changes due to the quartic part. On the next picture we can observe

the comparison between the components of the center for the exact solution of the Wigner dynamic

equation and for the semiclassical approximation:
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Figure 4.7: Plots for the components of the center for the exact propagation of an initial coherent Wigner function
and for the semiclassical approximation. On the left is the momentum component of the center. On the right is
the position component of the center. The initial Wigner coherent state has center at the point (P,Q) = (5, 0)
and metric G = 1.

As we can see, the semiclassical approximation agrees with the motion of both components of

the center, as one could also infer from Fig. 4.6. As we analyzed in section 3.4, the behavior of the

harmonic oscillator in imaginary time is to drive the state towards the origin and to quickly decrease the

parameter α(t). For the exact numerical propagation, we can obtain the parameter α(t) by integrating

the Wigner function across all the domain, using Simpson’s rule. Doing so leads to the following plot:

Figure 4.8: Logarithmic plot for the parameter α(t) of a Wigner function. The initial Wigner coherent state has
center at the point (P,Q) = (5, 0) and metric G = 1. We also set ~ = 1. In blue we see the α(t) for the
semiclassical numerical solution to Eq. (3.8). In black we see α(t) for the numerical propagation of the initial
Wigner state.

We once again corroborate the results in Fig. 2.1, the semiclassical approximation is in general

agreement with the α(t) obtained for the exact numerical propagation of the initial Wigner function.

However, this agreement is not surprising. This is due to the fact that the major contributor for the loss

of wavefunction norm is Γ̂(p, q), as can be seen on the last equation in Eq. (3.8).
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5
Connecting stochastic differential

equations and non-Hermitian
Hamiltonians

In this chapter, based in Ref. [6] , we will establish a connection between the formalism of stochas-

tic optimization of a certain class of control systems and quantum non-Hermitian Hamiltonians. By

solving Eq. (2.17), the non-Hermitian semiclassical dynamics of the center and metric of Gaussian

wave packets can be found. An example of a quadratic Hamiltonian is then explored.

5.1 From the HJB equation to a Schrödinger-like equation - 1
dimensional case

In one dimension, for both the state and the control, equation (2.32) reads:

− ~ ∂
∂t
ψ =

1

2
~2At∆ (ψt) + ~ft

(
∂

∂x
ψt

)
− q(x)ψt , (5.1)

where At = GtR
−1Gt and ∆ = ∂2

∂x2 . We remark that, in this section, the index in order to time means

that a variable may depend on the state xt and/or explicitly on time. The above equation can be

rewritten with the change t→ −s as:

~
∂

∂s
ψs = ~2A(xs)

∆

2
ψs + ~f(xs)

(
∂

∂x
ψs

)
− q(xs)ψs , (5.2)
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implying that the wave function at an instant s is given by:

ψs = exp

[
s

~

(
~2A(x)∆

2
+ ~fs∂x − q(x)

)]
ψ0 (5.3)

We can identify a non-Hermitian Hamiltonian in the above expression by rewriting it as:

ψs = exp

[
− i
~
s

(
i~f∂x + i

(
~2A(x)

∆

2
− q(x)

))]
ψ0 (5.4)

Thus the non-Hermitian Hamiltonian is given by:

Ĥ = −f(x̂)p̂− iA(x̂)
(p̂)2

2
− iq(x̂) = − (f(x̂)p̂)− i

(
A(x̂)(p̂)2

2
+ q(x̂)

)
(5.5)

5.1.1 Obtaining the classical Hamiltonian

To be able to apply the previous formalism, we must be able to obtain the classical Hamiltonian

from the quantum one to solve the semiclassical dynamics. In order to do that, we will assume that

the quantization of a classical observable is given by the symmetric quantization scheme i.e., we

assume that the quantization of a classical function f(x)g(p) is f(x)g(p) → 1
2 (f(x̂)g(p̂) + g(p̂)f(x̂)).

Under this choice of quantization we get that functions of solely the position or momentum variable

correspond to operators that solely depend on the position or momentum operator.

In the Schrödinger representation, we assume that the quantization of the function F = f(x)p is

thus given by the symmetric quantization, i.e.:

F̂ = −1

2
f(x)i~∂x −

i~
2
∂x ◦ f(x) = f(x̂)p̂− i~

2
f ′(x̂) (5.6)

Thus the quantization of the classical observable G = f(x)p+ i~
2 f
′(x) is given by:

Ĝ = f(x̂)p̂ (5.7)

It remains to be shown which classical observable gives us the operator Â(x)p2. We note that the

quantization of the classical observable f(x)p2 under our choice of quantization scheme is:

ˆ(f(x)p2) = −1

2
~2f(x)∂2

x −
1

2
~2∂2

x ◦ f(x) = f(x̂)p̂2 − i~f ′(x̂)p̂− 1

2
~2f ′′(x̂) (5.8)

Thus joining the previous result it follows that the quantization of the following classical observable

is:

O = f(x)p2 + i~f ′(x)p =⇒ Ô = f(x̂)p̂2 (5.9)

And so our quantum Hamiltonian arises from the quantization of the classical observable:

H = −f(x)p− i~
2
f ′(x)− i

2

(
A(x)p2 + i~A′(x)p

)
− iq(x) , (5.10)
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from where we identify: H =
(
~A
′(x)
2 − f(x)

)
p

Γ = A(x)(p)2

2 +
(
~ f
′(x)
2 + q(x)

) (5.11)

The evolution of the above system of equations can be thus evaluated using the formalism de-

veloped in the previous chapters. In the next section we explore a simple example, with a complex

quadratic Hamiltonian.

5.2 Example - Quadratic Hamiltonian

In this section we will work with following stochastic differential equation:

ẋ = −αx+ (ut + ξ) , (5.12)

where ξ has variance δ so that we have At = δ. The parameter α controls the linear drift and the

parameter δ controls the noise. We can think of Eq. (5.12) as an exponentially decaying system that

can be influenced via the control ut and its associated noise ξ.

Moreover, we also take as a cost function a quadratic function of the following form:

rt = q(x) +
1

2
Ru2 =

β

2
x2 +

1

2

~
δ
u2 (5.13)

With the above assumptions, and following Eq. (5.11), we get the following classical Hamiltonian

function: H = αxp

Γ = δ
2p

2 + β
2x

2 − α~
2

. (5.14)

Looking at Eq. (2.30), if the value function at t = 0 is quadratic then we must have an initial state

that is localized and purely real, i.e., a Gaussian which is centered at a point Y = (0, x0):

ψs =

(
b

π~

) 1
4

exp

[
− b

2~
(x− x0)2

]
. (5.15)

The above corresponds to have a given final cost that is a quadratic function of the state. Furthermore,

by evolving this Wigner function using Eqs. (2.17), we are able to obtain the evolution for the value

function as well, which will be given by the logarithm of our wave function. We remark that, under

this formalism, the value function, which is a real function, evolves through a wave function under a

non-Hermitian Hamiltonian, which is somewhat unexpected.

Looking at the Hamiltonian in Eqs. (5.14) and at the second equation in (2.17), assuming an initial

diagonal metric of the form:

G(t = 0) =

(
g1(t = 0) 0

0 g2(t = 0)

)
,
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then we obtain the following equation for the metric components:

ġ1(t) = δ + 2αg1(t)− βg1(t)2 ,

ġ2(t) = β − 2αg2(t)− δg2(t)2 .

One can then verify that if we define g2(t) = 1/g1(t), we obtain the second equation from the first one

and vice-versa. This implies that if the initial conditions for the metric are such that its determinant is

equal to one, then, for all time t, the same is true, and the components are inverse of each other. This

also implies that we only need to solve one differential equation to get the complete time evolution of

the metric.

The above remark is valid only in the case of quadratic Hamiltonians of the form of (5.14). For

example, if we had a real component quadratic in position, then we would not only lose the above

property but metric would no longer be diagonal for a generic time t .

For the rest of this section we will analyze the Hamiltonian in (5.14) in three different cases:

• First the case α = β = 0 with δ 6= 0;

• Secondly, the case α = 0 and β 6= 0, δ 6= 0;

• Lastly, the case where α 6= 0, β 6= 0, δ 6= 0,

and for the last case we shall see what is the role of the several parameters on the behavior of the

metric and position of the center of the wave packet. To avoid confusion with the parameter α of the

Hamiltonian, for the rest of this section we will denote the multiplicative factor, described by the third

equation in Eqs. (2.17), by N(t).

5.2.1 Quadratic only in momentum

We consider the system of (5.14) where we put α = β = 0 and δ 6= 0. Thus, our classical

Hamiltonian is given by: H = 0

Γ = δp2

2

(5.16)

This is a purely imaginary quadratic Hamiltonian that only depends on momentum. We take an

initial Gaussian state which is centered at a point Y = (0, x0):

ψs =

(
b

π~

) 1
4

exp

[
− b

2~
(x− x0)2

]
, (5.17)

from where we see that B = ib ∈ iR. Thus, the Wigner function for this wave function has initial center

at the origin Y = (0, x0) and with G =

(
1
b 0

0 b

)
.

In this case the equation for G is independent of Y and is an equation of the following form:

Ġ =

(
δ 0

0 0

)
−G

(
0 0

0 δ

)
G , (5.18)
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where, as the Hamiltonian is quadratic, this implies that one of the components of the metric is the

inverse of the other. It thus suffices to calculate the momentum related component:

ġ(t) = δ =⇒ δt+
1

b
, (5.19)

where we already took into account the initial conditions for the metric. This result implies that the

metric is given by:

G(t) =

(
δt+ 1

b 0

0
(
δt+ 1

b

)−1

)
. (5.20)

Furthermore, the center’s equation of motion is given by:

Ẏ = −G(t)−1∇Γ(Y ) , (5.21)

which can be written as:
ṗ

p
= − 1

t+ 1
δb

(5.22)

ẋ = 0 . (5.23)

Integrating the above equations thus give us:

p(t) =
p(0)

1 + δbt
(5.24)

x(t) = x(0) , (5.25)

where the initial conditions for the position and momentum are taken into account. As we have that

the initial center is Y = (0, x0), we see that the center will not move, remaining constant for all time.

Moreover, for large time we observe that the metric tends to the matrix:

G∞ =

(
+∞ 0

0 0

)
. (5.26)

Furthermore, knowing the evolution of the metric and the center it is thus possible to calculate the

evolution of the multiplicative factor of the wave packet using (2.17). In this case it is of the form:

N(t) =
N0√
bδt+ 1

, (5.27)

where N0 is the initial multiplicative factor (normalization constant).

5.2.2 Quadratic in position and momentum

We now consider the system of (5.14) in the case where α = 0 and β 6= 0, δ 6= 0. Thus, our

classical Hamiltonian is given by: H = 0

Γ = δp2

2 + βx2

2

(5.28)

Again, this is a purely imaginary Hamiltonian and its dynamics can be seen as the purely imaginary
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time evolution of a regular Hermitian Hamiltonian. We take as the initial state the following Gaussian

which is centered at a given point:

ψs =

(
b

π~

) 1
4

exp

[
− b

2~
(x− x0)2

]
, (5.29)

from where we see that B = ib ∈ iR. The Wigner function for this wave function has initial center at

the point Y = (0, x0) and with G =

(
1
b 0

0 b

)
.

In this case the equation for G is independent of Y and is a Ricatti equation:

Ġ =

(
δ 0

0 β

)
−G

(
β 0

0 δ

)
G . (5.30)

Once more it suffices to solve the differential equation for the momentum component of the metric:

ġ(t) = δ − βg(t)2 =⇒ g(t) =
bδ sinh

(
t
√
βδ
)

+
√
βδ cosh

(
t
√
βδ
)

b
√
βδ cosh

(
t
√
βδ
)

+ β sinh
(
t
√
βδ
) , (5.31)

where the initial conditions were already taken into account.

The metric is thus given by:

G(t) =

(
g(t) 0

0 (g(t))
−1

)
. (5.32)

Furthermore, the center’s equation of motion is given by:

ṗ

p
= −δ (g(t))

−1 (5.33)

ẋ

x
= −βg(t) (5.34)

Integrating the above equations and using the initial condition that Y = (0, x0) thus give us:

p(t) = 0 (5.35)

x(t) =
bx0

√
βδ

b
√
βδ cosh

(
t
√
βδ
)

+ β sinh
(
t
√
βδ
) , (5.36)

For large time we observe that the center Y tends to the origin Y∞ = (0, 0). Moreover, the metric

tends to the matrix:

G∞ =

√ δ
β 0

0
√

β
δ

 (5.37)

As for the multiplicative factor, we obtain:

N(t) = −
√

8N0
4
√
−b2β

(
b2(−δ) +

(
β − b2δ

)
cosh

(
2t
√
βδ
)
− β

)3/4 (
b2δ +

(
β − b2δ

)
cosh

(
2t
√
βδ
)

+ β
)3/4

·

· 4
√

1−
bδ tanh

(
t
√
βδ
)

√
βδ

4

√
δ −
√
βδ tanh

(
t
√
βδ
)

b
exp

(
− bβx2

0

b~
√
βδ coth

(
t
√
βδ
)

+ β~

)
�

�
(

6βb2δ + b4δ2 −
(
β − b2δ

)2
cosh

(
4t
√
βδ
)

+ β2
)

4

√
β tanh

(
t
√
βδ
)

b
√
βδ

+ 1
4

√
bδ tanh

(
t
√
βδ
)

√
βδ

+ 1
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5.2.3 Quadratic with linear mixed term

We now consider the system of (5.14) in the case where α = 0 and β 6= 0, δ 6= 0. Thus, our

classical Hamiltonian is given by: H = αxp

Γ = δp2

2 + βx2

2 −
α~
2

(5.38)

Where the Hamiltonian is now no longer purely imaginary being instead complex. We again take

as the initial state the following Gaussian:

ψs =

(
b

π~

) 1
4

exp

[
− b

2~
(x− x0)2

]
, (5.39)

from where we see that B = ib ∈ iR. The Wigner function for this wave function has initial center at

the origin Y = (0, x0) and with G =

(
1
b 0

0 b

)
.

Let us now solve this problem using the method described in subsection 3.3.2. We have that:

−XH = (αp− iβx)
∂

∂p
+ (iδp− αx)

∂

∂x
. (5.40)

And so, we have: pt = e−XHtp =⇒ ṗt = e−XHt (−XHp) = αpt − iβxt
xt = e−XHtx =⇒ ẋt = e−XHt (−XHx) = −αxt + iδpt

, (5.41)

which can be written in matrix form as:(
ṗt

ẋt

)
=

(
α −iβ
iδ −α

)(
pt

xt

)
. (5.42)

This is a matrix differential equation of the form v̇t = Mvt. The solution is thus given by the

matrix exponential, vt = eMtv0. The matrix exponential can be obtained by diagonalizing the matrix

M = UDU−1 and calculating eMt = UeDtU−1. In this case, the matrix has eigenvalues:

λ± = ±
√
α2 + βδ , (5.43)

and so, denoting by λ the positive eigenvalue, we obtain the following matrix exponential:

eMt =

(
cosh(λt) + a

λ sinh(λt) −i bλ sinh(λt)

i dλ sinh(λt) cosh(λt)− a
λ sinh(λt)

)
. (5.44)

Taking into account the starting metric G = diag( 1
b , b) we have the following initial holomorphic

coordinate:

z0 = p− ibx , (5.45)

and so applying the flow of the Hamiltonian vector field we get:

zt = p

(
cosh(λt) +

α+ bδ

λ
sinh(λt)

)
− ibx

(
cosh(λt) +

β/b− α
λ

sinh(λt)

)
:= pt − ibxt (5.46)
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And so we have that:

ϕ̃−XHt =

(
cosh(λt) + α+bδ

λ sinh(λt) 0

0 cosh(λt) + β/b−α
λ sinh(λt)

)
. (5.47)

From the inverse of the above we thus conclude that the center motion is given by:
P (t) = P (0)

cosh(λt)+α+bδ
λ sinh(λt)

= 0

X(t) = X(0)

cosh(λt)+
β/b−α
λ sinh(λt)

= λbX(0)
λb cosh(λt)+(β−bα) sinh(λt)

(5.48)

Finally, we can obtain the metric by first obtaining the complex structure directly from Eq. (5.46).

And so, as mentioned in subsection 3.3.3, a scaling of the holomorphic does not alter the inherent

complex structure. In this case we can divide the entire equation by the real factor of the x coordinate

to directly obtain g(t) as the coefficient of the p coordinate. We thus have:

g(t) =
λ cosh(λt) + (α+ bδ) sinh(λt)

bλ cosh(λt) + (β − bα) sinh(λt)
, (5.49)

where λ =
√
α2 + βδ. We note that we can reobtain the previous equations by simply setting any of

the α, β, δ to zero.

For large time we observe that the center Y tends to the origin Y∞ = (0, 0). And for large time the

metric tends to the matrix:

G∞ =


√
α2+βδ+α

β 0

0

(√
α2+βδ+α

β

)−1

 , (5.50)

where the dependence in b is not present. Thus, in the infinite time limit, the system forgets its initial

geometry, which is related to the b parameter.

As for the multiplicative factor, solving the last equation in 2.17 yields the expression for the N(t)

written in appendix D.

5.2.4 Center and metric behavior with change of parameters

In this subsection we shall see the role of the parameters α, β, δ on the time evolution of the

momentum component of the metric and of the center’s position. In all the below images the darker

the coloring of the curve the smaller the value of the parameter being used to plot said curve.

5.2.4.A Influence of parameter α

The parameter α is associated with the linear drag on equation (5.12). In the next image we can

see its influence on the momentum component of the metric, where we see that it controls the limit

to which this components tends to, while maintaining all the other parameters fixed. The bigger the

parameter the larger the limit this metric component tends to.
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Figure 5.1: Momentum metric component g(t) for different values of α where β = δ = b = 1

Whereas on the center’s position, displayed in the next image on the left side, we can see that the

parameter α controls the height of the peak of maximum distance from the origin that the center has

before tending to the origin. As for the role of the parameter α on the evolution of the multiplicative

factor we see that it is similar to the one in the position case, being responsible for a deviation from

the origin, for big enough values of α.

(a) Center’s position x(t) for different values of α where β = δ =
b = x0 = 1

(b) Multiplicative factor N(t) for different values of α where β =
δ = b = x0 = N0 = ~ = 1

Figure 5.2: Influence of the parameter α on the time evolution for position of the center of the wave packet (left
image) and for the multiplicative factor (right image)

5.2.4.B Influence of parameter β

The parameter β is associated with the quadratic term on the position, that appears due to our

choice of the cost function in (5.13). In the next image we can see its influence on the momentum

component of the metric, where we see that it controls the limit to which this components tends to.

This limit is smaller for large values of this β.
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Figure 5.3: Momentum metric component g(t) for different values of β where α = δ = b = 1

Whereas on the center’s position, displayed in the next image on the left side, we can see that

the parameter β also controls the height of the peak of maximum distance from the origin that the

center has before tending to the origin but in a manner opposite to the parameter α. The smaller β

is, the bigger this peak becomes. The same can be said for the influence of β on the evolution of the

multiplicative factor.

(a) Center’s position x(t) for different values of β where α = δ =
b = x0 = 1

(b) Multiplicative factor N(t) for different values of β where α =
δ = b = x0 = N0 = ~ = 1

Figure 5.4: Influence of the parameter β on the time evolution for position of the center of the wave packet (left
image) and for the multiplicative factor (right image)

5.2.4.C Influence of parameter δ

The parameter δ is associated with the quadratic term on the momentum. It is associated with

the stochastic noise in equation (5.12). In the next image we can see its influence on the momentum

component of the metric, where we see that it controls the limit to which this components tends to.

This limit is larger for large values of δ although it only grows with the square root of the parameter.
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Figure 5.5: Momentum metric component g(t) for different values of δ where α = β = b = 1

The role of δ on both the evolution of the center position and of the multiplicative factor is to

regulate the decay present on the curve, the larger the value of δ the faster both curves tend to zero,

as one can see on the below figure.

(a) Center’s position x(t) for different values of δ where α = β =
b = x0 = 1

(b) Multiplicative factor N(t) for different values of δ where α =
β = b = x0 = N0 = ~ = 1

Figure 5.6: Influence of the parameter δ on the time evolution for position of the center of the wave packet (left
image) and for the multiplicative factor (right image)
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6
Conclusions and Future Work

The present work explores semiclassical dynamics of non-Hermitian Hamiltonians using a new

methodological approach to simplify the equations of motion. We apply this methodology to analyze

certain problems arising in control theory, where non-Hermitian operators arise.

Our starting point for the semiclassical analysis is the system of equations derived in Ref. [15],

for the motion of a Wigner function on phase space. The Wigner function is of a coherent state for

the harmonic oscillator. Specifically, the system of equations describes the motion of the center, the

changes of the intrinsic metric of the coherent state and the variation of the parameter α(t), which is

related to the total norm of the wave function. The anti Hermitian term induces a gradient flow that

evolves the center towards the minima of the anti Hermitian term. At the same time, the norm of the

wave function changes with time, which can be interpreted as absorption or dissipation of energy.

The semiclassical evolution of the center, the intrinsic metric of the coherent state and the pa-

rameter α(t), given by Eqs. (2.17), yields a set of n2/2 + 3n/2 + 1 coupled differential equations,

where n is the dimension of phase space. Using [24, 29] we introduced a new method of handling the

system of equations consisting of complexifying the coordinates of the center of the Wigner function.

This method reduces the problem into a simpler one, where the n equations for the center decouple

from the rest of the dynamics. From the motion of the complexified center, one can then algebraically

extract both the motion of the complex structure, which is related to the metric by Eq. (2.9), as well as

the motion of the real center.

We studied several examples using both approaches of handling Eqs. (2.17). Namely, we con-

sidered the free particle in imaginary time, that is equivalent to the evolution under the heat equation.

We also analyzed the harmonic oscillator in imaginary time, where an initial system is driven towards
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the origin whilst the metric evolves to the trivial one, G = 1. For the latter case, we were only able to

directly solve Eq. (2.17) for a specific choice of initial conditions, whereas the method developed in

the present work of solving Eqs. (2.17) leads to solutions for the center and metric with generic initial

conditions.

In the second part of the thesis, we applied our numerical method to propagate the time evolution

of a wave function under non-Hermitian Hamiltonians. The method described is the split-step Fourier

method, consisting on Trotter slicing the time evolution operator into several simpler operators that act

diagonally either on position or on momentum space. We use a numerically effective Fourier transform

to simply switch between the two representations. We then adapt the method to be able to propagate

the time evolution of a Wigner function. This method was previously used in the literature for obtaining

the Hermitian dynamics of both wave functions and Wigner distributions. Here, we generalize to the

non-Hermitian case, which to our knowledge had not yet been done. We then test the developed

method against Ref. [15] and corroborate the results therein.

Lastly, we applied our methods, both semiclassical and numerical, to stochastic optimization prob-

lems based in a connection between a class of stochastic differential equations and a Schrödinger-like

equation introduced in Ref. [36]. This mapping makes naturally appear a non-Hermitian Hamiltonian.

Furthermore, the value function, under this mapping, is obtained by taking the logarithm of the wave

function. As such, by evolving the wave function we are also evolving the value function. As a spe-

cific example, we explore the harmonic oscillator originating from a particular stochastic optimization

problem. We study how the choice of parameters of the problem affects the large time motion of initial

localized states.

6.1 Future work

For future work, it would be interesting to try to develop a numerical method for performing the

alternative method of decoupling the equations for the motion of the center and the metric of the initial

Wigner function. With it, one could test the validity of the expectation that the proposed method may

be, for non quadratic Hamiltonians, a better approximation than the one described in Eqs. (2.17).

One other avenue for further work is to further develop the numerical method described in chapter

4 to be able to handle Hamiltonians with cross terms, with both position and momentum operators.

While these terms usually do not show up physical systems, we cannot rule them out of appearing on

other applications of NHH, like the one described on chapter 5, where we do get a cross term.

Lastly, on the specific application of NHH explored on chapter 5, more work needs to be done in

order to assess the usefulness of the NHH paradigm on the context of stochastic optimal control.

62



Bibliography

[1] Aoki, M. (1976). Stochastic control in economic theory and economic systems. IEEE Transactions

on Automatic Control, 21(2):213–220.

[2] Bender, C. M. and Boettcher, S. (1998). Real spectra in non-hermitian hamiltonians having pt

symmetry. Physical Review Letters, 80(24):5243–5246.

[3] Breuer, H. P. and Petruccione, F. (2002). The theory of open quantum systems. Oxford University

Press, Great Clarendon Street.

[4] Cabrera, R., Bondar, D. I., Jacobs, K., and Rabitz, H. A. (2015). Efficient method to generate time

evolution of the wigner function for open quantum systems. Physical Review A, 92(4).

[5] Case, W. B. (2008). Wigner functions and weyl transforms for pedestrians. American Journal of

Physics, 76(10):937–946.

[6] Couto, C., Mourão, J. M., Nunes, J. P., and Ribeiro, P. (2020). Connecting stochastic optimization

with schrödinger evolution with respect to non-hermitian hamiltonians. Article in preparation.

[7] Curtright, T. L. and Zachos, C. K. (2012). Quantum mechanics in phase space. Asia Pacific

Physics Newsletter, 01(01):37–46.

[8] da Silva, A. (2004). Lectures on Symplectic Geometry. Lecture Notes in Mathematics. Springer

Berlin Heidelberg.

[9] Dattoli, G., Torre, A., and Mignani, R. (1990). Non-hermitian evolution of two-level quantum sys-

tems. Phys. Rev. A, 42:1467–1475.

[10] El-Ganainy, R., Khajavikhan, M., Christodoulides, D., and Ozdemir, S. (2019). The dawn of

non-hermitian optics. Communications Physics, 2.

[11] Fleming, W. and Soner, H. (2006). Controlled Markov Processes and Viscosity Solutions.

Stochastic Modelling and Applied Probability. Springer New York.

[12] Ganguli, S. (1998). Quantum mechanics on phase space: Geometry and motion of the wigner

distribution. Master’s thesis.

[13] Glauber, R. J. (1963). Coherent and incoherent states of the radiation field. Phys. Rev.,

131:2766–2788.

63



[14] Graefe, E.-M., Höning, M., and Korsch, H. J. (2010). Classical limit of non-hermitian quantum

dynamics—a generalized canonical structure. Journal of Physics A: Mathematical and Theoretical,

43(7):075306.

[15] Graefe, E.-M. and Schubert, R. (2011). Wave-packet evolution in non-hermitian quantum sys-

tems. Physical Review A, 83(6).

[16] Graefe, E.-M. and Schubert, R. (2012). Complexified coherent states and quantum evolution with

non-hermitian hamiltonians. Journal of Physics A: Mathematical and Theoretical, 45(24):244033.

[17] Guo, A., Salamo, G. J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou,

G. A., and Christodoulides, D. N. (2009). Observation of PT -symmetry breaking in complex optical

potentials. Phys. Rev. Lett., 103:093902.

[18] Hall, B. C. (2015a). The Baker–Campbell–Hausdorff Formula and Its Consequences, pages

109–137. Springer International Publishing, Cham.

[19] Hall, B. C. (2015b). The Matrix Exponential, pages 31–48. Springer International Publishing,

Cham.

[20] Hardin, R. (1973). Applications of the split-step fourier method to the numerical solution of

nonlinear and variable coefficient wave equations. SIAM Review (Chronicles), 15.

[21] Heiss, W. D. (2012). The physics of exceptional points. Journal of Physics A: Mathematical and

Theoretical, 45(44):444016.

[22] Hunger, R. An introduction to complex differentials and complex differentiability.

[23] Kato, T. (2012). Perturbation Theory for Linear Operators. Classics in Mathematics. Springer

Berlin Heidelberg.

[24] Kirwin, W. D., Mourão, J. M., and Nunes, J. P. (2013). Complex time evolution in geo-

metric quantization and generalized coherent state transforms. Journal of Functional Analysis,

265(8):1460–1493.

[25] Kozii, V. and Fu, L. (2017). Non-hermitian topological theory of finite-lifetime quasiparticles:

Prediction of bulk fermi arc due to exceptional point.

[26] Martinez Alvarez, V. M., Barrios Vargas, J. E., Berdakin, M., and Foa Torres, L. E. F. (2018).

Topological states of non-hermitian systems. The European Physical Journal Special Topics,

227(12):1295–1308.

[27] Moiseyev, N. (2011). Non-Hermitian Quantum Mechanics. Cambridge University Press.

[28] Moroianu, A. (2007). Lectures on Kähler Geometry. London Mathematical Society Student Texts.

Cambridge University Press.

64



[29] Mourão, J. M. and Nunes, J. P. (2015). On complexified analytic hamiltonian flows and

geodesics on the space of kähler metrics. International Mathematics Research Notices,

2015(20):10624–10656.

[30] Nakahara, M. (2003). Geometry, topology and physics. CRC Press.

[31] Ozawa, T., Price, H. M., Amo, A., Goldman, N., Hafezi, M., Lu, L., Rechtsman, M. C., Schuster,

D., Simon, J., Zilberberg, O., and et al. (2019). Topological photonics. Reviews of Modern Physics,

91(1).

[32] Perelomov, A. (1986). Generalized Coherent States and Their Applications. Springer-Verlag.

[33] Rosas-Ortiz, O. (2019). Coherent and squeezed states: Introductory review of basic notions,

properties, and generalizations. Integrability, Supersymmetry and Coherent States, page 187–230.

[34] Stengel, R. (1994). Optimal Control and Estimation. Dover books on advanced mathematics.

Dover Publications.

[35] Taha, T. R. and Ablowitz, M. I. (1984). Analytical and numerical aspects of certain nonlinear evo-

lution equations. ii. numerical, nonlinear schrödinger equation. Journal of Computational Physics,

55(2):203 – 230.

[36] Theodorou, E., Buchli, J., and Schaal, S. (2010). A generalized path integral control approach to

reinforcement learning. Journal of Machine Learning Research, 11(104):3137–3181.

[37] Whitney, D. and Junkel, E. (1982). Applying stochastic control theory to robot sensing, teaching,

and long term control. IFAC Proceedings Volumes, 15(8):109 – 117. 4th IFAC/IFIP Symposium on

Information Control problems in manufacturing Technology 1982, Maryland, USA, 26-28 October.

[38] Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium. Phys. Rev.,

40:749–759.

65



66



A
Demonstration of the Weierstrass

transform

A-1



The aim of this appendix is to show the following equivalence:

et
∂2

∂x2 f(x) = Wt[f(x)] , (A.1)

where Wt[f(x)] is called the generalized Weierstrass transform and is given by:

Wt[f(x)] =
1√
4π

ˆ ∞
−∞

f(x− y)e−
y2

4 dy . (A.2)

We note that F (t, x) = et
∂2

∂x2 f(x) is the solution to the heat equation:

∂f

∂t
=
∂2f

∂x2
, (A.3)

with boundary conditions F (0, x) = f(x). As such, we can write F (t, x) as a convolution of the initial

boundary condition with the fundamental solution for the heat equation, i.e., with the Green’s function

for the heat equation, G(t, x). This function is sometimes called the heat kernel and is given by:

G(t, x) =

(
1

4πt

) 1
2

e−x
2/4t . (A.4)

A general solution for the heat would have the following form:

F (t, x) =

ˆ ∞
−∞

dyf(y)G(t, x− y) . (A.5)

We can check that the initial condition remains true due to the fact that as t→ 0, G(t, x−y)→ δ(x−y)

which gives, after performing the integral, that F (0, x) = g(x). Performing a change of variables on

the last integral allows us to confirm that F (x, t) = Wt[f(x)].
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Discrete Fourier Transform
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The Fourier Transform of a function f(x) is defined as:

F{f(x)} := f̃(k) =
1√
2π

ˆ ∞
−∞

dxf(x)e−ikx (B.1)

And its associated inverse transform is given by:

f(x) =
1√
2π

ˆ ∞
−∞

dkf̃(k)eikx (B.2)

If we assume that the function goes to zero at both ends, meaning the only relevant information is

contained on the interval (a, b) then we can approximate the Fourier integral by a Riemann sum:

f̃(k) =
1√
2π

N−1∑
n=0

f(xn)e−ikxn∆x , (B.3)

where ∆x = b−a
N and xn = a + n∆x. If we discretize the momentum domain into k = p∆k such that

∆x∆k = 2π
N then we obtain:

f̃(p∆k) =
1√
2π

∆xe−ix0p∆k
N−1∑
n=0

f(xn)e−i2πnp/N =

√
N

2π
∆xe−ix0p∆kf̃n , (B.4)

which corresponds to having a phase factor multiplying the Discrete Fourier Transform of the sampled

values of f(x) here represented by the notation f̃n.

Similarly for the inverse transform we obtain that:

f(xn) =
1√
2π

∆k

N−1∑
p=0

f̃(kp)e
−i2πnp/N =

√
N

2π
∆kfn . (B.5)

Notice that if we perform both the transformation and its inverse we get a factor N
2π∆k∆x = 1 , due

to our definition of ∆k.
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Fourier transform of the Wigner

function

C-1



The Fourier transform of a position wave function ψ(x) is given by:

ϕ(k) =
1√
2π~

ˆ ∞
−∞

dxe−ikx/~ψ(x) , (C.1)

with the inverse transform being:

ψ(x) =
1√
2π~

ˆ ∞
−∞

dkϕ(k)eikx/~ , (C.2)

and its conjugate being:

ψ∗(x) =
1√
2π~

ˆ ∞
−∞

dkϕ∗(k)e−ikx/~ . (C.3)

From Eq. (2.11) we can substitute the two inverse Fourier transforms to obtain:

W (x, p) =
1

π~
1

2π~

ˆ ∞
−∞

dy

ˆ ∞
−∞

dk

ˆ ∞
−∞

dk′ϕ∗(k′)ϕ(k)e2ipy/~e−ik
′(x+y)/~eik(x−y)/~ =

=
1

π~
1

2π~

ˆ ∞
−∞

dk

ˆ ∞
−∞

dk′ϕ∗(k′)ϕ(k)eix(k−k′)/~
ˆ ∞
−∞

dyei(2p−k−k
′)y/~ .

(C.4)

Noting that: ˆ ∞
−∞

dyei(k−k
′)y~ = 2πδ(k − k′) , (C.5)

and that δ(a(x− x′)) = 1
|a|δ(x− x

′), we can solve the integral in y and get:

W (x, p) =
1

π~

ˆ ∞
−∞

dk

ˆ ∞
−∞

dk′ϕ∗(k′)ϕ(k)eix(k−k′)/~δ(2p− k − k′) =

=
1

π~

ˆ ∞
−∞

dkϕ∗(2p− k)ϕ(k)e2ix(k−p)/~ =
1

π~

ˆ ∞
−∞

dp′ϕ∗(p− p′)ϕ(p+ p′)e2ixp′/~ =

=
1

π~

ˆ ∞
−∞

dp′ϕ∗(p+ p′)ϕ(p− p′)e−2ixp′/~ ,

(C.6)

where in the end we made the change of variables p′ = k − p and p′ → −p′ .
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On this appendix is an expression for the multiplicative factor solution to the general case in Eq.

(5.14):

N(t) =
4
√
b2
√

2α2 + 2βδ exp

1

2

2
(
αt~

(
b2
(
2α2 + βδ

)
+ β2 − 2αβb

)
+ β cosh

(
2t
√
α2 + βδ

)(
αt~

(
b2δ + 2αb− β

)
+ bx02(β − αb)

)
− b2βx02

√
α2 + βδ sinh

(
2t
√
α2 + βδ

)
+ bβx02(αb− β)

)
~
(
b2 (2α2 + βδ) + β (b2δ + 2αb− β) cosh

(
2t
√
α2 + βδ

)
+ β2 − 2αβb

) −

tanh−1

 (α+ bδ) tanh
(
t
√
α2 + βδ

)
√
α2 + βδ

+ tanh−1

 (αb− β) tanh
(
t
√
α2 + βδ

)
b
√
α2 + βδ

 /
/

(
4

√
b2 (2α2 + βδ) + β (b2δ + 2αb− β) cosh

(
2t
√
α2 + βδ

)
+ β2 − 2αβb 4

√
2α2 + δ (b2δ + β) + 2αbδ + δ(β − b(2α+ bδ)) cosh

(
2t
√
α2 + βδ

))
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