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Abstract—Due to the exponential growth of computer tech-
nologies, video games are becoming more complex each passing
year; with tasks and challenges that, very often, defy the player’s
cognitive abilities. Handling limitations of the Working Memory
and proper Cognitive Load management is crucial when dealing
with problem-solving tasks; however, these concepts appear to be
highly undervalued, or even unknown, in the gaming industry.

To address this problem and help game designers to better
understand the intrinsic complexity of their games, this work
applies the attention-shifting principles of the Time-Based Re-
source Sharing (TBRS) Memory Model in the game Way Out
(a game we have developed from scratch). We formulated the
idea of Attention-Grabbing Events and tried to incorporate them
into the game, aiming to create a tool-set that estimates the
player’s Cognitive Load while playing a video game. To validate
our hypothesis, we compared the data collected from the game
with the questionnaire NASA TLX – a subjective method that
assesses the mental workload experienced during a task.

Although we were unable to directly estimate the player’s
Cognitive Load, we believe that this work was a step forward
towards achieving that goal. The amount of Attention-Grabbing
Events and gameplay time, when compared with the NASA TLX,
seem to be a good indicator of Cognitive Load levels. However,
the TBRS Cognitive Load formula, in its current form, does not
appear to be reliable when directly applied in a general gameplay
scenario – at least following the approach we did.

Index Terms—Cognitive Load (CL), Working Memory (WM),
Time-Based Resource Sharing (TBRS), Video Game, Game
Development, NASA TLX.

I. INTRODUCTION

Due to the exponential growth of computer technologies in
the last decades, video games are becoming more complex and
diversified than ever. From deep and intriguing storytelling to
complex game mechanics, it is unquestionable that the video
game industry is doing a proper job in keeping up with this
growth and creating games that are becoming more realistic
and immersive each passing year.

Back in the 70s and 80s, when video gaming was emerging
and becoming mainstream, games were much simpler and
had straightforward mechanics that a joystick and a few
set of buttons could handle. Space Invaders, for example, a
fixed shooter created by Tomohiro Nishikado in 1978 that
is considered one of the most influential video games of all
time, consists of controlling a space cannon horizontally while
firing descending alien forces. The enemy spaceships approach
the player more rapidly as time passes, making the game
harder the longer it’s played. The mechanics, however, are
quite simple and easy to memorize.

Nowadays the story has diverged immensely – each year,
thousands of new video games are released with complex
mechanics that take much longer to master and require entire
keyboards to be played with. An example of this can be
observed in the game Dark Souls, an action role-playing game
that was developed by FromSoftware and released in 2011. In
this game, the player assumes the role of an undead character
that explores the virtual kingdom of Lordran to seek the fate
of his kind. A game well known for its hard boss fights
that, in order to be beaten, forces the player to learn from
past mistakes by memorizing the enemies movements and
weaknesses. Demanding mechanics like these require a great
amount of attention and cognitive resources and, if not dealt
with accordingly, can easily lead to negative emotions such as
frustration or anger.

Handling limitations of the Working Memory and proper
Cognitive Load management is crucial when dealing with
problem solving tasks and is proven to positively influence
effective performance and learning [1]. Since the Working
Memory has a limited capacity and is believed to only retain
information for a small period of time of approximately twenty
seconds, it is easily overloaded if more than a few chunks of
information need to be simultaneously processed.

These limitations and concepts, which are highly important
in neurological and physiological matters, appear to be quite
undervalued and ignored in the gaming industry. If Cognitive
Load and the overall correct management of Working Mem-
ory’s resources are taken into consideration by game designers
in early phases of game development, highly beneficial results
could be obtained. By estimating the amount of Cognitive
Load that a players’ Working Memory is using while playing
a video game, game designers would have, in addition to play
testing feedback, an extra source of reliable information that
would be an indicator of their game levels complexity. Hence,
excessively demanding tasks could be detected and adjusted
accordingly earlier, facilitating and cutting costs in the play
testing phase and allowing the developers to focus on other
aspects of the game.

Assuming it is possible to estimate the duration of time in
which the players’ attention was fully grabbed during a game,
it is theoretically possible to apply the principles of a Memory
Model to assess the players’ Cognitive Load. Therefore, we
hypothesise that if the attention-shifting principles of the
Time-Based Resource Sharing (TBRS) Memory Model are
incorporated in games, and if the model’s formula to assess



Cognitive Load is correctly used, it would be possible to
estimate the amount of cognitive resources used by a player’s
Working Memory, while playing a video game.

This work aims to confirm whether or not our hypothesis
is valid, by integrating this model within a game that we
have developed from scratch. We will compare the collected
game data with a subjective method that also estimates a
users’ Cognitive Load during an activity – the NASA TLX
questionnaire.

II. BACKGROUND

The distinction between the nowadays called “Short-Term
Memory” (STM) and “Long-Term Memory” (LTM) was
firstly, somewhat, controversial. It was argued that such di-
vision was useless and would unnecessarily complicate the
concept of memory. However, evidence that such division
would, in fact, make sense, started to emerge around the 60s.
A strong argument in favor of a dichotomy in the memory
system was noticed by Milner, while studying patients with
hippocampal lesions [2], who appeared to became incapable
of either store or retrieve information from the LTM but could
still process and register immediate input for short periods
of time. This inspired R. C. Atkinson and R. M. Shiffrin
to deepen the studies of the memory and the dichotomy of
the LTM and this new “Short-Term Store”, leading them to
conceive the first Memory Model [3].

The Working Memory (WM), initially named Short-Term
Store and, nowadays, often called Short-Term Memory (STM),
is now commonly known as a cognitive system crucial for
reasoning and decision-making that can hold information for
a short period of time. Additionally, contrary to the LTM, the
WM has a limited capacity and a certain amount of resources
available to properly work.

In the context of our work, Cognitive Load (CL) refers to the
amount of resources used by our WM to properly function (i.e.
to solve problems, learn novel information, react to stimulus,
etc.). These resources are limited and need to be properly
managed to avoid cognitive overloading [4].

A. Memory Models

While studying and analysing different Memory Models
proposed over the years (e.g. Multi-Store Memory Model [3],
Working Memory Model (1974 [5] and 2000 [6]), to better
understand the core components that allow our Working Mem-
ory to properly function, we came across one that particularly
grabbed our attention – the Time-Based Resource Sharing
(TBRS) Memory Model, initially proposed by Barrouillet and
Camos in 2004 [7].

This Memory Model explains how the WM functions, based
on four main assumptions:
The first, is that both the processing and maintenance of
information requires and share the same resource, which is
attention.
The second assumption is that as soon as attention is switched
away, the activation of the memory traces suffers from a time-
related decay. Additionally, the refreshment of these decaying

Fig. 1: Time Based Resource Sharing - “Reading digit span task” exercise.

memories traces, requires their retrieval from memory by
attentional focusing.
The third assumption is that any processing that captures
attention, disrupts maintenance by preventing the refreshment
of memory traces; therefore, WM functioning is limited by a
central bottleneck.
Which leads to the fourth and final assumption: since attention
can only be devoted to one process at the time, maintenance
and processing cannot occur concurrently, meaning that, to
maintain information in WM (to avoid forgetting) it is re-
quired that the individual regularly switches attention from
processing. This means that the central bottleneck allows only
one central process at time, making the sharing of attention
time-based.

To validate their hypothesis, they came up with a simple
task where participants were asked to maintain letters in
memory while simultaneously performing a secondary task
that involved reading a series of digits that were presented,
one at the time, on a screen (Fig. 1).

The idea is that if time pressure is applied to a task as
simple as this, it can easily become much more demanding.
Thus if the digits from the secondary task are presented at
a faster pace, maintaining the letters in WM becomes much
harder since there is less time to reactivate memory traces –
leading to a higher CL. However, if the digits are presented at
a slow or comfortable pace, there is time to reactivate memory
traces – leading to a low or moderate CL.

In the case of this model, Cognitive Load refers to the total
amount of time during which attention was fully captured and
can be formulated as:

CL =

∑N
i=1 ai
T

(1)

ai reflects the latency in which the ith event fully
captured attention.
T refers to the total duration of the task or activity.

If the total number of processes N is known, the formula
can be simplified by using average processing times:

CL =
aN

T
(2)

To illustrate the concept of CL, i.e. the balance between the
competing actions that are processing and maintenance, and



grabbing the example from Fig. 1; suppose that a participant
has to say 10 letters out loud, each takes 200 milliseconds to
be said and the time available is 4 seconds. The resulting CL
of this example would be 10 x 200 / 4000 or 0.5. However, if
the time available doubled, the resulting CL would be cut in
half (10 x 200 / 8000 or 0.25).

B. Methods to assess Cognitive Load

When it comes to measuring CL, the main challenge is
knowing if the methods used are valid, reliable and practical.
Conventionally, there are two main approaches to assess the
WM’s capacity: Objective and Subjective [8].

The Objective approach mainly relies on behavioral data
collected from the users while performing a task. Whilst
commonly more reliable, this approach may affect a users’
focus from the task itself, since it often requires the usage
external and intrusive machinery. Direct objective measures
include examples of dual-task methodologies, eye-tracking or
task-invoked pupillary response and brain-activity measures.

The Subjective approach is probably the most common
and, as the name implies, requires the subject to do some
sort of self-report after completing a task. Usually these
subjective self-reports require the subject to rate the perceived
mental effort or task difficulty in a numerical scale and there
are several different types of reports focusing on different
problems. One of the great advantages of using self-reports
is its simplicity, since it solely requires the appropriate set
of questions for the activity that’s being implemented on.
Additionally, being subjective means that there is no need of
using external equipment collecting behavioral data during an
activity, making this a non-intrusive approach.

There are two most commonly used techniques for subjec-
tively assessing mental workload [9], the NASA TLX and the
SWAT. They both divide the workload in multiple subscales
and are proven to provide quite similar results [9]. However,
for the context of our work, since it assesses a wider variety
of mental workload components involved in the experience,
we ended up opting to use the NASA TLX technique.

C. NASA TLX

The NASA TLX (NASA Task Load Index), developed
in 1981 by Sandra G. Hart of the NASA Ames Research
Center [10] is one of the most known subjective techniques
to assess CL. It has been used in various domains such as
healthcare, aviation, and others of similar technical complex-
ity. It is a subjective workload assessment technique that
relies on a multidimensional construct to derive an overall
workload score based on a weighted average of ratings on
six subscales: Frustration, Effort, Temporal Demand, Physical
Demand, Mental Demand and Performance [11]. These sub-
scales of the workload are based on the assumption that some
combination of these dimensions are likely to represent the
“workload” experienced by most people performing most tasks
[12]. Three of the subscales focus on the demands imposed on
the subject (mental, temporal and physical demand), whereas

the other three explore the interaction of the subject with the
task (effort, performance and frustration levels) .

NASA TLX consists of two parts: weights and ratings.
Generally, the first requirement is for the participant to evaluate
the contribution of each subscale – its weight – of the workload
during the task (the weights themselves also provide diagnostic
information as the nature of the workload imposed by the
task).

To do so, there are 15 possible pairwise comparisons of the
six subscales of workload. Each pair (for instance, Temporal
Demand vs Mental Demand) is presented at the time and the
subject has to choose the member of each pair that contributed
more to the workload of the task performed (in our case, the
game). At the end of every pairwise comparison, we count the
number of times that each subscale was selected instead of
the others. It can range from 0 (never selected in a pairwise
comparison) to 5 (selected in every pairwise comparison) –
this is the resulting weight assigned for that specific subscale.

The second requirement is to obtain individual numerical
ratings for each subscale – which reflect the magnitude of
that factor in the task. Thus, the respondents are asked to rate
each subscale individually from 0 to 10 or 0 to 100 (least to
most taxing).

The adjusted ratings for each of the six subscales of the
workload is computed by multiplying their respective weight
with their raw rating (3). For example, if the weight and rating
of Temporal Demand was 4 and 50 respectively, its Adjusted
Rating would be 4 x 50 = 200.

AdjustedRating = Weight ∗RawRating (3)

Using the NASA TLX, the overall workload of a task, i.e.
its resulting CL, is the result of the sum of the Adjusted
Ratings divided by 15 (which is the total amount of pairwise
comparisons) (4).

WorkloadNASATLX =

∑
AdjustedRatings

15
(4)

III. IMPLEMENTATION

To test our hypothesis – whether or not is possible to
estimate the player’s Cognitive Load based on the attention-
shifting principles of the TBRS – we decided to create a
game from scratch; since it didn’t impose restrictions in our
creativity and gave us the necessary flexibility to create a
satisfying game environment in which it made sense to fully
test our hypothesis.

The chosen name for the game was – Way Out. The player
plays as a golem who just woke up in a mysterious laboratory
and is trying to figure out the purpose of his existence. To do
so, he has to solve puzzles and challenges in a dungeon-like
environment to both progress through the map and find clues
about himself.

The hidden plot is that a human scientist has become the
first to achieve full conscience transmutation. The puzzles the
golem has to solve were created by the golem himself in
his human form, and are a simple way to determine if the



scientist’s cognitive and reasoning skills have remained intact
in his new body.

However, due to the nature of this work, the small demo
that we have created and tested mainly explores the puzzles
and challenges of the game and not the plot itself.

With the goal of analysing possible CL variations, a total
of four versions of the game were developed. Each version’s
puzzles had particular tweaks and changes to analyse this
eventual discrepancy. These key particularities of the game
will be explored in-depth in the following subsections.

A. Attention-Grabbing Events

According to TBRS memory model, CL is the result of the
total attention time of a task divided by the total time of that
task (Formula 1).

With the goal of adapting the TBRS attention-shifting prin-
ciples and its CL formula to game development, we decided
the following: even though they are most likely very distinct
from game to game, through any game the player has to
execute certain actions or events to progress, which usually
take a certain chunk of time to be performed. Whenever one
of these events occurs, its duration (i.e. the time since the event
begins until it ends) could be translated into a period of time in
which the player’s attention was supposedly shifted towards
processing information. We call these – Attention-Grabbing
Events (AGEs).

Having the total gameplay and AGEs duration, it is theoret-
ically possible to recreate the TBRS CL calculation. However,
since all games are different and we are trying to generalize
our model to cover any game type, we highly emphasize that
the game designers are the ones who should ponder and
choose the AGEs, taking into account the type of game being
developed.

This being said, we will now explain which events were
considered attention-grabbers in our game:

• Object Interactions: The time spent interacting with
interactive objects (e.g. Fig. 2).

Fig. 2: Way Out: Object Interactions. Mouse outside (left)
/ inside (right) an interactive object.

• Interface Interactions: The time spent with the In-
ventory, Instructions, Notebook and Sphere placeholder
interface opened (e.g. Fig. 3).

• Notifications: Time in which notifications were shown
on screen (e.g. Fig. 4).

However, the overlap of events would interfere with the
formula, since it would mean that the player’s attention would

Fig. 3: Way Out: Interface Example (Inventory).

Fig. 4: Way Out: Notification Example.

be shifted towards processing multiple events at once. An
example of this happening can also be observed in Fig.
4, where the player is interacting with an object whilst a
notification is simultaneously being displayed. Pressing the
button triggered the notification, but the player kept hovering
the interactive object.

Therefore, in order to mitigate these temporal overlays, we
found useful to create an hierarchy for our game’s AGEs (Fig.
5).

Fig. 5: Attention-Grabbing Events (AGEs) hierarchy.

We intentionally designed the interfaces to occupy a large
chunk of the screen, so we assume that whenever the player is
actively interacting with an UI element (e.g. the is Inventory
open), object interactions and notifications become disabled,
mitigating a possible overlap of attention.

The same principle applies to object interactions – if the
player starts interacting with an object while a notification is
being displayed on the screen, it is assumed that the player’s
attention is being shifted towards the interaction, not taking
into consideration notification’s display time in the equation.

B. Game Versions

According to the TBRS memory model, a task is more
cognitive demanding when it requires a larger amount of
attention-shifting. In the case of our game, as mentioned in



the previous section (III-A), we consider object interactions,
notification and interface display times as our main AGEs.
Therefore, theoretically, for the same gameplay duration, the
greater the number of AGEs, the greater the value of the CL
will be.

That being said, and since the intrinsic difficulty of a task is
proven to be correlated with higher levels of CL [9], we started
by creating two versions of the game – “Easy” and “Hard” –
with the goal of analysing if the data collected from the Easy
versions would indicate lower levels of CL, when compared
with the Hard ones.

Both versions contain the exact same type of puzzles,
challenges and possible interactions. However, the puzzles
from the Easy version were intentionally twisted to require a
lesser number of interactions for its resolutions, which would
overall result in a less amount of AGEs.

Furthermore, we will also wanted to validate our model
focusing on time. Once again, TBRS defends that the CL is
the result of the attention time dedicated to a task divided
by the time of that task [7]. However if the player is, for
example, trying to solve a problem and has to move through
the map without interacting with any objects, the gameplay
time is counting but the attention time is not which, according
to the formula (1), would result in a lower CL. And this is
precisely the point that we want to verify. If, for the same
puzzles, in order to solve them the player is forced to move
around the map, would this increase, maintain or decrease the
player’s CL?

TABLE I: Game Versions.
Normal Movement Additional Movement

Easy A1 B1
Hard A2 B2

Thus, as seen in Table I, we ended up creating four versions
of the game.

Two that solely explore the contrast between the intrinsic
difficulty of the game – A1 and A2 – where all the items
required for the resolution of the puzzles are all relatively close
to each other, not forcing the player to move through the map
in order to solve them. Note that “Normal Movement” means
there is no extra movement, i.e. all the items required for the
resolution of the puzzle are relatively close to each other.

The other two – B1 and B2 – beyond exploring the intrinsic
difficulty of the puzzles, also explore the repercussions that
the additional movement induced on the player has on the CL
results. More specifically, the effects that additional gameplay
time has on the player’s CL. In these versions, the items
required for the resolution of the puzzles are scattered around
the map, forcing the player to move more through the map
in order to solve them – hence the “Additional Movement” in
Table I. This will theoretically increase the overall gameplay
time and, consequently, using the TBRS CL formula, decrease
the CL.

C. Game Puzzles

The puzzles implemented1 were designed to verify the
effects that the variations in AGEs and movement had on the
players’ CL. For that purpose, we have developed two main
puzzles that slightly vary between the four versions of our
game.

To test the discrepancies between the players’ attention
through the versions (A1 vs A2 and B1 vs B2), both puzzles
require more or less AGEs for their resolution. To test the
difference in the players movement through the versions (A1
vs B1 and A2 vs B2), i.e. more or less gameplay time, we
changed the items disposition between the versions of the
puzzles.

For instance, the first puzzle of our game – The Lever
Puzzle – requires the player to move 6 levers to unlock a door.
Initially, of the 6 levers, only 3 are correctly positioned and
ready to move. For all four versions of the game, the player
has to first find the 3 missing levers and place them on the
machines that still require one.

The difference between the Easy and Hard versions of the
game are the effects that the movement of each lever has on
the other machines.

In the Easy versions (A1 and B1), each lever only affects
its machine. For instance, Lever #3 only affects the state of
Machine #3, turning it on (lever up) or off (lever down).
Therefore, the easy versions’ solution is fairly simple – the
player solely has to find and place the missing levers correctly
and turn on the machines (by moving each lever up).

On the other hand, in the Hard versions of the game, each
lever movement can affect the state of multiple machines. For
example, Lever 5 affects the state of Machines #4, #5 and #6,
by either turning them on or off depending on their current
state. This leads to a theoretical higher number of interactions
– and AGEs – since the solution is not as straight forward as
the opposite versions.

Fig. 6: Way Out: Lever Puzzle – Versions A (left) and B (right).

When it comes to the players’ movement, the A and B
versions of the game differ from the position of the machines
– represented as white dots in Fig. 6.

In both the A versions (Fig. 6 left), all the machines are
close to each other, allowing the player to clearly see the effect
that each lever interaction has on the puzzle. While in the B

1A full walk-through of all the game’s puzzles and versions is
available at: https://www.youtube.com/watch?v=95j85Add1Rg&ab channel=
AlbertoRamos

https://www.youtube.com/watch?v=95j85Add1Rg&ab_channel=AlbertoRamos
https://www.youtube.com/watch?v=95j85Add1Rg&ab_channel=AlbertoRamos


versions (Fig. 6 right), the machines are scattered around two
rooms. Hence, to analyse the effect that each lever interaction
has on the puzzle, the player has to move around.

D. Data Gathering and Cognitive Load calculation

To follow the principles of the TBRS memory model and
in order to use its formula [7], we need to collect relevant
gameplay data that estimates the players’ attention time during
the game. Therefore and, as mentioned on a previous section
(Section III-A), beyond the Total Gameplay Time, we will
mainly collect data related with the duration of the multiple
AGEs that occur throughout the game (listed in Section III-A).

The total sum of AGEs will return the Total Attention Time
(5) during the game. The Total Attention Time will after
be used as the dividend in the adapted TBRS CL formula;
whereas the Total Gameplay Time will be the divisor 6.

TotalAttentionT ime =

N∑
i=1

AGE (5)

CL =
TotalAttentionT ime

TotalGameplayT ime
(6)

Additionally, in order to support any possible unexpected
values, we also collected the number of times each type
of AGE happened (e.g. number of times the Inventory was
opened).

When the player completes the game, all the data listed
above will be stored on a online Google Sheets document for
further analysis.

IV. PROCEDURE AND RESULTS

Fig. 7: Procedure to acquire data.

In short, the structure of the followed procedure is summa-
rized in Fig. 7.

With the goal of seeking basic information about the
respondents and understand where they fit in the general
population, the first part of the procedure consists of asking
the participants the following demographic questions: “Age”,
“Gender”, “Mother Tongue”, “How often do you play video
games?”, “Do you enjoy point and click puzzle games?”.

Once collected, this data allows us, if needed, to divide the
population of respondents in various groups, which will be
useful in the overall analysis.

In the midst of the questionnaire, after answering the
demographic questions, the participants are asked to play the

game Way Out, which is the second part of the procedure
– extensively explained in the previous section (Section III).
After playing and finalising the game, a random code name
is generated and provided to the player, so it can be pasted
the questionnaire, linking the game data with the questionnaire
answers.

The third and final part of the procedure consists of asking
the participants questions related with their workload during
the game, in order to validate our hypothesis. To do so, we
need to compare the game data that may affect the CL with an
existing valid and trustworthy method that accurately measures
the workload of a task.

In a general sense we are examining the “workload” ex-
perienced by the player during the gameplay. Cognitive Load
and Mental Workload are often used as synonyms and the
relationship between workload factors and CL types was
analysed in depth by Galy, Cariou and Mélan (2011) [9].

Therefore, after playing the game, the participants were
asked to answer a few questions related with their overall
workload during the game.

For that purpose, we will use the NASA TLX questionnaire
[11] which was explained in detail in a previous section
(Section II).

A. Pilot

Before broadening the experience to a larger sample of
participants, we opted to first test it with a small sample –
aiming to correct eventual game bugs and to better understand
whether the questionnaire was adequate. During this phase,
we specifically asked the participants to be extra critical and
transparent, since our goal was precisely to adjust any eventual
flaws with the experience.

Apart from a few game bugs pointed out, a consistent
feedback received during this phase was that the pairwise
comparisons, at the end of the questionnaire, were somewhat
confusing. Some even went as far as saying that the compar-
isons looked all very similar and that “in the end, they selected
almost randomly”. Discarding the pairwise comparisons is
another way of using the questionnaire and often called – RAW
TLX.

However, since the RAW TLX is a “trimmed” version of
the NASA TLX without the pairwise comparisons, we ended
up providing the full version of the questionnaire in the actual
experiment; with the premise that the first thing to analyse was
the possible discrepancies between the two versions (NASA
TLX versus RAW TLX) – and whether it was justified to
use the shorter version of the questionnaire instead, when
analysing and comparing the collected data.

B. Sample

In total, we had a convenience sample of 54 participants
responding to the questionnaire and, as linearly as possible,
playing a version of the game. It is important to emphasise
that all tests were done remotely. Hence, the experiment was
advertised in multiple social platforms – namely Discord,
Facebook and Instagram.



To analyse the obtained results, we used the software
SPSS Statistics (V26) from IBM; where all the NASA TLX
calculations were made and the charts, graphs and tables
presented in this section were generated.

From the 54 participants, 45 (83.33%) identified themselves
as males whilst 9 (16.67%) identified as females. The majority
of our respondents (90.74%) speak Portuguese as their native
language while the other 10% speak others (such as English,
Norwegian, German and Swedish).

When asked how frequently they play video games, half
(27 – exactly 50%) responded that they “made some time in
their schedule to play video games”, 17 respondents answered
that they “play occasionally” and 10 “do not play video games
often”.

Lastly, when asked about how familiar they were with this
game genre, 29 (53.70%) of our respondents answered that
they “enjoyed and have played/watched others play multiple
times”, 20 (37.04%) were “not familiar or did not have a
formed opinion” and only 5 (9.26%) “did not appreciate these
types of games”.

C. The questionnaire of choice: NASA TLX

To clarify a question brought up during the pilot phase
(Section IV-A), we started our analysis by comparing the ques-
tionnaire results with and without the pairwise comparisons,
i.e. by comparing the NASA TLX with the RAW TLX – to
choose which version of the questionnaire would be more
suitable to validate our hypothesis.

We found that there was a high positive correlation between
the CL reported by the two versions of the questionnaire, with
a nearly perfect Pearson correlation of 0.945 (as seen in Fig.
8).

Fig. 8: Bivariate Correlation (Pearson) between the CL from the NASA TLX
and RAW TLX.

Since it is typically more common to use the full version
of the questionnaire, and due the high positive correlation
observed with its trimmed version, we opted to solely validate
the gameplay data with the full version of the questionnaire –
the NASA TLX.

D. Hyphothesis

According to our model, we hypothesise that the CL values
will be higher in the Hard versions – A2 and B2 – where,
theoretically, more AGEs occur. Additionally, we also want to
observe the repercussions in CL when, for the same type of
puzzles, the items required for their resolution are scattered
around the map (A1 and A2 versus B1 and B2), forcing the
player to move more and, consequently, increasing the overall

gameplay time. More specifically, we were interested in find-
ing out whether or not the hypothetical increase of gameplay
time would affect the CL. Would it increase it, because the
players were more consciously focused in shifting attention
towards maintenance – to avoid forgetting the relevant and
required items? Or would it decrease because the players have
more time to process and maintain the information required
for the resolution of the puzzles in WM?

To clarify our hypothesis, we started by analysing gameplay
time (Fig. 9) where, interestingly enough, we noticed that both
the A versions took, in average, slightly longer to complete
than the B versions. We ran a Kruskal-Wallis test that showed
that there is at least one pair of significantly different groups
(H(3) = 18.74 ; p ≤ .001). The pairwise comparisons with
a Bonferroni correction showed that the harder versions (A2
and B2) took significantly longer to complete than the easier
versions (p ≤ .05) – comparing A1 with A2 and B1 with B2.

Fig. 9: Simple Bar Mean of Gameplay Time by the game versions; Error
Bars refer to the Standard Error of the Mean (SEM).

Due to the game versions implementation, these results were
unexpected – since we tried to implement the game in a
way that the B versions would result, in average, in a higher
gameplay time than the A versions. Therefore, we analysed
two main things: The first was whether or not the A versions
had a higher number of participants that did “not play often”
than the B versions. As seen in Fig. 10, we found that to be
indeed true.

Fig. 10: Table showing the distribution of the “Gameplay Frequency” groups
across all four versions of the game.

The second, was to analyse if there was, in fact, a significant
difference in gameplay time between the different “game-
play frequency” groups (i.e. “Does not play often”, “Plays
occasionally”, “Makes time to play”). We ran a Kruskal-
Wallis test that confirmed that there was, indeed, a significant
difference; H(2) =10.320, p = .006. The pairwise comparisons
with a Bonferroni correction showed that there is a significant
difference in gameplay time between the groups “Occasionaly



- Not Often” with p = .004, and “Makes time - Not Often”
with p = .003.

To confirm whether these results were due to the groups
distribution, we decided to analyse them without the 10
respondents that answered “Not Often” – considering them,
in this specific analysis (Fig. 11), as outliers.

Fig. 11: Simple Bar Mean of Gameplay Time by the game versions – without
the group “Not Often”; Error Bars refer to the Standard Error of the Mean
(SEM).

As seen in Fig. 11, discarding the respondents that answered
“Not Often”, the average gameplay time of the A versions
decreased much more when compared with the B versions
– A1 went from 562.20s to 507.86s and A2 from 1120.18s
to 911.31s, while version B1 went from 529.89s to 520.26s
and B2 from 885.68s to 828.00s. However, although closer,
the average gameplay time between the A and B version was
still very similar, which was not intended when designing the
game.

This led us to conclude that our manipulation of the “Ad-
ditional Movement” (B) versions was unsuccessful. Meaning
that we were unable to answer one of the questions we initially
had: “For two puzzles with a similar intrinsic difficulty, how
would the variations in gameplay time affect the player’s
CL?”.

Following the gameplay time, we analysed the other factor
that, according to the TBRS, also influences the CL of a task
– the attention time. Again, very briefly, for each player,
the attention time results from the sum of the duration of
every AGE during the gameplay. We ran a Kruskal-Wallis
test to analyse the distribution of attention time across the
different game versions (H(3) = 23.12; p ≤ .001). The pairwise
comparisons with a Bonferroni correction showed the same
pattern found in gameplay time: A1 demanded significantly
less attention time than A2 (p = .002) and B1, less attention
than B2 (p = .011). As expected, the versions of the game
with a higher difficulty (A2 and B2) had also, on average, a
higher attention time (Fig. 12).

Fig. 12: Simple Bar Mean of Attention Time by the game versions; Error
Bars refer to the Standard Error of the Mean (SEM).

Onto the actual CL values reported from the game (Fig.
13), we can conclude they were very similar in every version
(around 32%). We ran a Kruskal-Wallis test to analyse the
distribution of the calculated CL (using the TBRS formula)
across the different game versions (H(3) = .842; p = .839),
and found that there were no statistically significant differences
between the medians. These results, however, do not reflect the
differences noticed in terms of gameplay and attention time;
meaning that, perhaps, the adapted TBRS CL formula, in its
current form, is not sensitive enough to detect the variations
across the versions.

Fig. 13: Simple Bar Mean of the players CL percentages by the game versions
(using the TBRS CL formula); Error Bars refer to the Standard Error of the
Mean (SEM).

Observing both the gameplay time (Fig. 9) and attention
time (Fig. 12) bar charts, a noticeable pattern can be seen – a
higher gameplay time appears to result in a higher average of
attention time. To clarify this, we made a Pearson correlation
between these two variables (Fig. 14) and we ended up
observing a high positive correlation of 0.860. This means
that, whenever the gameplay time increases, there is a high
chance that the attention time will also follow that path.

Fig. 14: Bivariate Correlation (Pearson) between the gameplay time and
attention time.



If both the dividend and divisor have a high positive
correlation (i.e. in the equation, when one increases/decreases
the other also follows that path) – the resulting CL will always
be similar regardless of the times spent in the game – which
justifies the results obtained in Fig. 13. A possible way to
mitigate this problem would be by significantly restricting
the gameplay time and, for instance, by asking the player
to complete as many tasks as possible in the time limit.
However, since our goal was to generalize our hypothesis to
any game type, we opted not to add a time restriction in our
implementation.

Onto the NASA TLX scores, there is a noticeable CL
variation across the game versions (Fig. 15), leading us to
observe two main things:

• According to the NASA TLX, as predicted, the players
that played the more challenging versions of the game
(A2 and B2), reported higher values of CL during the
game (comparing A1 and B1 with A2 and B2).

• The “Additional Movement” (B) versions appear to have
induced a slightly higher percentage of CL when com-
pared with their respective “Normal Movement” (A)
versions. This inclines us to assume that the distance
between crucial items for the game appears to, in some
way, affect the CL (comparing A1 with B1 and A2 with
B2). Nevertheless, as discussed previously, the “Addi-
tional Movement” (B) versions were not successfully
manipulated – preventing us from concluding anything
concrete related to this topic.

Fig. 15: Simple Bar Mean of the NASA TLX’s CL by the game versions;
Error Bars refer to the Standard Error of the Mean (SEM).

Comparing the NASA TLX scores with the CL obtained
from the game, we notice that there is no correlation (Fig. 16
highlighted with red). This can be justified by the same reason
why the average CL reported from the game rounded the 32%
for every version (Fig. 13).

However, we also wanted to observe if there was a correla-
tion between the NASA TLX scores and both the individual
dimensions that, according to the TBRS memory model, affect
the CL – gameplay time and attention time. Even though not
perfect, as seen in Fig. 16 (highlighted in yellow), there is a
positive Pearson correlation between the NASA TLX scores
with both the game times. This makes sense because the
same pattern has been observed across the previous results:
The Hard versions (A2 and B2) resulted in significant longer

game times (both total gameplay and attention) and higher
NASA TLX scores; while the opposite was observed in the
Easy versions (A1 and B2).

Fig. 16: Bivariate Correlation (Pearson) between the gameplay time, attention
time, CL from the game and CL from the NASA TLX.

V. SUMMARY OF WORK

It is unquestionable that the video game industry is doing
a proper job in keeping up with the exponential technological
growth. Each passing year, thousands of games are launched
with complex mechanics and challenges that, if not dealt with
properly, can easily defy the limitations of the players WM.
This work hypothesised that it was possible to assess the
players CL based on their gameplay behaviours – and figuring
out a way to accomplish it was our motivation.

The approach we took consisted of applying the attention-
shifting principles of the TBRS Memory Model in the game
Way Out (a game we have developed from scratch). Based on
the model’s principles, we formulated the idea of Attention-
Grabbing Events (AGE) – which are periods of time during the
gameplay in which the player’s attention is most likely being
grabbed. In Way Out, we considered the following events
as attention-grabbers: object interactions, actively interacting
with the game’s UIs and display notification times. Having the
total gameplay time and player’s attention time, it would be
possible to apply a formula similar with the one from TBRS
to estimate the player’s CL.

We implemented four versions of the game to manipulate
two variables, each with two levels (a 2x2 factorial design): we
manipulated the number of AGEs to analyse the repercussions
that more or less AGEs had on the player’s CL (versions A1
and A2); and we also manipulated how much players had to
move around the map, aiming to see the effects that a longer
gameplay time had on their CL (versions B1 and B2).

To validate our results, we opted to use the NASA TLX
Questionnaire – a subjective approach that assesses the mental
workload experienced during a task. The experiment was
advertised across multiple social media platforms, and we
ended up with a convenience sample of 54 participants. It
consisted of answering a few demographic questions; followed
by playing the game Way Out; and ended with the NASA TLX
questionnaire.

The main variables we wanted to analyse across all game
versions were: the total gameplay and attention times, the
CL experienced by the players during the game (using the
TBRS formula) and the resulting CL from NASA TLX (the



players NASA TLX scores). While analysing the gameplay
data – namely the gameplay time – we ended up with some
unexpected results. The “Additional Movement” (B) versions
took, in average, less time to complete than the “Normal
Movement” (A) versions. Leading us to conclude that our
manipulation of the B version was unsuccessful; and pre-
venting us from answering a question we initially had: “For
two puzzles with a similar intrinsic difficulty, how would the
variations in gameplay time affect the player’s CL?”

On the contrary, the game data indicated that our manipula-
tion of the intrinsic difficulty of the puzzles was successful –
the players that played the harder versions (A2 and B2) spent
more time interacting with objects and playing the game, when
compared with the players that played the easier versions (A1
and B1).

Using the TBRS CL formula to calculate the CL expe-
rienced by the players during the game, we noticed that it
was nearly the same across all the game versions (around
32%). However, we also noticed that there was a high positive
correlation between the gameplay and attention times; and,
since the formula we used to calculate the CL results from the
division of these two variables – the similar percentages of CL
can be justified by this positive correlation. Nevertheless, we
concluded that the TBRS CL formula, at least in its current
form, is not sensitive enough to directly measure the player’s
CL in a gameplay scenario.

Finally, we analysed the NASA TLX scores, aiming to
compare them with the game data. We noticed that the players
that played the harder versions (A2 and B2) scored higher
percentages of CL when compared with the ones that played
the easier versions (A1 and B1). This led us to conclude that,
although the TBRS formula does not appear to be sensitive
enough to directly assess the player’s CL, there was a positive
correlation between the game times (both total gameplay and
attention time) and the NASA TLX scores, meaning that –
more AGEs and gameplay time resulted in higher scores of
CL using the NASA TLX.

This was the first study that tried to assess the player’s
CL, in an automatic non-intrusive way, while playing a video
game. Even though we were unable to directly estimate the
player’s CL, we believe that our work was a step forward
towards achieving that goal. Based on the TBRS attention-
shifting principles, the amount of AGEs and gameplay time,
when compared with the NASA TLX scores, seem to be a
good indicator of CL levels; however, the TBRS CL formula,
in its current form, does not appear to be reliable when directly
applied in a general gameplay scenario – at least following the
approach we did.

VI. LIMITATIONS AND FUTURE WORK

In order to strengthen our conclusion, a larger sample of
players should be gathered – ideally with the same amount of
participants for each different version and with similar gaming
experience.

Directly following our work, it would be interesting to
verify whether intrinsic time pressure in a similar game, using

the TBRS adapted CL formula, would return more reliable
results. In other words, would the direct division of the total
attention time by the total restricted gameplay time, return
similar CL values to the ones reported in a valid questionnaire
(for instance, NASA TLX).

In addition, it would also be interesting to answer one of
the questions that we initially had, but were unable to an-
swer due to the unsuccessful manipulation of the “Additional
Movement” (B) versions: How would the items disposition
affect the player’s CL? More specifically, how would the CL
vary if the player had to memorize something crucial for the
gameplay, but no AGEs happen for an extended period of
time? For instance, the player retains a code sequence in WM
that is written in a room, but that information is only useful
after the player follows a long trail.

Even though our initial goal was to support game designers
(especially during the testing phase) – by providing them with
a tool-set that measured the CL percentage experience by the
players, while playing a video game – this work could be
expanded in a broader set of fields. For instance, when de-
signing and implementing autonomous agents; where human-
like behaviours, based on the available cognitive resources,
could be improved by using the principles of the TBRS
and attention-shifting in an approach similar to ours. In this
scenario, game designers would also be the ones defining the
AGEs, taking in consideration the environment in which the
agents were situated.
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