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Resumo

A plasmónica de grafeno é um tema excitante de investigação hoje em dia, não apenas devido ao seu

potencial para produzir avanços tecnológicos, mas também por servir de teste a nova fı́sica. Assim, de

modo a considerar a natureza quântica dos portadores de carga, contruı́mos um modelo baseado no for-

malismo cinético, partindo de uma equação de Schrödinger para o campo médio de eletrões e buracos.

A equação de movimento para os componentes da matriz de Wigner é derivada de primeiros princı́pios,

levando-nos a um conjunto fechado de equações conhecido como modelo de Wigner-Poisson. Para

grandes comprimentos de onda, recuperamos a relação de dispersão esperada para os plasmões

em grafeno. Depois, as equações da hidrodinâmica são também obtidas, tomando os momentos da

equação cinética, e cujos resultados convergem, no limite clássico, para o esperado para um fluido

de Dirac. As equações obtidas são comparadas com o caso parabólico, com o termo cinético usual

ξ(p) = p2/2m, e as principais diferenças são sublinhadas. Além disso, damos expressões analı́ticas

para a massa efetiva dos campos hidrodinâmicos, resultante da comparação entre velocidade e mo-

mento de fluido. Por fim, voltamos à equação cinética para descrever uma instabilidade num sistema

de duas placas de grafeno separadas. Encontramos soluções instáveis, com taxas de crescimento até

20THz para condições experimentais realistas.

Palavras-chave: Plasmónica em grafeno; Quasi-partı́culas; Teoria cinética; Formalismo de

Wigner; Hidrodinâmica.
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Abstract

Plasmonics in graphene is a hot topic of research nowadays, not just because of its potential applicabil-

ity in future optoelectronic devices, but also because it serves as a playground to test new physics. In

order to take into account the quantum nature of carriers, a quantum kinetic model is proposed, starting

from the Schrödinger equation for the collective mean field wave functions for electrons and holes. The

equation of motion for the components of the Wigner matrix in phase space is established, where the

Coulomb interactions are introduced in the Hartree approximation. Using the Wigner-Poisson model,

the long wavelength limit for the plasmon dispersion relation is obtained. The corresponding hydrody-

namical equations are also derived, by taking the moments of Wigner’s equation, and those are shown

to converge, in the classical limit, to the expected result, if one starts with the Vlasov-Poisson model

instead. The obtained equations are compared with the usual parabolic case, for which the kinetic term

takes the form ξ(p) = p2/2m. Moreover, we give analytical expressions for the effective mass, for the

case of linear dispersion relation, which comes after relating the fluid momentum and velocity fields.

The Wigner-Poisson model is further used to describe an instability under a specific configuration, for

which we found unstable plasmon solutions with growth rates as high as 20THz for realistic experimental

conditions.

Keywords: Graphene plasmonics; Quasi-particles; Kinetic theory; Wigner formalism; Hydrody-

namics.
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Chapter 1

Introduction

Over the last decades, two-dimensional (2D) materials have brought exceptional research interest. The

experimental discovery of gated graphene, back in 2004 by Geim and Novoselov [1], marks the begin-

ning of a new era in the field of theoretical and experimental physics, and material engineering, due to its

unique optical, electronic and mechanical properties [2]. In fact, this experimental realisation has paved

the way to the understanding of more complex structures [3].

A true characterization of the dimensionality of such systems relies on a microscopic definition.

For example, if we can describe it with a wave-function ψk(r, t) carrying a quantized 2D wave-vector

k = (kx, ky), then ψk(r, t) = e−z/Lφψk(x, y, t), where Lφ is the Thouless length [4]. Therefore, the

system is considered 2D-localized if its dimensions are smaller than Lφ. At sufficient low temperatures,

T � TF , where TF is the Fermi temperature, Lφ is relatively large. As a result, the dynamics of thin films

and wires can be treated quantum mechanically as low dimensional systems (2D and 1D, respectively).

For a thin planar film at low temperatures, this condition reduces to w/λF � 1, where λF is the Fermi

wavelength and w is the width in the perpendicular z direction. In particular, for a graphene layer with

density n, λF ∼ 1/
√
n and even for rampant density values, w � λF still holds, when w is of the order

of the monolayer thickness. Hence, a full quantum model to describe graphene electronics is desired.

Experimentally, a way to define a 2D system is to show that the orbital dynamics is only sensitive to

perpendicular magnetic fields (B⊥ = Bzez), which indicates that electronic motion is effectively confined

to the 2D plane. Moreover, another evidence of dimensionality is the observation of quantum Hall effect,

a 2D-phenomenon, namely, by measuring a quantized Hall plateau. Both cases are true for graphene

[5, 6], ensuring its 2D nature, even at room temperature.

Graphene is a single layer of sp2-bonded carbon atoms, which are densely packed, forming a ben-

zene ring structure. Furthermore, 2D graphene rolled upon in the plane is a carbon nanotube, and

multilayer graphene with weak interlayer tunneling is graphite. In addition to its strict 2D nature, one

of the most irreverent properties of graphene is that, in the long wavelength limit q → 0, the electron

density excitations are described by a Dirac-like equation [7]. This feature is responsible for the famous

linear energy-momentum dispersion relation, with the conduction and valence bands both intersecting

at q = 0. This is only the case for single-layer graphene, whereas for higher number of layers we re-
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cover the usual parabolic expression for the long wavelength limit ξ(q) = m∗v2
F (q/q0)2/2 ∼ q2 [8], where

m∗ is the effective mass in this regime, vF is the Fermi velocity, q0 = t⊥/(
√

2~vF ) is the characteristic

wave-vector [9], and t⊥ is the hopping integral in the perpendicular direction. For single layer graphene,

the effective mass m∗ is not possible to obtain with simple band-theory arguments, due to the cone-like

discontinuity of mij ∼ [∂2ξ(q)/(∂qi∂qj)]
−1 near qi = 0.

Moreover, graphene possesses exceptionally high quantum efficiency for light-matter interactions

[10]. While metal plasmonics exhibit large Ohmic losses, which restraints their electronic application,

doped graphene appears as an alternative. Its large conductivities, that arise from the zero mass car-

riers, enclose a wide range of potential appliance, such as high-frequency nanoelectronics, nanome-

chanics, transparent electrodes, and composite materials [11]. For this reason, the possibility of electric

gating has been extensively studied in graphene, allowing for the manipulation of the Fermi level [12].

Recently, gating with a solid electrolyte allowed carrier concentrations to reach 1014 cm−2, which results

in EF ≈ 1 eV, such that a modulation of optical transmission in the visible light spectrum is possible

[13, 14]. All these unique characteristics make the screening properties in graphene to exhibit signifi-

cantly different behaviour from the conventional 2D systems, therefore providing an excellent playground

for testing new physics, besides technological improvements [15].

In the present thesis, we will be interested in understanding these electronic properties, resorting to a

kinetic formalism, which will allow for a collective description of its behaviour. We will focus on plasmonic

excitations and quantum transport of graphene electrons and holes, specially in the pure electron case,

for which a quantum hydrodynamical model will be put forward.

1.1 Graphene plasmonics

Plasmonics is a theoretical and experimental field of condensed matter physics and material engineering

that has gathered a great amount of interest among the scientific community, due to its large potential of

triggering technological advances. Although the number of publications has risen exponentially since the

experimental realization of graphene [1], the first developments in the field of plasmonics can be traced

back to the beginning of last century, starting with Wood’s observations of dark and bright patterns in

the light reflected by the surface of a metal [16]. These anomalies, which would later be called Wood’s

anomalies, were only explained by Lord Rayleigh a few years after [17], in terms of singularities of the

scattered fields. Subsequent works of Sommerfeld and Zenneck [18, 19] reported a special solution

to the Maxwell equations describing electromagnetic fields propagating at the surface of a conductor.

These results paved the way to the conclusion that Wood’s anomalies where actually a consequence of

the propagation of surface plasmons, made by Fano [20] and Ritchie [21].

Plasmons are the elementary excitations of electronic environments, which correspond to coherent

collective oscillations of the electronic density. These oscillations produce electromagnetic fields that

interact again with the electronic density. To a good plasmonic material corresponds a high quality

factor, Q = ωτ . This parameter measures how many optical oscillations does the free propagation of the

plasmon undergoes before it decays, and is related to its frequency, ω, and lifetime, τ [22]. Additionally,

2



these excitations produce a collective electric field, E, from the charge displacement, which can be

used to locally enhance an external field, E0, up to E2/E2
0 ' Q2. [23]. Moreover, the field confinement

[24] is also an important feature to allow for plasmonic applications, such as optoelectronic devices or

photodetectors [25].

Nowadays, modern plasmonics is a fast developing field, due to large improvements in nanoscale

fabrication processes and experimental resources, as well as theoretical tools. The emerging of ad-

vanced condensed matter, quantum optics, photonics and solid-state physics techniques have allowed

for novel discoveries, specially when the quantum nature of the materials plays a major role. This is often

the case when dealing with the atomic scale, and quantum dynamics of atomic and electronic systems

is necessary to a clear description of these phenomena.

Going further, a great advantage of 2D semi-conductors is the longer lifetime of the plasmonic modes

and the tunability of both plasmon dispersion and damping by changing the doping, intercalating chemi-

cal species or applying electric fields [26]. This facilitates their interaction with light, leading to localiza-

tion and guiding of light into electrical signals, which can be technologically used for devising plasmonic

devices for diverse applications [27]. Furthermore, the graphene relativistic nature of electrons and

holes, resulting from the cone-like dispersion relation near the Dirac points, makes it useful for high-

performance optoelectronic devices.

The states near the edge of the conduction and valence bands are filled, at zero doping, because

fermions cannot occupy the same quantum state, making light absorption to be saturated. Compared

with traditional semiconductors, like silicon and GaAs, this unique saturable character of graphene under

strong light excitation makes it promising in the high speed communication field, as ultrathin saturable

optical fiber absorbers. All these unique features might lead to a new generation of highly integrated

low-noise optical communication systems with very low cost.

1.2 The THz problem

Terahertz (THz) radiation is located between the microwave and infrared limits of the electromagnetic

spectrum, and is known to be particularly useful in a number of applications, ranging from imaging and

sensing to spectroscopy [28].

In particular, THz radiation is sensitive to intermolecular and intramolecular vibrations, which can be

used in drug identification, as most pharmaceutic compounds display terahertz spectra. Other important

medical applications include dermatology, oncology and oral healthcare [29]. Moreover, THz radiation

is an alternative to more invasive medical imaging techniques, with X-rays being the most paradigmatic

one. This is because the photon frequencies in the THz range are significantly less damaging for tissues

and DNA, being non-ionising and thus biologically secure.

Another important application is related to imaging in the context of security. Given that THz radiation

can penetrate inorganic fabrics, such as plastic, without penetrating the skin, it could provide a more

efficient way to detect undesired objects, where other sources of radiation have proved to be inefficient.

Despite its utility, it is true that current technology is still incapable of easily producing and detecting
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in the THz range. At the moment, converting electrical energy into coherent electromagnetic radiation

is achievable in both the low frequency regime (microwaves and below), using oscillating circuits based

on high-speed transistors, and in the high frequency (visible light) using semiconductor lasers. The low

frequencies are currently limited to 30 GHz, whereas semiconductor lasers can be brought to about 30

THz, leaving an opening hiatus in between 0.03− 30 THz [30]. This range of frequencies is known in the

literature as the terahertz gap [29], due to the aforementioned reasons.

Some advances have been achieved in the past decade, concerning the THz production. The most

prominent technologies comprise gas lasers, free electron lasers (FEL) and quantum cascade lasers

(QCL) [29]. While gas lasers present low efficiency, FEL are bulky and inappropriate for low-power

applications. On the other hand, QCL’s efficiency has a strong temperature dependence, becoming

inadequate for T > 180 K, thus not providing a solution for room temperature conditions. At the same

time, the recent developments in graphene plasmonics have gathered a great amount of interest in the

field of THz-production, mainly due the graphene field-effect transistor (GFET), capable of emitting and

detecting THz-radiation. As such, shining a light on graphene dynamics might set the stage towards a

future solution to the current technological problem.

1.3 Thesis motivation

Recently, graphene has been pointed out as a way to circumvent the terahertz gap, mainly resorting to

some unstable regimes that have been studied theoretically in the past [31–33]. It was found that the

the small-wavelength plasmon frequencies lie precisely on the THz part of the spectrum. Additionally,

the possibility of exciting unstable plasmons within this frequency range puts graphene in the podium for

future table-top solutions for the production of THz-radiation. Notwithstanding, some questions remain

unanswered, specially in what concerns the mathematical models that have been put forward, which rely

on a classical picture of charge transport [34–36]. The linear dispersion relation of electrons and holes in

graphene has no classical counterpart, meaning that there is no chance of obtaining such relation, start-

ing from classical laws. However, having set the relevant approximation for the dispersion relation, it is of

common approach to simply include that dispersion, ”by hand”, into a classical Boltzmann-like equation.

Such procedure will obviously fail under some conditions, that depend primarily on the temperature and

density of the system. Furthermore, the purely quantum nature of the Dirac dispersion relation leads us

to think that a good approach would encompass an ab-initio quantum formalism, capable of including

the dynamics of massless particles into a field equation, where all quantum effects would be recast. To

the best of our knowledge, that has not been done successfully so far, and this thesis will concentrate

on achieving such a description.

1.4 Thesis objectives and outline

The main goal of the present work is the construction of an ab initio formulation, capable of incorporat-

ing the quantum nature of charge carriers in graphene. We shall focus on the case of doped graphene,
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where the relevant kinetic processes take place on the conduction band, and the role of holes is of less

importance. In the ultra-cold limit, the equilibrium of the carriers is dictated by the Fermi-Dirac distri-

bution. Hence, we shall put forward a quantum kinetic equation, based on the Wigner representation

of quantum mechanics. Such a formalism will further allow for a hydrodynamical description, based

on the microscopic Hamiltonian that models the kinetic dispersion of charge carriers. Furthermore, the

interactions will be casted in the mean-field approximation, which provides a closure relation between

the Wigner function and the macroscopic density.

To fulfil those objectives, this thesis is organised as follows: in chapter 2, we start by revising the

most important concepts of the classical and quantum kinetic theories; the first relies on the definition

of a classical distribution function, whose meaning breaks down at the quantum scale; to extend the

concept to a quantum regime, we will introduce the Wigner function. In the quantum case, we show how

a hydrodynamical model can be constructed starting from a quantum distribution function. We focus on

particles with parabolic dispersion relation (thus a well defined mass), which, as we shall see, greatly

simplifies our calculations. Moreover, in chapter 3, we repeat the same discussion but for the case of

graphene, which comprises a Dirac-like term that introduces further complications. By changing the

basis to that of electrons and holes, it will be possible to derive a quantum kinetic equation for electrons

and holes. Still on chapter 3, we show how the present formalism is equivalent to the random phase

approximation (RPA), by deriving the plasmon dispersion relation. In chapter 4, we rely on the previous

kinetic description to build a closed set of hydrodynamical equations. In that scope, we examine the

relation between velocity and momentum variables, and determine the validity of the constant mass

approximation. Chapter 5 is dedicated to a special configuration of two parallel graphene layers, for

which an unstable regime is unveiled. Finally, we draw our main conclusions in chapter 6.
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Chapter 2

Kinetic theory and the

hydrodynamical limit

2.1 Classical kinetic theory

In plasma physics, the most usual approach to study a classical system is to work with a kinetic de-

scription, that relies on the possibility of defining a distribution function f(r,p, t), denoting the average

number of particles in a given infinitesimal phase space volume dr dp, centred in (r,p). The density

may be expressed in terms of the distribution function as

n(r, t) =

∫
dp f(r,p, t), (2.1)

which verifies the normalisation condition
∫
drdp f(r,p, t) = N , whereN is the total number of particles.

In the absence of collisions (or equivalently, for weakly coupled systems) the evolution of the distribution

function is governed by theVlasov equation [37]

d

dt
f(r,p, t) =

(
∂

∂t
+
p

m
·∇+ F (r,p, t) ·∇p

)
f(r,p, t) = 0, (2.2)

where ∇ ≡ ∇r and ∇p denote the gradient with respect to r and p, and F (r,p, t) is the force acting

on the particles. In one hand, for a conservative system, the force is usually momentum-independent,

and it is convenient to rewrite it in terms of a potential field V , using F (r, t) = −∇V (r, t). On the other

hand, when the Coulomb interaction plays a major role (which is typically the case of a plasma), we must

use the Lorentz force, F (r,p, t) = Q[E(r, t) + p
m × B(r, t)]. E(r, t) and B(r, t) denote the macroscopic

electric and magnetic fields, while Q and m are the particle’s charge and mass, respectively. Those

macroscopic fields must include any external applied fields, as well as the collective fields created by

the charges in the system, which verify the Maxwell equations. These can be expressed in terms of the
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scalar and vector potential, φ(r, t) and A(r, t), related to the macroscopic fields by

E = −∇φ− ∂A

∂t
, (2.3)

B =∇×A. (2.4)

In the Coulomb gauge1, we are led to the Poisson scalar and vectorial equations

∇2φ = −Qn
ε
, (2.5)

∇2A = −µJ , (2.6)

with ε and µ denoting the medium permittivity and permeability, respectively. In addition, J(r, t) is the

macroscopic current density (total current per unit area), that can be written as J(r, t) = Qn(r, t)u(r, t),

where u is the averaged velocity. The latter can be found through the distribution function, viz.

u(r, t) =
1

nm

∫
dp p f(r,p, t). (2.7)

Hence, a solution to (2.5) and (2.6) is readly found2

φ(r, t) =
Q

4πε

∫
dr′dp

f(r′,p, t)

|r − r′|
, (2.8)

A(r, t) =
µQ

4πm

∫
dr′dp p

f(r′,p, t)

|r − r′|
. (2.9)

Therefore, the macroscopic fields E and B are completely determined by the distribution function, pro-

vided the closure relations of (2.8) and (2.9), such that a complete set of equations is established.

Moreover, the inclusion of collisions is achieved by adding a collision integral to the r.h.s. (right-hand

side) of (2.2), S{f}, which is a functional of f and corresponds to the variation in particle’s phase space

density, due to non conservative effects,

S{f} =
∂f

∂t

∣∣∣∣
coll

. (2.10)

In a variety of situations, the long-range interactions dominate over short-range two-body interactions

(collisions). This situation verifies whenever the average potential energy, ξP , for two electrons separated

by the mean inter-particle distance, r = n−1/3, is much smaller than the average kinetic energy, ξK .

Those can be estimated as ξP = Q2n
1/3
0 /4πε0 and εK = kBT , where T is the temperature, kB is

the Boltzmann constant, and n0 is the equilibrium density. Therefore, a classical coupling parameter,

ΓC = ξP /ξK , can be settled to distinguish between the collisional and non-collisional regimes,

ΓC =
Q2n1/3

4πε0kBT
. (2.11)

1∇ ·A = 0.
2This can be checked resorting to the relation ∇2 1

|r−r′| = −4πδ(r − r′).
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The collisionless limit is valid whenever ΓC � 1. For those cases, the collision integral S can be

neglected. As the value of ΓC increases, the short-range interactions start to play an important role and

the plasma is said to be collisional, or strongly coupled. Eventually, an appropriate form for S must be

included. A recurrent one is that given by the relaxation time approximation (RTA) [37]

S{f} ' −f − f0

τ
, (2.12)

where f0 is the equilibrium distribution function, and τ is the characteristic time scale between collisions.

The meaning of this term can be understood as follows: the effect of collisions is simply to restore,

locally, the equilibrium, so that f reaches f0 exponentially, within a time-scale of the order of τ . The

value of τ should be obtained consistently, viz.

τ−1(r,p, t) =
N

m

∫
dp1dΩ |p1 − p|σ(|p1 − p|,Ω) f(r,p, t), (2.13)

where |p1 − p|σ(|p1 − p|,Ω) is the scattering cross-section, denoting the probability of a particle with

momentum p being scattered to a state p1, with relative solid angle Ω. RTA is valid whenever the energy

change of the carrier energy per collision is small compared to kBT . The appropriate form of σ should

be found regarding the scattering potential between the particles, which in turn requires knowledge of

the particular two-body interaction. A famous example is the so-called Rutherford cross-section, defining

the scattering of a beam of electrons colliding with a nucleus of charge Ze. In that case, σ reads

σ(|p1 − p|,Ω) =

(
Ze2

8πε0mev2
0

)2
1

sin4 θ
2

, (2.14)

where θ is the angle between p and p1, me is the electron mass and v0 is the initial velocity of the beam.

2.2 The Wigner formalism

Up to now, we have just been concerned with the classical limit, for which particles are regarded as

point-like. Such a condition is verified whenever the De Broglie wavelength, ΛDB = h/p, is much smaller

than the mean inter-particle distance; equivalently, the quantum degeneracy parameter

χ = Λ3
DBn, (2.15)

must be much smaller than one. Nevertheless, in the case of χ ≥ 1, particles may be able to come very

close, and quantum effects should not be discarded. If χ � 1, a full quantum treatment is mandatory.

Moreover, it is convenient to define

ΓQ =
~2ω2

p

E2
F

, (2.16)

which plays the role of the classical parameter ΓC for the case of quantum systems, with ωp denoting the

plasma frequency and EF the Fermi energy [38]. For systems working at the quantum level, the uncer-
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tainty principle makes the concept of phase space problematic, because both position and momentum

can’t be measured simultaneously, and a true phase-space distribution function is not possible to obtain.

In other words, due to the commutation relation between r and p,

[ri, pj ] = i~δij , (2.17)

one cannot localise particles in a specific phase-space point, and a proper distribution function is not

possible to construct. Fortunately, in 1932, Wigner first proposed a way of overcoming this difficulty,

by defining a quasi-distribution function called the Wigner function, denoted by W (r,p, t), with the spe-

cific purpose of calculating quantum corrections to thermodynamic equilibrium. What Wigner cleverly

realised was that the uncertainty principle does not prevent us from writing a function of both a position

and a momentum coordinate, and indeed the statistical information of the system can be transferred to

complex-valued functions. Although r and p are not each other’s conjugated coordinates, they both give

information about the spatial and momentum distributions of the system, which is, in the most generic

case, described by a superposition |ψ(t)〉 =
∑
α cα |ψα(t)〉. Note that we work in the Schrödinger rep-

resentation, such that state vectors display a time dependence of the form |ψα(t)〉 = e−iĤt/~ |ψα(0)〉,

where Ĥ is the Hamiltonian operator. The set of coefficients {cα} are related with the probability Pα of

finding the system in each |ψα〉 by Pα = |cα|2, thus verifying
∑
α |cα|

2
= 1. The original definition of the

Wigner function reads [39]

W (r,p, t) =
∑
α

cα

∫
ds

(2π)d
eis·p/~ ψ∗α(r + s/2, t) ψα(r − s/2, t), (2.18)

where ψα(r, t) = 〈r|ψα(t)〉 is the projection of the wave function onto some orthonormal position basis

|r〉 of a d−dimensional space, and the integration runs from −∞ to +∞ (this will always be the case,

unless otherwise indicated). Its more general applicability was better recognised in the works of Groe-

newold [40] and Moyal [41], where it was proposed that this function was nothing but the corresponding

function associated with the Weyl transform [42] for the density operator ρ̂. The quantum signature is

present in the fact that this quasi-distribution function may take negative values, and so it cannot be inter-

preted as a particle density. However, we can easily check in (2.18) that W ∗(r,p, t) = W (r,p, t) holds.

As we will see, the Wigner representation is very handy to treat the electronic properties in graphene,

and its usage might allow for a deeper understanding of quantum effects (for instance, by linking its

negative values to interference and scattering phenomena [43]).

The Weyl transform provides a mapping between an operator defined in a n-dimensional Hilbert

space and a classical function,

T {Â}(r,p, t) =

∫
ds

(2π)d
eis·p/~ 〈r − s/2|Â|r + s/2〉 . (2.19)

Here, T {...} denotes the Weyl transform, and Â is the operator subjected to the transformation. It is
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simple to verify that (2.19) allows to write

Tr{ÂB̂} =

∫ ∫
dr dp T {Â} T {B̂}. (2.20)

where Tr{...} is the trace. By defining the density operator as

ρ̂ =
∑
α

cα |ψα〉 〈ψα| , (2.21)

we can use (2.20) to show that the average value of Â is given by

Tr{ρ̂Â} =

∫ ∫
dr dpW (r,p, t) T {Â}. (2.22)

As such, we further define the (spatial and time dependent) expectation value of an operator as

A(r, t) =
1

n(r, t)

∫
dpW (r,p, t) T {Â}, (2.23)

where n(r, t) is the density. Furthermore, we can immediately see that the marginal probabilities are

given as

n(r, t) =
∑
α

cα |ψα(r, t)|2 =

∫
dpW (r,p, t), (2.24)

n(p, t) =
∑
α

cα |ψα(p, t)|2 =

∫
dr

(2π~)d
W (r,p, t), (2.25)

where ψα(p, t) is the Fourier transform of ψα(r, t) (and the same applies to the density). Now, starting

from the Schrödinger equation

i~
∂

∂t
ψα(r, t) =

(
− ~2

2m
∇2 + V (r, t)

)
ψα(r, t), (2.26)

it is convenient to derive an equivalent equation for the time evolution of the Wigner function. Following

the general procedure described in [44], we obtain

(
∂

∂t
+

~k
m
·∇
)
W =

2

~
W sin

(
1

2

←−
∇k ·

−→
∇
)
V, (2.27)

where we used the relation p = ~k, and the arrows in the gradient operators refer to its action (either

acting on the left or on the right). Note that a function of an operator must be understood using its Taylor

expansion. In particular, for the sine-function, we have

sin
(
Â
)

=

+∞∑
n=0

(−1)n

(2n+ 1)!
Â2n+1. (2.28)

The potential in (2.27) should contain the electrostatic term, V (r, t) = Qφ(r, t), plus other external EM

fields, depending on the specific conditions. The electrostatic potential can be calculated with (2.8),

by replacing f directly by W , i.e., using the ”quantum” density in the Poisson equation. If we neglect
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all other potentials, this models is commonly known as the Wigner-Poisson model3. Introducing the

definition (2.28) into (2.27), it allows to derive a more handy version for the Wigner transport equation,

i~
(
∂

∂t
+

~k
m
·∇
)
W =

∫
dq eiq·r (W− −W+) V (q, t), (2.29)

where V (q, t) is the Fourier transform of V (r, t), and W± = W (r,k ± q/2, t). By taking the limit ~ → 0,

we can approximate

W± 'W ±
~q
2
·∇pW. (2.30)

Replacing (2.30) into (2.29), followed by straightforward algebra, yields the ray-tracing (or classical)

version of (2.29) (
∂

∂t
+
p

m
·∇−∇V ·∇p

)
W (r,p, t) = 0, (2.31)

which is nothing more than the Vlasov equation. If, instead, we keep some orders of ~, we obtain the

corresponding semi-classical limits.

To illustrate the power of the Wigner representation, let us derive the dispersion relation of the elec-

tron density fluctuations, for a parabolic4 electron-ion quantum plasma (with mass me and mi, and

charge −e and +eZ, respectively), in two distinct cases. Given that me/mi � 1, we can fairly neglect

the ion motion, which corresponds to the limit of infinite inertia mi → +∞, also known as the jellium

model. Hence, the ions merely provide a neutralising positive background for the electronic motion. The

potential, in the Hartree approximation, is given by

V (r, t) =
e2

4πε0εr

∫
dr′

n(r′, t)

|r − r′|
− Ze2ni

ε0εr
, (2.32)

where n is the electron density, ni is the static background ion density, ε0 is the vacuum permittivity and

εr is the relative permittivity of the surrounding medium. It is straightforward to obtain the potential in

Fourier space, which is done in D.1 for several cases of interest. In 3-D space, it yields

V (q, t) =
e2

ε0εr

[n(q, t)

q2
− Zniδ(q)

]
, (2.33)

where q
.
= |q|. In what follows, we consider small perturbations around an equilibrium configuration,

keeping the lowest order contributions to the Wigner function. As such, we can write W (r,k, t) =

W0(k)+W̃ (r,k, t), whereW0 represents the equilibrium configuration, and W̃ allows for a small deviation

from equilibrium. Therefore, as suggested by (2.24), we should also write the density as n = n0 + ñ,

such that n =
∫
dk W0 and ñ =

∫
dk W̃ . Introducing these two expansions into (2.29) and neglecting

second order quantities, we get

W̃ (q,k, ω) =
e2

ε0q2

W0(k − q/2)−W0(k + q/2)

~(ω − ~k · q/me)
ñ(q, ω). (2.34)

3This model is also called the Hartree model, because it is equivalent, at the single particle level, to the Hartree approximation
for the one-particle Green’s function.

4Parabolic refers to the kinetic term for electrons in the Schrödinger equation, ~2∇2/2me, which reduces to the term ~k·∇/me
in the Wigner equation. We will see shortly that this is not always the case.
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Integrating over the k-coordinate, the latter yields

1 =
e2

ε0εrmeq2

∫
dk

W0(k − q/2)−W0(k + q/2)

~(ω − ~k · q/me)
. (2.35)

Two distinct cases will be considered: first, let us solve (2.35) for W0(k) = n0δ(k − k0), where

n0 = N/V , which is valid in the case of a mono-energetic beam of electrons moving across the system

with fluid velocity5 v0 = ~k0/me, in the limit of low temperature. The dispersion relation gives

[
ω(q)− v0 · q

]2
= ω2

p +
~2q4

4m2
e

, (2.36)

where ω2
p = n0e

2/ε0εrme is the usual plasma frequency for electrons, and the second term is the first

non-zero quantum contribution, for plasma oscillations, in the case of a 3D electron plasma [45]. The

second term on the l.h.s. (left-hand side) represents a Doppler shift [46]. This relation introduces disper-

sion, even at zero temperature, which is not predicted by the classical theory of electron-ion plasmas.

Secondly, we consider the case of small wave-numbers and high frequency. A more convoluted

calculation, given in Appendix B.1, leads to the Bohm-Pines dispersion relation [46],

ω(q)2 = ω2
p + 3q2u2

‖ +
~2q4

4m2
e

, (2.37)

where u2
‖ is the equilibrium value for the parallel velocity, with respect to the direction of propagation.

Equation (2.37) serves as the quantum counterpart of the Bohm–Gross dispersion relation of high fre-

quency electron plasma waves [47], and is valid no matter the form of W0 (as far as small wave numbers

and high frequencies are concerned). The term ∼ q4 is again the first quantum contribution, setting the

distinction between classical and quantum longitudinal electronic oscillations.

This approach is general and powerful, as we may replace the Schrödinger equation by some other

equation, governing the time evolution of the wave-function. Although being equivalent to the Hartree

approximation, the present procedure turns out to be more practical in treating systems far from equi-

librium, such as the case of plasma instabilities, with the configuration being solely defined by W0. In

Ref. [48], the same approach was followed for the case of an electron-positron quantum pair plasmas,

where (2.27) is slightly modified due to an extra non-linear term added to the Shrödinger-Poisson sys-

tem, accounting for the electron-positron density. Similar examples, for the case of the Gross–Pitaevskii

equation modelling dynamics of a Bose-Einstein condensate, can be found in [49, 50].

2.3 Quantum hydrodynamical model

The kinetic theory using the Wigner description, although not always providing the most convenient set of

equations, is a good starting point for more practical models. By computing the moments of the Wigner

equation, under some assumptions that will be discussed shortly, we are capable of obtaining a new set

of equations that govern the evolution of averaged quantities. These so called hydrodynamical models

5This situation is often referred to in the literature as one-stream plasma.
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are valid for both the classical limit and quantum limits, depending on whether we use the classical

distribution function or the Wigner function. The first quantum hydrodynamical model was introduced

by Manfredi et al. [51]. Subsequently, several variants of these models have been used in many-body

charged quantum systems, to study a variety of effects, such as attractive ion forces in warm-dense

plasmas [52]; electronic instabilities in piezoelectric semiconductors [53]; ultrafast electronic dynamics

in metallic thin films [54]; breather modes in semiconductor quantum wells [55]; magnetosonic waves in

degenerate dusty plasmas [56]6; or even more fundamental scenarios, such as a particles in a thermal

bath, to investigate quantum dissipation and diffusion [57]. In the majority of these cases, a closure

condition is needed, relating the effective potential with the density, which can be achieved, in the Hartree

approximation, via the Poisson equation. When the interaction with photons plays a role, it is convenient

to couple with other Maxwell equations.

In order to go from a kinetic theory to a fluid set of equations it is common to start with the macro-

scopic variables n and p, which respectively denote the density and the fluid (or averaged) momentum,

written with respect to the Wigner function as

n(r, t) =

∫
dk W (r,k, t), (2.38)

p(r, t) =
1

n(r, t)

∫
dk ~k W (r,k, t). (2.39)

Usually, the set of macroscopic variables contains the averaged velocity v instead of the averaged

momentum p, when these are related by a momentum-independent mass, v = p/m. As long the latter

holds, it is a matter of choice to use one or the other. However, as we shall see in the next chapters, for

a linear kinetic term, the velocity field is not well defined, and the formulation in terms of the averaged

momentum (or averaged wave-vector) is mandatory. Since phase-space variables do not depend on

time (only their averages do), applying a partial derivative with respect to time to both sides of (2.38) and

(2.39), it yields
∂n

∂t
=

∫
dk
[
− ~
m
k ·∇W +

i

~

∫
dq eir·r

(
W+ −W−

)
V (q, t)

]
, (2.40)

∂(np)

∂t
=

∫
dk ~k

[
− ~
m
k ·∇W +

i

~

∫
dq eir·r

(
W+ −W−

)
V (q, t)

]
, (2.41)

where W ≡ W (r,k, t) and W± = W (r,k ± q/2, t). These integrals are calculated in Appendix B.2, and

we simply present the results here. Equation (2.40) yields the continuity equation

∂n

∂t
+

1

m
∇ ·

(
np
)

= 0, (2.42)

whereas (2.41) yields the force (or the momentum conservation) equation

( ∂
∂t

+
p

m
·∇
)
p = − 1

n
∇P −∇V, (2.43)

6In Ref. [56], spin effects and exchange correlations are included in the results. The corresponding dispersion relations are
calculated, in several configurations for the electric and magnetic fields.
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where P is the pressure-tensor

Pij(r, t) =
n

m

(
pipj − pi pj

)
. (2.44)

We stress the fact that (2.42) is equal to its classical version, despite the averaged values being calcu-

lated with the Wigner function instead. On the contrary, (2.43) contains quantum contributions, present

in the pressure-term. However, they only become evident after some manipulation, which will be done

shortly. In terms of the averaged velocity,

u = v =
p

m
, (2.45)

the set of equations read7

∂n

∂t
+
∂
(
nuj

)
∂rj

= 0, (2.46)

∂ui
∂t

+ uj
∂ui
∂rj

= − 1

nm

∂Pij
∂rj

− 1

m

∂V

∂ri
, (2.47)

Pij = nm
(
vivj − uiuj

)
, (2.48)

More equations could be included by applying the same procedure to higher moments. The third natural

equation would be the conservation equation for the quantity npp/2m, which would give us the evolution

of the averaged energy density. Repeating the process for higher and higher orders would lead to an

hierarchy of equations, but our present model gives us enough information for the moment. The system

of equations (2.46) and (2.47) takes into account diffraction, but neglects other quantum phenomena,

like spin effects or exchange, as well as relativistic corrections. These, however, play a minimal role in a

variety of quantum plasma systems [58].

Recalling the definition of (2.18), we may write (see Appendix B.3 for details)

n(r, t) =
∑
α

cα|ψα(r, t)|2, (2.49)

n(r, t)u(r, t) =
i~
2m

∑
α

cα

(
ψα∇ψ∗α − ψ∗α∇ψα

)
, (2.50)

as well as the intricate expression for the pressure

Pij(r, t) =
~2

4m

∑
α

cα

(∣∣∣∣∂ψ∗α∂ri

∂ψα
∂rj

∣∣∣∣2 − ψα ∂2ψ∗α
∂ri∂rj

− ψ∗α
∂2ψα
∂ri∂rj

)

+
~2

4mn

∑
α,β

cαcβ

(
ψα

∂ψ∗α
∂ri
− ψ∗α

∂ψα
∂ri

)(
ψβ

∂ψ∗β
∂rj
− ψ∗β

∂ψβ
∂rj

)
. (2.51)

We can readly recognise (2.50) as the usual quantum mechanical probability current of a superposition

of states. Furthermore, by introducing the Madelung representation8 [59] for each state ψα,

ψα(r, t) = Aα(r, t)eiSα(r,t)/~, (2.52)

7We use Einstein’s convention for repeated indices, and it will be used henceforth, used unless otherwise stated.
8Note that the Madelung representation is simply the most generic way of representing a complex number ψ = AeiS/~,

parameterised by real amplitude and phase fields A and S/~. Because ψ depends on position and time, we should allow, in
principle, for a space and time dependence on both the amplitude and the phase.
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into (2.49)−(2.51), we get

n(r, t) =
∑
α

cαA
2
α, (2.53)

u(r, t) =
1

nm

∑
α

cαA
2
α∇Sα, (2.54)

and

Pij(r, t) =
~2

2m

∑
α

cα

(∂Aα
∂ri

∂Aα
∂rj

−Aα
∂2Aα
∂ri∂rj

)
− 1

2m

∑
α

cαA
2
α

(∂Sα
∂ri
− ∂Sα
∂rj

)2

+
1

2mn

∑
αβ

cαcβA
2
αA

2
β

(∂Sα
∂ri
− ∂Sβ
∂rj

)2

. (2.55)

The first term in the pressure-tensor has now an explicit ~−dependence, which exposes its quantum

nature. Besides that, there is also an implicit ~−dependence on the amplitudes and phases of the

Madelung representation, as each of them is a solution to the Schrödinger equation of (2.26), which,

in its turn, contains ~. Strictly speaking, equations (2.53)−(2.55) are purely quantum. However, we will

identify a ”classical” term on the pressure by comparing it with the expected expression for the classical

limit. This becomes clear after the identification of the amplitudes Aα and phases Sα with two ”classical”

velocity fields V α (kinetic velocity) and Ṽ α (osmotic velocity)9

Vαi =
1

m

∂Sα
∂ri

, (2.56)

Ṽαi =
~
m

∂ lnAα
∂ri

, (2.57)

where the index i denotes each component, i.e., V α = (Vαx, Vαy, Vαz) and Ṽ α = (Ṽαx, Ṽαy, Ṽαz). Both

V α and Ṽ α have dimension of velocity, as they are the natural velocities that can be made up from Aα

and Sα. The kinetic velocity is related to the phase velocity of each state α, whereas the osmotic velocity

follows the density gradient. V α and Ṽ α are purely quantum, as a result of their dependence on Aα

and Sα, which, in turn, depend on ~ implicitly. Contrarily, u has a classical counterpart, coming from the

classical limit of (2.54)10, as the Wigner function is replaced by the classical distribution function. The

pressure-tensor can be written in terms of the new velocity fields as

Pij(r, t) = PKij (r, t) + POij (r, t) + PQij (r, t) (2.58)

where

PKij (r, t) =
nm

2

∑
αβ

c′αc
′
β(Vαi − Vβj)2 − nm

2

∑
α

c′α(Vαi − Vαj)2, (2.59)

POij (r, t) =
nm

2

∑
αβ

c′αc
′
β(Ṽαi − Ṽβj)2 − nm

2

∑
α

c′α(Ṽαi − Ṽαj)2, (2.60)

9Do not confuse Ṽ α with a first order quantity, following a previous definition which uses the same symbol (∼). Ṽ α contains
all orders, and represents a velocity field.

10Note that this is also a function of n, which in turn is given by (2.53).
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PQij (r, t) = −~2n

4m

∂2 lnn

∂ri∂rj
. (2.61)

We also defined the new set of coefficients {c′α(r, t)} as

c′α(r, t) =
cαA

2
α(r, t)

n
, (2.62)

which verify
∑
α c
′
α = 1. This property permits to establish a new average value for functions defined in

the Hilbert space spanned by {ψα} as follows:

〈g〉 =
∑
α

c′αgα. (2.63)

With this definition, we obtain

PKij (r, t) = nm
(
〈ViVj〉 − 〈Vi〉〈Vi〉

)
, (2.64)

POij (r, t) = nm
(
〈ṼiṼj〉 − 〈Ṽi〉〈Ṽj〉

)
, (2.65)

It is important to make a side note here: the exact calculation of PKij and POij would require knowledge of

a complete set of wave-functions, which in turn would come as a solution to the Schrödinger equations.

However, such a procedure would offer no advantage over the direct computation of the Wigner function,

which solves the problem exactly. Indeed, one of the strong points of this hydrodynamical formulation

comes from the fact that the exact knowledge of the Wigner function is not necessary. Instead, we are

led to a simpler model involving hydrodynamical variables. Following this reasoning, and knowing that

the kinetic and osmotic pressures are related with velocity dispersion, it is a rather standard approach to

set PKij + POij ' PCij , where PCij is generically called the classical pressure. Then, one uses an equation

of state to close the system, i.e, one finds a relation between the classical pressure and the density,

PCij ≡ PCij (n). (2.66)

Hence, the total pressure Pij now comprises a classical and a quantum contribution

Pij = PCij (n)− ~2n

4m

∂2 lnn

∂ri∂rj
. (2.67)

A convenient equation of state for PCij , in the case of a strongly degenerate (d−dimensional) fermionic

system at low temperatures is [60]

PCij = δij
n0mv

2
F

d+ 2

( n
n0

) d+2
d

, (2.68)

where vF is the Fermi velocity, related to the Fermi wave-vector kF by vF = ~kF /m. The term

(n(r, t)/n0)(d+2)/d extends the equilibrium result to an inhomogeneous configuration, via a local ap-
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proximation. Finally, our complete models reads

∂n

∂t
+
∂
(
nuj

)
∂rj

= 0, (2.69)

∂ui
∂t

+ uj
∂ui
∂rj

= − 1

nm

∂PCij
∂rj

− 1

m

∂V

∂ri
+

~2

2m2

∂

∂ri

(∇2
√
n√

n

)
, (2.70)

V (r, t) =
Q2

4πε

∫
dr′

n(r′, t)

|r − r′|
, (2.71)

PCij = PCij (n), (2.72)

where we used the relation (see Appendix B.4)

1

nm

∂PQij
∂rj

= − ~2

2m2

∂

∂ri

(∇2
√
n√

n

)
, (2.73)

which allows us to write the quantum pressure term in the form of a quantum potential [61]. The latter is

mathematically related with the quantum pressure but, physically, plays the role of an effective potential,

which contributes to a quantum (Bohm) force, responsible for phenomena like wave-packet spreading or

tunneling [62, 63].

To conclude, let us briefly mention some strengths and drawbacks of this (real space) formulation.

We started by integrating the Wigner transport equation (2.29) multiplied by powers of momentum,

which provided us a complete model for the evolution of averaged quantities. The main advantage of

this model is that it is solvable without the need of calculating the Wigner function. As we showed,

the aforementioned hydrodynamical model presents a much simpler solution, by describing the system

using a smaller set of variables, upon which all other quantities, like the pressure or the interacting

potential, depend on. In principle, there are no restrictions over these two variables, except that of being

smooth functions. Moreover, the system of equations (2.69)−(2.72) is closed, by assuming an equation

of state for the classical pressure, as suggested by (2.72). The choice of PC may be able to retain

some spin properties, like the fermionic or bosonic statistics. Nonetheless, higher order spin effects or

magnetic field interactions where ignored, since only the electrostatic limit is treated. Taking into account

magnetic-field interactions is straightforward, which can be done via the minimal coupling procedure,

p → p − QA. Spin transport can also be included by adding another macroscopic variable, denoting

the spin polarization density, and applying the same procedure [64, 65]. Higher order contributions

of the Coulomb interaction have also been considered, in the scope of hydrodynamic theory [66, 67].

In the case of low temperatures and sufficiently high densities, it has been demonstrated that those

play an important role [68–70]. Furthermore, on the grounds of the hydrodynamical approximation, the

validity of the model is limited to the long wavelength limit, q � ωp/vF . Shorter length scales cannot

be resolved, as well as relativistic phase velocities, such that the condition ω/q < c must be verified.

We also note that some effects, as Landau damping or instabilities, can only be accomplished with the

complete information contained in the Wigner equation (2.27), since these are purely kinetic phenomena

that rely on wave-particle interaction, and are not captured hydrodynamically [71].
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Chapter 3

Wigner description of graphene

In this chapter, we introduce the main subject of this thesis. Our goal is to construct the Wigner function

for quasi-electrons and quasi-holes in graphene, following the prescription given in the last chapter. As

we will see, the effective Hamiltonian that describes this system is unusual, mostly because the kinetic

term is linear (and not quadratic) in the momentum coordinate. Hence, we start by revising the graphene

band structure, which is then incorporated into the Schödinger equation. Then, the Schrödinger-Poisson

model is settled, which will lead to a peculiar modification in the Wigner transport equation.

3.1 Graphene band structure

Graphene refers to a monolayer of carbon atoms, arranged in an hexagonal structure. To cast the

graphene geometry, we choose the coordinate system depicted in the left panel of Fig. 3.1, together

with the lattice vectors ai. Each unit cell contains two carbon atoms that belong to different sublattices,

A and B. The unit cells form a hexagonal Bravais lattice {R}l, with positions

Rl = nia1 + nja2, (3.1)

where l = (i, j) and ni, nj ∈ Z. The lattice vectors are

a1 = a

(
1

2
,

√
3

2

)
, a2 = a

(
−1

2
,

√
3

2

)
, (3.2)

where a ≈ 2.6 Å is the lattice parameter [72], which is related to the carbon-carbon distance dc by

dc = a/
√

3. We also construct the reciprocal lattice {G}l

Gl = mib1 +mjb2, (3.3)
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by imposing ai · bj = 2πδij . This leads to

b1 =
4π

3
√

3a

(√
3

2
,

1

2

)
, b2 =

4π

3
√

3a

(
−
√

3

2
,

1

2

)
. (3.4)

By comparing the vectors ai with bi we conclude that the reciprocal lattice will also be hexagonal,

yielding the structure depicted in the right panel of Fig. 3.1.

Figure 3.1: Left panel : Real lattice. The honeycomb structure can be seen as two inter-penetrating

triagonal sublattices of carbon atoms, A (red) and B (blue). Right panel : Reciprocal lattice. The solid

filling highlights the first Brillouin zone, with its two inequivalent corners K and K′.

An isolated carbon atom has electronic configuration 1s2 2s2 2p2; whereas in graphene, among

the four outer electrons, three of them are arranged in an sp2 an hybridization and form an in-plane

covalent σ-bounds. The remaining pz electron is delocalized, and is responsible for most of the graphene

electronic properties. In order to effectively describe the electron dynamics, we use a simple tight-binding

model. In general, within the second quantization procedure, the Hamiltonian for the free motion of the

system may be generically written as

Ĥ =
∑
ll′

(
â†l 〈A,Rl|Ĥ|A,Rl′〉 âl′ + â†l 〈A,Rl|Ĥ|B,Rl′〉 b̂l′

+ b̂†l 〈B,Rl|Ĥ|A,Rl′〉 âl′ + b̂†l 〈B,Rl|Ĥ|B,Rl′〉 b̂l′
)
, (3.5)

where â†l /âl′ (b̂†l /b̂l) creates/annihilates an electron of lattice A (B) in site Rl. In the tight-binding approx-

imation, we only allow hopping between nearest neighbour sites, therefore setting the matrix elements
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to

〈Si,Rl|Ĥ|Sj ,Rl′〉 =


ξpz if i = j and Rl = Rl′ ,

−t if i 6= j and Rl = Rl′ + δ,

0 otherwise,

(3.6)

where Si ∈ {A,B}. Moreover, ξpz is the kinetic energy of the pz orbital, t ≈ 2.97 eV is the hopping

integral [8] and

δ ∈
{

dc(0, 1) , dc(
√

3
2 ,−

1
2 ) , dc(−

√
3

2 ,−
1
2 )

}
, (3.7)

are the vectors depicted in left panel of Fig. 3.1. Furthermore, we are also free to set the energy ξpz to

zero, keeping in mind that any energy value will be measured relatively to ξpz . Thus, we obtain

Ĥ = −t
∑
lδ

(
â†l b̂l+δ + b̂†l+δâl

)
, (3.8)

Expanding the operators in the momentum basis, it gives

â†l =
1√
N/2

∑
q

a†q e
iq·Rl , (3.9)

b̂†l =
1√
N/2

∑
q

b†q e
iq·Rl , (3.10)

whereN/2 is the total number of carbon atoms in each sublattice and q = (qx, qy) is the 2-D wave-vector.

Using these expression into (3.8), it yields

Ĥ = −t
∑
δ,q

(
e−iq·δâ†q b̂q + eiq·δ b̂†qâq

)
. (3.11)

Electrons must obey anti-commutation relations, so we also impose

{âq, â†q′} = δqq′ , (3.12)

{b̂q, b̂†q′} = δqq′ , (3.13)

whereas anti-commutators between any two other operators are set to zero. By defining ΦTq =
(
âq b̂q

)
,

(3.11) can be rewritten as

Ĥ =
∑
q

Φ†q H(q) Φq, (3.14)

where

H(q) =

 0 −t∆

−t∆∗ 0

 , (3.15)

and

∆(q) =
∑
δ

e−iq·δ. (3.16)
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The energy bands are easily obtained by calculating the eigen-values as

H(q)Φq = ξ(q)Φq. (3.17)

We find the eigen-frequencies

ω(q) = ± t
~

[
4 cos

(√
3dc
2

qx

)
cos

(
3dc
2
qy

)
+ 2 cos

(√
3dcqx

)
+ 3

]1/2

, (3.18)

which are related to the energies by ξ(q) = ~ω(q). These two branches are depicted in Fig. 3.2. As one

can see, the graphene band structure is that of a zero-gap semi-conductor, with both band intersecting at

ξ(q) = 0, for q ∈ {K,K′}. These two point belong to the vertices of the first Brillouin zone, and are given

by (±4π/(3
√

3dc), 0). In neutral graphene, each carbon atom has one orbital available and contributes

with one electron. Due to spin degeneracy, each orbital gets filled with two electrons, which gives, at zero

doping, a half-filled configuration, i.e., the valence band gets completely filled, and the conduction band

is unoccupied. Therefore, the Fermi surface is located at these two edges of the Brillouin zone, and the

low energy excitations will happen around them. As we will see right after, the dynamics encompassing

these two points is given, for sufficiently low deviations, by a Dirac-like Hamiltonian. For that reason, K

and K′ are called Dirac points.

Figure 3.2: Energy of the conduction (blue) and valence (red) bands, normalised to the hopping integral.

The points K = (4π/(3
√

3dc), 0) and K′ = (−4π/(3
√

3dc), 0) are two local minima of energy, called

Dirac points. They are both defined in the first Brillouin zone, so they are inequivalent. The close-up on

the right is around q = K, highlighting the two bands touching, thus yielding a zero-gap, and displaying

a conic symmetry for sufficiently small q′ = q −K.
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Figure 3.3: Close-up of the energy around the K direction, i.e., q′ = q − K, for conducting (blue)

and valence (red) electrons. For aq′ � 1, we have ξ ' ~vF ± q′, where q′
.
= |q′| and a the lattice

parameter. The spectrum resembles that of a zero mass particle, with a constant velocity, independent

of momentum.

3.2 Wigner matrix in the lattice basis

For energies that verify ξ � t, we can expand (3.16) around the Dirac point K to obtain

∆(q) ' −3
√

3dc
2

(qx − iqy), (3.19)

Applying the canonical transformation to real space q → −i∇, the Hamiltonian becomes

Hαβ(q) ' −i~vFσαβ ·∇, (3.20)

where σ is the vector of Pauli matrices in 2D, σ = (σx, σy). This describes a massless Dirac fermion,

with a Fermi velocity

vF =
3
√

3tdc
2h

≈ 106ms−1. (3.21)

The Dirac structure becomes evident if one calculates the energy eigen-values for this Hamiltonian. We

find

ξ(q) = ±~vF |q|, (3.22)

with corresponding eigen-vectors

|q〉 =
1√
2
eiq·r

 ∓ie−iθq/2
eiθq/2

 , (3.23)
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where θq = arctan
(
qx/qy

)
is the angle between q and the y−axis. We stress that this two-dimensional

Hilbert space is that of the pseudo-spin (or lattice) degeneracy, arising from the underlying honeycomb

symmetry, and does not account for the electronic spin. The latter constitutes an extra degree of free-

dom for quasi-particles, which means that electrons carry, along with spin and orbital quantum numbers,

an extra lattice-degeneracy quantum number. The vectorial part of the solutions in (3.23) is termed as

pseudo-spinors, in a strict analogy with Dirac-spinors. Consequently, a rotation in the pseudo-spinor

space is given by R(θ) = e−iθ·σ/2, where θ = (θx, θy, θz) is a vector of constant angles which param-

eterises the rotation, and σ = (σx, σy, σz) is the 3D vector of Pauli matrices. This property indicates

the effective nature of these quasi-particles being that of massless Dirac fermions, where the lattice

(pseudo-)spin plays the role of the usual electronic spin.

Next, we shall extend this Hamiltonian to account for a mean-field solution to the Poisson equa-

tion, following the same reasoning as for the parabolic case. Hence, we generically write the modified

Schrödinger equation as

Ĥαβ(r, t) = −i~vFσαβ ·∇ · + V (r, t)δαβ , (3.24)

where V (r, t) = −eφ(r, t) is the interacting potential with respect to the electrostatic potential φ and

electric charge −e. Moreover, V (r, t) is governed by the Poisson equation

∇2 V (r, t) = −e
2

ε
n(r, t), (3.25)

with solution

V (r, t) =
e2

4πε

∫
dr′

n(r′, t)

|r − r′|
, (3.26)

and n(r, t) = nA(r, t) +nB(r, t) is the total density. Note that, even though the system dynamics is con-

fined to two dimensions, the Poisson equation is written in three dimensions, owing to the dimensionality

of the electric fields, which go out of the two-dimensional plane. To construct the Wigner function, we

need to ensure the inclusion of the pseudo-spin degrees of freedom, which is done by going from a

scalar to a tensorial structure [73–77]. Thus, we define the Wigner matrix components as

Wαγ(r,k, t) =

∫
ds

(2π)2
eik·s Φ∗α(r + s/2, t)Φγ(r − s/2, t). (3.27)

where the indices α,γ run over the sublattice set {A,B}. Let us also define the vector Φ = (ΦA,ΦB),

such that the total electronic density in (3.26) can be written as n = Φ†Φ. The correlation matrix at

equal times Cαγ(r, s, t) = Φ∗ α(r + s/2, t)Φ γ(r − s/2, t) can be found as the inverse Fourier transform

of Wαγ(r,k, t)

Cαγ(r, s, t) =

∫
dk e−ik·s W αγ(r,k, t). (3.28)

To construct the equation for the phase-space evolution ofWαγ , we use the Schrödinger-Poisson model,

which consists in solving the Schrödinger equation

i~
∂

∂t
Φα(r, t) = ĤαβΦβ(r, t), (3.29)
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together with (3.26). Therefore, for two distinct spatial coordinates, r1 and r2, we write the Schrödinger

equation and its hermitian conjugate as1

−i~ ∂
∂t

Φ∗α(r1, t) = ivF~∇r1 · Φ∗
β(r1, t) σ

βα + V (r1, t)Φ
∗α(r1, t), (3.30)

i~
∂

∂t
Φ γ(r2, t) = −ivF~∇r2 · σγβΦβ(r2, t) + V (r2, t)Φ

γ(r2, t). (3.31)

After multiplying (3.30) by Φ γ(r2, t) and subtracting it to (3.31) multiplied by Φ∗ α(r1, t), we find the l.h.s.

of (3.28), provided the coordinate transformation r1,2 = r ± s/2. Hence, we get

∫
dk
(
i~
∂

∂t
Wαγ(r,k, t)e−ik·s + ivF~∇r1 · σαβW βγ(r,k, t)e−ik·s + ivF~∇r2 ·Wαβ(r,k, t)σβγe−ik·s

+
[
V (r1, t)− V (r2, t)

]
Wαγ(r,k, t)e−ik·s

)
= 0. (3.32)

The spatial derivatives of the new set of variables are related to the previous ones by

∇r1 =
1

2
∇r +∇s, (3.33)

∇r2 =
1

2
∇r −∇s, (3.34)

which can be used to simplify (3.32). Then, multiplying (3.32) by eik
′·s and integrating over ds/(2π)2, we

find2

i~
∂

∂t
Wαγ +

i~vF
2
∇r ·

[
σαβW βγ +Wαβσ βγ

]
+ vF~ k ·

[
σαβW βγ −Wαβσβγ

]
+

∫
d2q eirq

[
Wαγ

+ − Wαγ
−
]
V (q, t) = 0, (3.35)

where V (q, t) is the Fourier transform of the potential, in momentum space, and

Wαγ
± = Wαγ(r,k ± q/2, t). (3.36)

We also replaced V (r, t) by
∫
dq eiq·rV (q, t) and Wαγ(r,k, t) by

∫
ds′ e−ik·s

′
Wαγ(r, s′, t)/(2π)2 in

(3.32). Let us define the following commutator and anti-commutator (with subscripts ∓, respectively)

between the Wigner matrix and a differential operator Ô

[Ô,W ]κλ
±

=
−→
ÔκτW τλ ±Wκτ

←−
Ô τλ. (3.37)

The Wigner transport equation can be rewritten as

i~
∂

∂t
Wαγ + ~vF [k̂,W ]αγ

+
+
i~vF

2
[∂̂,W ]αγ

−
=

∫
d2q eirq

(
Wαγ
− −W

αγ
+

)
V (q, t) (3.38)

1We make use of the property
(
σκλ

)∗
= σλκ, valid for the Pauli matrices.

2We integrate by parts the term ∼∇s, and change k′ back to k, for convenience.
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where we defined

∂̂ =

 0 ∂
∂x − i

∂
∂y

∂
∂x + i ∂∂y 0

 , (3.39)

k̂ =

 0 kx − iky
kx + iky 0

 . (3.40)

Equation (3.38) is similar to (2.29), both in the time derivative and potential term, where the last is

adapted to the two-dimensional space. The defining feature has to do with the kinetic term, which is

expressed in terms of the commutator and the anti-commutator. This convoluted form results from the

linear energy dispersion relation of quasi-particles, introduced in the Schödinger equation as ∼ σαβ ·∇,

as we exploit further ahead.

We should now make a side note to distinguish between k̂ and ∂̂ in (3.38). In fact, q is the conjugate

variable of r,

iq → ∂

∂r
, (3.41)

whereas k is the phase-space variable. We emphasise that equation (3.41) is only true in the distribution

sense, i.e., when the functions are being integrated. To clarify the difference between k and q, let

us compute the Wigner function for a plane wave solution Φq(r) = eiq·r/
√
A, where A is the area,

corresponding to a solution of (3.20). Hence,

W (r,k, t) = δ(q − k)/A. (3.42)

This suggests trying a solution of the form

Wαγ(r,k, t) =

∫ ∫
dq dω ei(q·r−ωt)δ(q − k) Λαγ(q, ω), (3.43)

where Wαγ(q,k, ω) = δ(q − k)Λαγ(q, ω) is the double Fourier transform of the Wigner matrix in space

and time domains. By plugging (3.43) into (3.38), and integrating over k for the case of free particles

(V = 0), this leads to a secular equation involving each Λ αγ(q, ω)


ω 3

2vF q+
1
2vF q− 0

3
2vF q− ω 0 1

2vF q−

1
2vF q+ 0 ω 3

2vF q+

0 1
2vF q+

3
2vF q− ω




Λ11

Λ12

Λ21

Λ22

 = 0, (3.44)

where q± = qx ± iqy. A non-trivial solution3 of (3.44) leads to the dispersion relation

ω(q) = ±vF
√
q+q− = ±vF |q|. (3.45)

3i.e., (Λ11,Λ12,Λ21,Λ22) 6= 0.
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This result is the same as (3.18) near the Dirac point, as expected for the free case. We shall now try

to take into account the effect of interactions, but before that, a more convenient choice of basis for the

wave-functions is employed, which we illustrate next.

3.3 Wigner matrix in the diagonal basis

Henceforth, we will be interested in analysing the phase-space evolution of the Wigner matrix. As it must

be clear, such a kinetic equilibrium is quite demanding to guess in the sublattice basis, owning to the

fact that quasi-electrons in this basis are merely linear combinations of the true elementary excitations

of the Hamiltonian in (3.20). If follows that setting a proper equilibrium configuration in this basis is quite

a complex task, and we shall move to a more convenient one. In practise, this task boils down to the

diagonalization of (3.24), at the Hamiltonian level, or equivalently, of (3.11), at the operator level. This

last seems to be more intuitive. So, following the general (similarity) transformation procedure [78], we

define the new operators ĉq and v̂q as

 ĉq

v̂q

 = S

 âq

b̂q

 , (3.46)

where S is a unitary matrix. In momentum space, the Schrödinger equation, accounting for the Hamilto-

nian (3.24) reads

i~
∂

∂t
Φα(q, t) = ~vFq · σαβΦβ(q, t) +

∫
dq′ V (q′, t)Φα(q − q′, t). (3.47)

The present transformation is accomplished with Ψ(q, t) = SΦ(q, t), where Ψ is a new vector field, with

components ΨT (q, t) = (ĉq v̂q). Replacing Φ by S†Ψ in (3.47), and left-acting on both sides with S, we

demand the off diagonal term to vanish, i.e., we choose S such that Sq · σS† is diagonal. We obtain

S =
1√
2

 −e−iθ(q) 1

eiθ(q) 1

 , (3.48)

where eiθ(q) =
√

∆(q)/∆∗(q). Equation (3.47) then becomes

i~
∂

∂t
Ψα(q, t) = ~vF |q|σαβz Ψβ(q, t) +

∫
dq′ V (q′, t)Ψα(q − q′, t), (3.49)

which is diagonal, as intended, and

σz =

 1 0

0 −1

 . (3.50)
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The valence and conduction band operators are found as linear combinations of the previous

ĉq =
1√
2

(
b̂q − e−iθ(q)âq

)
, (3.51)

v̂q =
1√
2

(
b̂q + eiθ(q)âq

)
, (3.52)

ĉ†q =
1√
2

(
b̂†q − eiθ(q)â†q

)
, (3.53)

v̂†q =
1√
2

(
b̂†q + e−iθ(q)â†q

)
. (3.54)

and verify, as before, the anti-commutation relation for fermionic operators

{ĉq, ĉ†q′} = δqq′ , (3.55)

{v̂q, v̂†q′} = δqq′ . (3.56)

Note that the total density is the same in the two basis, i.e., Φ†Φ = Ψ†Ψ, which means that the mean

field potential V is invariant under the present transformation. This property is a state of the conservation

of the number of particles, independently of the basis choosen to count them. Furthermore, this new

basis corresponds to that of conduction (α = 1) and valence (α = 2) bands, with kinetic energies ±ξ(q),

and ξ(q) being the massless dispersion relation. Hence, ĉ†q(ĉq) creates (annihilates) an electron with

momentum q and energy +ξ(q) in the conduction band, and v̂†q (v̂q) creates (annihilates) an electron

with momentum q and energy −ξ(q) in the valence band.

Let us now define the new Wigner matrix in terms of Ψ as4

W αγ(r,k, t) =

∫
ds

(2π)2
eik·s Ψ∗α(r + s/2, t)Ψγ(r − s/2, t), (3.57)

and its Fourier transform

Wαγ(q,k, t) = Ψ∗α(k − q/2, t) Ψγ(k + q/2, t). (3.58)

Starting from (3.49), and repeating the same procedure leading to (3.32), we get

i~
∂

∂t

[
Ψ∗α(q2, t)Ψ

γ(q1, t)
]

= ~vF
[
|q1|Ψ∗α(q2, t)Ψ

β(q1, t)σ
βγ
z − |q2|σαβz Ψ∗β(q2, t)Ψ

γ(q1, t)
]

+

∫
dq′
[
V (q′, t)Ψ∗α(q2, t)Ψ

γ(q1 − q′, t)− V (−q′, t)Ψ∗α(q2 − q′, t)Ψγ(q1, t)
]
, (3.59)

where we used the fact that V (r, t) is real, which implies V ∗(q, t) = V (−q, t). We can rewrite the last

4We will be using the same symbol to denote the Wigner matrix in the several basis, which is not problematic because it should
be clear from the context which one is what.
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term on the r.h.s. of (3.59) using relation (A.8). It leads to

∫
dq′
[
V (q′, t)Ψ∗α(q2, t)Ψ

γ(q1 − q′, t)− V (−q′, t)Ψ∗α(q2 − q′, t)Ψγ(q1, t)
]
,

=

∫
dq′ V (q′, t)

(
e−q

′·∇q1 − e q
′·∇q2

)
Ψ∗α(q2, t)Ψ

γ(q1, t). (3.60)

By introducing the coordinate transformation q1 = k + q/2 and q2 = k − q/2 and, accordingly,

∇q1 =
1

2
∇k +∇q, (3.61)

∇q2 =
1

2
∇k −∇q, (3.62)

into equation (3.60), we finally obtain

i~
∂

∂t
Wαγ(q,k, t) = ξ(k + q/2) Wαβ(q,k, t) σβγz − ξ(k − q/2) σαβz W βγ(q,k, t)

+

∫
dq′ V (q′, t) ∆Wαγ(q,k, q′, t), (3.63)

where

∆Wαγ(q,k, q′, t) = Wαγ(q − q′,k − q′/2, t)−Wαγ(q − q′,k + q′/2, t). (3.64)

Although the Wigner equation (3.63) will be more useful than its real-space version, as will be shown

shortly, we can always Fourier transform it back to real space. However, due to the cumbersome form of

the Hamiltonian in real space, it is preferable to work with (3.63), and inverse Fourier transform back to

r in the end of the calculations. As we shall see next, the important results will be obtained directly from

(3.63), as it contains equivalent information to its real space counterpart. Nevertheless, it is interesting

to do it in order to highlight the differences with the more conventional version for the parabolic case of

(2.29). Straightforward steps lead to the Fourier transform version of (3.63)

i~
∂

∂t
Wαγ(r,k, t) + i~K{Wαγ} = e

∫
dq eiq·r φ(q, t)

(
sαWαγ

− − sγW
αγ
+

)
, (3.65)

where we defined Wαγ
±

.
= Wαγ(r,k ± q/2, t). The operator K represents the kinetic term, which in the

present case of 2D-linear dispersion relation has the convoluted form

K{Wαγ} = vF

∫
dr′

(2π)2

sin
(
2k · r′

)
|r′|3

Wαγ(r − r′,k, t). (3.66)

The real space version of K makes it hard to handle, in practice, such that a much simple result is

given by the Fourier transformed equations. The off-diagonal terms of (3.65) contain extra information

about the two populations, that have symmetric charges, thus symmetric couplings to the electrostatic

potential. However, if one considers the equation for the diagonal elements only, Wαα .
= Wα, and further

setting V α(q, t) = sαeφ(q, t), the real-space Wigner equation yields (no summation)

i~
∂

∂t
Wα(r,k, t) + i~K{Wα} =

∫
dq eiq·r

(
Wα
− −Wα

+

)
V α(q, t). (3.67)
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The first and last terms are identical to (2.29), for a single band α. The defining difference appears in

the kinetic term, which case of ξ(q) = ~2q2/2m, reduces to the usual convective-like derivative

Kpar{Wα} =
~k
m
·∇Wα. (3.68)

Equations (3.66) and (3.68) show defining differences, being the first nonlocal on the Wigner compo-

nents, in opposition to the second. The nonlocality of (3.66) is profoundly related to the relativistic-like

nature of the Dirac electrons, and strongly differs from the term appearing in semi-classical equations

proposed in the literature,

K{Wα} = vk ·∇Wα, (3.69)

with vk = ∂kξ(k)/~ = vFk/|k| [79]. For parabolic particles, on the contrary, the classical limit of the

Wigner equation corresponds to the Vlasov equation. However, no classical limit of (3.66) exists (i.e.

it diverges as ~ → 0), which then confers to Dirac particles a purely quantum nature. In the next

chapter, we will shown how this particularity introduces further complications in the derivation of the

hydrodynamical model.

Besides, the system of equations depicted above contains more information than one actually needs,

considering the present approximation for the potential. In fact, the mean field approximation of (3.26)

makes the off-diagonal terms of Wαγ to completely decouple from the diagonal ones, since the potential

depends on the latter, only. Explicitly, each component of (3.63) reads

[
i~

∂

∂t
−∆ξ−(q,k)

]
W 11(q,k, t) =

∫
dq′ V (q′, t)∆W 11(q,k, q′, t), (3.70)[

i~
∂

∂t
−∆ξ+(q,k)

]
W 21(q,k, t) =

∫
dq′ V (q′, t)∆W 21(q,k, q′, t), (3.71)[

i~
∂

∂t
+ ∆ξ−(q,k)

]
W 22(q,k, t) =

∫
dq′ V (q′, t)∆W 22(q,k, q′, t), (3.72)

where we defined ∆ξ±(q,k) = ξ(k + q/2) ± ξ(k − q/2). The transport equation for W 12 can be found

by complex conjugating (3.71). As previously mentioned, the potential V (q, t) above is only a function of

the density, which allows to express it with respect to the Wigner diagonal elements, viz.5:

nα(q, t) =

∫
dk Wαα(q,k, t), (3.73)

with no summation over repeated symbols6. The elements W 11 and W 22 describe the evolution of

the populations of conduction and valence electrons, respectively. Alternatively, W 12 and W 21 contain

information on inter-band interference, and correlations between the different populations. As can be

noted, these two terms evolve independently. Therefore, equations (3.70) and (3.72) form a closed

system of equations, in the mean-field approximation. This argument allows to discard (3.71) and its

complex conjugate from the calculations.

Another important aspect to mark is that W 22 is still related to the density of valence electrons (with

5If f(r) =
∫
dk g(r,k), then the same relation holds in Fourier space, i.e., f(q) =

∫
dk g(q,k).

6We will maintain this convention henceforth: whenever we write Oαα, it means the α−diagonal component of the matrix Ô.
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charge −e), and not holes (with charge +e), which turn out to be the appropriate quasi-particles involved

in the graphene kinetic processes (see Appendix D.1.3). For most of the cases, we will be interested in

the pure conducting electron case, for which equation (3.70) alone is well suited, so (3.72) can simply

be neglected. Such conditions are found in gated or n−doped graphene [80, 81], which will be treated

shortly. In these cases, the electronic dynamics is restricted to the conduction band, and the relevant

processes include intra-band transitions only, for which the valence band merely plays the role of a filled

Fermi sea. However, intrinsic (undoped) graphene exhibits an equal number of conducting electron and

holes, in thermal equilibrium. The thermal electron (n1) and hole (n2) densities can be calculated using

the Fermi-Dirac distribution function, through [82]

n1 =

+∞∫
0

dE D(E) fFD(E), (3.74)

n2 =

0∫
−∞

dE D(E)
[
1− fFD(E)

]
, (3.75)

where D(E) = 2E/π~2v2
F is the 2D density of states near the Dirac points, and fFD(E) =

(
1 +

e(E−EF )/kBT
)−1 is the Fermi-Dirac distribution function. We obtain

n1 = n2 ' (kBT )2

6h2v2
F

. (3.76)

The densities in (3.76) are only valid for intrinsic graphene, which arise in the limit of vanishingly small

doping. Notwithstanding, when the presence of holes is not negligible, i.e., when EF is of the order

of the thermal energy, its transport is introduced using a modified version of (3.70)−(3.72), along with

the corresponding change in the Poisson equation, derived and discussed in Appendix D.1.3. Here, we

simply present the final result. The complete Wigner-Poisson model for the degenerate electron-hole

system reads

[
i~

∂

∂t
−∆ξ−(q,k)

]
Wαγ(q,k, t) = e

∫
dq′ φ(q′, t) ∆Wαγ(q,k, q′, t), (3.77)

where

φ(r, t) =
e

4πε0εr

∫
dr′

n2(r′, t)− n1(r′, t)

|r − r′|
. (3.78)

Above, we redefined the Wigner matrix elements ∆Wαγ(q,k, q′, t) to include the band dependence on

the charge, as

∆Wαγ(q,k, q′, t) = sαWαγ(q − q′,k − q′/2, t)− sγWαγ(q − q′,k + q′/2, t), (3.79)

where sα = 2α− 3 is the sign of the α−th charge. The electron and hole densities remain related to the

diagonal components of the Wigner matrix via the relation (3.73), although W 22 is now representative

of the hole sector. As aforesaid, the system composed by the transport equation for W 11 and W 22

evolves independently of W 12 and W 21, as long as the mean-field solution for the potential of (3.78)
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is considered. Therefore, it remains solvable without calling for the off-diagonal terms, which can then

be discarded. However, a complete kinetic description would imply a different form of the interacting

potential, which eventually becomes a function W 12 and W 21, to capture correlations above the mean-

field density. Such a detailed description is excluded from the present work, as it plays a minimal role in

the regimes of interest, consistent with previous results [83].

3.4 Plasmonic modes in doped graphene

In order to test the Wigner-Poisson system formerly derived, let us start by considering the case a

graphene sheet doped with negative charge carriers, of density n0, which occupy the conduction band.

This is also known as n-doped graphene. Doping densities as high as 1013 cm−2 are achievable

within the current doping methods. They are essentially of two kinds: electro-doping [84–86] and

electrochemical-doping [87]. The first consists in applying a gate voltage Vg between the graphene

layer and a metal gate, akin to the graphene field effect transistors (FET) configuration [88]. The sign

of Vg determines the type of carriers (either doping electrons or holes) that accommodates in the band

structure. The other method relies on the interaction between the graphene lattice and atoms of dif-

ferent species. The charge transfer from the doping atoms to the graphene layer can occur either by

direct transfer or by substitutional doping, in which some carbon atoms are replaced by other atoms with

a different valence, that are able to donate electrons or holes to the system. However, for the substi-

tutional method to achieve high doping densities, it may lead to a significant modification of the linear

dispersion-relation. Throughout this work, either electro-doping or direct-charge-transfer are adequate

methods to produce the necessary doping.

Figure 3.4: Schematic representation of the linear dispersion (Dirac cones) near q = K in the first

Brillouin zone, with both bands touching at zero gap. For undoped graphene, at T = 0K, the Fermi level

lies exactly at the Dirac point, whereas for electron doped graphene, the Fermi level is located in the

interior of the conduction band, making it fill up to EF .
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Considering the case of n-doping, the conduction band gets filled with electrons up to the Fermi level,

EF , related to the Fermi wave-number by EF = ~vF kF . In the momentum-energy space, this is defined

by the cone E(k) = ~vF |k|Θ(kF − |k|), where Θ(x) is the Heaviside step function (see Figure 3.4). The

Fermi wave-number is related with the doping density by

kF =

√
4πn0

gsgv
, (3.80)

where gsgv accounts for the spin (gs = 2) and valley (gv = 2) degeneracy. The first results from the

degeneracy of the spin populations in each energy band, which we have neglected in our treatment

so far, and the latter should be incorporated to consistently include the two minima in the first Brillouin

zone (BZ) [89]. In n-doped graphene, and for sufficiently high doping densities, the presence of holes

is insignificant, even at non-zero temperatures. If, however, EF . kBT , some valence electrons can be

thermally excited into the conduction band, leaving holes in the valence band. On the contrary, undoped

graphene (n0 = 0) exhibits an equal number of conducting electrons and holes, in thermal equilibrium.

Let us consider the case of a pure electron system, such that the Fermi level EF is located way above

the thermal energy, i.e., EF � kBT . As such, the first component of (3.77) suffices to analyse this case,

[
i~
∂

∂t
−∆ξ−(q,k)

]
W = e

∫
dq′ φ(q′, t)

[
W (q − q′,k + q′/2, t)−W (q − q′,k − q′/2, t)

]
. (3.81)

We have dropped the indices for simplicity, W .
= W 11. The electrostatic potential reads

φ(r, t) = − e

4πε0εr

∫
dr′

n(r′, t)

|r − r′|
, (3.82)

where, again, n .
= n1 is the electron density. The Fourier transform of the above expression is calculated

in Appendix D.1, and gives

φ(q, t) = − e

2ε0εr

n(q, t)

q
. (3.83)

Equation (3.83) shows that the Coulomb potential in 2D exhibits a 1/q dependence, instead of the usual

1/q2 dependence in 3D [78]. Equation (3.81) goes to

[
i~
∂

∂t
−∆ξ−(q,k)

]
W (q,k, t) =

∫
dq′ n(q′, t) U(q′)

[
W (q−q′,k−q′/2, t)−W (q−q′,k+q′/2, t)

]
, (3.84)

where we defined

U(q) =
e2

2εrε0q
, (3.85)

We can solve last equation perturbatively, for the plasmon dispersion relation. This will lead to the

allowed frequencies ω for each mode q of the plasma wave, ω = ω(q). Therefore, we consider a small

perturbation around the equilibrium configuration, i.e., write the Wigner function as

W (r,k, t) = W0(k) + W̃ (r,k, t), (3.86)

where W0 represents the static and homogeneous background in equilibrium, and W̃ indicates a per-
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turbation around the equilibrium configuration, verifying |W0| � |W̃ |. Consistently, the density reads

n(r, t) = n0 + ñ(r, t), which are related to (3.86) by integration along k. Equation (3.84) requires the

Fourier transform of both the Wigner function and the density, which gives

W (q,k, t) = W0(k)δ(q) + W̃ (q,k, t), (3.87)

n(q, t) = n0δ(q) + ñ(q, t). (3.88)

After introducing (3.87) and (3.88) into (3.84), and separating the zero-th and the first order terms, we

find two equations. For the lowest order, we get

∆ξ−(q,k)W0(k)δ(q) + n0

∫
dq′ δ(q − q′)δ(q′) U(q′)

[
W0(k + q′/2)−W0(k − q′/2)

]
= 0. (3.89)

Using δ(q′)δ(q − q′) = δ(q)δ(q − q′), and performing the last integration, we obtain

W0(k)
[
ξ(k + q/2)− ξ(k − q/2)

]
δ(q) + n0 U(q)

[
W0(k + q/2)−W0(k − q/2)

]
δ(q) = 0 (3.90)

This equation is trivially verified using the relation δ(q − q0)f(q) = δ(q − q0)f(q0), valid for any smooth

function f . Therefore, we conclude that the lowest order contributions in (3.63) vanish. Moreover, the

first order terms yield

[
i~
∂

∂t
−∆ξ−(q,k)

]
W̃ (q,k, t) = ñ(q, t) U(q) ∆W0(k, q) + n0

∫
dq′ U(q)δ(q′)∆W̃ (q,k, q′, t), (3.91)

where the definitions below were used:

∆W0(k) = W0(k − q/2)−W0(k + q/2), (3.92)

∆W̃ (q,k, q′, t) = W̃ (q − q′,k − q′/2, t)− W̃ (q − q′,k + q′/2, t). (3.93)

Note that the last term in (3.91) vanishes, after the integration in q′. After Fourier transforming the time

coordinate, we can recast (3.91) into a more familiar form,

W̃ (q,k, ω) = ñ(q, t) U(q)
∆W0(k, q)

~ω − ξ(k + q/2) + ξ(k − q/2)
. (3.94)

After integrating both sides in k, we can recast the solution to the above equation in the form of a

dielectric function ε(q, ω), which reads

ε(q, ω) = 1− U(q)Π(q, ω), (3.95)

and the polarizability function Π(q, ω) is defined as

Π(q, ω) =

∫
dk

W0(k)−W0(k + q)

~ω + ξ(k)− ξ(k + q)
. (3.96)
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When written in this manner, the plasmon dispersion relation contained in (3.94) is found as a solution

to the equation ε(q, ω) = 0. Equation (3.95) corresponds to the well-know result of the random phase

approximation (RPA) for the polarizability [90]. RPA is valid for small values of the coupling parameter rs

(∼ ratio of average potential energy to average kinetic energy), which can be estimated as rs ∼ αs/εr,

where αs = e2/(4πε0~vF ) ≈ 2.2 is the graphene structure constant and εr is the relative permittivity. As a

result, (3.96) is reliable as long as εr & 2.2. As rs → 0, RPA becomes exact and the plasmon frequency

can be entirely calculated using the noninteracting irreducible polarizability, such that we recover (3.95).

In the scope of the present work, the same validity condition is imposed, because (3.91) only accounts

for low order excitations. Equation (3.95) could be solved, numerically, in the entire (q, ω)−plane, after

specifying the equilibrium function W0(k). However, we will find it more instructive to calculate ε(q, ω)

analytically, which can be done in the limit of small q. To do so, let us rewrite the polarizability as

Π(q, ω) =

∫
dk W0(k)

[
1

~ω + ξ(k)− ξ(k + q)
− 1

~ω + ξ(k − q)− ξ(k)

]
, (3.97)

achieved with a coordinate transformation. Then, we align q with the x−direction, such that k · q =

k q cos θ, for θ being the polar angle of k. This procedure allows us to write |k ± q| =
√
k2 + q2 ± 2kq cos θ.

With this in mind, we easily expand the fractions in (3.97) up to O
(
q4
)
, to obtain

1

~ω + ξ(k)− ξ(k + q)
− 1

~ω + ξ(k − q)− ξ(k)
' v2

F sin2 θ

~k
q2

ω2
+

2v2
F

~k
(

cos θ − cos3 θ)
q3

ω3

+
3v3
F

~k
(

cos2 θ − cos4 θ
) q4

ω4
. (3.98)

We can assume the equilibrium configuration to be given by

W0(k) = n0Θ(kF − k)/πk2
F , (3.99)

i.e., we occupy all k−states up to the region7 |k| = kF , and leave the remaining states unoccupied. This

is justified invoking the 2D Fermi model for an electron gas once, in the ultra-cold limit T → 0, we have

lim
T→0

fFD(ξk) = Θ(ξkF − ξk), where fFD(x) is the previously defined Fermi-Dirac distribution function.

In addition, it verifies
∫
dk W0(k) = n0. We stress the fact that the correct form of fFD(ξk) can be

introduced as temperature corrections to the Heaviside step function used above, but are found to be

negligible in the present case. Introducing the above results into (3.97), we get

Π(q, ω) = kF vFπ
q2

ω2
+

3v3
F kFπ

4

q4

ω4
(3.100)

Up to O
(
q2
)

terms, we obtain the plasmon dispersion relation

ω(q) = ±
(
ω2
p

q

kF
+

3

4
v2
F q

2
)1/2

, (3.101)

7This region is referred to in the literature as the Fermi sphere.
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where ωp is the characteristic plasmon frequency

ωp =

(
e2n0vF
2~ε0εr

)1/2

, (3.102)

which depends on experimental parameters εr and n0, as well as universal constants. By defining the

dimensionless variables ω′ = ω/ωp, q′ = q/kF , we can recast (3.101) as

ω′(q′) = ±
(
q′ +

3εr
8αs

q′2
)1/2

, (3.103)

The positive branch of (3.103) is depicted in Figs. 3.5 and 3.6. Each branch corresponds to a differ-

ent direction of propagation (forward and backward waves) for the longitudinal plasmonic modes. For

the typical material values of εr = 2.5 and n0 ∈ [5 × 10−6, 1] × 1012 cm−2, ωp lies in the THz-region,

ωp ∈ [0.3, 234.6] THz. The first term in the dispersion relation, ω ∝ √q, is the dominant one, being char-

acteristic of 2D electron gases [90]. The most relevant difference, when compared to the characteristic

plasmon frequency in the 3-dimensional parabolic case, ω3D
p =

√
e2n0/ε0m, is the appearance of ~ in

the leading term, revealing its pure quantum nature. Therefore, no classical counterpart exists for the

2-dimensional Dirac plasma. This result was already found in the literature [91, 92], derived within RPA.

Both methods are equivalent, but the present one is found to be more practical, leading to severely less

convoluted calculations. On the other hand, the present formulation is convenient to describe the system

out of equilibrium, and it can be used to construct hydrodynamical models, as we shall see next.

Figure 3.5: Positive solution for the plasmon dispersion relation of (3.103) (in blue), along with the Dirac

dispersion relation ω = vF q (in red), plotted for εr = 2.5.
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Figure 3.6: Plasmon dispersion relation (positive branch), for εr = 2.5 and different values of the density,
measured in units of n = 1012 cm−2. The functional dependence is of the form ω ∝ n1/4, in contrast with
that of 3D parabolic plasmons, where typically ω ∝ n1/2. The condition q � kF holds.
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Chapter 4

Hydrodynamical model

In this chapter, we use the model derived before to construct the set of hydrodynamical equations gov-

erning the charge transport in graphene. Those equations are established after taking the moments

of the Wigner equation, to include density and averaged momentum evolution, for the electron-hole

system. The linear energy dispersion introduces a peculiar modification, when compared to the more

familiar case of parabolic plasmas, being one of differences the constant Fermi velocity of charge carri-

ers, akin to the photons. Despite not having a definite mass, Dirac particles are travelling at a constant

speed, and thus the hydrodynamical formulation requires a fluid velocity field to be constructed. As such,

the relation between velocity and momentum is used to put forward an effective mass, which is not, in

general, momentum-independent. This technicality, as we shall see, makes it more convenient to start

entirely with momentum (or wave-vector), which plays the role of the relevant hydrodynamical variable,

aside with the density. As usual, when dealing with a quantum hydrodynamical model, the resolvable

length scales are restrict to the long wavelength limit, q � kF . Besides, we neglect both relativistic and

spin effects, which additionally imposes the condition ω/q � c. Such a procedure is justified as far as

magnetic effects are negligible [83], guaranteeing the invariance between both spin populations. The

classical limit of the relevant equations is obtained, retaining the most important features for the case

of interest, and a comparison with previous models is settled. In this scope, we derive the non-linear

relation between velocity and momentum, and discuss some important issues concerning the effective

mass problem [93, 94]. In the end, the first quantum terms are kept in the hydrodynamical equations,

and the corresponding quantum corrections are added to the previous plasmon dispersion relation.

4.1 Derivation of the hydrodynamical set of equations

In the previous chapter, we derived the transport equation for the Wigner matrix components,

[
i~

∂

∂t
−∆ξ−(q,k)

]
Wαγ(q,k, t) = e

∫
dq′ φ(q′, t) ∆Wαγ(q,k, q′, t). (4.1)
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One of the major advantages of kinetic equations is the possibility of calculating the moments out of

(4.1). Because we are concerned with the diagonal elements of the Wigner matrix only, let us define

Wα as being the diagonal components, i.e., Wα .
= Wαα. Similarly to the classical and quantum cases

treated in chapter 2, we define the average value of an operator Ĝ as

Gα =
1

nα(r, t)

∫
dk T {Ĝ}Wα(r,k, t) (4.2)

where T {Ĝ} denotes the Weyl transform of the operator Ĝ, defined in (2.19). Equation (4.2) is valid for

both scalar and vectorial operators, where in the vectorial case, (4.2) holds true for each component.

The cases Ĝ = 1 and Ĝ = k̂ define the relevant hydrodynamical variables

nα(r, t) =

∫
dk Wα(r,k, t), (4.3)

k
α

(r, t) =
1

nα(r, t)

∫
dk k Wα(r,k, t), (4.4)

Above, we used T {k̂} = k, which can be proved by starting with (2.19) and performing the coordinate

transformation s = r−z/2, together with the relation 〈r| k̂ |r′〉 = −i∇ δ(r−r′). In fact, a similar relation

is found in the case of Ĝ being a function of the operator k̂, i.e., T {Ĝ(k̂)} = G(k), which in its turn implies

G(k)
α

(r, t) =
1

nα(r, t)

∫
dk G(k) Wα(r,k, t), (4.5)

Since electrons and holes are massless Dirac fermions, moving at a constant velocity vF , we can define

the averaged currents j
α

as

j
α

(r, t) = nαvα, (4.6)

where vα is the averaged velocity

vα =
vF
nα

∫
dk

k

|k|
Wα(r,k, t). (4.7)

We will see that (4.7) is the correct velocity field, after identifying the classical limit of the hydrodynamical

equations.

In order to obtain the hydrodynamical equations from the kinetic model of (3.63), one must differenti-

ate (4.3) and (4.4)1 with respect to time, and replace ∂tWα(r,k, t) by
∫
dq eiq·r ∂tW

α(q,k, t), given that

(4.1) only provides time derivatives of the Wigner matrix components in the Fourier space. Then, the

1Timed nα.
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quantum continuity and momentum equations are

i~
∂

∂t
nα =

∫
dk dq eir·q ∆ξ−(q,k) Wα(q,k, t)

+ e

∫
dq dq′ eiq·r φ(q′, t)

∫
dk ∆Wαα(q,k, q′, t), (4.8)

i~
∂

∂t

(
nαk

α)
=

∫
dk dq eir·q k ∆ξ−(q,k) Wα(q,k, t)

+ e

∫
dq dq′ eiq·r φ(q′, t)

∫
dk k ∆Wαα(q,k, q′, t). (4.9)

where nα ≡ nα(r, t) and k
α ≡ kα(r, t). It is convenient to rewrite

∆Wαγ(q,k, q′, t) = −2sαe−q
′·∇q

[
sinh

(
q′

2
·∇k

)
δαγ + cosh

(
q′

2
·∇k

)
(δαγ − 1)

]
Wαγ(q,k, t), (4.10)

as well as

∆ξ−(q,k) = 2 sinh
(q

2
·∇k

)
ξ(k). (4.11)

Therefore, starting with (4.8), we get

i~
∂

∂t
nα = 2

∫
dk dq eir·q

[
sinh

(q
2
·∇k

)
ξ(k)

]
Wα(q,k, t)

− 2Qα
∫
dq dq′ eiq·r φ(q′, t) e−q

′·∇q

∫
dk sinh

(
q′

2
·∇k

)
Wα(q,k, t), (4.12)

In 2D, the differential operator sinh
(
q′

2 ·∇k
)

reads

sinh

(
q′

2
·∇k

)
=

+∞∑
n=0

2n+1∑
m=0

θnm

(q′x
2

∂

∂kx

)m(q′y
2

∂

∂ky

)2n+1−m
,

=
q′x
2

∂

∂kx
+
q′y
2

∂

∂ky
+

1

3!

(q′y
2

∂

∂ky

)3

+
1

3!

(q′x
2

∂

∂kx

)3

+

1

2!

(q′x
2

∂

∂kx

)(q′y
2

∂

∂ky

)2

+
1

2!

(q′x
2

∂

∂kx

)2(q′y
2

∂

∂ky

)
+ ... (4.13)

where θnm = 1/m!(2n+1−m)!. This expansion is useful because it allows us to simplify the second term

on r.h.s of (4.12). Giving that the remaining integrand is k−independent, the integral can be calculated

through partial integration, which yields vanishing surface contributions, i.e.

∫
dk sinh

(
q′

2
·∇k

)
Wα(q,k, t) =

=

+∞∑
n=0

2n+1∑
m=1

θnm

∫
dky

(q′y
2

∂

∂ky

)2n+1−m(q′x
2

∂

∂kx

)m−1 [
Wα(q,+∞, ky, t)−Wα(q,−∞, ky, t)

]
+

+∞∑
n=0

θn0

∫
dkx

(q′y
2

∂

∂ky

)2n [
Wα(q, kx,+∞, t)−Wα(q, kx,−∞, t)

]
= 0, (4.14)

under the assumption that the matrix elements and all order k−derivatives go to zero as ki → ±∞.
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Then, we are led to the continuity equation

i~
∂

∂t
nα(r, t) = 2

∫
dk dq eir·q

[
sinh

(q
2
·∇k

)
ξ(k)

]
Wα(q,k, t). (4.15)

We stress the fact that our continuity equation is modified by the linear dispersion relation for Dirac

particles. If compared to (2.42), for the case of parabolic plasmas, we observe a more complex structure

for the second term arising, instead of the usual form∼∇·jα. This stems from the fact that the parabolic

kinetic term is classical, i.e., it is the same as its classical version. On the contrary, the form of (4.15) is

a direct manifestation of the kinetic operator of (3.66), which is not quadratic in k, and has no classical

counterpart. The quantum nature of (3.66) explicitly modifies the continuity equation (for which we leave

a more convenient treatment to the next chapter). Now, we turn our attention to the averaged momentum

equation in (4.9). Following a similar procedure, we found

i~
∂

∂t

(
nαk

α)
= 2

∫
dk dq eir·q k

[
sinh

(q
2
·∇k

)
ξ(k)

]
Wα(q,k, t)

− 2Qα
∫
dq dq′ eiq·r φ(q′, t) e−q

′·∇q

∫
dk k sinh

(
q′

2
·∇k

)
Wα(q,k, t). (4.16)

The second term on the r.h.s. can be simplified. To do that, we use (4.13) to perform the k−integration.

However, because of the extra k−factor inside the integral, some of the terms in the expansion yield

non-zero contributions, apart from the vanishing surface terms. Given that the remaining integrand is

linear in k, the non-zero contributions come from the first two derivatives in (4.13). Hence,

∫
dk k sinh

(
q′

2
·∇k

)
Wα(q,k, t) =− q

′

2

∫
dk Wα(q,k, t) + ((((

(((surface terms,

=− q
′

2
nα(q, t)

=− q
′

2

∫
dr′

(2π)2
e−iq·r

′
nα(r′, t). (4.17)

Inserting the above result into the second term on the r.h.s. of (4.16), we finally have

Qα
∫
dq dq′

dr′

(2π)2
q′ eiq·r φ(q′, t) e−q

′·∇q e−iq·r
′
nα(r′, t),

= Qα
∫
dq dq′

dr′

(2π)2
q′ eiq·r φ(q′, t) eiq

′·r′ e−iq·r
′
nα(r′, t),

= Qα
∫
dr′ dq′ q′ δ(r − r′) φ(q′, t) eiq

′·r′ nα(r′, t),

= −iQαnα(r, t)∇φ(r, t). (4.18)

In the first step, we used e−q
′·∇q e−iq·r

′
= eiq

′·r′ e−iq·r
′
, while in the last q′ eiq

′·r = −i∇ eiq
′·r. In terms

of the average momentum pα = ~kα, equation (4.16) becomes

∂

∂t
(nαpα) = −2i

∫
dk dq eir·q p

[
sinh

(q
2
·∇k

)
ξ(k)

]
Wα(q,k, t)−Qαnα∇φ. (4.19)
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When compared to the momentum equation for parabolic particles in (2.43), the above equation intro-

duces a new term, which is interpreted as a quantum pressure. We examine it in more detail next.

4.2 Classical and semi-classical limits

In order to clarify the meaning of some of the terms in (4.15) and (4.29), it is instructive to obtain the

classical limit ~ → 0, which can be done by replacing k with p/~ and neglecting O(~) terms. The semi-

classical limits are derived by keeping higher orders of ~. By Taylor expanding the sinh operator in (4.15),

we have

∂

∂t
nα(r, t) = −2i

∫
dq dk eiq·r Wα(q,k, t)

+∞∑
n=0

~2n

(2n+ 1)!

(q
2
·∇p

)2n+1

ξ(p) , (4.20)

The same holds for (4.29)

∂

∂t
nα(r, t)pα(r, t) =− 2i

∫
dq dk eiq·r pWα(q,k, t)

+∞∑
n=0

~2n

(2n+ 1)!

(q
2
·∇p

)2n+1

ξ(p)

−Qαnα(r, t)∇φ(r, t). (4.21)

These expressions allow for the classical and semi-classical limits to be readly evaluated, by keeping

the orders of ~ to our desire. Separating the sum into the classical (~−independent) and quantum

(~−dependent) terms, it yields

∂

∂t
nα +∇ · jα = ~

∫
dk N{Wα}, (4.22)

∂

∂t
(nαpα) +∇Pα +Qαnα∇φ = ~

∫
dk p N{Wα}, (4.23)

where j
α

are the density currents defined in (4.6) and Pα is the pressure tensor2

Pα(r, t) = vF

∫
dk

1

|p|

 p2
x pxpy

pypx p2
y

Wα(r,k, t). (4.24)

The kernel N{Wα} represents the quantum corrections to the classical hydrodynamical equations,

which depend on the particular configuration of the system

N{Wα
}

=

+∞∑
n=1

2~2n−1

(2n+ 1)! i

∫
dq eiq·r Wα(q,k, t)

(q
2
·∇p

)2n+1

ξ(p). (4.25)

Note that, in the case of parabolic dispersion relation, ξ(p) = p2/2m, N vanishes. However, in the

massless case, all order derivatives of ξ(p) exist. Contrary to the parabolic case, for which the pressure
2The latin indices are spatial indices, which run over the spatial components x and y. This notation is used henceforth. The

term ∇Pα is a vector, with the i−th component being given by (
∑
j)∂Pαij/∂xj . It can be interpret as the action of a row vector

on a matrix, yielding a column vector. Einstein’s convention is also applied, so the summation symbol is discarded.
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was the correlation function between velocity components, we conclude that, in the 2-dimensional case

of Dirac particles, it is modified to be the average value of the product of one momentum component

and one velocity coordinate. In other words, we have

Pαij(r, t) = nαpivj
α . (4.26)

The classical limit applied to equations (4.22)−(4.23) is thus established by neglecting the quantum

corrections N . Therefore, setting the r.h.s. of both equations to zero, it is possible to rewrite the momen-

tum equation, like in the parabolic case. To do that, we define the fluctuations around the equilibrium

configuration of function g(k) as

δgα = g − gα. (4.27)

Notice that the fluctuations hold a dependence on the band index since the average value may be

different when calculated with each one of the diagonal components of the Wigner matrix. An immediate

consequence of the definition (4.27) is δgα = 0. Using this property, the pressure tensor can be rewritten

as

Pαij(r, t) = nαpi
αvj

α + nαδpαi δv
α
j

α
. (4.28)

Replacing (4.28) into (4.23) with N = 0, we get

nα
( ∂
∂t

+ vα ·∇
)
pα = −∇Pα −Qαnα∇φ, (4.29)

where vα is the velocity field in (4.7) and Pα is the dynamical pressure tensor

Pαij(r, t) = nα
(
pivj

α − piαvjα
)
. (4.30)

Up to this point, we have just considered the density and averaged momentum as hydrodynamical

variables. Higher order variables could be defined, being the averaged energy density nαξ
α

the next

in the chain, for which new transport equations would be settled, coupling the new to the previous

variables. However, within the current scope, equations (4.22) and (4.23) suffice to describe the system

accurately, as they form a closed set, thus higher order equations in the hydrodynamical hierarchy will

be discarded. To go beyond the classical limit, we can include a quantum correction in the above

equations, by considering the first term of N{Wα}, which leads to the semi-classical hydrodynamical

model. Therefore, neglecting O
(
~2
)

terms in (4.25) we obtain, after straightforward algebra

N{Wα
}
' ~

24

[
∂3

∂x3

(
JxxxW

α
)

+
∂3

∂y3

(
JyyyW

α
)

+ 3
∂2

∂x2

∂

∂y

(
JxxyW

α
)

+ 3
∂

∂x

∂2

∂y2

(
JyyxW

α
)]
, (4.31)

where Wα ≡Wα(r,k, t) and Jijl is a new dispersive tensor, defined as

Jijl = vF

(
3pipjpl

|p|5
− δijpl + δjlpi + δlipj

|p|3

)
. (4.32)
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As mentioned before, N is x− y symmetric. Equations (4.22)−(4.23) then read

∂

∂t
nα +∇ · jα =

~2

24

[
∂3

∂x3

(
nαJxxx

α
)

+
∂3

∂y3

(
nαJyyy

α
)

+ 3
∂2

∂x2

∂

∂y

(
nαJxxy

α
)

+ 3
∂2

∂y2

∂

∂x

(
nαJyyx

α
)]

+O(~4), (4.33)

∂

∂t
(nαpα) +∇Pα +Qαnα∇φ =

~2

24

[
∂3

∂x3

(
nαT xxx

α
)

+
∂3

∂y3

(
nαT yyy

α
)

+ 3
∂2

∂x2

∂

∂y

(
nαT xxy

α
)

+ 3
∂2

∂y2

∂

∂x

(
nαT yyx

α
)]

+O(~4), (4.34)

and T ijl = pJijl, whose components we denote by T ijl = (T xijl, T
y
ijl) = (pxJijl, pyJijl). The inclusion

of the tensors Jijl and T ijl makes our model much harder to solve, as we now need a closure equation

relating the average values of the tensors Jijl and T ijl with the previous hydrodynamical variables nα

and pα, which in turn requires knowledge of the diagonal components Wα. This problem is overcome

with the help of a generic ansatz for the Wigner function, valid in the ultra-cold limit T → 0, which will

provide a closure relation for the first quantum corrections in the hydrodynamical equations. Before that,

it is crucial to relate the fluid velocity to the fluid momentum, v and p, which is the subject of the next

chapter.

4.3 Mass transport

Having set the relevant transport equations, we shall move now to a more detailed discussion concerning

the fluid momentum and velocity fields. In Ref. [33], an equation similar to (4.29) has been proposed

to model a ballistic transport regime in graphene. In that work, a continuity and momentum equation

were established, from a Boltzmann model for the classical distribution function. The authors discussed

the validity limit of the proportionality relation, and used p1 =Mv1, whereM is the Drude mass,M =

~kF /vF . Furthermore, a modified Fermi wave-vector kF (r, t) =
√
πn(r, t) was used to define the local

Drude mass viaM(r, t) = ~kF (r, t)/vF , so that the constant of proportionality between momentum and

velocity becomes density dependent (and thus, implicitly spatial and time dependent). Any dependence

on momentum was neglected.

To star this discussion in the scope of the present work, let us also consider the pure conducting

electron system in (4.29), and restrict ourselves to one-dimensional motion, say, in the x direction. Note

that there is, in principle, no loss of generality with this choice, given that no term was included that

explicitly breaks the original conical symmetry. We also drop the band index, to condense notation.

Equation (4.29) becomes (
∂

∂t
+ vx

∂

∂x

)
px = − 1

n

∂P
∂x

+ Fx. (4.35)

where Fx = e∂φ/∂x is the force acting on the carriers and P .
= P1

xx. On the other hand, the force
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equation of Ref. [33] reads (
∂

∂t
+

1

2
vx

∂

∂x

)
vx = − 1

Mn

∂P
∂x

+
1

M
Fx, (4.36)

which is different from (4.35). With the present formalism, we found p to be the good hydrodynamical

variable to proceed; on the contrary, the procedure in Ref. [33] is applied to the classical velocity

field instead, which justifies the main differences between (4.35) and (4.36). Additionally, the linear

relation p =M(n)v was proposed to link p to v, which is not generically valid for massless carriers [93].

Such fact is clearly supported by the present results, and should be evident after examining (4.4) and

(4.7). Accordingly, in Ref. [94], it is pointed out that the mass content of the continuity and momentum

equations is different, such that two quantities n(r, t) and ρ(r, t) naturally arise, respectively, in those

two equations, denoting the density and mass density. Moreover, the (hydrodynamical) local mass

m(r, t) = ρ(r, t)/n(r, t) is, in its turn, not constant. The present results of (4.22) and (4.23) can be

interpreted in the same manner, by defining the local mass m(x, t), using

m(x, t) =
px(x, t)

vx(x, t)
, (4.37)

which is also not a constant, as we shall see next.

In equilibrium, i.e., using (3.99), we find that

m = ΓM, (4.38)

where Γ = 2/3 is a numerical factor. This result remains valid whenever the distribution admits the

separable form W (r,k, t) = w(r, t)W0(k). However, for a generic solution, we indeed obtain a space

and time dependent mass. Recalling the generic 2D model, the mass must be introduced with a tensorial

form mij , which linearly relates two vectorial fields p and v, as

mij(r, t) =
pi
vi
δij ,

=
~
vF

∫
dk ki W (r,k, t)∫

dk ki W (r,k, t)/|k|
δij , (4.39)

The meaning of such fields should be clear: despite the charge carriers have no mass, the fluid velocity

and momentum fields can be used to construct a fictitious mass, motivated by the usual parabolic case.

Nevertheless, the value of the mass at each point in space and time does not correspond to the actual

mass of carriers, but rather to what would the mass be if the two fields were indeed proportional to each

other. It should, thus, be interpreted as a mathematical trick to provide more handy equations. Moreover,

the tensorial structure for the mass should be included to contemplate the most generic case, for which

the rotational symmetry in real space can be broken. Additionally, the mass density ρ becomes a tensor,

ρij(r, t) = mij(r, t)n(r, t) Nonetheless, up to this point, no rotational-symmetry breaking terms have
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been included, and mij should, thus, become proportional to the identity matrix, mij(r, t) = m(r, t)δij

and ρij(r, t) = ρ(r, t)δij . Under such conditions, making ~ = 0 in (4.22)−(4.23) leads to

∂n

∂t
+
∂(nvj)

∂xj
= 0, (4.40)

∂(ρvi)

∂t
+
∂Pij
∂xj

− en ∂φ
∂xi

= 0, (4.41)

thus recovering the results of [94] for the classical limit.

Moving forward, we aim at getting some insight on the hydrodynamic mass term, given in (4.39),

which provides a closure relation between velocity and momentum. This tasks ultimately boils down to

finding the correct form for the Wigner function. To avoid calculating the complete solution of (3.77), we

follow the philosophy presented in Ref. [95], where, based on the incompressibility of the phase fluid, a

shifted Fermi-Dirac distribution function has been proposed to describe the equilibrium. It is of the form

W (r,k, t) =
n0

πk2
F

Θ

(
kF − n0

∣∣∣∣k − k(r, t)

n(r, t)

∣∣∣∣) , (4.42)

where n and k = (kx, ky) are the electron density and average wave-vector, respectively. This particular

function guarantees equations (4.3) and (4.4) to be satisfied. For simplicity, we also strict the motion to

be along the x−axis, and set ky(r, t) = 0. Introducing (4.42) into the x−component of (4.7), yields

vx(r, t) =
vF

πkFn′(r, t)

+∞∫
−∞

dky

+∞∫
−∞

dkx
kx√
k2
x + k2

y

Θ

kF −
√[

kx − kx(r, t)
]2

n′(r, t)2
− k2

y

 , (4.43)

where n′(r, t) = n(r, t)/n0. The Heaviside step function defines the region of integration to lie inside an

ellipse centred in (kx, 0). Explicitly, we can derive the following result for a general function g(r,k, t)

∫
dk g(r,k, t) Θ

kF −
√[

kx − kx(r, t)
]2

n′(r, t)2
− k2

y

 =

+kF∫
−kF

dky

k+∫
k−

dkx g(r,k, t) (4.44)

where

k±(r, ky, t) = kx(r, t)± n′(r, t)
√
k2
F − k2

y. (4.45)

Using this property to perform the integral in (4.39) along kx and defining dimensionaless variables

k′± = k±/kF , k
′
x = kx/kF , k′y = ky/kF , it leads to

vx =
vF
πn′

+1∫
−1

dk′y
4n′ k

′
x

√
1− k′y

2√
k′−

2 + k′y
2 +

√
k′+

2 + k′y
2
. (4.46)

This relation can be evaluated numerically, and the result is depicted in Fig. 4.2. It is, however, instructive

to obtain analytic expressions for certain limits of interest. We start by recasting the above equation into
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the familiar form

vx(r, t) =
px(r, t)

m(r, t)
, (4.47)

where m(r, t) = Mγ(r, t) and γ(r, t) is a Lorentz-like factor, which depends on the position and time

merely through the hydrodynamical variables n(r, t) and px(r, t) = ~ kx(r, t), as

γ−1(n, px) =
8

π

1∫
0

dy

√
1− y2√

f+ +
√
f−

, (4.48)

where

f± =
(
p′ ± n′

√
1− y2

)2

+ y2. (4.49)

Although the integral of (4.48) has no analytic solution, it reduces to simple expressions, in the limiting

cases of small and large average momentum. We can verify that (∂γ/∂px)px=0 = 0, thus in the limit of

small fluid momentum px/pF � 1, γ becomes momentum independent

γ(n) ' π

4

1− n2/n2
0

K1(1− n2/n2
0)−K2(1− n2/n2

0)
, (4.50)

where K1(x) =
∫ π/2

0
dθ (1 − x2 sin2 θ)−1/2 and K2(x) =

∫ π/2
0

dθ (1 − x2 sin2 θ)1/2 are the complete

elliptic integrals of the first and second kind. Accordingly, the quantities px and vx become proportional

to each other, ensuring a relation of the form px = m(n)vx. However, only for the case n = n0 the

mass converges to the Drude mass, i.e., the asymptotic expression of (4.50) verifies γ(n0) = 1. For

general out-of-equilibrium conditions with small averaged momentum, we have m(n) = γ(n)M, with

γ(n) depicted in Fig. 4.1.

Figure 4.1: Graphical representation of equation (4.50), where γ is the (dimensionless) Lorentz factor,

evaluated in the limit px/pF � 1. γ is independent of px, and depends only on the electron density, with

asymptotic behaviour γ(n′) ∼ πn′/4n for n′ � 1; γ(n′) =
√
n′ (dashed red).
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In Fig. 4.1, we also plot the commonly adopted expression γ(n′) =
√
n′, for comparison. This form of γ

leads to the effective mass

m(n′) =M
√
n′, (4.51)

which is based on the local approximation for the Fermi wave-vector, kF =
√
πn0 →

√
πn(r, t) [2, 93, 94].

Equation (4.50) results in significant changes, when compared to the latter, with a functional dependence

on n which strongly differs from proposed
√
n behaviour, specially in the case of n′ � 1.

Conversely, for the limiting case of px/pF � 1 we find

γ ' |px|
vFM

, (4.52)

which implies vx ' vF sign(px), where sign(x) returns the sign of x. Then, for large fluid momentum, the

fluid velocity approaches the Fermi velocity, never overcoming it, and becomes independent of the den-

sity and absolute value of px, retaining only the momentum sign. In Fig. 4.2, we can see how changes on

the density affect this relation. For increasing values of the density, the linear region becomes larger. On

the contrary, for vanishingly small density, the relation is rapidly non-linear with increasing px. Therefore,

in low-density systems, knowledge of the equilibrium Wigner function is mandatory to reveal the relation

between fluid momentum and velocity. In the generic 2D case, a relation of the form v = p/m(r, t) is

expected, as in the case of relativistic dynamics. Without loss of generality, we must be able to arrive at a

vectorial relation by starting from our one-dimensional simplification, as the symmetry between different

directions still holds3. In that case, the form of m(r, t) is still given byMγ(r, t), where γ is that of (4.48).

Explicitly, γ only depends on the hydrodynamical variables n and p, thus holding an implicit spatial and

time dependence, once n = n(r, t) and p = p(r, t). The relation between velocity and momentum is,

thus, highly non-linear, as indicated in Fig. 4.1. We stress the fact that the expression of (4.48) is indi-

cated to describe the transport of Dirac particles, as it encloses the correct relation from the low to the

high density and momentum regimes. As such, the inclusion of (4.48) in the hydrodynamical model will

certainly contribute towards a more rigours description.

To finalise, we should also comment on the particular choice of (4.42). As mentioned in [95], the

incompressibility of the phase-space fluid, in a quantum picture, is violated by phenomena like tunneling,

which would lead to a change in the amplitude of W , along a particle trajectory. Such behaviour is

clearly not casted by (4.42). Nevertheless, (4.42) is correct to first order, and gets more accurate as

the temperature decreases. Since graphene effective Fermi temperature, TF = EF /kB , is very high

(∼ 1300K for n0 ∼ 1012cm−2), then the present low-temperature approximation should be valid for room

temperature conditions.

3This would not be so if a preferred direction was chosen, e.g., by applying an external electric or magnetic field in the x − y
plane.
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Figure 4.2: Graphical representation of (4.46). Near the origin, we find a linear relation between both

variables, while for large momentum, the velocity converges, in absolute value, to the Fermi velocity,

becoming only a function of the sign of px.

4.4 Hydrodynamical plasmon dispersion relation

We now turn our attention to the quantum corrections present in the hydrodynamical equations. Up to

O
(
~4
)
, we saw that the continuity and averaged momentum equations acquire contributions described

by the tensors Jijl and T ijl, which can be interpreted as new pressure-like tensors, arising from the

linear single-particle dispersion. Remember that, in the case of parabolic systems, those corrections

were absent, which makes the models easier to solve.

The ansatz of (4.42) allows to evaluate the expectation value of the tensors Jijl, T ijl and Pαij as a

function of the hydrodynamical variables nα and pα. First, let us simplify the calculations by restricting,

yet again, the variations to the x−direction, and drop the band index, to keep notation compact. We are

led to
∂

∂t
n+

∂

∂x
(nvx) =

~2

24

∂3

∂x3

(
nJxxx

)
, (4.53)

∂

∂t
(npx) +

∂

∂x
Pxx +Qn ∂

∂x
φ =

~2

24

∂3

∂x3

(
nT xxxx

)
, (4.54)

together with the closure relation found in the previous chapter

px = γMvx. (4.55)

We recall the explicit form of the relevant tensorial components we aim to calculate

Jxxx =
3vF
n~2

∫
dk

(
k2
x

k
− 1

)
kx
k3

W (r,k, t), (4.56)
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T xxxx =
3vF
n~2

∫
dk

(
k2
x

k
− 1

)
k2
x

k3
W (r,k, t), (4.57)

Pxx = ~vF
∫
dk

k2
x

k
W (r,k, t), (4.58)

where k =
√
k2
x + k2

y. Using (4.42) and the relation of (4.44), (4.56) gives

Jxxx =
vFn0

πp2
Fn

kF∫
−kF

dky k
2
y

[
1

(k2
+ + k2

y)1/2
− 1

(k2
− + k2

y)1/2

]
, (4.59)

where we performed the integration over kx. Doing the same for (4.57) and (4.58), it yields

T xxxx =
~vFn0

πp2
Fn

kF∫
−kF

dky

[
k3
−

(k2
− + k2

y)3/2
−

k3
+

(k2
+ + k2

y)1/2

]
, (4.60)

Pxx =
~vFn0

2πk2
F

kF∫
−kF

dky

[
k+(k2

+ + k2
y)1/2 − k−(k2

− + k2
y)1/2 − k2

y log

(
k+(k2

− + k2
y)1/2

k−(k2
+ + k2

y)1/2

)]
. (4.61)

The integrands admit no analytic primitive. Nevertheless, we will be ultimately interested in solving the

linearised versions of (4.53)−(4.54), which is valid for small amplitude fluctiations. Therefore, we shall

rewrite the fluid momentum as

px(x, t) = px,0 + p̃x(x, t), (4.62)

where px,0 is the background value and p̃x is a first-order correction, verifying
∣∣p̃x∣∣/pF � 1. For the

equilibrium configuration, we expect to have px,0 = 0, such that only the first order term contributes.

Expanding (4.59)−(4.64) and neglecting O
(
p̃

2
x/p

2
F

)
terms, it leads to

Jxxx '
4vF
πp3

F

n0/n

(n2/n2
0 − 1)2

[
2K1

(
1− n2

0

n2

)
−
(

1 +
n2

n2
0

)
K2

(
1− n2

0

n2

)]
p̃x, (4.63)

T xxxx '
4vF
πpF

n/n0

(n2/n2
0 − 1)2

[
2K1

(
1− n2

0

n2

)
−
(

1 +
n2

n2
0

)
K2

(
1− n2

0

n2

)]
, (4.64)

Pxx '
4pF vFn0

3π

1

n2/n2
0 − 1

[
n4

n4
0

K2

(
1− n2

0

n2

)
− n2

n2
0

K1

(
1− n2

0

n2

)]
, (4.65)

The linearised T xxxx and Pxx are momentum independent, given that changes in p̃x only contribute

quadratically, which we neglect. For small fluctuations, the pressure is only density-dependent, as usual.

In its turn, the linearised Jxxx is proportional to p̃x. Provided the relations (4.63)−(4.65), the system of

equations (4.53)−(4.55) is formally closed, with the three equations involving three variables, n, px and

vx. An additional linearisation with respect to the density is necessary, so we rewrite

n(x, t) = n0 + ñ(x, t), (4.66)
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with |ñ|/n0 � 1. Up to first order in momentum, we have

vx =
px

γ(n)M
(4.67)

where γ(n) is given by (4.50). Therefore, after applying the expansion in (4.66) and keeping only O(ñ)

terms, we find

vx '
px
M

(
1− 3

4

ñ

n0

)
. (4.68)

Above, we used the following properties for the elliptical integrals:

dK1(x)

dx
=
K2(x)− (1− x)K1(x)

2x(1− x)
, (4.69)

dK2(x)

dx
=
K2(x)−K1(x)

2x
, (4.70)

Ki(0) =
π

2
. (4.71)

Those properties can also be used to linearise (4.63)−(4.65), with respect to the density, which yields

Jxxx ' −
3vF
4p3
F

p̃x, (4.72)

T xxxx '
3vF
pF

(
1

4
− 1

8

ñ

n0

)
, (4.73)

Pxx ' pF vFn0

(
1

3
+

3

4

ñ

n0

)
. (4.74)

Finally, using (4.62), (4.66), (4.68) and (4.72)−(4.74) into the hydrodynamical equations of (4.53)−(4.54),

and neglecting second order terms, leads to the linearised hydrodynamical model

∂

∂t
ñ+

∂

∂x

(
n0
p̃x
M

)
= −~2

24

∂3

∂x3

(
n0

3vF
4p3
F

p̃x

)
, (4.75)

∂

∂t
(n0p̃x) +

∂

∂x

(3

4
pF vF ñ

)
+Qn0

∂

∂x
φ̃ =

~2

24

∂3

∂x3

(3vF
8pF

ñ
)
, (4.76)

where φ̃(r, t) is the first order electrostatic potential with respect to the perturbed density

φ̃(r, t) =
Q

4πε0εr

∫
dr′

ñ(x, t)

|r − r′|
. (4.77)

By Fourier transforming the linearised equations in both position and time, we are led to

− iω ñ(q, ω) + iqn0
p̃x(q, ω)

M
= i~2q3n0

vF
32p3

F

p̃x(q, ω), (4.78)

− iωn0 p̃x(q, ω) + iqx
3

4
pF vF ñ(q, ω) + iqQn0 φ̃(q, ω) = −i~2q3 vF

64pF
ñ(q, ω). (4.79)

where we relabelled qx as q, because of rotational invariance. Using φ̃(q, ω) = Qñ(q, ω)/2ε0εrq (see

Appendix D.1) andQ = −|e| we can solve the system (4.78)−(4.79), which gives the plasmon dispersion
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relation

ω(q) = ±

(
ω2
p

q

kF
+

3

4
v2
F q

2 −
ω2
p

32

q3

k3
F

+ ν
~2q4

4M2

)1/2

. (4.80)

where ν = −1/32 results from the contributions of both Jxxx and T xxxx. The ± sign refers to each

plasmon branch for forward and backward propagation. The two first terms are the classical contributions

to the plasmon dispersion, in agreement with the result already found in (3.101), while the third term

corresponds to a classical (~ independent) correction. The quantum correction (∼ ~2) is contained in the

last term, which represents the Bohm term. It is of the same form as the one proportional to q4, found in

(2.37) for longitudinal plasma oscillations, despite being multiplied by a negative factor ν. This difference

should be attributed to the linear dispersion relation of the Dirac electrons, which reduces the energy of

those longitudinal modes. Since the absolute value of ν is rather small, such correction only becomes

important for intermediate wave-number values, as can be seen in Fig. 4.3.

To summarise, the first quantum corrections have been obtained for the plasmonic dispersion relation

in graphene, which, to the best of our knowledge, had not been given anywhere else. These came after

the inclusion of the novel quantum corrections N , given in (4.25), which we naturally found from our

ab-initio kinetic formulation. In the parabolic case, ξ(p) = p2/2m, described in chapter 2.3, N vanished,

owning to the parabolic dependence of the kinetic energy on the momentum coordinate. In fact, even

with a full quantum treatment in terms of the Wigner function, the kinetic term of parabolic particles

remains identical to its classical counterpart, which in turn adds no corrections to the hydrodynamical

equations, when compared to their classical versions. Nevertheless, for a kinetic term of the form ξ(p) =

vF |p|, infinite number of terms appeared, in powers of ~, and the lowest orders were included. These

contributions allowed to derive a corrected expression for the plasmonic dispersion relation, such that a

Bohm-like term ∼ ~2q4/4M2 was found. Moreover, we also showed how a non-linear relation between

velocity and momentum can be settled, starting from the kinetic equation.

Figure 4.3: Positive branch of the semi-classical plasmon dispersion relation in (4.80) (orange dashed),

together with its classical counterpart, given by (3.101) (blue), with εr = 2.5.
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Chapter 5

Streaming instability

Under certain conditions, both damping and growth (instability) of plasma waves may occur, whenever

the dispersion relation renders an imaginary part for the frequency. Considering the case of a single

q−mode, the density excitation (or plasmon) reads1

ñ(r, t) = ñ(q) ei[q·r−ω(q)t]. (5.1)

Writing2 ω(q) = ωr(q) + iωi(q), we indeed find the condition ωi(q) < 0 to correspond to a decay of

the amplitude in time (or damping), whereas for ωi(q) > 0, the mode amplitude will grow, leading to an

instability. We also define the phase and group velocity vp and vg by

vp =
ω(q)

q
, (5.2)

vg =∇q ω(q). (5.3)

The first is related with the rate at which a given phase of the wave travels in a given medium, while

the second, in its turn, denotes the velocity of the overall envelope shape that encloses the amplitude

modulations. Both are a function of q, and are independent quantities, for generic dispersion relations.

While damping is generally unwanted in graphene-based devices, instabilities can be used in our

favour, such as in the construction of THz radiation emitters. Therefore, in this chapter, we go back to the

kinetic equations developed in chapter 3, and look for possible regimes of plasmonic instabilities, using a

specific configuration consisting in two parallel graphene sheets separated by a distance d (see Fig. 5.1).

In one of the layers (also called the active layer), a beam of electrons is injected by applying a potential

difference to its edges. The drifting current that is formed, against the steady background electronic

system, provides a mechanism of instability that is similar to that of two stream instability, extensively

1The symbol ∼ denotes, as before, the fluctuations of the density relatively to its equilibrium value n0, ñ = n− n0.
2Notice that we should regard q as a discrete value, chosen from the first Brillouin zone, i.e., qn = 2π(nx, ny)/A, where A

is the 2D area and n is a vector whose components span the set of natural values [1,
√
N ], N is the number of lattice points.

Therefore, rigorously speaking, q−integrations should be understood as summations over the first Brillouin zone. However, in the
limit of large surface areas, the wave-vector spacing becomes negligible, and we eventually replace it by a continuous variable.
Additionally, summations may be replaced by integrals, which are much easier to perform, in accordance with what we have been
doing in previous chapters, 1

A

∑
q →

∫
dq.
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studied in the context of parabolic [96, 97] and solid-state plasmas [98–100]. Two-stream instability

can be understood as the opposite effect of damping, which relies on wave-particle interaction. While

a plasma density wave can transfer momentum to individual charged particles, leading to a decrease

in amplitude of the corresponding mode, the reverse can also happen, provided that enough individual

particles populate a specific mode. Such conditions holds for a beam of energetic particles travelling

through the plasma.

Recently, the case of current injection in doped graphene was also considered [32, 101], and indeed

a similar type of instability has been described. In those works, the equilibrium configuration for the

injected beam has the form W0(k) = nbδ(k − kb), which peaks at some constant wave-vector kb. In

the long wavelength limit, it was found that the polarizability becomes proportional to sin2 θb, where θb is

the angle between the plasmon wave-vector q and the beam wave-vector kb, thus vanishing for parallel

injection. This result is rather counterintuitive, as one would expect an enhanced instability for such

configuration. However, this result boils down to the Dirac nature of charge carriers in graphene.

In this chapter, we investigate two-stream instability in the Coulomb drag configuration (see Fig. 5.1).

We consider d to be such to avoid tunneling between the different layers. Thus, we must ensure that

d � dc, where dc is the carbon-carbon distance in graphene, dc ≈ 0.15 nm. In one of the layers (active

layer), a beam of electrons is injected, leaving the other (passive layer) with zero average current. These

conditions shall mimic that of two stream instability in conventional parabolic systems, for which one or

more unstable solutions are expected. Because of the linear dispersion relation, it is possible to excite

large drift velocities in the active layer, without needing to use large voltages. For this reason, graphene

Dirac spectrum is ideal for unstable regimes of this kind. On the other hand, high voltages lead to

undesired electron/hole inelastic scattering, which entails the suppression of instabilities.

Figure 5.1: Schematic representation of the Coulomb drag configuration, composed by two parallel

graphene sheets lying in the x − y plane, separated by a distance d along the z−axis. The top and

bottom layers are known as the active and passive layers, respectively. The active layer is subjected to

an external static voltage, such that a drift current is formed. The injected electrons have energy E = eU ,

which gives an average wave-number kb = eU/~vF to the beam. The effective relative permittivity of the

system is ε = (εin + εout)/2. a) Perspective view; b) Front view.
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5.1 Kinetic description of the Coulomb drag instability

Unstable plasmon modes may exhibit arbitrarily large values of ωi(q), even surpassing the correspond-

ing real part ωr(q). This particularity unables the treatment of the imaginary part of the frequency as

a perturbation, which is common approach in the derivation of the well-known result in linear response

theory

ωi(q) ' −

εi(q, ωr) [∂εr(q, ω)

∂ω

]−1

ω=ωr(q)

, (5.4)

relating the imaginary part of the frequency with the real and imaginary parts of the dielectric function,

ε(q, ω) = εr(q, ω) + iεi(q, ω). This formula is extensively used to describe damping of plasma waves.

Notwithstanding, in the present case, we need to regard the full model derived in chapter 3, which

comprises the transport equation for the Wigner matrix components

[
i~

∂

∂t
−∆ξ−(q,k)

]
Wαγ(q,k, t) = e

∫
dq′ φ(q′, t) ∆Wαγ(q,k, q′, t). (5.5)

together with the Poisson equation. As formulated in chapter 3, we consider the pure electron system,

valid for EF � kBT , and for which only the (αγ) = (11) component of the above equations is relevant.

We shall drop the band index, as before, by defining W 11 .
= W and n1

.
= n. To describe the configuration

shown in Fig. 5.1, let us denote the Wigner function for the active and passive layers as W↑ and W↓,

respectively. Due to the long range nature of the Coulomb interaction, the electrostatic potential φ(q, t)

in (5.5) must be modified to include the mean-field effect of both layers. Thus, the potential at each layer

reads

− eφτ (r, t) =
e2

4πε0εr

∫
dr′

(
nτ (r′, t)

|r − r′|
+

nτ (r′, t)

|r − r′ + dẑ|

)
, (5.6)

where τ = {↑, ↓} denote the active and passive layers, respectively, ẑ is the unit vector pointing in the

z−direction, and τ indicates the layers complementary to τ . Equation (5.6) corresponds to the mean-

field approximation for the potential, Vτ = −eφτ . The densities are connected to each Wigner function

by the usual relation nτ =
∫
dk Wτ . Fourier transforming (5.6) leads to (see Appendix D.1)

− eφτ (q, t) = U(q)
[
nτ (q, t) + nτ (q, t)e−qd

]
, (5.7)

where d is the inter-layer distance. Moreover, we assume that the out of equilibrium configuration is

described by adding a small contribution to the equilibrium Wigner function. In its turn, the equilibrium

will be different depending on the layer, due to the asymmetric conditions. Expanding each Wigner

function as Wτ (r,k, t) = Wτ0(k) + W̃τ (r,k, t) and introducing it into (5.5), it can be shown, following a

similar procedure to the one described in 3.4, that the first order quantity W̃ (q,k, ω) evolves according

to

~ωW̃τ (q,k, ω) =
[
ξ(k + q/2)− ξ(k − q/2)

]
W̃τ (q,k, ω) + U(q)

[
ñτ (q, ω) + ñτ (q, ω)e−qd

]
∆Wτ0, (5.8)
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where ∆Wτ0(q,k) = Wτ0(k − q/2) − Wτ0(k + q/2) and ñτ =
∫
dk W̃τ . Above, we have neglected

second order quantities. Further manipulation of (5.8) yields

nτ (q, ω) = U(q)
[
nτ (q, ω) + nτ (q, ω)e−qd

]
Πτ (q, ω), (5.9)

where the polarizability function Πτ (q, ω) has the usual form

Πτ (q, ω) =

∫
dk

∆Wτ0(q,k)

~ω + ξ(k − q/2)− ξ(k + q/2)
. (5.10)

Equation (5.9) represents a system of two coupled equations, which can be rewritten in matrix form as U(q)Π↑(q, ω)− 1 U(q)Π↑(q, ω)e−qd

U(q)Π↓(q, ω)e−qd U(q)Π↓(q, ω)− 1

 ñ↑(q, ω)

ñ↓(q, ω)

 = 0. (5.11)

The existence of a non-trivial solution for the perturbed density elements ñτ requires the determinant of

the above matrix to vanish. Hence, we find the dielectric function to be given by

ε(q, ω) = 1 + [U(q)]2Π↑(q, ω)Π↓(q, ω)(1− e−2qd)− U(q)
[
Π↑(q, ω) + Π↓(q, ω)

]
, (5.12)

such that the dispersion relation corresponds to the solutions of ε(q, ω) = 0. As we shall see, the present

relation results in instability (ωi(q) > 0) for some of the roots of (5.12), in a certain region of the q−space

and for a given set of experimental parameters. These will arise after a proper choice for the equilibrium

of both the active and passive layers, W↑0(k) and W↓0(k).

5.1.1 Polarizability and equilibrium Wigner functions for q → 0.

Let us denote the doping densities of each layer by n0↑ and n0↓. Each of these doping densities yield a

different Fermi wave-vector at each of the layers, kF↑ and kF↓. As we shall see, keeping different doping

densities will allow to study the relevant case of n0↑ = 0, such that all the electrons participate in the

beam current.

The most natural choice to describe the equilibrium in the passive layer is the zero-temperature limit

of the Fermi distribution function, as before. Then, we set

W↓0(k) =
n↓0
πk2

F↓
Θ(kF − k), (5.13)

where k .
= k. The active layer equilibrium must account for the doping electrons, plus the contribution

from the injected current. If we denote by nb the density of injected electrons, then the equilibrium

function W↑0(k) reads

W↑0(k) =
n↑0
πk2

F↑
Θ(kF − k) + nbδ(k − kb). (5.14)

The validity of these equilibrium distributions is subjected to certain constrains, namely, regarding the

last term on the r.h.s. of (5.14). In fact, immediately after the beam being injected into the active layer,
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collisions start to thermalise the δ−function, making it to spread around kb, such that we expect it to

acquire a spatial (and temporal) dependence. Here, we assume this function to be valid through the

entire length of the system, which is accurate in the limit T → 0, where collisions are increasingly

negligible. It remains valid for temperatures below the Fermi temperature, which for reasonable doping

densities, n0 ≈ 1012cm−2, is considerably high, TF ≈ 886◦C. Also, we are neglecting other sources of

scattering, namely, that with phonons and impurities. Those are described by localised wave-functions,

and thus should be of less importance in the long-wavelength limit, q → 0, for which sharp spatial

fluctuations of the equilibrium are of small account. This justifies the choice of (5.14).

To solve the dispersion relation, we start by plugging (5.13) and (5.14) into (5.10). First, notice that a

more convenient arrangement of (5.10) proceeds after a change of variables

Πτ (q, ω) =

∫
dk Wτ0(k)

(
1

~ω + ξ(k)− ξ(k + q)
− 1

~ω + ξ(k − q)− ξ(k)

)
. (5.15)

Applying the approximation of (3.98), and retaining terms up to O
(
q2
)
, we obtain for the polarizability of

the passive layer

Π↓(q, ω) ' vF kF↓
~π

q2

ω2
. (5.16)

For the active layer, the equilibrium function is composed by two terms, being the first representative of

the doping electrons. Given that we are assuming the same doping for both layers, then the first term

of Π↑(q, ω) is equal to that in (5.16). The remaining part is obtained after a trivially integration of the

δ−function. Therefore, we get

Π↑(q, ω) ' vF kF↑
~π

q2

ω2
+

nb
~ω + ξ(kb)− ξ(kb + q)

− nb
~ω + ξ(kb − q)− ξ(kb)

. (5.17)

It should be noted that the above expression depends only on the relative angle between q and kb, as

already pointed out in [101], by resorting to the relation

|k ± q|2 = k2 + q2 ± 2k · q. (5.18)

Hence, after aligning q with the x−direction, we get, without loss of generality

ξ(kb ± q) = ~vF
√
k2
b + q2 ± 2qkb cos θb, (5.19)

where θb is the angle between kb and q (or simply the polar angle of kb, as q lies in the x−direction).

This feature is expected, as can be noted by taking kb = nb = 0, for which we must recover our initial

conic symmetry. Going further, to keep consistency with the approximation of (3.98), it is important to

expand the denominators in (5.17) for small q, beyond first order, using

ξ(kb)− ξ(kb + q) ' −~vb · q −
~vF sin2 θb

2kb
q2, (5.20)

ξ(kb)− ξ(kb + q) ' −~vb · q +
~vF sin2 θb

2kb
q2, (5.21)
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where vb = vFkb/kb is the beam velocity. Equation (5.17) thus becomes

Π↑(q, ω) ' vF kF↑
~π

q2

ω2
+
vFnb
~kb

q2 sin2 θb

(ω − vb · q)2 − v2F
4k2b

q4 sin4 θb
. (5.22)

5.1.2 Dispersion relation

In order to solve the dispersion relation of interest, which is achieved by equating (5.12) to zero, let us

define the following dimensionless variables

q′ =
q

kF↓
, (5.23)

ω′ =
ω

ωp
, (5.24)

Π′τ =
Πτ

Π0
, (5.25)

U ′ =
U
U0
, (5.26)

where Π0 = ε0kF↓/e
2, U0 = e2/ε0kF↓. Replacing (5.23)−(5.26) into the dielectric function of (5.12), we

obtain

ε(q, ω) = 1 + U ′2Π′↑Π
′
↓(1− e−4πq′x)− U ′

(
Π′↑ + Π′↓

)
, (5.27)

where

U ′(q′) =
1

2εrq′
, (5.28)

Π′↓(q
′, ω′) = 2εr

q′2

ω′2
, (5.29)

Π′↑(q
′, ω′) = wΠ′↓(q

′, ω′) + sin2 θb
4αsy

z
q′2

[(√2αs
εr

ω′ − q′ cos θb

)2

− q′4 sin2 θb
4z2

]−1

. (5.30)

Above, αs ≈ 2.2 is the graphene structure constant, x = d/λF↓ is the inter-layer distance normalised

to the Fermi wavelength of the passive layer, and w = kF↑/kF↓ is the ratio between the Fermi wave-

numbers of each layer. Additionally, we defined the beam variables y = nb/n↓0 and z = kb/kF↓. Within

the current approximation, the second term of the polarizability in the active layer verifies Π↑ ∼ sin2 θb,

which vanishes for θb = 0, in agreement with what previous works have found, regarding the single layer

configuration [101]. Hence, the configuration for which the plasmon direction is parallel to the direction

of the beam is equivalent to removing the beam from the system, yielding no instability.

5.2 Numerical results

We now proceed to numerically solve the dispersion relation, obtained from

ε(q, ω) = 0, (5.31)
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where ε(q, ω) is the dielectric function of (5.27).

5.2.1 Equally doped layers

First, let us consider a situation in which both layers are doped, implying w 6= 0. In that case, (5.31)

turns out to be a sextic equation, which gives six roots of the form ω(q) = ωr(q) + iωi(q). Four

of them verify ωi(q) = 0, while the remaining two have a non-zero imaginary part. The real roots

represent the optical and acoustic modes, with well-known behaviour ω2
op = 2rsv

2
F (kF↑ + kF↓)q and

ω2
ac = 4rsv

2
F kF↑kF↓dq

2/(kF↑ + kF↓), in the long wavelength limit q → 0 [102]. The first comprises

out-of-phase electronic displacements, whilst the second is made out of electrons oscillating in phase.

Moreover, the two complex frequencies are necessarily complex conjugate of each other, due to the

coefficients of (5.31) being real, thus making ω∗ a solution whenever ω is a solution. One of the complex

roots represents a plasmon which is growing in time (ωi > 0), while the other is decaying (ωi < 0).

In addition, these solutions have degenerate real parts and symmetric imaginary parts. However, for

q > qmax, the imaginary part of the unstable modes vanishes, and consequently, they become stable,

while their corresponding real parts become non-degenerate.

Figures 5.2 and 5.3 show the real part of the stable optical and acoustic modes, respectively, for the

forward and backward directions of propagation. We used the same density of doping, n↑0 = n↓0 =

1012 cm−2, which gives a Fermi energy of EF ≈ 0.1eV and a Fermi wavelength of λF ≈ 35nm for

both layers, corresponding to the case w = 1. The injected electrons energy is related to the Fermi

energy by Eb = zEF . The corresponding forward and backward propagating waves are not frequency-

symmetric, which is clearly indicated in (5.31), not invariant under ω → −ω. Hence, we observe a slight

difference in the two branches, apart from the sign, as represented in Figs. 5.2 and 5.3. Physically, this

happens because the beam propagating in the active layers breaks the previous invariance under the

transformation r → −r, by fixing a preferred direction, and consequently, the dispersion relation holds a

dependence on θb.

Figures 5.4 and 5.5 show, respectively, the real and imaginary parts of the unstable roots of (5.31).

The phase velocity of these modes, vp = ω/q, verifies vp < vF , which makes their real parts lying in the

inter-band excitation region. By conservation of energy and momentum, this condition implies a non-

zero imaginary part [103]. Near the origin, both modes have the same real frequency, and symmetric

imaginary frequencies. While the imaginary frequencies are non-zero, the real part grows linearly, and

starts to separate from the moment they become stable (ωi = 0). The instability is, thus, bounded

between 0 and qmax, with qmax depending on the experimental parameters nb and kb, and material

parameter εr. The simulation determined that qmax = qmax(nb, kb) is a growing function of both nb and

kb.

The factor sin2 θb, that we also find for the single-layer configuration, leads to the conclusion that the

instability is suppressed for parallel plasmon and beam direction. This strange behaviour is explained

by the linear dispersion relation. In the described conditions, the exponential growing of the unstable

mode happens because the charge fluctuations caused by the plasmon produce a net force, which feeds

61



back the fluctuations. However, this arguments fails when the plasmon direction of propagation is the

same as the direction of the beam. Remember that Dirac electrons have a constant speed (vF ), and

velocity align with momentum, i.e., v = vFp/|p|. The momentum, in turn, can take any value. Therefore,

for the parallel case, the charge fluctuations around the equilibrium only change the magnitude of the

momentum, which does not affect the velocity, and the feedback does not occur. On the contrary, when

both directions are not aligned, the fluctuations on the charge density are able to affect the direction

of momentum, thus changing particles’ velocities and allowing for a exponential growing of the wave.

Following this argument, we should not expect unstable solutions when the direction of the plasmon is

perpendicular to that of the beam, θb = π/2. As a result, we expect a maximum growing for θb in the

interval [0, π/2]. In Fig. 5.6 we show the maximum instability growth rate as a function of the angle θb.

The maximisation of the growth rate was performed in the entire interval of instability, q ∈ [0, qmax]. The

maximum is shifted to the right, as we increase the momentum of the beam, and a similar behaviour is

found by increasing the density nb. In Fig. 5.7, we plot the maximum growth rate, as a function of the

distance between the layers. Additionally, we restrict ourselves to d > 0.3nm, to avoid tunnelling. We

found, for the case of equally doped layers, that increasing the distance favours the instability. In fact, the

growth of the waves depends on the ratio between injected and doping electrons. When the layers are

brought closer, the effect is similar to that of an increase in the density of equilibrium (doping) electrons,

against the same density of injected electrons, once the passive layer has no applied current. This,

consequently, decreases the maximum growth rate of the instability. In the limit d → +∞, we recover

the previous results [32, 101].

Figure 5.2: Forward (blue) and backward (red) plasmons, in the optical mode. These modes behave as

ω ∼ ±√q near the origin. Fixed simulating parameters: x = 0.15, y = 0.1, z = 0.1, w = 1, θb = π/4 and

εr = 2.5.
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Figure 5.3: Forward (orange) and backward (green) plasmons, in the acoustic mode. These modes
behave as ω ∼ ±q near the origin. Fixed simulating parameters: x = 0.15, y = 0.1, z = 0.1, w = 1,
θb = π/4 and εr = 2.5.

Figure 5.4: Real part of the frequency, for forward (blue) and backward (dashed red) unstable plasmons.
The single particle dispersion relation ω = ±vF q is also shown (dashed orange). As expected, the
unstable modes lie inside the electron-hole continuum, thus have a non-zero imaginary part. Fixed
simulating parameters: x = 0.15, y = 0.1, z = 0.1, w = 1, θb = π/4 and εr = 2.5.
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Figure 5.5: Imaginary part of the frequency. The dashed red line corresponds to the backward plasmon,
which is growing in time; the blue line is the forward plasmon, which decays in time. Fixed simulating
parameters: x = 0.15, y = 0.1, z = 0.1, w = 1, θb = π/4 and εr = 2.5.

Figure 5.6: Maximum growth rate as a function of the beam angle θb, for several values of the normalised
beam wave-number, y = kb/kF . Fixed simulating parameters: x = 0.15, z = 0.1, w = 1 and εr = 2.5.
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Figure 5.7: Maximum growth rate as a function of the distance between layers, for the case of equal
doping. The horizontal axis is restricted to d > 0.3 nm. For d < 0.3 nm, the distance between carbon
atoms in different layers is comparable to the distance between nearest-neighbour atoms in the same
layer, and hopping between layers might occur. Fixed simulating parameters: y = 0.1, z = 0.1, w = 1,
θb = π/4 and εr = 2.5.

5.2.2 Doped passive layer and undoped active layer

In this section, we treat the equally relevant case of zero doping in the active layer, which is achieved

by taking w = 0 in (5.30). In that case, the system is described by a quartic equation. The solutions

represent two counter propagating plasmons, plus two extra unstable modes, which grow and decay in

time, respectively. The previous acoustic and optical modes do not appear, as they require two parallel

layers of doped graphene [102]. A similar analysis applies in this case: the real part of the unstable

modes is degenerate up to some qmax, which depends upon kb and nb; the imaginary part exists for

q ∈ [0, qmax]; for q > qmax, the real part breaks into different branches, as depicted in Fig. 5.8.

What strongly distinguishes this case from the previous is the dependence of the instability region

on the distance between the layers. As shown in Fig. 5.7, for typical simulation parameters, the sig-

nificant variations of the maximum instability growth rate happened for d ∈ [0, 2] nm, whereas for larger

distances, the instability became saturated in a maximum value, which corresponds to the isolated ac-

tive layer with injected current. For undoped and doped layers, two stream instability only occurs for

sufficiently close graphene sheets, as the isolated undoped active layer can’t sustain any instability by it-

self. Figure 5.9 shows the distance-dependent growth rate for the unstable mode with positive imaginary

part. The decaying mode has symmetric imaginary part. We clearly observe the expected decrease of

the instability with increasing distance. The simulation shows that, for typical experimental parameters

y ∈ [0.1, 1], z ∈ [0.1, 2] and εr ∈ [2, 10], the system becomes stable at d & 8nm, as the coupling between

plasmons and drifting electrons is ineffective to produce the feedback mechanism necessary to sustain

the instability.

Comparing both configurations, it can be seen that the second case delivers a stronger instability

mechanism, with growth rates that can reach tens of terahertz. On the one hand, we verify that for a
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Figure 5.8: Real part (red lines) and imaginary part (blue lines) of the unstable modes. The dashed
orange line is the single-particle dispersion relation, ω = vF q. Fixed simulating parameters: y = 0.1,
z = 0.5, w = 0, θb = π/4 and εr = 8.

Coulomb drag configuration, with both layers consisting of doped graphene, disfavours higher growth

rates, as the passive layer decreases the effective ratio nb/n0 that controls the onset of the instability.

This justifies the behaviour as a function of the inter-layers distance d. On the other hand, the doped

passive and undoped active layers configuration proved to be more efficient in the promotion of the insta-

bility, with growth rates reaching 20− 30 THz for realistic experimental values of kb and nb. The present

growth rates are at least one order of magnitude higher, when compared to other instability mecha-

nisms reported in graphene, as the Dyakonov-Shur (DS) instability [33]. The DS mechanism comprises

a hydrodynamical instability, which develops under asymmetric boundary conditions for the electronic

density and current. Such conditions are responsible for the formation of successive reflections of the

fluid at the edges of the sample, leading to an enhancement of the density fluctuations. Those bound-

ary restrictions are achievable with a graphene field-effect transistor, which allows to fix the injected

injected at the drain, while maintaining the electronic density of the source constant. Nonetheless, this

effect requires a hydrodynamical regime for the fluid, which in turn implies high electron-electron scat-

tering, so that local thermodynamic equilibrium takes place throughout the system. On the contrary, the

present two stream instability is a bulk out-of-equilibrium effect, which neglects the boundary conditions

(as they play a minimal role), while requiring small electron-electron scattering rates, so that the sharp

δ−distribution for the injected current can be preserved.

66



Figure 5.9: Imaginary part of the frequency, as a function of the distance between layers. The results
are shown for a fixed wave-number q0 = 0.07nm−1, and growing values of the drifting wave-vector kb.
The horizontal axis is restricted to d > 0.3nm. Fixed simulating parameters: y = 0.5, w = 0, θb = π/8
and εr = 8.
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Chapter 6

Conclusions

The dynamics of many-body charged systems remains one of the most challenging problems in theo-

retical physics, with an extensive literature and a variety of mathematical techniques developed over the

last years to tackle it. In the present thesis, we relied on a quantum kinetic formalism, based on the

definition of phase-space functions through the Weyl transform, and derived a kinetic equation for the

evolution of the Wigner function for graphene quasi-particles.

We developed this formalism because it proves to be ideal to examine both the quantum and the

semi-classical limits, hence allowing for the construction of a set of hydrodynamical equations. There-

fore, starting from the microscopic Hamiltonian, we were able to introduce the graphene kinetic term into

the Schödinger equation, at low energies. The single particle contributions were introduced via a quan-

tum version of the Liouville theorem based on the Wigner representation, while the interacting potential

was given in the mean-field (or Hartree) approximation. The two-body (and higher) interactions could

be, in principle, stored in the collisional integral S, written as a functional of the Wigner function.This

turns out to be a rigorous approximation for the case of graphene since the coupling constant is den-

sity independent, thus rs is held constant from low to high densities conditions. Additionally, we have

rs ∼ αs/εr � 1 for sufficiently high relative permittivity (e.g, rs ≈ 0.5 for a SiO2 substrate) leading to a

weakly-coupled plasma regime, with exchange (Fock) contributions playing a secondary role.

Having set the relevant kinetic equations, we proceeded towards the construction of a hydrody-

namical model, by taking the moments of the transport equation. The present formulation allowed to

consistently include all quantum corrections in both the continuity and force equations. Those terms

are usually neglected because the classical version of the Wigner equation (also known as the Vlasov

equation) is commonly adopted. By keeping only the first of those contributions, a closed set of hy-

drodynamical equations was established. The closure relation came after a particular ansatz for the

diagonal elements of the Wigner matrix, interpreted as a shifted Fermi-sphere in momentum space,

which depended explicitly on the hydrodynamical variables.

Furthermore, the hydrodynamical set of equations enabled us to study the relation between velocity

and momentum more profoundly. Despite being quite consensual that those two (fluid) variables are not

proportional to each other, in the case of Dirac fluids, a quantitative description has been necessary.
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Here, we found a relation of the form p = m(r, t)v, where the local mass m(r, t) was given by the Drude

mass M, corrected by a Lorentz-like factor, as m(r, t) = Mγ(r, t). In the limiting cases of small and

large averaged momentum, γ(r, t) was given analytically.

In the end, we returned to the kinetic equation to examine an unstable plasmonic regime, in a

Coulomb drag configuration of two graphene sheets, where a beam of electrons was injected in one

of them. To do that, we considered the pure electronic case, for which the role of holes is negligible.

Instability and damping, which rely on wave-particle interactions, are not possible to treat within the

hydrodynamical approach, because those phenomena do not developed under hydrodynamical equilib-

rium, for which electron-electron scattering guarantees a thermalisation of the distribution. On the con-

trary, these are purely out-of-equilibrium effects, which oblige to use the full kinetic equations, instead.

Moreover, two distinct situations were studied, namely, that consisting of two doped parallel graphene

layers, and other where only the passive layer was doped. A similar regime of instability was found in

both situations, with similar dependences on the experimental parameters. Notwithstanding, a crucial

difference showed up by varying the distance between layers, which disfavoured the instability in the first

case. By comparing the results with the Dyakonov-Shur instability [33], which has been proposed for

circumventing the THz-gap problem, we concluded that the present two stream instability could deliver

growth rates an order of magnitude higher, ωi ∈ [0, 20] THz, for realistic experimental parameters. The

real part of the frequency is also located in the THz range, conferring great pertinence to this line of

research.

6.1 Achievements

In this work, several important milestone were attained. First, we showed that the Wigner model was

equivalent to the RPA formalism for the irreducible polarizability, providing a self-contained method to

calculate the plasmonic dispersion relation for the cumbersome case of graphene linear dispersion.

This method facilitated the inclusion of those results in a self-consistent theory of quantum transport,

that regarded for the Dirac-like kinetic term and had not been treated in this manner anywhere else, to

the best of our knowledge.

The second, and probably most notable achievement dwells on the hydrodynamical model, that was

properly construct, and whose results were validated when the final dispersion relation was put forward.

Such a careful treatment was possible because, despite the real-space version of the Dirac kinetic term

being difficult to deal with, we realised that nothing prevents us from starting in Fourier space (for which

the kinetic term is simply ξ(q) = ~vF |q|), and transforming it back to real space in the end. That idea

opened the possibility of including all quantum corrections.

Yet another fulfilled objective regards the relation between momentum and velocity, in the hydrody-

namical limit. With the continuity equation unveiling the true form of the velocity field, we were able to

relate it with the averaged momentum. We found a non-linear relation with two clearly distinct limiting

cases, and an effective mass was given in terms of a Lorentz-like factor, making the bridge with the

case of relativistic physics. This relation allowed to clarify an important opened question in the field
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of graphene plasmonics, and most prominently, provided us with analytical expressions to use in the

hydrodynamical equations and formally close the system.

Finally, we concluded this work by probing an unstable regime involving two graphene layers dis-

posed in a Coulomb drag configuration. In our perspective, the results will help to pave the way towards

a future THz emitter.

6.2 Future Work

The work developed under the course of this thesis opened a line of research that should be followed

in the future. By having successfully constructed a kinetic theory, based on a microscopic formalism,

to model quantum transport in graphene, we have in hands a powerful tool to treat plasmonics within

general scenarios. In future research, this formalism should allow to include:

• interaction with lattice phonons and impurities, which are known to play a significant role out of

the limit of zero-temperature [104]. These excitations will manifestly introduce losses, which can

jeopardise the efficiency of the instabilities;

• interaction with magnetic fields. Our novel strategy of constructing the Wigner matrix by starting

in Fourier space should easily allow to further include magnetic effects, through minimal coupling

p → p − QA, where A is the vector potential [105]. Moreover, the Maxwell equations should

provide a closure relation, linking A to the hydrodynamical variables n and p, as done previously

for the electrostatic potential φ.

• correlations and other beyond mean-field effects. The present model enables to treat quantum

correlations between particles, namely through the inclusion of the off-diagonal terms of the Wigner

matrix in the relevant equations. We showed that the mean-field approximation for the potential

implies that the off-diagonal elements completely decouple from the evolution of the diagonal ones.

Thus, the information contained in the discarded matrix elements will become important once those

elements are included in the interacting potential. Although more challenging, the inclusion of such

contributions will probably reveal interesting effects.

Additionally, treating the Dyakonov-Shur instability within this framework is planned for the future. Being

a boundary effect, the treatment of this instability will require a set of boundary conditions, that are

easily introduced with our complete hydrodynamical model. Particularly, our novel relation between

velocity and momentum will probably play a crucial key in studying and understanding this effect, as it

allows not only for analytical analysis, but also provides a useful tool for numerical simulations.
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Appendix A

A.1 Useful identities

For any phase-space variable q, the volume element in d dimensions reads

dq
.
=

d∏
i=1

dqi . (A.1)

We use the following definitions for the Fourier transform of d-dimensional phase-space variables

f(..., r, ...) =

∫
dq eiq·r f(..., q, ...), (A.2)

f(..., q, ...) =

∫
dr

(2π)d
e−iq·r f(..., r, ...), (A.3)

For the time-frequency domain,

f(..., t, ...) =

∫
dω e−iωt f(..., ω, ...), (A.4)

f(..., ω, ...) =

∫
dt

2π
eiωt f(..., t, ...). (A.5)

The Dirac-delta δ(r) is given by

δ(r) =

∫
dy

(2π)d
eiy·r, (A.6)

and the Kronecker-delta δij is

δij =

 1 for i = j,

0 for i 6= j.

(A.7)

For a smooth function f , we can rewrite translations in the argument as

f(z + s) = es·∇zf(z) (A.8)

where es·∇z is the translation operator1.

1This result is easily proved using the Taylor series for the exponential es·∇z =
∑
n

(s·∇z)n

n!
.
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Appendix B

B.1 Bohm-Pines dispersion relation

Let us start from

1 =
e2

ε0q2

∫
dk

W0(k − q/2)−W0(k + q/2)

~(ω − ~k · q/me)
. (B.1)

By separating the integral in its two terms, and performing a change of variables k′ = k − q/2 and

k′ = k + q/2 for the first and second terms, respectively, we can recast (B.1) in a more useful form,

1 =
ω2
p

n0

∫
dk

W0(k)

(ω − ~k · q/m)2 − ~2q4/4m2
, (B.2)

where ω2
p = e2n0/ε0me is the electron plasma frequency. We also changed the dummy variable k′ back

to k, for convenience. Further manipulation leads to1

1 =
ω2
p

n0ω2

∫
dv

W0(v)

1− 2 v · q/ω + (v · q)2/ω2 − ~2q4/4m2
. (B.3)

where v = ~k/m. Let us define the following rescaled quantities

Ω =
ω

ωp
, (B.4)

Ωp =
~2q4

4m2ω2
p

, (B.5)

ρ =
qv

ωp
. (B.6)

Applying the expansion
1

1− x
= 1 + x+ x2 +O

(
x3
)
, (B.7)

in the integrand, and keeping only the O
(

Ω2
p/Ω

2, ρ2/Ω2
)

terms, we obtain

1 '
ω2
p

n0ω2

[
n0 +

n0

ω2

(
3q2 · v2

0
+

2q · v0

ω
+

~2q4

4m2

)]
, (B.8)

1Recall the identity dkW0(k) = dv W0(v), which comes from the definition of a (quasi-)distribution function.
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where v
0

and v2
0

are calculated with the is the equilibrium Wigner function. Equation (B.9) is invariant

under a global rotation in the k − q space, given that it only shows a dependence on absolute values

or intern products. So, we are free to align q with the z−direction (note that q is fixed), without loss of

generality. It yields q · v = qv cos θ, with θ being the polar angle of v. Additionally, we can neglect the

∼ q · v
0

term, which vanishes for a rotational invariant equilibrium configuration, i.e., when W0(v) is only

a function of the absolute value v. Under this (quite general) assumption, q · v0 becomes proportional to∫
dΩ cos θ, which gives zero. Thus, (B.8) simplifies to

1 '
ω2
p

n0ω2

[
n0 +

n0

ω2

(
3q2u2

‖ +
~2q4

4m2

)]
, (B.9)

where u2
‖ is the average equilibrium parallel velocity,

u2
‖ =

1

n0

∫
dv W0(v) (v cos θ)2. (B.10)

Solving the remaining quadratic equation in (B.9), with the same approximation as before, we finally

arrive at (2.37).

B.2 Derivation of the quantum hydrodynamical equations for 3D

parabolic plasmas

We intend to calculate

∂n

∂t
=

∫
dk
[
− ~
m
k ·∇W +

i

~

∫
dq eir·r

(
W+ −W−

)
V (q, t)

]
, (B.11)

∂(n〈p〉)
∂t

=

∫
dk ~k

[
− ~
m
k ·∇W +

i

~

∫
dq eir·r

(
W+ −W−

)
V (q, t)

]
, (B.12)

where W = W (r,k, t) and W± = W (r,k ± q/2, t). The important thing to do, at this stage, is using

identity (A.8) to rewrite (W+ −W−) as

W (r,k + q/2, t)−W (r,k − q/2, t) = 2 sinh
(q

2
·∇k

)
W (r,k, t), (B.13)

Furthermore, using the Taylor series for the hyperbolic-sine

sinh
(
Â
)

=

+∞∑
n=0

1

(2n+ 1)!
Â2n+1, (B.14)
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together with the Newton binomial theorem, allows us to write

sinh
(q

2
·∇k

)
=

+∞∑
n=0

2n+1∑
m=0

m∑
l=0

θnml

(
qx

∂

∂kx

)l(
qy

∂

∂ky

)m−l(
qz

∂

∂kz

)2n+1−m
,

=
q

2
·∇k +O

(
∂3
ki

)
(B.15)

where O
(
∂3
ki

)
are terms at least cubic on the derivatives with respect to k, and θnml are non-zero

expansion coefficients, given by

θnml =
1

22n+1l!(m− l)!(2n+ 1−m)!
. (B.16)

This differential operator applied to the Wigner function is part of the integrant function inside k inte-

grations. By performing partial integration in k, the summation of (B.15) will only retain terms up to the

k-order of the remaining integrand. The surface terms give no contribution because we assume the

Wigner function to vanish as ki → ±∞, for all directions i. Therefore, introducing (B.13) and (B.15)

into (B.11) yields no contribution for the second term in the l.h.s., given that the remaining integral is

k−independent. Furthermore, by writing W (r,k, t) in terms of its Fourier transform W (q,k, t), we get

∂n

∂t
= − i~

m

∫
dk dq eiq·r k · q W (q,k, t),

= − i~
m

∫
dr′

(2π)3
dk dq eiq·(r−r

′) k · q W (r′,k, t),

= − ~
m
∇ ·

∫
dr′

(2π)3
dk dq eiq·(r−r

′) k W (r′,k, t),

= − ~
m
∇ ·

∫
dk dr′ δ(r − r′) k W (r′,k, t), (B.17)

where we used iqeiq·r = ∇eiq·r. By performing the trivial integration over the delta function, and using

(2.39), we finally obtain the quantum continuity equation

∂n

∂t
+

1

m
∇ ·

(
n〈p〉

)
= 0. (B.18)

Next, using the same replacements as before, given by (B.13) and (B.15), (B.12) can be simplified

∂(n〈p〉)
∂t

= − i~
2

m

∫
dk dq eiq·r k (k · q) W (q,k, t) + 2i

∫
dk dq eiq·r k

×
(q

2
·∇k

)
W (r,k, t) V (q, t), (B.19)

where, in the second term on the r.h.s., higher orders in the k−derivatives were discarded, given that

the remaining integrand is linear in k, which implies that only derivatives up to first order will survive,

after partial integration. Thus, performing partial differentiation in the second term, together with further
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simplifications in the first term, yields

∂(n〈p〉)
∂t

= −~2

m
∇ ·

∫
dr′

(2π)3
dk dq eiq·(r−r

′) kk W (r′,k, t)− i

∫
dk dq eiq·r q W (r,k, t) V (q, t),

= −~2

m
∇ ·

∫
dk kk W (r,k, t)− i n(r, t)

∫
dq eiq·r q V (q, t),

= − 1

m
∇ ·

(
n〈pp〉

)
− n(r, t)∇V (r, t), (B.20)

where we defined

〈pp〉 =
1

n

∫
dk ppW (r,k, t), (B.21)

and pp denoting the dyadic product

pp =


p2
x pxpy pxpz

pxpy p2
y pypz

pxpz pypz p2
z

 . (B.22)

Now, we define the fluctuation δg(p) of any given function of momentum g(p) as

δg = g − 〈g〉, (B.23)

which verifies 〈δg〉 = 0. This definition enables us to rewrite 〈pp〉 as

〈pp〉 = 〈p〉〈p〉+ 〈δpδp〉. (B.24)

Inserting this expression into (B.20) yields

n
∂〈p〉
∂t

+
�
�
��

〈p〉∂n
∂t

= − 1

m

[
���

���
�

〈p〉∇ ·
(
n〈p〉

)
+ n〈p〉 ·∇〈p〉+∇〈δpδp〉

]
− n∇V. (B.25)

Notice that, in the above equation, two of the terms cancel each other, which follows from (B.18). There-

fore, collecting the remaining terms leads to

n
( ∂
∂t

+
〈p〉
m
·∇
)
〈p〉 = −∇P − n∇V, (B.26)

where we identified P as the pressure-tensor, related with the averaged momentum fluctuations by

Pij(r, t) =
n

m
〈δpiδpj〉. (B.27)

Expanding the r.h.s. of (B.27), with the help of (B.23), we get the familiar result

Pij(r, t) =
n

m

(
〈pipj〉 − 〈pi〉〈pj〉

)
. (B.28)
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B.3 Macroscopic variables n, u and P in terms of ensemble wave-

functions {ψα}
The Wigner function is related to the ensemble wave-functions as

W (r,k, t) =
∑
α

cα

∫
ds

(2π)d
eis·k ψ∗α(r + s/2, t) ψα(r − s/2, t). (B.29)

where d = 3 is the dimension of space. Using (2.38), the density is simply

n(r, t) =
∑
α

cα

∫
dk

ds

(2π)3
eis·k ψ∗α(r + s/2, t) ψα(r − s/2, t),

=
∑
α

cα

∫
ds δ(s) ψ∗α(r + s/2, t) ψα(r − s/2, t),

=
∑
α

cα|ψα(r, t)|2. (B.30)

Next, using (2.39) together with the relation u = ~k/m, we can write

n(r, t)u(r, t) =
∑
α

cα

∫
dk

ds

(2π)3
eis·k

~k
m

ψ∗α(r + s/2, t) ψα(r − s/2, t),

= − i~
m

∑
α

cα

∫
ds ψ∗α(r + s/2, t) ψα(r − s/2, t)∇s

∫
dk

(2π)3
eis·k,

= − i~
m

∑
α

cα

∫
ds ψ∗α(r + s/2, t) ψα(r − s/2, t)∇s δ(s), (B.31)

where we used k eis·k = −i∇s eis·k. By partial integrating the variable s, and further assuming the

wave-functions ψα(r, t) to vanish as r → ±∞, we get

n(r, t)u(r, t) =
i~
m

∑
α

cα

∫
ds δ(s)∇s

(
ψ∗α(r + s/2, t) ψα(r − s/2, t)

)
. (B.32)

The identity

∇s ψ(r ± s/2) = ±1

2
∇ ψ(r ± s/2), (B.33)

enables us to perform the integration in ds, which yields

n(r, t)u(r, t) =
i~
2m

∑
α

cα

(
ψα∇ψ∗α − ψ∗α∇ψα

)
. (B.34)

To calculate (2.51), we recall the expression for the pressure

Pij(r, t) =
~2n

m
kikj − nmuiuj , (B.35)

which can be calculated from the wave-functions ψα by

Pij(r, t) =
~2

m

∑
α

cα

∫
dk

ds

(2π)3
eis·k kikj ψ

∗
α(r + s/2, t) ψα(r − s/2, t)− nmuiuj . (B.36)
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A similar procedure to the one used before enables us to simplify last expression, and get

Pij(r, t) = −~2

m

∑
α

cα

∫
ds δ(s)

∂2

∂si∂sj

(
ψ∗α(r + s/2, t) ψα(r − s/2, t)

)
− nmuiuj . (B.37)

Furthermore, introducing the identity (B.33) leads to

Pij(r, t) =
~2

4m

∑
α

cα

(∣∣∣∣∂ψ∗α∂ri

∂ψα
∂rj

∣∣∣∣2 − ψα ∂2ψ∗α
∂ri∂rj

− ψ∗α
∂2ψα
∂ri∂rj

)
− nmuiuj . (B.38)

Finally, introducing the i−th and j−th components of (B.34) into the r.h.s. of (B.38) gives

Pij(r, t) =
~2

4m

∑
α

cα

(∣∣∣∣∂ψ∗α∂ri

∂ψα
∂rj

∣∣∣∣2 − ψα ∂2ψ∗α
∂ri∂rj

− ψ∗α
∂2ψα
∂ri∂rj

)

+
~2

4mn

∑
α,β

cαcβ

(
ψα

∂ψ∗α
∂ri
− ψ∗α

∂ψα
∂ri

)(
ψβ

∂ψ∗β
∂rj
− ψ∗β

∂ψβ
∂rj

)
. (B.39)

B.4 Calculating the Bohm potential from the quantum pressure

We intend to show
1

nm

∂PQij
∂rj

= − ~2

2m2

∂

∂ri

(∇2
√
n√

n

)
, (B.40)

where

PQij = −~2n

4m

∂2 lnn

∂ri∂rj
(B.41)

and the index j is implicitly summed over in (B.40). Expanding the l.h.s. of (B.40),

1

nm

∂PQij
∂xj

= − ~2

4nm2

∂

∂rj

(
n
∂2 lnn

∂ri∂rj

)
,

= − ~2

4nm2

∂

∂rj

( ∂2n

∂ri∂rj
− 1

n

∂n

∂ri

∂n

∂rj

)
,

= − ~2

4nm2

(
∂3n

∂ri∂rj∂rj
+

1

n2

∂n

∂ri

∂n

∂rj

∂n

∂rj
− 1

n

∂2n

∂ri∂rj

∂n

∂rj
− 1

n

∂2n

∂rj∂rj

∂n

∂ri

)
. (B.42)

Doing the same for the r.h.s.2

− ~2

2m2

∂

∂ri

(∇2
√
n√

n

)
= − ~2

2m2

∂

∂ri

[
1√
n

∂

∂rj

( 1

2
√
n

∂n

∂rj

)]
,

= − ~2

4m2

∂

∂ri

(
1

n

∂2n

∂rj∂rj
− 1

2n2

∂n

∂rj

∂n

∂rj

)
,

= − ~2

4nm2

(
∂3n

∂ri∂rj∂rj
+

1

n2

∂n

∂ri

∂n

∂rj

∂n

∂rj
− 1

n

∂2n

∂ri∂rj

∂n

∂rj
− 1

n

∂2n

∂rj∂rj

∂n

∂ri

)
, (B.43)

which is the same as (B.42), as we intended to show.

2Using Einstein’s convention for repeated indices, we may write ∇2 = ∂2

∂rj∂rj
.
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Appendix C

C.1 Transport equation for electrons and holes

Let us start with (3.11) written for the conduction and valence band operators in (3.51)−(3.54). Using

∆ ' −~vF (qx − iqy), valid close to the Dirac point K, we obtain

Ĥ =
∑
q∈BZ

ξ(q)
(
ĉ†q ĉq − v̂†q v̂q

)
, (C.1)

where ξ(q) = ~vF |q|, and the summation in q is performed within the first Brillouin zone (BZ). Thus, the

kinetic energy of conduction electrons is positive, whereas that of the valence electrons is negative. To

circumvent this problem, we call forth the ground-state of our case of interest. As mentioned before, the

ground-state of neutral graphene comprises a completely filled valence band and an empty conduction

band. Such an electronic configuration is known as Fermi Sea, which we denote by |ΩFS〉. It is written

as

|ΩFS〉 =
∏
q∈BZ

v̂†q |0〉 , (C.2)

and |0〉 is the vacuum state (zero particles). Recall that a general state in Fock space is written in the

occupation-number basis, i.e., it is an eigenstate of n̂c,q = ĉ†q ĉq and n̂v,q = v̂†q v̂q, for all q. Therefore,

each state |n〉 can be identified with a set of numbers n = {nic, niv}Ni=1, where each superscript i indicates

the order of the corresponding discretised mode in the set q = {qi}Ni=1 associated with the occupation

number nia. The creation and annihilation operators acting on Fock states give

âq
i
|n〉 = (−1)`i

√
nia
∣∣{n1

c , n
1
v, ... , n

i
a − 1, ... , nNc , n

N
v }
〉
, (C.3)

â†q
i
|n〉 = (−1)`i

√
nia + 1

∣∣{n1
c , n

1
v, ... , n

i
a + 1, ... , nNc , n

N
v }
〉
, (C.4)

where a ∈ {c, v} and `i is the total number of occupied states that are ordered to the left of the state

corresponding to qi. This leads to

|n〉 =

( ∏
i∈BZ

(ĉ†qi)
niv√

nic!

)( ∏
j∈BZ

(v̂†qj )
n
j
v√

njv!

)
|0〉 , (C.5)

n̂a,qi |n〉 = nia |n〉 , (C.6)

90



The set n is composed by the eigenvalues of the number operators, which form a complete basis once

the relation [n̂a,q, n̂a′,q′ ] = δaa′δq,q′ holds; that is to say, all number operators commute for different

q. The last relation follows straightforwardly from the anti-commutation relations for fermionic fields

{ĉq, ĉ†q′} = δqq′ , {v̂q, v̂
†
q′
} = δqq′ , {ĉq, v̂

†
q′
} = 0, which restrict the values of nia to the set {0, 1}. With this

in mind, it is easy to calculate the energy of |ΩFS〉, which gives

Ĥ |ΩFS〉 = EFS |ΩFS〉 , (C.7)

EFS =
∑
q∈BZ

−ξ(q). (C.8)

Given that EFS < 0, acting on ΩFS with any v̂q leads to a new state |Ω′〉 such that EΩ′ > EFS . Hence,

destroying a valence electron creates a positive energy excitations to the ground-state, which suggests

that the absence of a valence electron (or the presence of a hole in the almost filled Fermi sea) behaves

as a positive-energy particle. Therefore, we define two new fermionic creation and annihilation operators

ĥ†q and ĥq as

ĥ†q = v̂−q, (C.9)

ĥq = v̂†−q, (C.10)

which obey, mutatis mutandis, the exact same fermionic anti-commutation relations. Physically, ĥ†q cre-

ates a hole with momentum q and ĥq destroys a hole with momentum q. The reason for writing −q

instead of q in (C.10) and (C.9) is that, when we act on any Fock state with v̂q, the net momentum of the

system changes by −q. However, when we create a hole with momentum q, we must require the net

value to increase by q, and not the contrary, which leads to (C.10) and (C.9) as they are. Physically, this

means a hole corresponds to an electron flowing in the opposite direction, which also guarantees that a

current of holes entering a volume V increases the net charge of V , because in reality valence electrons

are going out. Using this change of basis, together with the anti-commutation relations, the Hamiltonian

of (C.1) goes to

Ĥ = EFS +
∑
q∈BZ

ξ(q)
(
ĉ†q ĉq + ĥ†qĥq

)
, (C.11)

which represents a free Hamiltonian for two different species with positive energy, as desired. The

constant EFS can be absorbed into Ĥ, and will then be discarded. The Wigner transport equation can

be obtained, following the same procedure as in chapter 3.3. Let us define ΨT (q, t) = (ĉq, ĥq) and write

the one particle Shcrödinger equation as1

i~
∂

∂t
Ψα(q, t) = ξ(q)Ψα(q, t) +

∫
dq′ V α(q′, t)Ψα(q − q′, t), (C.12)

where V α(q, t) is the Fourier transform of the mean-field potential. The form of V α(r, t) is slightly

modified in the electron-hole case, due to the charge of holes being symmetric to that of electrons.

1This is equivalent to establish the corresponding Heisenberg equation of motion for the expectation value of the creation and
annihilation operators, in the mean-field approximation.
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In fact, the charge operator Q̂ renders Q̂ ĥ†q |ΩFS〉 = (+e) ĥ†q |ΩFS〉, i.e, holes have positive charge

against the almost filled Fermi sea. Such a modification is accomplished with the new dependence of

the potential V α(q, t) on the band index α. Therefore, the Poisson equation must be rewritten as

∇2φ(r, t) = −e
ε

[
n2(r, t)− n1(r, t)

]
, (C.13)

where n1 and n2 denotes the electron and hole density, respectively, and φ(r, t) is the electrostatic

potential. This last is related to the potential via

V α(r, t) = sαeφ(r, t), (C.14)

where sα = 2α− 3 is the sign of the electric charge. The real space densities are calculated through the

diagonal components of the Wigner matrix as

n1(r, t) =

∫
dk W 11(r,k, t), (C.15)

n2(r, t) =

∫
dk W 22(r,k, t). (C.16)

For the solution of (C.13), we get

φ(r, t) =
e

4πε

∫
dr′

n2(r′, t)− n1(r′, t)

|r − r′|
. (C.17)

Further manipulation of (C.12) leads to

i~
∂

∂t
Wαγ(q,k, t) =

[
ξ(k + q/2)− ξ(k− q/2)

]
Wαγ(q,k, t)

+ e

∫
dq′ φ(q′, t) ∆Wαγ(q,k,q′, t), (C.18)

where φ(q, t) is the Fourier transform of the electrostatic potential, and the following definitions were

employed:

Wαγ(q,k, t) = Ψ∗α(k − q/2, t) Ψγ(k + q/2, t), (C.19)

∆Wαγ(q,k, q′, t) = sαWαγ(q − q′,k − q′/2, t)− sγWαγ(q − q′,k + q′/2, t). (C.20)

As before, the equation forW 11 describes the evolution of the (conducting) electronic system, whilst in its

turn, W 22 fully represents the hole system, such that valence electrons no longer show up, henceforth.
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Appendix D

D.1 Coulomb potential in Fourier space

Let C{u, v}(r) denote the convolution between u(r) and v(r), that is defined by

C{u, v}(r) =

∫
dr′ u(r′) v(r′ − r). (D.1)

The Fourier transform of a convolution yields a simple result involving the Fourier transform of each of

the functions subjected to the operation, namely

C{u, v}(q) =

∫
dr

(2π)d
e−iq·r C{u, v}(r),

= (2π)d u(q) v(q), (D.2)

where u(q) and v(q) are the Fourier transforms of the initial functions, and d is the dimensionality of

the variables involved in the transformation. This is known as the convolution theorem and follows

straightforwardly after a simple manipulation. In the mean-field approximation, the potential is found to

be given by a convolution between the density and the time independent Coulomb potential, V(r)

V(r) =
e2

4πεrε0|r|
. (D.3)

Hence, we are interested in calculating the Fourier transform of

V (r, t) = C{V(r), n(r, t)}, (D.4)

which gives

V (q, t) = (2π)d V(q) n(q, t). (D.5)

Next, we calculate V(q) for three distinct cases of interest.
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D.1.1 3-dimensional case

In the three dimensional case, V(q) reads

V(q) =
e2

4πεrε0

∫
dr

(2π)3

e−iq·r

|r|
, r ∈ R3. (D.6)

We emphasise again that the above integral is invariant under a q rotation, which means that if we

let q → Λq, with Λ being the unitary transformation corresponding to the rotation, then V(q) remains

unchanged, i.e., V(q) = V(q). We then choose to align q with the z−axis, for which q ·r = qr cos θ holds,

where θ is the polar angle of r and q,r denote the absolute value of the respective variable. In spherical

coordinates, we obtain

V(q) =
e2

4πεrε0

2π∫
0

dφ

π∫
0

dθ sin θ

+∞∫
0

dr

(2π)3
r e−iqr cos θ,

=
e2

2εrε0

+∞∫
0

dr

(2π)3

1

iq

(
eiqr − e−iqr

)
. (D.7)

To perform the last integration, we add a convergence factor δ and evaluate the integral in the limit δ → 0,

i.e.,

V(q) = lim
δ→0

e2

2εrε0

+∞∫
0

dr

(2π)3

1

iq

(
eir(q+iδ) − e−ir(q−iδ)

)
,

=
e2

2εrε0

1

iq(2π)3
lim
δ→0

2iq

q2 + δ2
,

=
1

(2π)3

e2

εrε0q2
. (D.8)

The mean-field potential is, thus

V3D(q, t) =
n(q, t)e2

εrε0q2
. (D.9)

D.1.2 2-dimensional case

For the two dimensional case, we have

V(q) =
e2

4πεrε0

∫
dr

(2π)2

e−iq·r

|r|
, r ∈ R2. (D.10)

As in the previous case, V(q) is only a function of q, which allows us to align q with the x−direction, such

that

V(q) =
e2

4πεrε0

+∞∫
0

dr

(2π)2

2π∫
0

dθ e−iqr cos θ, (D.11)
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where we maintained the same definitions as before. Using the identity

e−ix cos θ = J0(x) + 2

+∞∑
n=1

(−i)nJn(x) cos(nθ), (D.12)

with Jn(x) denoting the n−order Bessel function of the first kind (n ∈ N), the above expression reduces

to

V(q) =
1

(2π)2

e2

4πεrε0q

+∞∫
0

dx 2πJ0(x), (D.13)

where we changed the variable of integration using x = qr, and used the property
∫ +∞

0
dθ cos(nθ) = 0.

Given that Jn(x) obeys the normalization condition
∫ +∞

0
Jn(x) = 1, then

V(q) =
1

(2π)2

e2

2εrε0q
. (D.14)

Hence, the mean-field potential in 2 dimensions is

V2D(q, t) =
n(q, t)e2

2εrε0q
. (D.15)

D.1.3 Two parallel planes configuration

For this particular configuration, we need to compute

V(q) =
e2

4πεrε0

∫
dr

(2π)2

e−iq·r

|r + dẑ|
, r ∈ R2, (D.16)

where d > 0 is the distance between the planes and ẑ is the unit vector pointing in the z−direction. As

before, this is equivalent to

V(q) =
e2

4πεrε0

+∞∫
0

dr

(2π)2

2π∫
0

dθ
re−iqr cos θ

√
r2 + d2

,

=
e2

4πεrε0q

+∞∫
0

dx

(2π)2

2π∫
0

dθ
xe−ix cos θ√
x2 + (qd)2

,

=
e2

2εrε0q

+∞∫
0

dx

(2π)2

xJ0(x)√
x2 + (qd)2

. (D.17)

Using the property
∫ +∞

0
dx xJ0(x)√

x2+a2
= e−|a|, we finally get

V
‖
2D(q, t) =

n(q, t)e2

2εrε0q
e−qd. (D.18)
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