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We derive a quantum kinetic model describing the dynamics of graphene electrons and holes in
phase space, based on the Wigner-Moyal procedure. In order to take into account the quantum
nature of the carriers, we start from the low-energy Schrödinger equation describing the mean-field
wave-function for both the conduction and valence electron. The equation of motion for the Wigner
tensor is established, where the Coulomb interaction is introduced self-consistently (in the Hartree
approximation), and the Poisson equation closes the set of equations. The long wavelength limit
for the plasmon dispersion relation is obtained, in the case of non-zero doping. As an application,
we derive the corresponding hydrodynamical equations and discuss the correct value of the effective
hydrodynamic mass of the carriers from first principles, an issue that is crucial in the establishment
of the correct hydrodynamics of Dirac particles, thus paving the stage towards a more comprehensive
description of graphene plasmonics. Moreover, the Wigner-Poisson is used to describe an instability
in doped double-layer graphene, when a beam of electrons is injected in one of the layers. We find
unstable plasmon solutions with growth rates as high as 20THz for realistic experimental conditions.

I. INTRODUCTION

Graphene is a single layer of sp2-bonded carbon atoms,
which are densely packed in the form of a benzene ring
structure [1], which has been extensively studied due to
its spectacular optical, electronic and mechanical proper-
ties [2]. In addition to its two-dimensional (2D) nature,
the elementary electronic excitations are described by a
Dirac-like dispersion in the low-energy limit [3]. The rela-
tivistic nature of graphene quasi-particles, resulting from
the cone-like dispersion relation near the Dirac points,
makes it useful for transparent electronic devices, ultra-
sensitive photodetectors and other high-performance op-
toelectronic structures [4, 5]. Furthermore, graphene pos-
sesses extremely high quantum efficiency for light-matter
interactions [6]. Moreover, the collective oscillations of
the electron and hole densities lead to the formation
of plasmons (or plasma waves) [7]. In fact, plasmonics
of 2D materials, such as graphene and transition metal
dichalcogenides (TMDCs) and hexagonal boron nitride
(hBN) [8, 9], is nowadays a very prominent field of re-
search [10]. Graphene-based plasmonics finds a variety
of applications, as the versatility of graphene enables the
manufacture of optical devices working in different fre-
quency ranges, namely in the terahertz (THz) and the
infra-red domains [11]. While metal plasmonics exhibit
large Ohmic losses, which limit their applicability to opti-
cal processing devices, doped graphene emerges as an al-
ternative. Its large conductivity, in part due to the zero-
mass character of the carriers, encloses a wide range of
potential applications, such as high-frequency nanoelec-
tronics, nanomechanics, transparent electrodes, and com-
posite materials [12]. For this reason, the possibility of
electric gating has been extensively studied in graphene,
allowing for the manipulation of the Fermi level [13]. Re-
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cently, gating with a solid electrolyte allowed carrier con-
centrations as large as 1014 cm−2 to be achieved, which
results in a Fermi energy of EF ≈ 1 eV, such that a mod-
ulation of optical transmission in the visible spectrum is
possible [14, 15]. The potentiality of THz emission was
also pointed out [16] as a possible application recently, by
making use of a graphene field-effect transistor (gFET),
and controlling the applied gate voltage and injected cur-
rent.

From the theoretical point of view, a variety of tech-
niques have been developed to establish the dynamics of
Dirac electrons and holes in graphene, ranging from semi-
classical hydrodynamical models [17–19] to quantum for-
malisms that involve collective Green’s functions, such as
the time-dependent Hartree-Fock approximation [20, 21],
or the time-dependent density functional theory [22]. In
one hand, it is often the case that, when going towards
a complete quantum description, cumbersome equations
crop up, which are of very reduced utility; on the other,
the semiclassical approach is based on the Boltzmann
equations, which is adequate in the case of dense elec-
tron and hole densities, but may fail to describe other
important quantum phenomena.

In this work, we establish a kinetic formalism based
on the Wigner formulation of quantum mechanics [23]
to study the Dirac electrons and holes in phase space.
We start by constructing the Schrödinger equation for
the conduction and valence electrons, derived from a mi-
croscopic tight-binding model, for the low-energy elec-
trons. After moving to the electron-hole basis, we derive
a kinetic equation for the Wigner matrix components,
which correctly incorporates the pseudo-spin degrees of
freedom. The interaction is introduced self-consistently
via the Hartree approximation, which obeys the Poisson
equation. With this in hand, we are able to obtain the
plasmon dispersion relation, recovering the usual result
based on the random-phase approximation. By perform-
ing averages over the phase-space distributions (more
precisely, by taking the moments of the Wigner equa-
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tion), hydrodynamical equations are obtained allowing
for fluid description of the Dirac particles in graphene.
As a consequence, we are able to derive microscopically
the effective mass of a fluid particle and relate it to the
Drude mass, thus contributing to the understanding of
an important question in graphene hydrodynamics. We
also show that the classical limit corresponds to previ-
ous results based on the Vlasov equation for the classi-
cal distribution function. As an application, a type of
instability is studied in spatially separated double-layer
graphene. When a beam of electrons is injected in one of
the layers, unstable plasmon solutions can develop, with
real frequencies in the THz-range, and achievable growth
rates of tens of THz.

II. GRAPHENE PRELIMINARIES

The SLG lattice is a 2D lattice made out of carbon
atoms disposed into two sublattices, A and B. Each unit
cell contains two carbon atoms that belong to different
sublattices, and each atom is strongly bounded to three
other, by a sp2 hybridization. The remaining valence
electron is delocalized, and responsible for most of the
electronic properties. The electronic dynamics can be
captured starting with an Hamiltonian in second quanti-
zation

Ĥ =
!

s,s′

!

R,R′

û†
s(R) 〈ûs,R|Ĥ|ûs′ ,R

′〉 ûs′(R
′), (1)

where R/R′ run over the real lattice, and s/s′ over
the two sublattices A and B. Additionally, û†

s(R) and

ûs(R) denote the creation and annihilation operators,
respectively, for each lattice point. Moreover, the tight-
binding approximation can be settled with a proper re-
striction on the matrix elements 〈ûs,R|Ĥ|ûs′ ,R

′〉. By
allowing hopping only between nearest neighbors, we
can set all matrix elements to zero except the cases of
〈ûs,R|Ĥ|ûs′ ,R+ δi〉 = −t(1− δss′), where t ≈ 2.97 eV
is the hopping integral and δi are graphene’s nearest-
neighbor vectors [3]. In momentum space, the Hamilto-
nian reduces to

Ĥ =
!

q

ϕ†
q

"
0 −t∆

−t∆∗ 0

#
ϕq, (2)

where q = (qx, qy) is the wave-vector, ϕq = (ûAq, ûBq)
T

and ∆(q) =
$

i e
−iq·δi . We can further diagonalise

(2), by the means of a unitary transformation Φ(q, t) =
Sϕ(q, t), where ΦT (q, t) = (ĉq v̂q) is a new vector field
and ĉq and v̂q are new annihilation operators. We obtain

Ĥ =
!

q

Φ†
q

"
!ω(q) 0

0 −!ω(q)

#
Φq, (3)

where

S =
1√
2

"
−e−iθ(q) 1
eiθ(q) 1

#
, (4)

eiθ(q) =
%
∆(q)/∆∗(q), and ±!ω(q) are the two sym-

metric energy bands

ω(q) =
t

!

&
4 cos

'√
3dqx/2

(
cos

'
3dqy/2

(
+ 2 cos

'√
3dqx

(
+ 3 . (5)

Above, d ≈ 1.5 Å is the carbon-carbon distance. These
energy bands represent the conduction (+) and va-
lence (−) bands for quasi-electrons. Hence, ĉ†q(ĉq) cre-
ates(annihilates) an electron with momentum q and en-
ergy +!ω(q) in the conduction band, and v̂†q(v̂q) cre-
ates(annihilates) an electron with momentum q and en-
ergy −!ω(q) in the valence band. For energies much
smaller than t, we can expand (3) around the Dirac point

K = (4π/(3
√
3d), 0) [24], and obtain

ω(q) ≃ vF |q|, (6)

where vF = 3
√
3td/(2h) ≈ 106 ms−1 is the Fermi velocity

As such, the low-energy Hamiltonian in Fourier space
yields

Ĥ =
!

q

ξ(q)
)
ĉ†q ĉq − v̂†q v̂q

*
, (7)

where ξ(q) = !vF |q| is the single-particle dispersion re-
lation near the Dirac point.
By inspecting (7), we still face the problem of treating

negative-energy excitations. To circumvent it, we call
forth the ground-state of our case of interest. Neutral
SLG’s ground-state comprises a completely filled valence
band and an empty conduction band. Such electronic
configuration is known as Fermi Sea, which we denote by
|ΩFS〉. It is written as

|ΩFS〉 =
+

q∈BZ

v̂†q |0〉 , (8)

where |0〉 is the vacuum state, and BZ is the first Bril-
louin zone. With this in mind, it is easy to calculate the
energy of |ΩFS〉, through Ĥ |ΩFS〉 = EFS |ΩFS〉, and
realize that EFS =

$
q −ξ(q) < 0. Hence, acting on
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ΩFS with any v̂q leads to a new state |Ω′〉 such that
EΩ′ > EFS . This implies that destroying a valence elec-
tron holds a positive energy excitations to the ground-
state, which suggest that the absence of a valence elec-
tron (or the presence of a hole in the almost filled Fermi
sea) behaves as a positive-energy particle. Therefore, we
define two new fermionic creation and annihilation op-

erators ĥ†
q and ĥq as ĥ†

q = v̂−q and ĥq = v̂†−q, which
obey fermionic anti-commutation relations. Physically,

ĥ†
q creates a hole with momentum q and ĥq destroys a

hole with momentum q. Since a hole physically corre-
sponds to an unoccupied valence state, it must have a
symmetric electric charge, +e. In this new basis, we are
led to the Hamiltonian

Ĥ = EFS +
!

q∈BZ

ξ(q)
)
ĉ†q ĉq + ĥ†

qĥq

*
, (9)

which represents a free Hamiltonian for two different
species with positive energy, as desired. The constant
EFS can be absorbed into Ĥ, and will then be discarded.
We now proceed to find the equation of motion for the

two wave-functions of electrons and holes, and further
take interactions into account. To do that, let us define

the wave-function array ψ as ψT (q, t) = (ĉq, ĥq). We

use a Schrödinger type of equation, i!∂tψ = Ĥψ, whose
Hamiltonian comprises a kinetic term plus a potential,
accounting for the Coulomb interaction. In momentum
space, it reads

i!
∂

∂t
ψα(q, t) = ξ(q)ψα(q, t)

+

,
dq′ Vα(q

′, t)ψα(q − q′, t) (10)

Above, Vα(q, t) is the Fourier transform of the interact-
ing potential. In what follows, we perform our calcu-
lations within the Hartree (mean-field) approximation,
which boils down to solve the Poisson equation for the
electrostatic potential φ(r, t)

∇2φ = − 1

ε0εr

!

β

Qβnβ , (11)

where nβ(r, t) =
--ψβ(r, t)

--2 denotes the electron (β = 1)
and hole (β = 2) density, Qβ is the charge of the β−band
and ε0εr is the permittivity of the surrounding medium.
Besides, Vα(r, t) is related to φ(r, t) via

Vα(r, t) = Qαφ(r, t), (12)

A formal solution to (11) can be written as

φ(r, t) =
1

4πε0εr

,
dr′

!

β

Qβnβ(r
′, t)

|r − r′| . (13)

Equation (13) provides a closure relation to the system of
(10), by relating the potential with the electron and hole

densities, which in turn are related to the wave-functions.
In other words,

φ(q, t) = U(q)
!

β

sβnβ(q, t), (14)

where U(q) = e/2ε0εr|q| is the Fourier transform of the
Coulomb interaction term, in 2D, and sα = 2α− 3 is the
sign of the α−charge.

III. WIGNER FORMALISM

A very handy way to treat the electronic system of (10)
is by using Wigner’s picture of quantum mechanics [23],
which allows for a fully phase-space description, in close
analogy with the classical case. In the classical limit, the
Wigner function denotes the probability density of find-
ing a particle in a given infinitesimal phase space volume
dr dk centred in (r,k). In the quantum case, due to
the commutation relation between r and q, the Heisen-
berg uncertainty principle prevents particles to localize
in a specific phase-space point, and a proper distribution
function is not possible to construct [25]. However, we
can still construct the Wigner function W (r,k, t) whose
properties are similar to those of a classical distribution
function. It is a function of both a spatial coordinate r
and a wave-vector coordinate k. Although r and k are
not conjugate to each other, they both give information
about the spatial and momentum distributions of the sys-
tem, which is described by a wave-function ψ(r, t). The
phase-space regions where W (r,k, t) takes negative val-
ues are purely quantum, having no classical analogue as
it cannot be univocally defined as a particle phase-space
density. For that reason, the Wigner function is often
refereed to as a quasi-distribution function. The mathe-
matical definition of the Wigner function is given by the
Weyl transform of the density operator ρ̂. The expecta-
tion values of any operator can be computed by integrat-
ing the Weyl transform of the same operator multiplied
by W (r,k, t), very similarly to the classical case. For
the present case, it is given by a tensor Wαγ(r,k, t), ac-
counting for the pseudo-spin degrees of freedom, and is
defined as

Wαγ(r,k, t) =

,
ds

(2π)2
eik·s

× ψα(r − s/2, t) ψ∗γ(r + s/2, t). (15)

The tensorial structure renders an Hermitian Wigner ma-
trix, rather than their components being all real, as in the
conventional scalar case. Although the diagonal terms
are still real, the off-diagonal elements can have non-
zero imaginary parts, despite being complex conjugate
of each other. Those elements represent the density cor-
relations between the two populations. Notwithstanding,
in the present mean-field approximation, the off-diagonal
terms totally decouple from the system, and evolve inde-
pendently. On the other hand, the diagonal elements
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are linked through the interacting potential, as they rep-
resent the density of each population. If one considers
higher order terms on the electron-electron interaction
(e.g., by taking into account exchange effects), the off-
diagonal elements would no longer be discarder. As such,
we have (no implicit summation is implied)

nα(r, t) =

,
dk Wαα(r,k, t) . (16)

In momentum space, Eq. (15) transforms to

Wαγ(q,k, t) = ψα(k + q/2, t) ψ∗γ(k − q/2, t) (17)

To construct an equation for the Wigner matrix elements,
we start by writing (10) and its hermitian conjugate for
two independent momentum coordinates, q1 and q2, and
distinct band indices, α and γ. By multiplying the fist
by ψ∗γ(q2, t) and the second by ψα(q1, t) and subtracting
the results, we arrive at

i!
∂

∂t

.
ψα(q1, t)ψ

∗γ(q2, t)
/
=

.
ξ(q1)− ξ(q2)

/
ψα(q1, t)ψ

∗γ(q2, t)

+

,
dq′

.
Vα(q

′, t)ψα(q1 − q′, t)ψ∗γ(q2, t)− Vγ(q
′, t)ψα(q1, t)ψ

∗γ(q2 − q′, t)
/
, (18)

where we used Vα(q
′, t)∗ = Vα(−q′, t). Recalling the

identity f(k+q) = eq·∇kf(k), and introducing the coor-
dinate transformation q1 = k + q/2, q2 = k − q/2, (18)
it follows, after some straightforward algebra

.
i!

∂

∂t
−∆ξ−(q,k)

/
Wαγ(q,k, t) = e

,
dq′ φ(q′, t)

×∆Wαγ(q,k, q′, t), (19)

where ∆Wαγ(q,k, q′, t) = sαW
αγ(q − q′,k − q′/2, t) −

sγW
αγ(q−q′,k+q′/2, t) and ∆ξ−(q,k) = ξ(k+q/2)−

ξ(k − q/2). Equation (19) and (14) define the Wigner-
Poisson model for 2D Dirac particles, in Fourier space.
For the diagonal components Wαα(r,k, t)

.
= Wα, the

real space Wigner equation (19) reads

i!
∂

∂t
Wα + i!K{Wα} =

,
dq eiq·r

'
Wα

− −Wα
+

(

×Vα(q, t), (20)

where Wα
±

.
= Wα(r,k ± q/2, t) and

K{Wα} = vF

,
dr′

(2π)2
sin

)
2k · r

*

|r|3
Wα(r−r′,k, t), (21)

represents the kinetic term, for which no classical limit
exists. This defining difference confers to Dirac particles
a purely quantum nature.
In what follows, we consider small perturbations

around an equilibrium configuration, keeping the lowest
order contributions to the Wigner function components.
As such, we can write

Wαγ(r,k, t) ≃ Wα
0 (k)δ

αγ + W̃αγ(r,k, t), (22)

with |W̃αγ | ≪ Wα
0 , which in momentum space reads

Wαγ(q,k, t) ≃ Wα
0 (k)δ(q)δ

αγ + W̃αγ(q,k, t). Similarly,
the density and electrostatic potential will be perturbed

as

nα(q, t) ≃ nα
0 δ(q) + ñα(q, t), (23)

φ(q, t) ≃ U(q)
!

β

[n0δ(q) + ñβ(q, t)] , (24)

where nα
0 =

0
dkWα

0 (k) is the equilibrium density of each
band. We can show that the lowest order contributions
of (19) vanish. Moreover, the first order terms provide

i!
∂

∂t
W̃αγ(q,k, t) = ∆ξ−(q,k)W̃αγ(q,k, t) +

!

β

ñβ(q, t)

×QαU(q)∆Wα
0 (k, q)δ

αγ

(25)

where ∆W0(k) = W0(k − q/2) − W0(k + q/2). Equa-
tion (25) is formally equivalent to Kubo’s formula for the
linear response of a many-body charged system [26], and
reproduces the features contained in the random phase
approximation (RPA) [27]. This formalism is specially
advantageous to describe the dynamics of electrons that
are far from equilibrium, such as the case of plasma in-
stabilities, with the configuration being solely defined by
W0.
In what follows, we consider the case of SLG doped

with negative charge carriers, which occupy the conduc-
tion band. In this configuration, the conduction band
gets filled up with electrons up to the Fermi level, EF .
In momentum-energy space, this is defined by the cone
E(k) = !vF |k|Θ(kF − |k|), where Θ(x) is the Heaviside
step function, and kF = EF /(!vF ) is the Fermi wave-
number. The latter is related to the doping density n0

by

kF =

&
4πn0

gsgv
, (26)

where gsgv accounts for the spin (gs = 2) and valley
(gv = 2) degeneracy. The first results from the degener-
acy of the spin populations in each energy band, which
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we have neglected in our treatment so far; the second
should be incorporated to consistently include the two
minima in the first Brillouin zone (BZ) [28]. Typical ex-
perimental values of n0 between 109 − 5 × 1012 cm−2

are achievable in graphene. In the case EF ≫ kBT , the
presence of holes is negligible, and the first component
of (19) is sufficient. Hence, to simplify the notation, we
shall drop the band indices, W

.
= W 11 and n

.
= n1. We

can solve the first component of (19) equation perturba-
tively, for the plasmon dispersion relation, which leads to
the allowed frequencies ω for each mode q of the plasma
wave, of the form ω = ω(q). After Fourier transform-
ing the time coordinate, we can recast (25) into a more
familiar form. Straightforward manipulation leads to

W̃ (q,k,ω) = ñ(q,ω) U(q) ∆W0(k, q)

!ω − ξ(k + q/2) + ξ(k − q/2)
.

(27)
Upon integrating both sides in k, we find the dielectric
function ε(q,ω)

ε(q,ω) = 1− U(q)Π(q,ω), (28)

and the polarizability function Π(q,ω) is defined as

Π(q,ω) =

,
dk

W0(k)−W0(k + q)

!ω + ξ(k)− ξ(k + q)
. (29)

The plasmon dispersion relation is given by the zeros
of ε(q,ω). We note that, in the absence of streaming,
ε(q,ω) and ω(q) depends only on q ≡ |q|. The formal
result of Eq. (28) is equivalent to the random-phase ap-
proximation (RPA) [29]. In the long wavelength limit
q → 0, the plasmon frequency can be computed using the
noninteracting irreducible polarizability, and Eq. (28) is
recovered. We assume the equilibrium configuration to
be given by

W0(k) = n0Θ(kF − k)/πk2F . (30)

This is justified invoking the 2D Fermi model for an elec-
tron gas since, in the ultra-cold limit T → 0, we have
lim
T→0

fFD(ξk) = Θ(EF − ξk). fFD(x) denotes the Fermi-

Dirac distribution function. Additionally, (30) verifies0
dk W0(k) = n0. Note that the correct form of fFD(ξk)

can be introduced as temperature corrections to the
Heaviside step function used above, which are found to
be negligible in the present case. Expanding (28) around
q = 0, and keeping only terms up to O(q2), the plasmon
dispersion relation is obtained

ω(q) = ±
'
ω2
p

q

kF
+

3

4
v2F q

2
(1/2

, (31)

where ωp is the characteristic plasmon frequency

ωp =

1
e2n0vF
2!ε0εr

21/2

, (32)

which depends on experimental parameters εr and n0, as
well as universal constants. Each branch corresponds to
a different direction of propagation (forward and back-
ward waves) for longitudinal plasmonic modes. For
the typical experimental values εr = 2.5 and n0 ∈
[5 × 10−3, 1] × 1012 cm−2, ωp lies in the THz-region,
ωp ∈ [16.6, 234.6] THz. The first term ω ∼ √

q de-
scribes the long wavelength signature of plasmons in
two-dimensional electron gases (2DEG) [30, 31]. The
most notable difference, when compared to the charac-
teristic plasmon frequency in the 3-dimensional parabolic
case, ω3D

p =
%
e2n0/(ε0m), is the appearance of ! in

the leading term, revealing its pure quantum nature and
being a feature of the present quasi-relativistic descrip-
tion. Therefore, no classical counterpart exists for the 2-
dimensional Dirac plasma. This result was already found
in the literature [32], derived within the RPA.

IV. HYDRODYNAMICAL MODEL

One of the major advantages of the present descrip-
tion is the possibility of calculate the moments out of
(19), and thus construct hydrodynamical models. Simi-
larly to the classical case, Wigner’s formalism allows the
calculation of average quantities in terms of phase-space
integrations, and hence obtaining equations which govern
the evolution of those quantities. Because we are con-
cerned with the diagonal elements of the Wigner matrix
only, we defined Wα as being the diagonal components,
i.e., Wα .

= Wαα. Similarly to the classical, let us define
the average value of an operator Ĝ as

Gα =
1

nα(r, t)

,
dk T {Ĝ}Wα(r,k, t) (33)

where T {Ĝ} denotes the Weyl transform of the operator

Ĝ,

T {Ĝ} =

,
ds

(2π!)d
eis·p/! 〈r − s/2|Ĝ|r + s/2〉 . (34)

The cases Ĝ = 1 and Ĝ = !k̂ define the relevant hydro-
dynamical variables

nα(r, t) =

,
dk Wα(r,k, t), (35)

pα(r, t) =
1

nα(r, t)

,
dk !k Wα(r,k, t). (36)

Above, we used T {k̂} = k.
After differentiating (35) and (36) with respect to time,

and use (19) to express the time derivative of the Wigner
matrix components, we are led to the hydrodynamical
set of equations
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i!
∂

∂t
nα = 2

,
dk dq eir·q

3
sinh

'q
2
·∇k

(
ξ(k)

4
Wα(q,k, t), (37)

∂

∂t
(nαpα) = −2i

,
dk dq eir·q p

3
sinh

'q
2
·∇k

(
ξ(k)

4
Wα(q,k, t)−Qαnα∇φ. (38)

Equations (37) and (38) are valid under the assump-
tions that the relevant quantities are slow-varying in both
space and time, which is the natural requirement to go
from a microscopic field theory to a macroscopic hydro-
dynamical model (coarse-graining condition). The fluid
description is only relevant for regimes where changes in
macroscopic quantities take place on a much slower spa-
tial and temporal scale than the characteristic scales kF
and ωp, respectively. This requirement is fulfilled if the
characteristic time of the kinematic processes, t ∼ 1/ω,
is much longer than the inverse collision frequency, 1/νc,
and the typical length L is much greater than the mean
free path l ∼ vF /νc, so that the plasma can be regarded
locally as in a quasi-equilibrium configuration. However,
due to the quantum nature of the model, we were able
to capture the relativistic Dirac structure in a rigorous
way. Actually, in the context of 2D quantum plasmas re-
alized in semiconductor structures, the De Broglie wave-
length is replaced by the Thomas-Fermi screening length
λTF =

√
gsgvn0e

2/(
√
4πε!vF ). This is the analogue of

the classical Debye length in plasmas, and differs from
the Fermi wavelength defined above, λF = 2π/kF (rang-
ing as ∼ 10 nm−10µm for typical graphene parameters).
Consequently, the hydrodynamical limit is expected to be
valid provided the condition

qλTF ≪ 1, qλF ≪ 1. (39)

In graphene, λF /λTF ≃ 3.2, such that later condition is
the most determinant of validity. Typical values of kF
are found between 103 and 106 cm−1. At smaller wave-
lengths, the microscopic structure becomes important,
and we no longer can rely on the hydrodynamical model.

A. Classical and semi-classical limits

In order to clarify the meaning of some of the terms
in (37) and (38), it is instructive to obtain the classical
limit ! → 0, which can be done by replacing k with p/!
and neglecting O(!) terms. The semi-classical limits are
derived by keeping higher orders of !. Taylor expanding
the sinh operator in (37) and (38) yields

∂

∂t
nα +∇ · jα = !

,
dk N{Wα

5
, (40)

∂

∂t
nαpα +∇Pα +Qαnα∇φ = !

,
dk p N{Wα},

(41)

where jα = nαvα is the density current, vα is the velocity
field

vα(r, t) =
vF
nα

,
dk

k

|k| W
α(r,k, t), (42)

and Pα is the pressure-tensor

Pα(r, t) = vF

,
dk

1

|p|

"
p2x pxpy
pypx p2y

#
Wα(r,k, t).

(43)
Equation (42) is what one expects, for massless Dirac
particles with constant Fermi velocity. However, the
quasi-relativistic nature of the kinetic term in (19) intro-
duces extra quantum contributions (N ), which are not
present in the conventional parabolic case, and read

N{Wα
5
= −

+∞!

n=1

2i!2n−1

(2n+ 1)!

,
dq eiq·r Wα(q,k, t)

×
'q
2
·∇p

(2n+1

ξ(p). (44)

Note that, for parabolic dispersion relation, ξ(p) =
p2/2m, N vanishes. In the massless case, all order deriva-
tives of ξ(p) exist. By letting ! → 0, we obtain the clas-
sical limit of (40) and (41), which is simply their LHS’s
equaled to zero. Up to this point, we have just considered
the density and averaged momentum as hydrodynamical
variables. Higher order variables could be defined, being
the averaged energy density nαξα the next in the chain,
for which new transport equations would be settled, cou-
pling the new to the previous variables. However, within
the current scope, equations (40) and (41) suffice to de-
scribe the system accurately, as they form a closed set,
thus higher order equations in the hydrodynamical hier-
archy will be discarded.
To go beyond the classical limit, we can include the

first quantum correction in the above equations, by con-
sidering the first term of N{Wα}, which leads to a semi-
classical hydrodynamical model. Therefore, neglecting
O
)
!2
*
terms in (44), we obtain the modified hydrody-

namical equations

∂

∂t
nα +∇ · jα =

!2

24

3
∂3

∂x3

'
nαJxxxα

(
+

∂3

∂y3

'
nαJyyyα

(

+ 3
∂2

∂x2

∂

∂y

'
nαJxxyα

(
+ 3

∂2

∂y2
∂

∂x

'
nαJyyxα

(4
, (45)
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∂

∂t
(nαpα) +∇Pα +Qαnα∇φ =

!2

24

3
∂3

∂x3

'
nαTxxxα

(

+
∂3

∂y3

'
nαTyyyα

(
+ 3

∂2

∂x2

∂

∂y

'
nαTxxyα

(

+ 3
∂2

∂y2
∂

∂x

'
nαTyyxα

(4
, (46)

where we defined the new dispersive tensors Jijl and Tijl

as

Jijl = vF

1
3pipjpl

|p|5
− δijpl + δjlpi + δlipj

|p|3

2
, (47)

Tijl = pJijl. (48)

B. Mass transport

Having set the relevant transport equations, we shall
move now to a more detailed discussion concerning the
averaged momentum and velocity fields. To start this
discussion on the scope of the present work, let us start
by considering the pure electron case, for which we shall
drop the band index α, to condense notation. As one
can easily conclude by comparing the definitions of (36)
and (42), the usual relation p = mv does not hold, in
the present case of massless Dirac particles [33], if one
requires a constant value of m. However, by allowing a
space and time dependence on the mass, we are able to
define a new mass-tensor as

mij(r, t) =
pi
vi
δij , (49)

as well as the mass density tensor ρij = nmij . The mean-
ing of such fields should be clear: despite the charge carri-
ers have no mass, i.e., they are described by a Dirac-type
of equation, the fluid velocity and momentum fields can
be used to construct a fictitious mass, simply by divid-
ing one by the other, motivated by the usual parabolic
case. Nevertheless, the value of the mass at each point in
space and time does not correspond to the actual mass of
carriers, but rather to what would the mass be if the two
fields were indeed proportional to each other. It should,
thus, be interpreted as a mathematical trick to provide
more handy equations. Moreover, the tensorial struc-
ture for the mass should be included to contemplate the
most generic case, for which the rotational symmetry in
real space can be broken. However, up to this point, no
rotational-symmetry breaking terms were included, and
mij should, thus, become proportional to the identity
matrix, i.e., mij(r, t) = m(r, t)δij .
In order to eliminate the velocity tensor for the conti-

nuity equations, we modify the equilibrium Wigner func-
tion used in the last chapter, to contemplate an adiabatic
non-equilibrium situation. As such, we can assume the

Wigner diagonal component Wα .
= W to be given gener-

ically by

W (r,k, t) =
n0

πk2F
Θ

"
kF − n0

----
k − k(r, t)

n(r, t)

----

#
, (50)

which represents a shifted Fermi sphere in momentum
space, modeled by the hydrodynamical variables n and
k. This particular form for the Wigner function allows
(35) and (36) to be exactly satisfied. Introducing (50)
into the x−component of (42) leads to

vx(r, t) =
px(r, t)

Mγ(r, t)
, (51)

where M = !kF /vF is the Drude mass, and γ is the
quasi-relativistic Lorentz factor

γ−1(n, px) =
8

π

1,

0

dy

%
1− y2%

f+ +
%
f−

, (52)

f± =
'
p′±n′

%
1− y2

(2

+ y2, p′ =
px
pF

, n′ =
n

n0
.

Hence, γ depends on the position and time merely
through the hydrodynamical variables n(r, t) and
px(r, t). Although the integral of (52) has no analytic
solution, it reduces to simple expressions, in the limit-
ing cases of small and large average momentum. We can
verify that (∂γ/∂px)px=0 = 0, thus in the limit of small

fluid momentum px/pF ≪ 1, γ becomes momentum in-
dependent, as

γ(n) ≃ π

4

1− n2/n2
0

K1(1− n2/n2
0)−K2(1− n2/n2

0)
, (53)

where K1(x) and K2(x) are the complete elliptic inte-
grals of the first and second kind, respectively, K1(x) =0 π/2

0
dθ (1 − x2 sin2 θ)−1/2 and K2(x) =

0 π/2

0
dθ (1 −

x2 sin2 θ)1/2. Accordingly, the quantities px and vx be-
come proportional to each other, ensuring a relation of
the form px = m(n)vx. However, only for the case n = n0

the mass converges to the Drude mass, i.e., the asymp-
totic expression of (53) verifies γ(n0) = 1. For general
out-of-equilibrium conditions with small averaged mo-
mentum, we have m(n) = γ(n)M. For the limiting case
of px/pF ≫ 1, thus keeping only O(pF /px) terms in (52),
we find γ ≃ |px|/(vFM). This implies vx ≃ vF sign(px),
where sign(x) returns the sign of x. Then, for large fluid
momentum, the fluid velocity approaches the Fermi ve-
locity, never overcoming it, and becomes independent of
the density and absolute value of px, retaining only the
momentum sign. In Fig. 1, we can see how changes on
the density affect this relation. For increasing values of
the density, the region of linearity becomes larger. On
the contrary, for vanishingly small density, the relation is
rapidly non-linear with increasing px.
We should also comment on the particular choice of

(50). The incompressibility of the phase-space fluid, in
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FIG. 1. Numerical integration of (52), for several values of
the normalised density n′. Near the origin, we find a linear
relation, while for large momentum, the velocity converges, in
absolute value, to the Fermi velocity, becoming only a func-
tion of the sign of px.

a quantum picture, is violated by phenomena like tun-
neling, which would lead to a change in the amplitude
of W , along a particle’s trajectory. Such behaviour is
clearly not casted by (50). Nevertheless, (50) is correct
to first order, and gets more accurate as the temperature
decreases.

C. Semi-classical dispersion relation

Next, we give analytical expressions for (43), (47) and
(48), in terms of the previous hydrodynamical variables
nα and pα, using (50). We restrict, yet again, the vari-
ations to the x−direction, such that the relevant quanti-
ties are Jxxx, T

x
xxx and Pxx, and the remaining ones can

be discarded. In what follows, we intend to derive the
linearised version of the hydrodynamical equations, for
which we introduce the expansions n(x, t) = n0 + ñ(x, t)
and px(x, t) = px,0 + p̃x(x, t). Neglecting second order
terms, the relevant components featuring the hydrody-
namical equations read

Jxxx ≃ −3vF
4p3F

p̃x, (54)

T x
xxx ≃ 3vF

pF

"
1

4
− 1

8

ñ

n0

#
, (55)

Pxx ≃ pF vFn0

"
1

3
+

3

4

ñ

n0

#
, (56)

Up to first order, the velocity is related to the momentum
by

vx ≃ px
M , (57)

Thus, we are led to the linearised model

∂

∂t
ñ+

∂

∂x

'
n0

p̃x
M

(
= −!2

24

∂3

∂x3

'
n0

3vF
4p3F

p̃x

(
, (58)

∂

∂t
(n0p̃x)+

∂

∂x

'3
4
pF vF ñ

(
+Qn0

∂

∂x
φ̃ =

!2

24

∂3

∂x3

'3vF
8pF

ñ
(
,

(59)

where φ̃(r, t) is the first order electrostatic potential with
respect to the perturbed density. Solving (58) and (59)
simultaneously gives the plasmon dispersion relation

ω(q) = ±
1
ω2
p

q

kF
+

3

4
v2F q

2 −
ω2
p

32

q3

k3F
+ ν

!2q4

4M2

21/2

,

(60)
where ν = −1/32 is a numerical factor, which results
from the contributions of both Jxxx and T x

xxx. The ± sign
refers to each plasmon branch for forward and backward
propagation. The two first terms are the classical con-
tributions to the plasmon dispersion, in agreement with
the result already found in (31), while the third term cor-
responds to a classical (! independent) correction. The
quantum correction (∼ !2) is contained in the last term,
and is owing to the Bohm potential [34]. It plays the
role of a quantum pressure, and is responsible for tun-
neling and wave spreading effects. For Dirac plasmas,
we thus find a negative Bohm contribution, contrary to
that found for parabolic plasmas. Since the absolute of
ν is rather small, corrections only becomes important for
intermediate wave-number values.

V. STREAMING INSTABILITY

The kinetic model of (19) is now used to probe a plas-
monic instability regime, using a specific configuration
comprising two parallel layers of doped graphene, sepa-
rated by a distance d. We consider the case EF ≫ kBT ,
thus neglecting the contribution of holes. In one of the
layers (active layer), a beam of electrons is injected by
applying a potential difference to its edges. The drifting
current that is formed, against the steady background
electronic system, provides a mechanism of instability
that is similar to that of two stream instability, exten-
sively studied in the context of parabolic [35] and solid-
state plasmas [36].

It can be shown, using (19), that the dielectric function
for the composite system is given by

ε(q,ω) =1 + [eU(q)]2Π↑(q,ω)Π↓(q,ω)(1− e−2qd)

− eU(q)
.
Π↑(q,ω) +Π↓(q,ω)

/
, (61)

where the polarizability Π↑↓ is calculated with (29) if we
replace W0(k) by W0↑↓(k), denoting the equilibrium of



9

the active (↑) and passive (↓) layers. In the long wave-
length limit, we find

Π↑(q,ω) ≃
vF kF↑
!π

q2

ω2
+

vFnb

!kb

× q2 sin2 θb

(ω − vb · q)2 −
v2
F

4k2
b
q4 sin4 θb

, (62)

Π↓(q,ω) ≃
vF kF↓
!π

q2

ω2
. (63)

The first term in both (62) and (63) (∼ q2/ω2) is due to
the background doping electrons, while the second term
in (62) comes from the contribution of the injected beam.
Additionally, k↑ and k↓ are the Fermi wave-number of
each layer, nb and kb denote the beam density and wave-
number, vb = vFkb/kb is the beam velocity and θb is the
angle between q and kb.
The plasmon modes are given by the zeros of ε(q,ω),

of the form ω(q) = ωr(q) + iωi(q). To solve (61), let us
consider equally doped layers, i.e., k↑ = k↓. In this case,
(61) is a sextic equation, with four stable (ωi = 0) and
two unstable (ωi ∕= 0) roots. The real roots represent the
optical and acoustic modes, for backward and forward
propagation, with well-known behaviour ωop ∼ ±√

q and
ωac ∼ ±q, in the long wavelength limit q → 0. One of
the complex roots represents a plasmon which is growing
in time (ωi > 0), while the other is decaying (ωi < 0).
In addiction, these solutions have degenerate real parts
and symmetric imaginary parts. However, after a cer-
tain qmax in q−space, the imaginary part of the unstable
modes vanishes, and consequently, they become stable,
while their corresponding real parts break into different
branches (see Fig. 2).

FIG. 2. Real part (blue lines) and imaginary part (red lines)
of the unstable modes, d = 0.15λF , nb = 0.1n0, kb = 0.1kF ,
θb = π/4 and εr = 2.5.

The factor sin2 θb in (62) indicates that, for parallel
plasmon and beam direction of propagation, the insta-
bility is suppressed. This strange behaviour is explained

by the linear dispersion relation. In the described con-
ditions, the exponential growing of the unstable mode
happens because the charge fluctuations caused by the
plasmon produce a net force, which feeds back the fluctu-
ations, making them increase. However, this arguments
fails when the plasmon direction of propagation is the
same as the direction of the beam. Remember that Dirac
electrons have a constant speed (vF ), and velocity align
with momentum, i.e., v = vFp/|p|. The momentum,
in turn, can take any value. Therefore, for the paral-
lel case, the charge fluctuations around the equilibrium
densities only change the magnitude of the momentum,
which does not affect the velocity, and the feedback does
not occur. On the contrary, when both directions are not
aligned, the fluctuations on the charge density are able
to affect the direction of momentum, thus changing par-
ticles’ velocities and allowing for a exponential growing
of the wave.

VI. CONCLUSIONS

In the present work, we relied on a quantum kinetic
formalism, based on the definition of phase-space func-
tions through the Weyl transform, and derived a kinetic
equation for the evolution of the Wigner function for the
graphene quasi-particles.
We selected this formalism because it proves to be

ideal to examine the semi-classical limit, hence allowing
the construction of a set of hydrodynamical equations.
Therefore, starting from a microscopic Hamiltonian, we
were able to introduce the graphene odd kinetic term into
an effective Schödinger equation, with the interacting po-
tential given in the mean-field (or Hartree) approxima-
tion. Then, we constructed an hydrodynamical model
for quantities by integrating the subsequent the Wigner
equation in momentum space. The present formulation
allowed to include, consistently, all quantum terms that
contribute to dispersion in both the continuity and force
equations. Those terms are usually neglected because the
classical version of the Wigner equation (known as the
Boltzmann or Vlasov equation) is commonly adopted.
By keeping only the first of those contributions, a closed
set of hydrodynamical equations was established. The
closure relation came after a particular ansatz for the
Wigner diagonal elements, interpreted as a shifted Fermi-
sphere in momentum space, which depended explicitly
on the hydrodynamical variables. The hydrodynamical
set of equations enabled us to put forward an effective
mass for Dirac particles in the hydrodynamical regime,
for which analytical expression in several limiting cases
of interest were derived.
In the end, we returned to the kinetic equation to

examine an unstable plasmonic regime, in a particular
double-sheet configuration of graphene layers. By com-
paring the results with the DS instability [16], often pro-
posed as a solution to circumventing the THz-gap prob-
lem, we concluded that the present two stream instability
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could deliver growth rates an order of magnitude higher,
ωi ∈ [0, 20] THz, for realistic experimental parameters.
The real part of the frequency is also located in the THz
range, conferring great pertinence to this research.
This work opened a line of investigation that should

be followed in the future. The next natural requisite is
the inclusion of scattering sources, as phonons and impu-

rities, which are known to be important out of the zero-
temperature limit. Interactions with magnetic fields can
be introduced resorting to the vectorial Poisson equation,
coupling the vector potential to the fluid current density.
Additionally, quantum correlations can be treated, which
will require the inclusion of the Wigner off-diagonal terms
in the kinetic equations of interest.
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