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Abstract

This dissertation, developed in the context of preventive maintenance on commercial aircraft, aims
at analyzing probabilistically the discrepancies between workloads predicted by aircraft manufacturers
for light periodic inspections tasks and the ones registered upon their execution. The dissertation is
based on a sample of historical data of ”A-checks” inspections conducted on Airbus A330 and A340,
between 2013 and 2020, provided by MESA – HiFly ’s Maintenance and Engineering services provider.
A Bayesian networks framework is used to model probabilistically the deviations from the workloads
predicted by the aircraft’s manufacturer, from the available data. The adopted methodology requires a
review of the evolution, planning and registration of aircraft maintenance, along with a detailed analysis
of workcards and the Maintenance Planning Document. The basic principles and processes of the
development of Bayesian networks models through data and validation through sensitivity analyses are
presented. Two Bayesian networks are developed from the data: one for the modeling of checks, where
the sensitivity analysis identifies that 2A items and maintenance performed at the base station are likelier
to present high deviations, and one for tasks, where it is evaluated that General Visual Inspections, zones
400 and 700, and Powerplant and Airframe skills are the variables with higher impacts in the deviations.
Two practical examples of application of the models for maintenance capacity planning are presented.
It is expected that the dissertation will bring benefits in the planning of these inspections, given that the
degree of uncertainty of this activity can be reduced through the developed models.

Keywords: Bayesian Networks; Aircraft Maintenance; A-checks; Workload Deviations; Capacity
Planning.

1. Introduction

1.1. Motivation

A substantial amount of information is generated
when performing aircraft maintenance (about vehi-
cles, operators, interventions), and it is still yet to
provide a decisive competitive advantage to Part
145 or Maintenance, Repair and Overhaul (MRO)
organizations [1] due to the fact that little or no sen-
sitivity and robustness analysis of aircraft mainte-
nance data is performed by airlines [2].

An aircraft maintenance check contains several
tasks, for which the workload suggested in the
manufacturer’s Maintenance Planning Document
(MPD) [3,4], in Man/Hours (M/H), does not always
agree with the actual values registered in the work-
cards by the operator’s maintenance technicians
upon performing the task – some tasks require
less manpower while others require significantly
more than expected, which can be represented by
a problem of an essentially probabilistic nature.

1.2. Topic Overview

The different types of aircraft maintenance events
are briefly explained in Table 1. The M/H unit is the
time required for a labor unit to finish a unit work
amount [5].

The factors contributing to delays during A-
check inspections are studied by Mofokeng and
Marnewick [6], and according to the authors, these
delays result in the loss of revenue because of
potential penalties, and the identification of what
aspects influence said delays can help airlines to
identify the gap between best practice and current
practice. By knowing the causes of delays, the
maintenance company can adjust their operational
strategies. An A-check is the most crucial require-
ment in scheduling because of the relatively short
interval between the next required check.

Bayesian Networks (BNs) are frequently men-
tioned in the literature, as reviewed by Weber et
al. [7], due to their ability to model complex sys-
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Table 1: Main types of aircraft maintenance work.

Maintenance Type Description

Line Maintenance Routine tasks with low intervals, performed at line stations.
Base Maintenance Performed at airline’s base maintenance station that has the manpower to do all kinds of work.

Letter Checks A-, C- or D- checks, ranging from visual inspections to exhaustive overhauling actions.
Light Maintenance A-checks, executed in intervals of 800FH, requiring 50− 70M/H to be completed.

Intermediate Maintenance C-checks, performed every 20− 24 months, taking up to 7 days.
Heavy Maintenance D-checks, done every 6− 10 years, requiring downtimes of over 7 days.

tems and make predictions regarding the occur-
rence probability of events, along with the possibil-
ity to update probabilities according to evidences
[8], making them an adequate and powerful tool to
address problems regarding uncertainties.

The aeronautics industry aims to come up with
important changes in its maintenance strategies,
because despite the arising number of solutions, it
is still a highly unpredictable field. Ferreiro et al. [9]
develop a Bayesian network to model the case of
predicting brake wear, in a study that explains the
use of BNs as a prognostic technique applied to
aircraft maintenance. Dinis et al. [1] address the
aircraft maintenance capacity planning problem,
and the applicability of BNs as a Big Data and Pre-
dictive Analytics (BDPA) tool is studied – given their
probabilistic nature, BNs are a reliable technique to
address the uncertainty of maintenance workload
estimations, therefore improving the MRO’s capac-
ity planning decision-making process. If the avail-
able capacity is higher than required, there is un-
derutilization of resources and financial inefficiency
occurs; if, on the contrary, the available capacity is
lower than required, delays will happen with poten-
tial financial penalties and damages to the reputa-
tion of the maintenance organization.

1.3. Objectives

This dissertation aims to develop a probabilistic
model for the workload of a maintenance A-check,
as an attempt to reduce the unpredictability associ-
ated to the maintenance planning process through
the identification of the variables that could have
an impact on a task’s workload. Bayesian networks
present several advantages representing problems
of probabilistic nature; therefore, BNs are devel-
oped to model the causal relationships between
variables such as the aircraft’s model, Flight Hours
(FH) and tail # or even the task’s zone and skill
codes, and the check or task’s total workload, from
real maintenance data. A sensitivity analysis is
then performed to quantify the influence of each
parameter contributing to the output – the workload
deviation of a single task or a check.

The data used is provided by a EASA Part 145
regarding the light maintenance work done on a
portuguese wet lease and charter airline’s fleet,

more specifically, A-check inspections for the Air-
bus A330 and A340 (pictured in Figures 1 and 2).

Figure 1: Airbus A330-200 [10].

Figure 2: Airbus A340-300 [11].

2. Methodology
2.1. Maintenance Tasks and Checks

The generic list of tasks, required skills and mainte-
nance zones, as stated by EASA [12], is presented
in Table 2.

An A-check consists of a general inspection of
the airplane with specific target areas opened, re-
quiring about 20 to 60 M/H to be completed. This
check’s periodicity varies by aircraft type, cycle
count, or even number of hours flown since the last
check [13], though it is typically performed every
800 FH.

Not all A-checks are the same – items are num-
bered so that 2A items are carried out in every
other A-check, in an A2 inspection, and both 2A
and 4A items are performed in every fourth inspec-
tion, called an A4. 1A items are performed in every
A inspection, and after every A4 inspection, a new
cycle of four begins.

2.2. Bayesian Networks

Causality can be graphically represented in BNs
[14], which are a type of quantitative causal model
structure based on the Bayes’ theorem that repre-
sents and processes knowledge in a probabilistic
way, making it an excellent tool for reasoning un-
der uncertainty [15].

The Bayes’ theorem works by taking old prob-
abilities along with new data as inputs, and de-
livering new updated probabilities as outputs. Di-
viding a domain Ω into n mutually exclusive sets
A1, A2, ...An, and for a certain random variable B,
then (notice equation (1)):
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Table 2: Task, Zones and Skill Codes List.

Task Definition Skill Definition Zone Definition

DET Detailed Inspection AF Airframe 100 Fuselage Lower
DIS Discard AV Instrument 200 Fuselage Top
FNC Functional Check CA Cabin Utility 300 Stabilizers/Empennage
GVI General Visual Inspection EL Electrical 400 Nacelles/Pylons
LUB Lubrication EN Powerplant 500 Left Wing
OPC Operational Check NDT Non-Destructive Test 600 Right Wing
RST Restoration RA Radio 700 Landing Gear Compartment
SDI Special Detailed Inspection UT Utility 800 Doors
SVC Drain, Servicing, Replenishment 900 Lavatories & Galleys
VCK Visual Check

P (Ak|B) =
P (Ak) ∗ P (B|Ak)∑
j P (Aj) ∗ P (B|Aj)

(1)

For this instance, given a posterior probability
Pm, the probability that the next observation will be
C is given by equation (2):

Pm(C) =
∑
j

Pm(Aj |C) =
∑
j

Pm(C|Aj) ∗ Pm(Aj) (2)

A BN consists of a qualitative part, a Directed
Acyclic Graph (DAG) along with a quantitative part,
a Conditional Probability Table (CPT) (or a set of
them). The DAG (in Figure 3) contains nodes rep-
resenting random variables and directed arcs rep-
resenting dependencies or causal relationships be-
tween variables; then, a joint probability distribu-
tion is defined over the variables depending on
the directed arcs, which makes inference through
conditional probabilities possible. The directions
of links between variables (directed arcs) repre-
sent the parent-child relationships, with the arrow
head pointing in the direction of causality, i.e. the
child [16].

Figure 3: Example of a directed acyclic graph [17].

The qualitative and quantitative parts of a BN
can be defined manually or through computational
methods capable of inferring the network’s struc-
ture and CPT from the data, and there is a five-step
process often mentioned in the literature [8,15] for
the development of a BN structure: 1. Delineating
the objectives of the model; 2. Defining the vari-
ables; 3. Designing the network’s graphical struc-
ture; 4. Building the network’s CPT; 5. Validating
the model.

The chosen structure learning algorithm is
Bayesian Search, the most popular one [18],

and the parameter estimation algorithm is the
Expectation-Maximization (EM) algorithm, which
computes maximum-likelihood estimates for the
parameters from datasets that may contain miss-
ing values [19,20].

2.3. Sensitivity Analysis

Dinis et al. [15] propose a sensitivity measure for-
mulated in terms of variation in the posterior distri-
butions of the model variables resulting from intro-
ducing an evidence on a state of the model’s out-
put, as follows.

Let Xi,j be the variable i of the BN model with
j = 1, ...,mi states and P (Xi,j=1,...,mi |Y = e) its
posterior probability distribution when providing the
evidence e to a particular state of the Y variable.
The variation in the posterior probability distribution
of the variable Xi,j when Y changes from state e
to f is given by equation (3):

∆P (Xi,j=1..m|Y ) = P (Xi,j=1..m|Y = f)− P (Xi,j=1..m|Y = e) (3)

A global measure of the importance of the vari-
able Xi on the variable Y is then defined based on
∆P as equation (4) writes it:

SXi
=

√√√√ m∑
j=1

(∆P (Xi,j |Y ))2

2
(4)

In addition to the global sensitivity measure SXi
,

a state j sensitivity measure SXi,j
of variable Xi

can also be derived as visible in equation (5):

SXi,j
=

∆P (Xi,j |Y )/2

SXi

(5)

In which ∆P (Xi,j=1,...,m|Y ) is given by equation
(3) and SXi

is the global sensitivity measure of the
variable Xi, given by equation (4), used to nor-
malise the state variation of posterior probabilities.

The state sensitivity measures the relative varia-
tion of the state’s posterior distribution.

2.4. Description of Maintenance Dataset

A total of 127 A-checks were analyzed: 67 for the
Airbus A330, and 60 for the Airbus A340.
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Table 3: Average values for checks.

Aircraft Model A330 A340
Check Item 1A 2A 4A 1A 2A 4A

# of Samples 38 21 8 36 17 7
Average # of MPD Tasks 32 13 9 37 21 10
Average MPD Tasks Workload [M/H] 31,68 13,30 11,90 38,63 18,31 15,75
Average Estimated MPD Tasks Workload [M/H] 11,15 3,46 10,44 14,54 5,07 5,90
Average Total Workload Deviation 184,8% 298,8% 13,8% 166,8% 260,4% 165,4%

Average Per Task Workload Deviation 412,6% 490,9% 102,8% 327,2% 585,1% 323,5%

Breaking down the dataset in terms of variables,
every check is classified according to the aircraft’s
model, tail number, age, in FH and the location
where the maintenance event takes place.

The location of the maintenance event is rele-
vant because, as Rosales [13] explains, the man-
power and facilities at line stations are usually more
limited, which is why it is relevant to distinguish
which checks were done at a hangar or mainte-
nance base (where all the necessary tools and
equipment are nearby) and which were performed
at the airport apron (where the technicians must
get the tools and equipment from the line main-
tenance station, which can cause unexpected de-
lays), especially because the studied inspections
do not require a high number of tools and consum-
ables to be fetched. Furthermore, because the air-
line only operates one maintenance base station, it
is likely that it will often be more congested in terms
of workload, and inconveniences such as having to
wait for units or spare parts to arrive makes this sit-
uation prone to delaying the maintenance process.

On the other hand, and because every check is
composed by tasks, there is a need to identify vari-
ables that assess tasks individually. A task is then
defined by its task code, zone code, and skill code.

3. Preliminary Analysis of Maintenance Workloads

Table 3 presents the obtained statistics for all three
1A, 2A and 4A items, that result from the averages
of the values computed for each individual check.

The # of MPD Tasks accounts for the number of
tasks in the check sourced from the MPD; the MPD
Tasks Workload is the sum of the registered work-
loads of said tasks, as stated on the workcard; the
Estimated MPD Tasks Workload is the sum of the
workloads of the aforementioned tasks, as stated
on the MPD (i.e. their expected required workload);
the Workload Deviation (WL Dev) variables (Total
and Per Task ) refer to the ratio between the regis-
tered deviations (in M/H) and the suggested work-
load from the MPD (also in M/H), applied to both
check and task values. This is formulated in equa-
tion 6:

WL Dev =
ActualWL− PlannedWL

PlannedWL
(6)

In which the ActualWL is the one registered in
the workcards, while the PlannedWL is the one
stated on the MPD.

The above-mentioned statistics for both aircraft
indicate that the MPD is very optimistic with regard
to the required workload for aircraft maintenance
tasks given that, in average, the observable dis-
crepancies don’t have a negligible order of magni-
tude.

From the table, it can be stated that generally
2A items register the largest discrepancies with the
highest workload deviations (298, 8% and 260, 4%
for the A330 and A340, respectively), while on the
opposite end, 4A present the smallest (13, 8% and
165, 4%).

4. Probabilistic Modeling of Maintenance Workload
Deviations by Bayesian Networks

4.1. BN Modeling

The Bayesian networks to model the A-checks
were developed using the computer software Ge-
NIe [21], with the purpose of obtaining workload
deviation predictions for maintenance checks.

Following the steps mentioned in 2.2, the BN
model is developed to get a prediction of the work-
load deviation for light maintenance inspections.
For this reason, there is a need to build two distinct
BN models: one for assessing the workload devia-
tion of a check (weighing in parameters such as the
type of check being performed, the location of the
station, the aircraft’s model, tail number and age in
FH) and another one for evaluating the workload
deviation for a single task (taking into account the
zone where maintenance is required, the aircraft’s
model, the job’s skill and task codes).

It is important to refer that in order to get mod-
els with discrete variables only, some states are
grouped into classes, namely from the variables
FH and Task/Check Workload Deviation. The in-
tervals of the FH classes are chosen in a manner
that the data is evenly distributed, for both aircraft
(30%± 13% of the samples in each class).

The BN model’s graphical structure is both
forced and also assumed by the software: on one
hand, some causal relationships make theoretical
sense; on the other hand, the software infers the
parent-child relationships between the remaining
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parameters.
The CPTs assigned to each variable are ob-

tained through learning techniques from mainte-
nance data provided to the software. The BN mod-
els are fully quantified (in terms of the a priori
knowledge), as depicted in Figures 4 and 5 that
also present the characterization of the dataset.

With this framework it is possible to simulate
scenarios with respect to future work generated
by providing evidences to specific states of model
variables. This ability to experiment possible sce-
narios can be a valuable tool for the airline, pro-
vided it becomes possible to see the category that
the planned work falls into, and therefore get reli-
able information on the most likely output event.

Another characteristic of this framework is the
possibility of updating it as new knowledge be-
comes available. If information on future checks
and tasks is to be introduced in the BN model, its
accuracy (regarding the delivered results) will be
continuously improved.

4.2. Sensitivity Analyses

For this validation, the several states of the Work-
load Deviation variable are quantitatively described
as presented in Table 4. The Very High classifica-
tion only applies to the Task Workload Deviation
variable.

Table 4: Qualitative classification of workload deviations.

Deviation Range Classification

< 0% Negative
0− 100% Low

100− 500% Moderate
500− 1000% High
> 1000% Very High

This classification provides an easier under-
standing and representation of the possible conse-
quences (negative to moderate deviations are not
considered as critical as moderate to high), and it
makes it possible to evaluate the ideal settings that
take place in each chosen range.

A global sensitivity analysis allows for a quan-
tification of how each variable affects the model’s
outcome. This analysis is conducted in both mod-
els in order to find the most relevant variables in
the model, and as a criteria for selecting the most
appropriate ones to conduct local sensitivity analy-
sis.

Figure 6 presents the global sensitivities SXi
of

the check BN model variables calculated through
equation 4, when changing the evidence in the
Workload Deviation from negative to low, low to
moderate and moderate to high.

It is quite evident that the variable with a consis-
tently strong impact on the total workload deviation

is the Check being performed. This finding makes
sense due to the fact that different checks require
different sets of tasks, thus the type of workload is
the most relevant variable in the model.

The Location proves to be a somewhat relevant
input when assessing low to moderate deviations.
This is a parameter that definitely requires further
investigation (namely, a local sensitivity analysis)
in order to figure out if this global sensitivity is
more reactive to the evidence being on the line
(NO BRU) or base (BRU) maintenance station.

The influence of the Tail Number is approxi-
mately constant throughout the classes provided it
is only a measure of how wide the sample is with
respect to different aircraft.

Regarding the aircraft’s age, the FH appears to
gain impact as the workload deviations increase,
which favors the idea that delays can in fact be po-
tentiated by the aircraft’s usage parameter.

Figure 7 presents the results of the global sen-
sitivities SXi of the task BN model variables calcu-
lated with equation 4, when changing the evidence
in the Workload Deviation from negative to low, low
to moderate, moderate to high, and finally, from
high to very high. Note that the Task variable refers
to the Task Code.

Starting with the Model variable, its influence is
consistently low throughout the deviation classes
except for the last one: when registered workload
deviations are high to very high, the two aircraft
models present a different pattern. This is corrob-
orated by the evidence from Table 3. For exam-
ple, a 2A item for the A330 presents an average
per task workload deviation of 490, 9%, categoriz-
ing this as a moderate deviation, while the same
item for the A340 averages a 585, 1% of deviation
per task, which belongs to the superior category of
high deviation.

Because this BN model is focused on all the
tasks and not on checks as packages, the Check
variable is not a very important, so its inconsistent
pattern is disregarded.

The Zone where the maintenance work is being
performed is one of the most important parame-
ters, as some zones require technicians to be more
careful and thorough than others (one can suppose
that engine maintenance tasks will be the case),
meaning these tasks are more prone to delays.

The required Skill also has a relevant impact on
the output of the model. This is another variable
that demands a local sensitivity analysis, in order
to identify which states potentiate this contribution.

The most dominant parameter in the model is the
Task code, which classifies the type of work that
must be done, hence it is more than acceptable
that this is the input with the largest influence on
the task’s workload deviation.
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Figure 4: Bayesian network for the checks.

Figure 5: Bayesian network for the tasks.

The local sensitivity analysis, performed with
equation 5, allows for a quantitative understanding,
on a deeper level, of how each variable’s state in-
fluences the model outcome.

Regarding the check BN model, the parameters
chosen to perform a local sensitivity analysis are
the Check and Location, which are the ones that
the Check Workload Deviation proved to be more
sensitive to.

The analysis confirms that 2A items have the
highest weight when assessing moderate and high
deviations, and a negative contribution on the neg-
ative to low range – this check is undoubtedly the
most critical one in terms of overtimes. The fact
that 4A items present only negative or null (for the
moderate to high category) sensitivities is in accor-

dance with what the previous data analyses had
been pointing out: that these tasks are the least
prone to incur in duration discrepancies.

It is also confirmed that this maintenance base
station tends to be more prone to deviations of
higher magnitude: there is a positive sensitivity on
the low to moderate and moderate to high states,
while line stations show a positive sensitivity for the
negative to low range of deviation.

Shifting the focus to the task BN model, the pa-
rameters submitted to a local sensitivity analysis
are the ones that provided the largest impacts on
the Task Workload Deviation upon performing the
global sensitivity analysis: Task (Code), Zone and
Skill.

Starting with the Task, Lubrication (LUB), Dis-
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Figure 6: Global sensitivities Sxi of model variables when the check workload deviation changes from negative to low, low to
moderate and moderate to high.

Figure 7: Global sensitivities Sxi of task model variables when the task workload deviation changes from negative to low, low to
moderate, moderate to high and high to very high.

card (DIS) and Restore (RST) tasks do not tend
to vary much with respect to their suggested work-
loads – these state present nearly negligible sensi-
tivities.

Servicing (SVC), Functional Check (FNC) and
Detailed Inspection (DET) are also not very critical
states – these tasks have the purpose of maintain-
ing inherent design capabilities or determining if an
item performs within specified limits, and because
inspections have such low intervals it is not often
for the components to require extra work.

An Operational Check (OPC) consists of operat-
ing the aircraft to make sure all systems function
accordingly – this task can be delayed because
although each system has its own function, said
function is not independent from other systems of
the aircraft, hence the strong sensitivity of this state
on the moderate to high class.

On the other hand, the General Visual Inspection
(GVI) state is undoubtedly the one that presents
the greatest impacts on all classes of deviation,
except for moderate to high – although the prob-
ability of performing a GVI with a high deviation is
still higher than for the rest of the states, this range
covers most of the Task Code possible states in
an almost uniform manner, while other ranges are
more focused on specific states.

GVI tasks are supposed to be performed at a
maximum of an arm’s length of distance when ex-
amining the components, which means that the in-
spection can be rather quick if the component is
visible (which explains the low deviations) or very

long if the component requires the opening (and
closing) of some areas to get to it – hence the
strong sensitivity registered on the high to very
high deviations.

The Zones that present the largest impacts on
the highest class of discrepancy (High to Very
High) are 400 – Nacelle/Pylons, and 700 – Landing
Gear Compartment. This is definitely an expected
result, as the engines and landing gears require
the technicians to be more thorough with their work
in these zones due to their fundamental role in the
aircraft. The engines are crucial elements of an air-
craft, and the landing gears are components that
get worn off between cycles, unlike many other air-
craft zones that require a less detailed inspection.

Zone 100, the lower part of the aircraft’s fuse-
lage, has a higher probability of presenting a neg-
ative workload deviation rather than low, and this
likelihood reduces throughout the output states.
Maintenance tasks in this zone should not be very
critical.

Zone 800, the vehicle’s doors, presents a high
state sensitivity in the low to moderate range,
which is acceptable because inspections in this
zone do not require the same level of detail as, per
example, zones 200 and 300 (Fuselage Top and
Stabilizers/Empennage, respectively) that are set-
tled in the moderate to high category, meaning they
might be prone to deviations (although still not as
intensely as zones 400 and 700). This has to do
with the fact that doors do not suffer from tearing
or wear off between cycles as much as the remain-
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ing zones.
Without a doubt, Airframe (AF) and Powerplant

(EN) are the most relevant Skills. This is an ex-
pected result, as AF skills comprise flaps/slats and
landing gear, and EN skills include engines and
Auxiliary Power Unit (APU) accessories (which is
in line with the results obtained for the zones).

Because Radio (RA) skills are only required in
4A items, and seeing as these items present the
lowest workload deviations in the model, it makes
sense that the influence of this state is practically
negligible.

4.3. Capacity Planning

The examples provided below serve the purpose
of demonstrating the practical benefits of applying
BNs to aircraft maintenance capacity planning. As
Dinis et al. [1] state, capacity planning balances the
expected workload with the available manpower,
thus being responsible for the management of un-
certainty between the tactical and operational de-
cision levels.

The maintenance services provider receives a
request to perform an intervention at its mainte-
nance base station, specifically a 2A check, on an
Airbus A330 (tail number CS-TFZ) with 70 000 FH,
for which the MPD predicts a total required work-
load of 3 M/H.

As presented in Figure 8, by instantiating the
aforementioned states for each variable on the
check BN, the operator gains knowledge on the
probabilities of incurring in each of the states of
workload deviation, as represented in Table 5.

Figure 8: Capacity planning example 1.

The maintenance services provider is now plan-
ning the same check from the previous example,
and desires to gain knowledge on the distribution of
workload deviations regarding the required skills,
in order to allocate the technicians and plan their
schedules accordingly (at a maintenance base,
technicians are differentiated by teams of skills).

Table 5: Probabilities of example 1 workload deviations.

WL Dev WL [M/H] Prob. Cumulative Prob.

<0% [0, 3] 6,25% 6,25%

0-100% ]3, 6] 6,25% 12,50%

100-500% ]6, 18] 81,25% 93,75%

>500% ]18, +∞) 6,25% 100,00%

Table 6 presents the distribution of skills per
check.

Table 6: Skills distribution per check.

AF AV EL EN RA

1A 82,70% 2,97% 2,97% 11,08% 0,28%

2A 46,49% 3,24% 11,35% 35,68% 3,24%

4A 76,25% 7,50% 13,75% 1,25% 1,25%

From the BN model it is also possible to build
Table 7 with the probabilities of occurrence of each
class of workload deviation for each skill in A330
2A checks. Although Figure 9 only presents one
case, with the toggling of the AF state, it is required
to instantiate each skill separately and register the
posterior probability distribution for the classes of
workload deviation, keeping the other known states
for the other variables toggled (A330 model and 2A
check).

Table 7: Skills workload deviations in A330 2A checks.

<0% 0-100% 100-500% >500%

AF 18,86% 16,42% 30,47% 34,25%

AV 20,00% 30,00% 25,00% 25,00%

EL 11,51% 11,51% 53,96% 23,02%

EN 12,61% 49,56% 12,61% 25,22%

RA 15,70% 15,70% 15,70% 52,90%

In practical terms, when the operator computes
the predicted M/H for the group of tasks of a certain
skill in the check to allocate the manpower to the
available teams, the BN model presents the prob-
abilities for each class of deviation for this value
(regardless of the states of the other variables).

As the table lists, for this example the most criti-
cal skill would be RA, due to the fact that it registers
the highest probability of presenting a high work-
load deviation P (WL Dev>500%) = 52, 90%.

5. Conclusions

The goal of this research is to find out if the pre-
dictions for the workloads of light periodic mainte-
nance tasks in the aircraft’s MPD are in line with
those observed in practice, and to get an under-
standing of what variables are relevant for predict-
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Figure 9: Capacity planning example 2.

ing workload deviations in maintenance checks,
due to the high uncertainty on the maintenance re-
ports.

For this, a framework able to analyze a prob-
lem of probabilistic nature – workload deviations in
light maintenance checks – and reduce the level
of uncertainty on the workload predictions is devel-
oped. Data on maintenance light inspections (A-
checks) from an EASA certified Part 145 is gath-
ered and several variables taking part in the checks
are grouped, with the main objective of evaluating
how they influenced the overload, in M/H, to com-
plete the checks’ tasks, and how that time deviates
from the value suggested in the aircraft’s MPD.

In order to assess the variables and their impor-
tance in the workload deviations, two Bayesian net-
works are developed: one for analyzing checks as
a whole, and one for treating more specific data
about tasks. The validation of the models is made
through global and local sensitivity analyses, that
aim respectively at identifying which parameters
are of greater importance, and which of their states
provide the greatest changes in the outputs.

For this specific maintenance operator the MPD
manpower recommendations fail to deliver precise
values, in M/H, for most of the reported tasks, with
discrepancies that have a non-negligible order of
magnitude. For the Airbus A330 and A340, respec-
tively, tasks performed in 1A checks present aver-
age deviations of 412, 6% and 327, 2%, tasks from
2A checks present average deviations of 490, 9%
and 585, 1%, and for 4A checks the average task
deviations are of 102, 8% and 323, 5%.

Overall, the item of check being performed has a
decisive role over the check’s workload deviation,
with 2A items presenting the higher probabilities of
being severely delayed, and on the opposite end,
with 4A items registering high probabilities of tak-
ing less time than expected to be completed. Still
under the check’s workload deviation umbrella, in-
spections performed at the maintenance base (in
Brussels) have a higher tendency of taking longer

than those performed at line stations, due to the
possibility of the base being overflowed in terms of
workload, requiring longer waiting times for the ar-
rival of units or spare parts.

Shifting to the factors that affect the duration of
individual tasks, the task code is predominantly the
one of greater importance, with the General Visual
Inspection state presenting the higher state sen-
sitivities for most ranges of delay. Regarding the
maintenance zone, nacelle/pylons and the landing
gear compartment (zones 400 and 700, respec-
tively) prove to be the ones that require more thor-
ough work, being accountable for the data in the
high to very high category of task workload devi-
ations. At last, assessing the required skills, neg-
ative to low and moderate to high workload devi-
ations are sensitive to the Powerplant state that
stands for engines and Auxiliary Power Unit acces-
sories, while the low to moderate and high to very
high ranges are vulnerable to the Airframe skill,
that includes the landing gears. Engines and land-
ing gears are components that can get very worn
off between checks, hence requiring longer inspec-
tions to ensure the equipment is working accord-
ingly.

The practical examples of the application of the
developed BN models are presented to demon-
strate their benefits for maintenance capacity plan-
ning – on the one hand, the check BN allows for
estimating the check’s workload while on the other
hand, the tasks BN allows for allocating teams and
scheduling shifts accordingly.

5.1. Suggestions

The use of the proposed BN models could be im-
plemented in the maintenance planning process
by the maintenance services provider whose data
was analyzed – compared to the traditional estima-
tion methods, the proposed BNs weigh in informa-
tion about the skill, task and zone codes, as well as
FH, location and tail number, which increases the
accuracy of the workload estimations.

Concerning the actual execution of the task, a
digital platform could be implemented such that
technicians could sign in/out of tasks and fill out
workcards in an electronic device, which would
eliminate the need for paper and enhance the ac-
curacy of the registering of the actual tasks’ lengths
(reducing the influence of human factors in the reg-
istration of the actual workloads). This could con-
tribute to an improvement of the company’s reliabil-
ity levels if further studies were to be made using
data of such sort.

5.2. Future Work

It would be extremely relevant to perform a study to
investigate the economical consequences of work-
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load deviations to maintenance companies (in re-
gards to loss of revenue due to extra ground times
or even risk analysis of possible losses of clients).

A project focused on the airline’s maintenance
base capacity planning would also be important,
because it could allow for a reduction of the delays
that light inspections tend to incur.
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