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We developed a new algorithm for a general satellite transfer between two Keplerian orbits in the same plane
where we controlled the three constants of motion of the Kepler problem, using a bang-bang control. During
transfers, the orbits are no longer Keplerian and the final orbit is reached by varying the constants of motion
along them. We simulated transfers between elliptical, hyperbolic, and circular orbits with constant angular
momentum, with constant effective energy, and with both variable angular momentum and effective energy.
Furthermore, we studied a particular case of transfers: between two circular orbits, and used the Laplace-
Runge-Lenz vector to rotate the orientation of the lines of apsides.

I. Introduction

In the latter half of the twentieth century, rockets were de-
veloped and overcame the gravity force, beginning the era of
space exploration. However, there is still much work to do re-
garding space exploration and a fundamental part of that is the
application of orbital maneuvers, i.e., the transfer of a space-
craft or satellite between orbits. An example is a set of GPS
satellites in which one of them crashed and it is necessary to
replace it, sending another satellite to its position.

This is a problem of high complexity and many new strate-
gies of transfers have been developed, involving optimization
criteria to minimize the costs and the transfer time. The first
studies in the field appeared around 1960 ([1–3] as examples).
Nowadays, the trajectory optimization problem is still a sub-
ject studied by the scientific community and many techniques
using different methods have been implemented [4–6].

To transfer a spacecraft between two orbits, it is necessary
to change its velocity, which is done through the burning of
rocket engines on the spacecraft. To do that we have two types
of maneuvers: the impulsive and the non-impulsive. The dif-
ference between them is that the former consists of instanta-
neous burn fires with high-thrust chemical propulsion systems
at some chosen points of the orbit, while in the latter the burn
fires are applied during a longer time period. The main ex-
ample of impulsive maneuvers is the Hohmann transfers [7],
while low-thrust transfers are examples of non-impulsive.

Initially, only impulsive maneuvers were carried out, but
the situation changed with the appearance of ionic motors and
others in the 1960s [8]. These new technologies are very effi-
cient, with a specific impulse several times higher than chem-
ical propulsion, but with a smaller force, which implies that to
be useful they have to work for long periods of time, i.e., con-
tinuously. Some more recent examples of satellites that use
electric thrusters are documented in [9–11].

The main goal of this master thesis is to develop a new
algorithm for plane transfers based on the control and opti-
mization of the constants of motion of the Kepler problem.
These constants are angular momentum and Laplace-Runge-
Lenz (LRL) vectors and energy. This project is an extension of
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[12], where 2-dimensional transfers with constant angular mo-
mentum and with constant effective energy have already been
considered. In this thesis, we have extended these techniques
to all possible Keplerian orbits, eliminating convergence prob-
lems and situations where non reachable targets exist. The
main results of this thesis are exposed in [13].

II. Mathematical Formalism

The spacecraft or satellite motion is approximated by that
of a variable mass point, subject to the gravitational attraction
of one primary massive body (the center of gravitational force)
with mass M. We consider that the motion is described in a
two-dimensional configuration space with coordinates (x,y)∈
R2. The satellite has mass m and it has its own propulsion
system which, when turned on, causes spacecraft to lose mass
and gain speed. Therefore, the equation of motion is given by

m
d2~r
dt2 −

dm
dt

~urel =−
GmM

r3 ~r, (1)

where~r = (x,y)∈R2, G is the universal gravitational constant
and~urel = (ux,uy) is the velocity of the mass lost by the satel-
lite measured in its referential frame. If we assume a satellite
with a large mass compared to the mass lost by the propulsion
system we make the approximation

1
m

dm
dt

= γ, (2)

where γ < 0 is a constant. Initially, the propulsion system is
off,~urel = 0, but when it is turned on we have that

(ux,uy) = (ucosφ ,usinφ) , (3)

where φ is the escape angle of the satellite.
The system of equations resulting from the substitution of

(2) in (1) is derived from the time-dependent Lagrangian

L =
1
2
(
ẋ2 + ẏ2)+ µ

r
+ γxux + γyuy, (4)

where µ = GM.
To simplify the parametric dependence of these equations,

we introduce new radial and temporal variables s = r
r0

and
τ = ζ t, where r0 and ζ are constants to be determined below.
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Then, by equation (4), the new Lagrangian becomes

L̄ = ζ
2r2

0

[
1
2
(
ṡ2 + s2

θ̇
2)+ µ

r3
0ζ 2

1
s
+

γ̄

r0
s(ūx cosθ + ūy sinθ)

]
,

(5)
where now the dot (˙) denotes the derivative with respect to
τ , γ = ζ γ̄ , ux,y = ζ ūx,y and we use polar coordinates, (x,y) =
(r cosθ ,r sinθ). Choosing ζ 2r2

0 = 1 and µ/(r3
0ζ 2) = 1, we

obtain ζ = 1/µ and r0 = µ . Introducing the definitions of ux
and uy in equation (3), the rescaled radial variable and the con-
trol parameter ε = γ̄ ū/r0 = µ3γu into equation (5), we finally
obtain the control equations{

s̈ = L2
z

s3 − 1
s2 + ε cos(θ −φ)

d
dτ

Lz =−εssin(θ −φ)
, (6)

where Lz = s2θ̇ is the angular momentum of the satellite. The
satellite is under control only if ε 6= 0 (< 0). Otherwise, equa-
tions (6) describe the Keplerian trajectory of the satellite in the
two-dimensional rescaled configuration space.

Using the Lagrangian and Hamilton’s equations we obtain
the total energy of the satellite. The Hamiltonian becomes

H =
1
2

(
ṡ2 +

L2
z

s2

)
− 1

s
− εscos(θ −φ). (7)

When the control is turned on,

dH
dτ

= ε
[
ṡcos(θ −φ)− sθ̇ sin(θ −φ)

]
, (8)

and we conclude that the energy is not conserved.
The third constant of motion is the LRL vector [14]. This

vector describes the shape and the orientation of an orbit and
is defined mathematically by the formula1

~A = ~̇s×~L−~s
s
, (9)

which corresponds to

~A =

(
˙̄yLz−

x̄
s

)
x̂−
(

˙̄xLz−
ȳ
s

)
ŷ, (10)

for an orbit on the xy plane, where~s = (x̄, ȳ) = (x,y)/r0 and x̂
and ŷ are the usual Cartesian versors.

In most transfers, the final orbit has a different orientation
than the initial one. Thus, the rotation between the two orbits
is another parameter that we intend to analyze and this is done
using the LRL vector. In section VII we find a detailed analy-
sis of the process to obtain orbits with the same orientation.

In this thesis, we only consider transfers between orbits
with positive angular momentum (Lz > 0). Thus, the tra-
jectories are counterclockwise in the configuration space and
clockwise in the phase space. The case Lz < 0 can be solved

1 Note that here we defined this vector per mass unit and now it is dimen-
sionless.

by a different choice (orientation) of the Cartesian reference
frame and Lz = 0 correspond to collision trajectories.

The energy has a local minimum for the circular orbit,
which corresponds to the fixed point (s∗, ṡ = Lz2,0). This im-
plies that the regions with energies below this minimum value
are inaccessible. Therefore, H ∈ [H(s∗),+∞]. This will be an-
alyzed in section VI. While points with H < 0 and H = 0 cor-
respond to elliptical and parabolic orbits, respectively, points
with H > 0 correspond to hyperbolic escape trajectories. In
this work, we consider transfers between elliptical, circular,
and hyperbolic orbits.

According to reference [12], there is a critical value for ε ,
εlim = − 4

27 . If ε ≤ εlim, the orbits in phase space are always
open, so we consider ε > εlim and, for the simulations, we
choose ε = −0.1, just like the one chosen in that reference.
As ε increases, transfers take longer to be completed.

Throughout this project, we use the 4th order Runge-
Kutta numerical integration method built-in NDSolve of
Mathematica- version 12.2. In addition, we resort to the
WhenEvent[event, action] 2 command to impose control con-
ditions. This command simplifies the writing and reading of
the program since it specifies an action when the event is de-
tected in NDSolve.

III. Transfers with constant angular momentum

In this section, we are going to study transfers between Ke-
plerian orbits with constant angular moment, but different ef-
fective energies. In other words, the satellite is initially in an
orbit with a certain angular momentum Lz0 and a certain effec-
tive energy H0 and we need to transfer it to another orbit with
the same angular momentum Lz f = Lz0 but with a different
effective energy H f . Transfers start at time τ = 0, with effec-
tive energy H0, and stop when the final effective energy H f
is reached. These transfers are carried out under very specific
control conditions, which are presented below.

Since the angular momentum must be constant throughout
the transfers (dLz/dτ = 0), by the second equation of (6), we
must impose that sin(θ −φ) = 0 and we obtain two control
conditions: φ = θ or φ = θ ±π . The system of equations (6)
and equation (8) are rewritten as:

s̈ = L2
z

s3 − 1
s2 + εσ

φ̇ = θ̇ = Lz
s2

Ḣ = εσ ṡ,

(11)

where ε =−0.1 is a fixed value and cos(θ −φ) is replaced by
σ , which can take the values ±1 or also 0 (when the control
parameter is off for sake of simplification), according to each
imposed condition.

There are two types of transfers: i) H f > H0 and ii) H f <
H0. To the first case, dH/dτ > 0, from the last equation of
(11) we have that if ṡ > 0 implies that σ = −1 and if ṡ ≤ 0,
σ = 1. However, according to the orbital phase space, these
conditions are sufficient only for this case (H f > H0). When

2 https://reference.wolfram.com/language/ref/WhenEvent.html
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the effective energy decreases along with the transfer, we must
be careful with the geometry of the orbits. First, we have to
calculate the fixed points corresponding to each control pa-
rameter σ = 0 and±1. To do that, we make a variable change
in the first equation of (11) such that ṡ = y and, therefore, the
fixed points are given by solving

ẏ = 0⇒
L2

z

s3 −
1
s2 +σε = 0, (12)

in order to s. Based on Figure 4.3 from reference [15], we
classify the fixed points depending on σ value. When σ = 0,
there is one fixed point which coincides with the circular or-
bit with radius s∗0 = L2

z and, consequently, with the minimum
effective energy, H0 = H(s∗0,0) =−1/(2L2

z ). This fixed point
is Lyapunov stable and center type. When σ = 1, equation
(12) has three solutions but only one is real, s∗1, and corre-
sponds to a fixed point which is also Lyapunov stable and
center type. The case where σ =−1 is more complicated be-
cause it depends on the chosen ε and Lz values. In this work,
as ε = −0.1, there are always three solutions depending on
the Lz value:

• if Lz > Lzlim = 1.1033, only one of the solutions is
real but negative, which implies that there are no fixed
points;

• if Lz ≤ Lzlim, the three solutions are real but only two
are positive and correspond to the fixed points, s∗−1 and
s∗−2, where s∗−2 > s∗−1. s∗−1 is Lyapunov stable and center
type and s∗−2 is unstable and saddle type.

After studying the phase spaces for each value of the control
parameter and verifying that there are no fixed points when
σ = −1 and Lz > Lzlim, we conclude that using this control
choice transfers would be limited by a certain angular mo-
mentum value: Lz ≤ Lzlim. As we intend to obtain transfers
regardless of the final angular momentum value, we have to
ignore this control parameter and, through the last equation
of system (11), make the control choices: σ = 1 if ṡ > 0 and
σ = 0 if ṡ ≤ 0. Thus, the control conditions for the two pos-
sible cases of transfers with constant angular momentum are
summarized in Table I.

ṡ≤ 0 ṡ > 0

Ḣ > 0 σ = 1 σ =−1

Ḣ < 0 σ = 0 σ = 1

Table I. Final control conditions for transfers with constant angular
momentum.

Despite that, if we look closely at the orbital phase spaces
overlapping with σ = 0 and σ = 1, we find that in the re-
gion between the fixed points there must be a specific con-
trol choice condition when H0 > H f because it is problematic
when the satellite final orbit has to be circular. In this region,
the solution to this problem is to leave the control off when
ṡ = 0. The satellite will remain in the same orbit (with σ = 0)
and the control will only be switched on again when that or-
bit intersects another orbit with σ = 1 and that leads us to the

case Lz orbit geometry initial conditions H f ∆τ

ii) 1.3 elliptic to elliptic

s0 = 4

−0.25 14.8
ṡ0 = 0

θ0 = 0

H0 =−0.1972

i) 1.4 circular to hyperbolic

s0 = 1.96

0.2 11.7
ṡ0 = 0

θ0 =
3π

2

H0 =−0.2551

i) 0.8 hyperbolic to hyperbolic

s0 = 0.3022

0.5 2.4
ṡ0 =−0.1

θ0 =
π

2

H0 = 0.2

ii) 1 hyperbolic to circular

s0 = 0.4589

−0.5 45.8
ṡ0 =−0.1

θ0 = π

H0 = 0.2

Table II. Examples of transfers with constant angular momentum.
Note that all quantities are dimensionless, except the polar angle θ0
which is measured in radians.

desired effective energy. The intersection between the orbits
with σ = 0 with σ = 1 occurs when

s = si =
L2

z

2εs2
a
− 1

εsa
+

1
2εL2

z
+L2

z , (13)

where sa is the s value when ṡ = 0 and σ remains off.
Some examples of transfers involving circular, elliptical,

and hyperbolic orbits are summarized in Table II, where ∆τ

is a dimensionless transfer time.
Let us consider the first example in Table II: a transfer be-

tween two elliptical orbits with initial and final effective ener-
gies of H0 = −0.197188 and H f = −0.25, respectively. This
is depicted in Figure 1 and the angular momentum is pur-
posely chosen as Lz = 1.3 > Lzlim to prove that with the two
controls parameters described in Table I it is possible to obtain
transfers with decreasing effective energy for angular momen-
tum values greater than the limit value that we would have if
we used the control parameter σ = −1. In the first two plots
of this figure are represented the phase and the configuration
spaces of the satellite trajectory. In the two plots below, we
see the control choice variation that is made using the data
from Table I as well as the effective energy variation during
the entire transfer. We conclude that in fact we can obtain
transfers without the control parameter σ = −1 and ensuring
that transfers occur regardless of the chosen Lz value. How-
ever, the control remains zero during almost the entire transfer
and, consequently, this increases the transfer time.
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Figure 1. Simulation of a transfer with constant angular momentum
(Lz = 1.3) between two elliptical orbits: the initial with an effective
energy (H0 =−0.1972) and the final with (H f =−0.25). The initial
orbit is represented by the dashed line, the transfer by red and the
final orbit by black. The transfer starts at the point (s0, ṡ0,θ0) =
(4,0,0) and takes a normalized time ∆τ = 14.8 to be completed.

IV. Transfers with constant effective energy

We now consider transfers with constant effective energy,
which start at time τ = 0 with angular momentum Lz0 and
stop when the final angular momentum value Lz f is reached.
We also consider that the initial and final values of angular
momentum have the same sign (in this case, the plus sign) so
that during a transfer the value of the angular momentum is
never zero.

If we equal the equation (8) to zero we have the control con-
dition corresponding to energy conservation (Ḣ = 0) which is
given by

φ = θ − arctan
ṡ

sθ̇
, (14)

where θ̇ = Lz/s2. From here, we can obtain the expressions
for sin(θ −φ) and cos(θ −φ) which are given bysin(θ −φ) = sṡ√

s2 ṡ2+L2
z

cos(θ −φ) = |Lz|√
s2 ṡ2+L2

z

, (15)

and rewrite the equations of motion (6):s̈ = L2
z

s3 − 1
s2 + εσσc

|Lz|√
L2

z+s2 ṡ2

d|Lz|
dt =−εσσc

s2 ṡ√
L2

z+s2 ṡ2

, (16)

where σc = 1 and σ can take the values±1 or also 0 (when the
control parameter is off for sake of simplification), according
to each imposed condition.

If Lz0 > Lz f , we must have H ≥−1/(2L2
z0), and if Lz0 < Lz f ,

then H ≥ −1/(2L2
z f ). This will be better understood in sec-

tion VI. Therefore, we can consider two types of transfers: i)
Lz0 > Lz f and ii) Lz0 < Lz f . Similar to transfers of the previous
chapter, the case i) has no problems and the control conditions
are

Lz0 > Lz f :


if ṡ < 0∧Lz0 > Lz f ⇒ σ = 1

if ṡ≥ 0∧Lz0 > Lz f ⇒ σ =−1

otherwise ⇒ σ = 0

. (17)

For the case ii), it is necessary to analyze the geometry of
the orbits. To calculate the fixed points, we have to write the
expression of s̈ as a function of H, because we are considering
transfers with constant effective energy. To do this, we solve
the expression (7) with ε = 0 in order to L2

z and substitute it in
the first of equation (16):

s̈ =− 1
s2 +

2Hs2 +2s− ṡ2s2

s3 +σε
Lz√

L2
z + s2ṡ2

. (18)

Then, we do a variable transformation, ṡ = y, and the fixed
points are given by solving

ẏ = 0⇒− 1
s2 +

2Hs2 +2s
s3 +σε = 0, (19)

in order to s, where ṡ = 0, according to each σ value.
When the control parameter is turned off, the fixed point

is (s∗0, ṡ) = (− 1
2H ,0). When σ = ±1, there are two solutions

to each case but only one corresponds to a fixed point, de-
pending on the chosen H value. These fixed points are called
s∗1 and s∗−1 according to the σ value. All the fixed points are
Lyapunov stable of center type [15].

However, to s∗−1, there is a limitation in the effective energy
values. If H2 < |ε|, the s∗ values are complex and there are no
fixed points. Again, similar to what was done in the previous
chapter, to overcome this obstacle and since we intend to ob-
tain transfers regardless of the final effective energy value, we
ignore the control parameter σ =−1. Thus, by the last equa-
tion of system (16), we choose the control conditions: σ = 1
if ṡ > 0 and σ = 0 if ṡ≤ 0.

Despite that, if we overlap the orbital phase spaces with
σ = 0 and σ = 1, we find a problematic region between the
fixed points (s∗1 ≤ s≤ s∗0), which prevents us from transferring
the satellite to a circular orbit. Therefore, we have to imple-
ment a new strategy for transfers with H < 0 and Lz0 < Lz f :
firstly, we transfer the satellite to an almost circular orbit with
constant energy (until s∗1≤ s≤ s∗0 and ṡ= 0) and then we make
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case H orbit geometry initial conditions Lz f ∆τ

i) 0.2 hyperbolic to hyperbolic

s0 = 0.3

0.2 3.0
ṡ0 = 0

θ0 = 0

Lz0 = 0.79693

i) −0.5 circular to elliptic

s0 = 1

0.4 15.0
ṡ0 = 0

θ0 = 0

Lz0 = 1

ii) −0.2 elliptic to elliptic

s0 = 0.1878

1 2.9
ṡ0 =−0.2

θ0 = π

Lz0 = 0.6

ii) −0.5 elliptic to circular

s0 = 0.4013

1 48.8
ṡ0 =−0.1

θ0 = 0

Lz0 = 0.8

Table III. Examples of transfers with constant effective energy. All
the quantities are dimensionless, except the θ0 which is measured in
radians.

a sequence of three transfers: 1) with increasing energy and
constant angular momentum, 2) with constant energy and de-
creasing angular momentum and 3) with decreasing energy
and constant angular momentum. Under these conditions, all
the transfers have stable bounded orbits.

So, the control conditions to transfers with Lz0 < Lz f are

H > 0,Lz0 < Lz f :

 if ṡ > 0∧Lz0 < Lz f ⇒ σ = 1

otherwise ⇒ σ = 0

H < 0,Lz0 < Lz f :


if ṡ > 0∧Lz0 < Lz f ⇒ σ = 1

if ṡ = 0∧ s ∈ [s∗1,s
∗
0]∧Lz0 < Lz f ⇒ σc = 0

otherwise ⇒ σ = 0
(20)

Some examples of these transfers are indicated in Table III.
However, since the effective energy remains constant during
all the transfer, the satellite can only be transferred between
closed (H < 0) or open (H > 0) orbits.

In Figure 2, we simulate the transfer of a satellite starting
in an initial elliptic orbit with angular momentum Lz0 = 0.8
to the circular orbit with radius s = 1 and effective energy
H = −0.5 (angular momentum Lz f = 1). The main charac-
teristics of this transfer are summarized in the last example of
Table III. In this figure are presented trajectories of phase and
configuration spaces as well as the control parameter, angular
momentum, and effective energy variations. This example is
more complex than the others presented because the circular
orbit is not directly reachable and we had to implement the
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Figure 2. Simulation of a transfer with constant effective energy be-
tween elliptic and circular Keplerian orbits with H0 = −0.5. The
initial and final angular momenta are Lz0 = 0.8 and Lz f = 1, respec-
tively. The transfer starts at the point (s0, ṡ0) = (0.4013,−0.1) and
θ0 = 0. The initial orbit is represented by the dashed line, constant
effective energy transfers by blue lines, constant angular momentum
transfers by red lines and the final orbit by the black line. The nor-
malized transfer time is ∆τ = 48.8.

strategy previously defined. First of all, we transfer the satel-
lite to an almost circular orbit with constant effective energy,
and when s∗1 < s < s∗0 and ṡ = 0 are reached, we start a transfer
with increasing effective energy and constant angular momen-
tum (similar to those studied in the previous chapter) until a
value relatively close to H is reached, which in this case was
H =−0.4. When this happens, a transfer with constant effec-
tive energy and decreasing angular momentum is started and
it ends when Lz f is reached. After this, the satellite is trans-
ferred with decreasing effective energy and constant angular
momentum until the circular orbit by the method described in
the last section III. The normalized total time of this transfer
is ∆τ = 48.8.

V. Transfers with both variable angular momentum and
effective energy

Now we consider transfers with both variable angular mo-
mentum and effective energy. We want to make a transfer
between an orbit with Lz0 and H0 and another with Lz f and
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H f . Thus, we can have four cases: i) H0 < H f and L0 < L f ,
ii) H0 > H f and L0 < L f , iii) H0 < H f and L0 > L f and iv)
H0 > H f and L0 > L f .

There are two different ways to obtain these transfers. The
first consists of grouping transfers with constant effective en-
ergy with transfers with constant angular momentum exactly
as described in the previous sections; the second is obtained
through conservation laws.

For the first case, we combine transfers with constant an-
gular momentum and transfers with constant effective energy.
Therefore, for each one of the four cases mentioned above, we
can have two ways of making this:

a) making a transfer with constant Lz followed by a transfer
with constant H;

b) making a transfer with constant H followed by a transfer
with constant Lz.

Using the control conditions mentioned in sections III and
IV, we obtained some simulation transfers between circular,
elliptical, and hyperbolic orbits to each one of the four possi-
ble cases - i) to iv) - and with the two possible transfer com-
binations - a) and b). These results are summarized in Table
IV.

Note cases i) and iv), where both angular momentum and
effective energy increase or decrease, and when the transfer
involves a circular orbit, there only is a way to implement the
transfer. When H0 < H f and Lz0 < Lz f , case i), we were un-
able to transfer the satellite to a circular orbit by first imple-
menting a transfer to constant effective energy followed by
another with constant angular momentum because in the first
the minimum energy value (circular orbit) is exceeded. The
problem in case iv) is similar to this. When H0 > H f and
Lz0 > Lz f , if the satellite is in a circular orbit and we want
to transfer it to any other orbit, it will only be possible if we
first implement a transfer with constant H followed by another
with constant Lz. Otherwise, the minimum energy value will
be exceeded and this is not physically possible. This will be
discussed in detail in section VI.

In the examples presented, the final orbit orientation is once
again different from the initial orbit. The technique described
in section VII to rotate the final orbit can also be used in this
case.

Figure 3 shows an example of a transfer simulation with
both increasing effective energy and angular momentum: a
transfer between elliptical and hyperbolic orbits. The initial
and final conditions are referenced in the first example in Ta-
ble IV. First, we apply for a constant effective energy transfer
and then another with constant angular momentum. However,
on the plot of the effective energy variation in the same fig-
ure, we observe two transfers with constant angular momen-
tum (red lines) and another two with constant effective energy
(blue lines). This is due to the fact that the satellite enters
the problematic region studied in section IV. To solve this, we
implement the strategy described in that section to the circu-
lar orbits (which includes three more types of transfers) but
we stop it when the desired angular momentum value Lz f is
reached. Only after that the transfer with constant Lz begins

case initial conditions final conditions ∆τ

i)

s0 = 1.1857

Lz f = 1.5 ∆τb = 24.7

ṡ0 =−0.25 H f = 0.1 ∆τa = 8.9

θ0 = 0

H0 =−0.3

Lz0 = 1.2

i)

s0 = 0.8

Lz f = 1.2909 b) inaccessible

ṡ0 =−0.5 H f =−0.3 ∆τa = 52.5

θ0 = 0

H0 =−0.3438

Lz0 = 1

ii)

s0 = 0.1878

Lz f = 1 ∆τb = 61.1

ṡ0 =−0.2 H f =−0.5 ∆τa = 76.7

θ0 = π

H0 = 0.2

Lz0 = 0.6231

iii)

s0 = 2.25

Lz f = 0.9 ∆τb = 8.95

ṡ0 = 0 H f =−0.1 ∆τa = 7.1

θ0 = 0

H0 =−0.2222

Lz0 = 1.5

iv)

s0 = 0.4148

Lz f = 0.8 ∆τb = 4.4

ṡ0 =−0.1 H f = 0.2 ∆τa = 3.2

θ0 = 0

H0 = 0.5

Lz0 = 1

iv)

s0 = 1

Lz f = 0.8 ∆τb = 8.5

ṡ0 = 0 H f =−0.7 a) inaccessible

θ0 = 0

H0 =−0.5

Lz0 = 1

Table IV. Examples of transfers with both varying angular momen-
tum and effective energy.

and takes ∆τ = 38.5 (normalized time). In fact, in this partic-
ular case, the first transfer takes a normalized time ∆τ = 17.1
and includes an initial transfer with constant H until ṡ = 0 and
s∗1 < s < s∗0, another with constant Lz up to a chosen value
close to H0 (in this case H =−0.2) followed by another with
constant H until the final value Lz f . Therefore, the total nor-
malized transfer time is ∆τ = 55.6.

The second hypothesis to compute transfers with both vari-
able angular momentum and effective energy uses control
conditions given by the conservation laws. If we plot the ef-
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Figure 3. Simulation of a transfer with both varying angular momen-
tum and effective energy between elliptical and hyperbolic orbits: the
initial one with Lz0 = 1.2 and H0 =−0.3 and the final with Lz f = 1.5
and H f = 0.1. The initial orbit is represented by the dashed line, the
first transfer (with constant H) by the blue line, the second transfer
(with constant Lz) by the red line and the final orbit by the black one.
The transfer starts at the point (s0, ṡ0,θ0) = (1.1857,−0.25,0). The
normalized transfer time is ∆τ = 55.6.

fective energy as a function of the angular momentum of any
of the transfers studied so far, we see this is a straight segment
with a slope k. So, we can write

dH
dLz

=
H f −H0

Lz f −Lz0
= k, (21)

where k is a constant that can be positive or negative accord-
ing to the case we are analyzing. k > 0 if Lz and H increase
or decrease; k < 0 if one increases and the other decreases.
Therefore, this new equation is the other condition that will
help us to implement these transfers.

We know that the equations that describe these transfers are
given by (6) and (8):

s̈ = L2
z

s3 − 1
s2 + εσ cos(θ −φ)

L̇z =−εσssin(θ −φ)

Ḣ = εσ
[
ṡcos(θ −φ)− sθ̇ sin(θ −φ)

]
,

(22)

If we replace the last two equations of (22) in (21), we ob-

tain tan(θ −φ) = ṡ/(sθ̇ − ks), and if we still replace these
equations in (22) we have the final equations to use in transfer
simulations:

s̈ = L2
z

s3 − 1
s2 + εσ

sθ̇−ks

[ṡ2+(sθ̇−ks)2]
1
2

L̇z =−εσs ṡ

[ṡ2+(sθ̇−ks)2]
1
2

Ḣ =−εσs ṡk

[ṡ2+(sθ̇−ks)2]
1
2
= kL̇z

θ̇ = Lz
s2

(23)

Note that these transfers have both effective energy and an-
gular momentum variable and for each one of the four possible
cases it is still necessary to impose other conditions: i) when
sṡ > 0 implies σ = 1 and sṡ < 0, σ =−1, and ii) when sṡ > 0
implies σ =−1 and sṡ < 0, σ = 1.

We present an example of this type of transfers for the case
ii) - Figure 4. However, we have not yet been able to obtain
transfer simulations for any values of H and Lz because there
are still problematic regions (close to the fixed points). This
may imply a different choice of control parameters, but we
leave our suggestion for possible future work on this subject.
Besides, we also call for the study of these transfers when one
of the quantities (H or Lz) increases, and the other decreases.
This type of transfers may be important since they are more
efficient than those studied at the beginning of this section.

VI. Transfers between two circular orbits

In Figure 5 are represented schematically all types of trans-
fers carried out until now:

1. transfer with constant angular momentum (Section III);
2. transfer with constant effective energy (Section IV);
3. transfer with both variable angular momentum and ef-

fective energy (Section V);

and also the method of transfers between two circular orbits
that we are studying in this section, depicted by the orange
line.

inaccessible region

H(s*)

1

2

3 s0
*

s
f

*

Lz

H

Figure 5. Effective energy diagram as a function of the angular mo-
mentum of the various transfers simulated in this project.

Still in Figure 5 is represented by the solid black line all the
possible circular orbits, which coincides with the fixed point
(s, ṡ) = (s∗0,0) and the angular momentum and effective en-
ergy expressions are Lz(s∗0,0) =

√
s∗0 and H(s∗0) = −1/(2s∗0),

respectively. Since the black line corresponds to circular or-
bits and since they have the possible minimum energy, the
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Figure 4. Simulation of a transfer with angular momentum and effec-
tive energy both variable between a circular and an elliptical orbits:
the initial with Lz0 = 1 and H0 = −0.5 and the final with Lz f = 0.8
and H f = −0.6. The initial orbit is represented by the dashed line,
the first transfer (with both variable H and Lz) by the blue line, the
second transfer (with constant H) by the red line and the final orbit
by the black one. The transfer starts at the point (s0, ṡ0,θ0) = (1,0,0)
and its normalized time is ∆τ = 6.2.

gray region is not accessible and it is impossible to simulate
transfers there. This way, it is now possible to understand why
for transfers with constant effective energy it is necessary that
H ≥−1/(2L2

z0) if Lz0 > Lz f and H ≥−1/(2L2
z f ) if Lz f > Lz0.

From here, we conclude that, to obtain transfers between
two circular orbits, both effective energy and angular momen-
tum must increase/decrease simultaneously as the radius of
the final orbit increases/decreases relative to the initial one.

Considering the two orange points represented in the figure
as the initial and final points of a transfer between two circu-
lar orbits, it is obvious that the most effective way to obtain
the endpoint would be to follow the trajectory of the contin-
uous black line that joins the two points. However, this is
not possible with using the numerical method of integration
Runge-Kutta 4th order because it does not allow us to obtain
such an exact result.

Through the scheme represented in Figure 5, we conclude
that the order of transfers to be implemented is:

i) a constant effective energy transfer followed by a constant
angular momentum transfer if s0 > s f ;
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Figure 6. Simulation of a transfer with both variable angular mo-
mentum and effective energy between two circular orbits s0 > s f :
the initial with Lz0 = 1 and H0 = −0.5 and the final with Lz f = 0.9
and H f = −0.6173. The initial orbit is represented by the dashed
line, the first transfer (with constant H) by the blue line, the second
(with constant Lz) by the red line and the final orbit by the black
one. The transfer starts at the point (s0, ṡ0) = (1,0) with θ0 = 0. The
transfer time is ∆τ = 26.6 (dimensionless).

ii) a constant angular momentum transfer followed by a con-
stant effective energy transfer if s f > s0.

Note that in the latter case, when we apply for transfers
with constant effective energy, we implement the strategy de-
scribed in section IV and, therefore, it is not just a transfer to
constant H but three different transfers interchanged between
transfers with constant H and transfers with constant Lz.

In Figure 6 we present an example of a transfer simula-
tion between two circular orbits through the implementation
of method i) where s0 > s f . The initial orbit is characterized
by Lz0 = 1 and H0 =−0.5 and the final one by Lz f = 0.9 and
H f = −0.6173. The transfer starts at the point (s0, ṡ0 = 1,0)
with θ0 = 0 and it takes 26.6 (dimensionless) to be com-
pleted. The control parameter variation σ has a different defi-
nition depending on the type of transfer, following the control
choices of section III during the constant angular momentum
transfer (red line) and of section IV during the constant effec-
tive energy transfer (blue line).
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VII. Final orbit rotation through the Laplace-Runge-Lenz
vector

As described by the examples given in the previous chap-
ters, after a transfer, the final orbit rotates relative to the initial
one. This is true both for transfers with constant angular mo-
mentum as well as for transfers with constant effective energy.

Since it is a constant of motion of the Kepler problem, the
LRL vector is invariant for any point in a certain orbit and is
calculated using equation (10). In this way, we can calculate
the LRL vectors for the initial and final orbits and the scalar
product of these two vectors allows us to discover the angle of
rotation ∆α between the orbits:

∆α = arccos

 Ax0Ax f +Ay0Ay f(
A2

x0 +A2
y0

) 1
2
(

A2
x f +A2

y f

) 1
2

, (24)

where Ax0 and Ay0 are the components of the LRL vector rel-
ative to the initial orbit, and Ax f and Ay f are also the compo-
nents of the LRL vector but relative to the final orbit.

Since we want the final orbit to have the same orienta-
tion as the initial one, we have to rotate the final orbit by
an angle −∆α . Depending on the case we are considering,
we use transfers with constant angular momentum or trans-
fer with constant effective energy and we turn the control on
with σ = 1 at a point (sr, ṡr) of the final orbit and turn it off
when (sr,−ṡr) is reached. The phase space is invariant un-
der rotations but we reach a Keplerian orbit defined by the
same angular momentum and energy as the initial one with
a different orientation, which means that the orbit precesses
in configuration space but rarely at the desired angle −∆α .
Then, so that the orbits have the same orientation, it is neces-
sary to find the initial angle θr that satisfies these conditions.
This method can be applied for the rotation of elliptical and
hyperbolic Keplerian orbits.

To better understand the orbits trajectory in the phase and
configurations spaces, we have to consider two cases: i) ṡr > 0
and ii) ṡr < 0. In Figure 7 are presented these two cases. On
the top, after a transfer with constant angular momentum, we
turn on the control σ = 1 when ṡr > 0 and θr = 3.4629 and we
rotate the final orbit (black). The rotated orbit is represented
in orange. In the plots below, we have a similar situation but
we started to rotate the orbit after a transfer with constant ef-
fective energy. The control is turned on when ṡr < 0 and with
θr = 3.9021. However, comparing the LRL vectors (black
and orange) we concluded that, in both cases, the rotated orbit
didn’t rotate enough to align the vectors. Thus, we see a pre-
cession in the configuration space, which means that we can
change its orientation continuously, depending on the chosen
θr angle.

Manipulating the initial polar angle we find the θr that leads
to a rotation of the final orbit with the desired angle −∆α .
Thus, to the examples we are considering, these values are
θr = 2.8575 and θr = 3.8265. Thus, the process is complete
and we obtain a transfer with constant angular momentum and
with constant effective energy, where the initial and final or-
bits have the same orientation, using the constants of motion
of the Kepler problem. This is depicted in Figure 8.
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Figure 7. Simulation of the implemented method to rotate an orbit.
On the top, the control is turned on the control with σ = 1 at the
point (sr, ṡr) = (3.4375,0.3118) with θ = 3.4629 and is turned off
when the point (s, ṡ) = (sr,−ṡr) is reached. The angular momentum
remains constant and are Lz = 1. On the bottom, the control is turned
on the control at the point (sr, ṡr) = (1.1194,−0.7663) with θr =
3.9021 and is turned off when the point (s, ṡ) = (sr,−ṡr) is reached.
The effective energy remains constant (H = −0.5). The green lines
correspond to the orbit trajectory change while control parameter is
on and the oranges to the rotate final orbits. On the left plots, the
black and orange orbits coincide.

Note that, with this method, it is not possible to measure the
time it takes to obtain an orbit with the desired orientation. We
are only able to discover one condition (in this case the initial
polar angle) for this to happen. We can only know, for any θr,
how long it takes from the moment we start to rotate the orbit
until it has the desired orientation. This value is constant and
independent of the θr value. In these cases, it corresponds to
4.0 to the first one and to 1.7 to the second.

VIII. Conclusions

The main goal of this project was to develop a control strat-
egy to be applied in satellites’ low-thrust transfers between
two-dimensional Keplerian orbits through conservation laws.
We started by presenting the mathematical formalism of the
two-dimensional Kepler problem with varying mass, where
the reference frame (centered at the primary body) is inertial
in the limit m/M → 0. Assuming that the thrusters exhaust
gases intensity are constant, we obtained the equations of mo-
tion for this problem, which has three constants of motion:
the angular momentum vector, the effective energy, and the
Laplace-Runge-Lenz vector. However, during transfers, they
are no longer constants. This means that, the satellite is ini-
tially in an initial orbit with a certain angular momentum, ef-
fective energy, and LRL vector. When the control is turned
on, one or two of these constants (depending on the type of
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Figure 8. On the top, rotation of an orbit resulting from a transfer
with constant angular momentum (Lz = 0.8). The rotation is also
done with constant angular momentum. The initial conditions are
(sr, ṡr,θr) = (3.4375,0.3118,2.8575) and it takes 4.0 to reach the
point (sr,−ṡr). On the bottom, rotation of an orbit resulting from
a transfer with constant effective energy (H = −0.5). The rotation
is also done with constant effective energy. The initial conditions
are (sr, ṡr,θr) = (1.1194,−0.7663,3.8265) and it takes 1.7 to reach
the point (sr,−ṡr). The initial and final orbits are represented by
the dashed and black lines, respectively, and the rotated orbit by the
orange line. In green (left plot), the phase space is shown when the
control is on, and it is confirmed that when it is turned off, we remain
in the same orbit but with a different orientation (right plot).

transfer we are considering) are no longer constant and the
satellite moves to another orbit. When the desired value is
reached, the control turns off and we have the three constants
of motion again but now with different values according to the
final orbit.

Transfers can be between circular, elliptical, or hyperbolic
orbits. Besides, they can start at any point in the orbit. We
simulated transfers with constant angular momentum, with
constant effective energy, and with both these quantities both
variable. The latter results from the combination of the first
two transfers and also from a more efficient method using only
conservation laws. However, this method is not yet totally
completed because some problems related to the regions near
the fixed points were not being solved. We encourage anyone
who wants to study this topic to explore this method as it is
more efficient than the first one since both angular momentum
and effective energy vary simultaneously. We also simulated
a particular type of transfers: between two circular orbits. For
each transfer, we used different control choices depending on
its phase space. We used a bang-bang control, where the pa-
rameter control, σ , could only be ±1 or 0, in which the latter
corresponds to the control being turned off.

In both types of transfers with constant angular momentum
and with constant effective energy, due to the orbital phase
spaces, it was not possible to reach directly the circular orbit.
To solve this, we had to implement new strategies described
in the final of sections III and IV.

After transfers with constant angular momentum or with
constant effective energy, the LRL vector was used to rotate
the final orbit until it was oriented exactly like the initial one.

For future work, in addition to the suggestions mentioned
above, we propose two more topics: the simulation of a real
transfer, using known thrust parameters as well as the imple-
mentation of a similar strategy to three-dimensional transfers.
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