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Abstract

In this work, we deduced the mechanism associated with reaction-diffusion waves simulated by
the Brusselator, an oscillating chemical reaction system which virtually describes the dynamics of
the Belousov-Zhabotinsky reaction. This is done using a recently developed algorithm that aims
to derive governing equations from time-series data, the PDE-FIND algorithm. The Brusselator
system is analysed, by studying its stability, to better understand its underlying dynamics, as well as
simulating typical reaction-diffusion patterns with this model. We reconstructed the phase space using
the time evolution data of only one of the two variables of the system. The PDE-FIND algorithm is
described and tested, and finally applied to the computed data of the Brusselator system, inferring the
reaction-diffusion system that best fits it. The PDE-FIND algorithm showed to be able to correctly
identify the system of partial differential equations, which shows that it is possible to obtain valuable
information of the local dynamics of a system from data, and thus to infer its underlying kinetic
mechanisms.
Keywords: Belousov-Zhabotinsky, reaction-diffusion, Brusselator, algorithm, data mining

1. Introduction

Extracting the governing equations of a system from
temporal and spatial data in order to discover its
underlying dynamics is a major challenge in di-
verse areas of science and engineering. In the last
decade, data-driven discovery methods have been
made possible due to the rapid decrease of the
cost of sensors, data storage, and computational re-
sources. Advances in machine learning and data
science have made it possible to extract patterns
from large sets of data, a breakthrough in the anal-
ysis and understanding of complex data. Typi-
cally, physical systems’ underlying partial differen-
tial equations (PDEs) are derived from conserva-
tion laws, physical principles, and phenomenologi-
cal behaviour. However, the development of a new
method for deriving underlying PDEs of dynamic
processes from big data is essential, since there are
still complex systems that escape from quantitative
analytic descriptions.

Recently, S. Rudy, S. Brunton, J. Proctor and J.
Kutz [1] have developed deep learning techniques to
fit observed data, with models based on time series
measurements in the spatial domain.

The main goal of this work is to deduce the ki-
netic mechanism associated with reaction-diffusion
waves observed in the Belousov-Zhabotinsky reac-

tion, virtually simulated and described by the Brus-
selator model. Resorting to the algorithm devel-
oped by Rudy and co-authors [1], the collected data
will be fitted to a reaction-diffusion model and the
corresponding kinetic equations, testing the accu-
racy and applicability of the model.

1.1. Reaction-Diffusion systems

The shape or pattern of a natural system results
from its symmetry or regularity, as well as the fre-
quency with which it is observed in nature. Find-
ing the mechanisms that generate the biological
patterns, as well as the reason why some shapes
are more abundant than others becomes an impor-
tant task [2]. In 1952, Turing [3] proposed that
these real systems present self-organizing proper-
ties which appear in nature as coherent patterns or
structures. In the presence of reactive processes,
the effect of diffusion could be compensated by lo-
cal chemical processes, and the reaction between
two molecules could amplify local fluctuations to a
macroscopic scale, leading to these patterns. Prop-
erties of reaction-diffusion systems depend on the
balance between chemical and diffusive processes.

A reaction-diffusion system can be defined as a
system of partial differential equations of the form:
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∂ϕ

∂t
= f(ϕ) +D · ∇2ϕ (1)

where ϕ = (ϕ1, ..., ϕm) is a m-dimensional vec-
tor representing the concentration of m chemical
species, f(ϕ) is a m-dimensional vector field rep-
resenting the local kinetic mechanism and D is
the diffusion matrix. An equation of the type
1 is defined for each one of the dynamical vari-
ables of a model. The most impactful and inves-
tigated reaction-diffusion model is the Belousov-
Zhabotinsky reaction, where oscillating reactions
are experimentally observed.

1.2. Belousov-Zhabotinsky Reaction

The Belousov-Zhabotinsky (BZ) reaction is named
after B. P. Belousov who discovered the reaction
and A. M. Zhabotinsky who continued Belousov’s
early work [4]. This reaction serves as a classi-
cal example of non-equilibrium thermodynamics [5].
It is able to maintain a prolonged state of non-
equilibrium that leads to macroscopic temporal os-
cillations and spatial pattern formation that is very
life-like. It makes it possible to observe develop-
ment of complex patterns in time and space by
naked eye [6]. The BZ reaction allows the study
of chemical waves and patterns without constant
replenishment of reactants, by generating up to sev-
eral thousand oscillatory cycles in a closed system.

The reaction was first discovered by Belousov,
who found that a mixture of chemical species (citric
acid, bromate, and cerium catalyst in a sulfuric acid
solution) underwent periodic color changes between
colourless and yellow [7]. These colour changes in-
dicated the cyclic formation and depletion of differ-
ently oxidized cerium species [6]. Later, Zhabotin-
sky reproduced these results with a different reduc-
tant, malonic acid, and showed that oscillations in
concentration of ceric ions (Ce4+) lead to the os-
cillations in the solution’s colour [8]. These oscilla-
tion are represented in Figure 1. The yellow colour
was found to be due to the preponderance of Ce4+

ions while the colourless state is due to the cer-
ous ions (Ce3+). He proposed that the BZ reaction
consists of two main parts: the autocatalytic oxi-
dation of Ce3+ ions by HBrO3 and the reduction
of Ce4+ ions by malonic acid, which were produced
during the overall reaction [8]. The Ce4+ reduction
is accompanied by the production of Br− from the
bromoderatives of malonic acid.

The main attribute of the BZ reaction in homo-
geneous media is the induction of periodic fluctu-
ations in the concentrations of the intermediates.
In non-homogeneous conditions, local fluctuations
in the concentration of reagents are transmitted to
the reactor region, giving rise to wave fronts that
propagate and interact with each other.

(a) Small concentric rings
and spirals start appearing.

(b) Circles start expanding
and mutual annihilation takes
place.

(c) System keeps expanding. (d) Strong annihilation re-
sults in the loss of circular
waves.

Figure 1: Target patterns in the BZ reaction,
formed by point pacemakers. The waves emerge
from a background of a reduced state (red) in which
concentration waves of the autocatalytic species of
the reaction are defined, whose production is cou-
pled with the oxidation of ferroin in ferrin (blue).

Zhabotinsky described the propagation of waves
of oxidation in thin unstirred layers of BZ reagent,
organized as concentric rings that expanded away
from a central zone of periodic initiation [4]. These
concentric chemical waves generated by point pace-
makers formed target patterns, which vary in tem-
poral period, and are composed of pulses of excita-
tion followed by refractory zones. Collisions of the
waves lead to mutual annihilation due to the pres-
ence of non-excitable refractory zones [6]. If these
waves break, the excitation front curls around their
refractory tails and form spiral waves. The formed
target patterns can be seen in Figure 1. These
waves emerge from a background of a reduced state
(red) in which concentration waves of HBrO2, the
autocatalytic species of the reaction, are defined,
whose production is coupled with the oxidation of
ferroin in ferrin (blue).

2. Brusselator Model

The Brusselator is a virtual oscillating chemical re-
action system that has been used to describe the
spatial dynamics of the Belousov-Zhabotinsky re-
action. The model was proposed by Prigogine and
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Lefever (1968) and was given its name as a reference
to its birthplace (Université Libre de Bruxelles). Its
theoretical simplicity and the fact that it retains the
functional form of more complex reaction networks
makes it a widely used model.

The Brusselator reaction consists of four steps:

A
k1−−→ X (2.2a)

B + X
k2−−→ Y + D (2.2b)

2 X + Y
k3−−→ 3 X (2.2c)

X
k4−−→ E (2.2d)

where X and Y represent the dynamic variables of
the system, A and B are control variables (which
are kept constant) and ki, i = 1, 2, 3, 4 represent
the reaction rates. The third step is autocatalytic
since two X molecules make three, and also has an
inhibiting factor because Y is used in this process
while it is necessary to make the reaction. The reac-
tion scheme is physically unrealistic because of the
trimolecular third step, since this reaction is sta-
tistically unlikely [9]. However, systems with two
dynamical variables can only show limit cycle vari-
ations if the kinetic mechanism includes a trimolec-
ular term. Since the reactions are all irreversible,
the output variables are irrelevant for the mecha-
nism.

Assuming a two-dimensional media, the following
system of differential equations are used to describe
the Brusselator model [10]:

∂X

∂t
= k1A− k2BX + k3X

2Y − k4X

+DX

(
∂2X

∂x2
+
∂2X

∂y2

)
(2.3)

∂Y

∂t
= k2BX − k3X2Y +DY

(
∂2Y

∂x2
+
∂2Y

∂y2

)
(2.4)

The system composed by equations (2.3, 2.4) has
an equilibrium unstable solution for X = A(k1/k4)
and Y = (B/A)(k2k4/k1k3) and its Hopf bifur-
cation occurs for B = (k4/k2) + A2(k21k3/k2k

2
4).

This system of partial differential equations is re-
duced to a system of ordinary differential equa-
tions when there is suppressed diffusion, and we
set DX = DY = 0. With these conditions, it is

possible to follow the time evolution of X and Y in
the concentration space and analyse the temporal
evolution of the system.

The reference conditions of this work are: k1 =
k2 = k3 = k4 = 1, A = 1.0, B = 2.3. For an
non-diffusive media, the Brusselator’s model phase
space is shown in Figure 2. Since B > 2.0, the fixed
point is an unstable focus.

Figure 2: Brusselator’s phase space on a non-
diffusive media for reference conditions of this work:
A = 1.0, B = 2.3 and ki = 1.0. The phase space
orbit converges to a limit cycle, and the fixed point
is an unstable focus since B > 2.0.

2.1. Phase-Space Reconstruction

For a mathematically modelled system, like the
Brusselator, the phase space is known from the
equations of motion [11]. However, for experimental
and naturally occurring chaotic dynamical systems,
the phase space and a mathematical description of
the system are often unknown. Usually, the number
of dynamical variables available from a given system
is restricted [12]. This led Takens to introduce an
algorithm in order to reconstruct an attractor with
only the information of one of the state variables.

According to Takens delay embedding theorem
[13], from a single coordinate of a dynamic system
in N dimension, measured at a certain value of the
control parameters, the signal can be embedded into
a higher-dimensional phase space if appropriate val-
ues of time delay (∆t) and embedding dimension
(D) are selected [14, 15]. With this, a time series
{Xi}ni=1 can be defined:

Xi = (x(i), x(i+∆t), x(i+2∆t), . . . , x(i+(D−1)∆t))
(2.5)
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which represents the constructed delay-coordinate
vectors, and where i = 1, 2, 3, . . . , N − (D − 1)∆t.
It is possible to obtain an approximate image of the
dynamics of the attractor, given a dynamic system
where only one time series from a sample of a sin-
gle state variable is known. The plot between the
elements of the vectors (2.5) shows the evolution of
the dynamics of the system in D-dimensional phase
space.

Using the Takens’ technique, we intend to recon-
struct the phase space of the original system, with
only the information of the X variable. Selecting a
dimension of D = 2 and a time delay of ∆t = 7, the
same reference conditions as the system in Figure 2
are applied to obtain the reconstructed phase space
in Figure 3.

Figure 3: Brusselator’s phase space reconstruction
with the Takens’ technique for reference conditions
of this work: A = 1.0, B = 2.3 and ki = 1.0, and re-
construction conditions of D = 2 and ∆t = 7. The
phase space of the original system is reconstructed
with only the information of the autocatalytic vari-
able X. It shows the same dynamic behaviour and
follows the same shape as the original Brusselator
phase space portrait.

The reconstructed phase space has the same
shape and shows the same dynamic behaviour as
the original phase space. In the BZ reaction, only
a single diffusive variable is observed (the autocat-
alytic variable X), while variable Y is, in principle,
not diffusive, but a control variable.

2.2. Reaction-Diffusion Pattern Simulation
Patterns that appear experimentally through the
BZ reaction are simulated with the 2D Brusselator
model, which generates both concentric rings and
spiral waves. In this work, only circular waves are
simulated.

The choice of parametrization reflected on sim-
plicity of the algebraic equations and computa-
tional efficiency. This way, the values for the ve-

locity constants of the model (2.3, 2.4) were set
to k1 = k2 = k3 = k4 = 1.0, and the control
variables took the numerical values A = 1.0 and
B = 2.3. Only the autocatalytic variable’s diffu-
sion coefficient was taken into account (DX = 1.0),
and the inhibiting variable is studied with no as-
sociated diffusion (DY = 0.0). The initial dis-
tribution of the chemical species concentrations is
given by the steady state condition of the model:
X∗ = 1.0 and Y ∗ = 2.3

The most frequent pattern in the BZ reaction is
the circular wave pattern, which is characterized
by a constant propagation speed. To simulate such
waves, one can simply apply an infinitesimal per-
turbation to a point in a still, homogeneous media,
defined by steady state conditions. Since the steady
state is unstable, the perturbation evolves to an os-
cillating state and its effects propagate to the re-
volving space [16]. The waves were initiated with a
simple perturbation around the steady state in the
central point of the square grid of size M ×M :

X[M/2][M/2] = X∗
ss + 1.0 (2.6a)

Y [M/2][M/2] = Y ∗
ss + 1.0 (2.6b)

Figure 4: 1D dynamical patterns for a time of evo-
lution of 200 u.t., with diffusion only on the auto-
catalytic variable (DX = 1.0, DY = 0.0) and for
reference conditions of this work. Periodic patterns
are formed when the simulation starts with a sym-
metric perturbation. In the phase space, the limit
cycle has a similar trajectory to that of the homo-
geneous system.

When the simulation is started by a symmet-
ric perturbation, periodic patterns are formed, as
shown in Figure 4. Although it is important to un-
derstand the system’s dynamics in one dimension,
the reaction-diffusion patterns are better experi-
mentally documented in two dimensional spaces.
Figure 5 shows the time frames of 25, 75 and 150
u.t. when simulating the Brusselator in a 2D me-
dia. The chosen colour code influences the way the
simulations are presented. The evolution of the X
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substance is documented with a Red-White colour
code, and the Y substance is shown in a Blue-White
colour code. To simulate the experimental forma-
tion of these waves, both canals are merged, forming
a Red-Blue output.

t = 25 u.t.

t = 75 u.t.

t = 150 u.t.

Figure 5: Target patterns in the Brusselator system.

2.3. Characteristic Curves
When studying partial differential equations whose
solutions are waves that propagate throughout
space, the method of characteristics is used to study
their propagation speed. The equation of character-
istic curves is defined by:

x = ct+ x0 (2.7)

where c is a constant with velocity dimensions. For
our study of the speed of the waves formed by the
Brusselator, the parameters A = 1.0, B = 2.3 and
ki = 1 were kept fixed, as well as the autocatalytic
variable’s diffusion coefficient DX = 1.0, while DY

was varied between 0.0 and 0.5, in 0.1 steps. The
simulations were done on a grid of size 100 × 100.

Initially, a spatial cut is made on the variables’
concentrations in the middle of the y-axis, which
gives us the reaction-diffusion waves along the x-
axis, for y = 50. For a single wave-front, the space
and time coordinates for which there is a maximum
concentration value are taken, and the slope of the
line formed by these coordinates gives the propaga-
tion speed of the waves (Figure 6).

According to Table 1, there is a non-linear in-
crease of the propagation speed of the waves, ac-
cording to the increase in DY .

(a) The time and space coordinates were linearly fitted to
find the propagation speed of the waves, for each value of
DY .

(b) The propagation speed increases with DY . Each line
represents a different value of DY with a gradient between
green and red, where the dark green line shows the prop-
agation speed of a wave simulated with DY = 0.0 and the
red line represents DY = 0.5.

Figure 6: Study of the propagation speed of con-
centric waves with parameters: A = 1.0, B = 2.3,
ki = 1.0, DX = 1.0, and varying DY between 0.0
and 0.5. The slope of the line formed by the space
and time coordinates for which there is a maximum
concentration value for a single wave-front gives the
propagation speed of the waves.

3. The Data Mining Algorithm

Identifying the structure and parameters of a non-
linear system from data has been made possible by
advances in sparse regression techniques [17, 18].
These techniques resulted in an algorithm that aims
to derive governing equations from time series data
collected at a fixed number of spatial locations,
the PDE-FIND algorithm. This algorithm applies
sparse regression to discover the terms of the gov-
erning PDE that represent the data with the great-
est accuracy from a large library of possible gov-
erning PDEs [19, 20]. It has proved to success-
fully select the correct linear, non-linear, and spatial
derivative terms from a large library, which result
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Propagation Speed D Y = 0.0 D Y = 0.1 D Y = 0.2 D Y = 0.3 D Y = 0.4 D Y = 0.5
v 3.937 4.317 4.667 4.898 5.698 6.418

Table 1: Results for the propagation speeds of the wave fronts for varying values of DY .

in the accurate identification of PDEs from data.

3.1. PDE-FIND algorithm
We start by assuming a parameterized and non-
linear PDE of the general form:

ut = N(u, ux, uxx, ..., x, t, µ) (3.1)

where the subscripts represent partial differentia-
tion in time or space, µ denotes parameters in the
system, and N is an unknown right-hand side that
is usually a non-linear function of u(x, t), its deriva-
tives, and µ parameters. The main objective of the
algorithm is to construct N from time series mea-
surements of the system at a fixed number of spa-
tial locations in x. It is assumed that the function
N may be expressed as a sum of a small number
of terms, which makes the space of possible con-
tributing terms very large compared to the sparse
functional form.

Upon discretization, U is denoted to be a matrix
containing the values of u, and hence the right hand
side of equation (3.1) can be expressed as a func-
tion of U. There is also a matrix Q which contains
additional information about the system that may
be relevant.

Initially, all the spatial time series data is col-
lected and combined into a single column vector
U ∈ Cn×m, which represents data collected over
m time points and n spatial locations. The addi-
tional input is also considered in a column vector
Q ∈ Cn×m. Then, the algorithm creates a large li-
brary Θ(U,Q) ∈ Cnm×D of D candidate terms that
may appear in N , including linear and non-linear
terms, and partial derivatives, and then a sparse
subset of active terms is selected from this list. The
candidate terms are then combined into a matrix
Θ(U,Q):

Θ(U,Q) =
[
1 U U2 ... Q ... Ux UUx

]
(3.2)

Each column of the matrix Θ contains all the
values for a candidate function across all the grid
points on which data was collected, as shown in
Figure 7 (1b). The time derivative is also taken to
compute Ut and it is then reshaped into a column
vector, just like the columns of Θ. The PDE evo-
lution can be represented by the linear equation:

Ut = Θ(U,Q)ξ (3.3)

For large data sets, PDE-FIND can be effectively
used on subsampled data. A set of spatial points

is randomly selected and uniformly subsampled in
time, resulting in the use of only a fraction of the
dataset. In the linear system in 3.3, a fraction of
the rows is ignored. The subsampling method is
illustrated in Figure 7.

Usually, the number of rows in a linear system is
the same as the total number of data points, which
calls for a very large system. If Θ is assumed to be
an over complete library, there should be the possi-
bility to represent the PDE with a sparse vector of
coefficients ξ. The algorithm will pick enough can-
didate functions that the full PDE can be written
as a weighted sum of library terms. In this linear
system, each row represents an observation of the
dynamics at some point in time and space:

ut(x, y) =
∑
j

Θj(u(x, t), q(x, t))ξj (3.4)

3.2. Sparse Regression
Usually, the sparsest vector ξ that satisfies Equation
3.3 is required. One could think to simply solve the
least squares problem for ξ in order to get a rep-
resentation of the dynamics. However, this would
lead to a PDE with every functional form contained
in the library. A better alternative is to use pe-
nalized sparse regression, which allows to create a
linear regression model that is penalized for having
too many variables in the model. Sparse regression
is used to approximate a solution of

ξ = argminξ̂

∥∥∥Θξ̂ −Ut

∥∥∥2
2

+ λ
∥∥∥ξ̂∥∥∥

0
(3.5)

where ξ represents the true (unknown) parameter

value that generated the data and ξ̂ is its estimate,

and λ
∥∥∥ξ̂∥∥∥

0
is a penalty term (λ > 0 represents how

much is penalized).
The first tested regression method was to relax

the problem to a convex `1 regularized least squares
[21]; however, this technique was found to have dif-
ficulty finding a sparse basis when the data matrix
Θ has high correlations between columns, which is
the case for many dynamical systems. Then, a sec-
ond alternative method for sparse regression was
tested, which is called sequentially thresholded least
squares (STLS) [19]. Although this method showed
better results, it still did not perform outstand-
ingly when applied to the PDE-FIND algorithm.
Finally, the problem was approximated using can-
didate solutions to a ridge regression problem with
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Figure 7: Steps in the PDE-FIND algorithm, applied to infer the Navier-Stokes equation from data, for
a full dataset and for a compressed dataset. Starting from data (1a.), a large linear system is formed to
represent the PDE, by taking the numerical derivatives and compiling the data into a large matrix Θ,
where every column is a possible non-linear function of the data (1b.). Sparse regression is then used
(1c.) to identify active terms in the PDE (d.) . For large datasets, we can identify the same dynamics by
using a small subset of the data points, so sparse sampling may be used to reduce the size of the problem
(2a.), which is equivalent to taking a subset of rows from the linear system (2b.). An identical sparse
regression problem is formed but with fewer rows (2c.), and finally the active terms in ξ are synthesized
into a PDE (d.).

hard thresholding: in this algorithm, least squares
from STLS is substituted by ridge regression, and so
this regression method was given the name Sequen-
tial Threshold Ridge regression (STRidge). This
is an `2 regularized variation of the least squares
problem, with an `2 norm that corresponds to the
sum of the squared coefficients, which corresponds
to shrinking the regression coefficients so that vari-
ables with minor contribution to the outcome have
their coefficients close to zero. It is defined by:

ξ̂ = argminξ

∥∥∥Θξ̂ −Ut

∥∥∥2
2

+ λ ‖ξ‖22
= (ΘTΘ + λI)−1ΘTUt

(3.6)

3.3. Numerical Evaluation of Derivatives
The most important task for the success of the
PDE-FIND algorithm is the numerical evaluation
of derivatives, which also shows to be the biggest
challenge in its implementation [1]. The best deriva-
tive computation method was found to be polyno-
mial interpolation. For each point where there is a
derivative being computed, a polynomial of degree
P is fit to greater than P points, and derivatives
of the polynomial are taken to be approximate to
those of the numerical data. It is difficult to fit a

polynomial near the boundaries, so the data points
close to them are not used in the regression. This
data is difficult to differentiate, and it was found
that this strongly influences the results and accu-
racy of PDE-FIND.

3.4. Limitations

There are a few situations which may lead to the un-
derperformance of the PDE-FIND algorithm. The
first one is when there is an incomplete library of
terms. When the algorithm is applied to a dataset
where the dynamics are unknown, it might happen
that the column space of Θ is insufficient. When
this is the case, the PDE-FIND algorithm will usu-
ally not converge to the real dynamics of a system.
Another challenging case is when a dataset has a
high level of noise. The problem of numerically dif-
ferentiating noisy data makes identifying governing
equations difficult. It is expected that, by increas-
ing the level of noise, the PDE-FIND algorithm is
able to identify the correct terms with increasing
error until the noise level reaches a value for which
more terms than necessary are added in the equa-
tions. Solutions computed on courser grids, this is,
grids with less spatial and temporal points, show
a decline in accuracy when compared to solutions
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computed from finer grids. Using a large number of
points not only helps supply sufficient data for the
regression, but most importantly it makes numeri-
cal evaluation of derivatives possible.

4. Results

After carefully analysing the PDE-FIND algorithm
and deeply learning how it works, it was finally
tested on a dataset of the 2D Brusselator system. If
the model is successfully able to identify the correct
system of partial differential equations of the Brus-
selator system, we show that it is possible to obtain
valuable information of the local dynamics of a sys-
tem from data, and therefore to infer its underlying
kinetic mechanisms.

4.1. PDE-FIND algorithm on the Brusselator sys-
tem

First, the Brusselator dataset was compute in Mat-
lab, setting the initial conditions and the equations
for the evolution of the system, its parameters, grid
size and data acquisition time. The Brusselator pa-
rameters were set to: A = 1.0, B = 2.3, ki = 1.0,
DX = 1.0 and DY = 0.0. The variables were then
saved on a Matlab file format to be read by the
algorithm. Figure 8 shows a snapshot of the evo-
lution of the Brusselator system at a certain time
point, to ensure that the data acquisition was well
performed.

Figure 8: Numerical solution to the Brusselator sys-
tem of equations, plotted in space-time for t = 10
u.t.. Red colour represents the autocatalytic X sub-
stance and blue represents the Y substance.

The conditions that can be varied according to
how many sampling points we want in our simu-
lation, as well as how fine or coarse we choose our
grid of data points to be, are: the number of spatial
points in the grid m ×m, the number of temporal
points in the simulation n as well as the time step
dt, the number of spatial (numxy) and temporal
(numt) points to be actually used in the simula-
tion, and the step taken by the algorithm when it is
searching for the optimal tolerance dtol . As such,
the chosen testing conditions were:

n = 512,m = 201, dt = 0.05 (4.1)

numxy = 50 (4.2)

numt = 85 (4.3)

dtol = 1 (4.4)

Results obtained with a lower number of sam-
pling points resulted in a less accurate convergence.
Applying the algorithm to the Brusselator dataset
with the above mentioned testing conditions, the
algorithm converged to equations for u and v very
satisfactorily close to the real equations, and the
results are presented in Table 4.1.

This result shows that the algorithm was able
to accurately identify the PDE with an error of
(0.04±0.01)% when compared to the original set of
equations.

In order to see if the method would be equally
successful if we added diffusion on the inhibiting
variable, two other values of DY were tested. The
results for DY = 0.5 and DY = 1.0 are shown in
Table 4.1. Although the algorithm was able to con-
verge, a larger number of sampling points (numxy =
10000) had to be used for both cases, otherwise
the method would be unsuccessful. The remain-
ing testing conditions 4.1 were maintained. The
algorithm was able to identify the PDE’s for both
cases with errors of (0.78 ± 1.41)% for DY = 0.5
and (0.17± 0.16)% for DY = 1.0.

Finally, the algorithm was also tested on spiral
waves, shown in Figure 9. Maintaining the same pa-
rameters as the original system (A = 1.0, B = 2.3,
ki = 1.0, DX = 1.0 and DY = 0.0) and testing con-
ditions 4.1, the spiral waves are obtained by chang-
ing the initial conditions.

Figure 9: Numerical solution to the Brusselator sys-
tem of equations, exhibiting spiral waves, for t = 10
u.t..

The method was once again able to accurately
converge to the real system of PDE’s with an error
of (0.04±0.01)%. Results for every case are present
in Table 4.1.
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Correct PDE (DY = 0.0)
ut = 1.0 + uxx + uyy − 3.3u+ u2v

vt = 2.3u− u2v

Identified PDE
ut = 0.999538 + 0.999808uxx + 0.999375uyy − 3.298330u− 0.999497u2v

vt = 2.299332u− 0.999729u2v

Correct PDE (DY = 0.5)
ut = 1.0 + uxx + uyy − 3.3u+ u2v

vt = 0.5vxx + 0.5vyy + 2.3u− u2v

Identified PDE
ut = 0.998089 + 1.047309uxx + 0.996114uyy − 3.290348u− 0.995294u2v

vt = 0.500109vxx + 0.500111vyy + 2.294337u− 0.994988u2v

Correct PDE (DY = 1.0)
ut = 1.0 + uxx + uyy − 3.3u+ u2v

vt = vxx + vyy + 2.3u− u2v

Identified PDE
ut = 0.996333 + 1.001942uxx + 1.001798uyy − 3.283741u− 0.997793u2v

vt = 1.000130vxx + 1.000112vyy + 2.299436u− 0.999773u2v

Correct PDE (spirals)
ut = 1.0 + uxx + uyy − 3.3u+ u2v

vt = 2.3u− u2v

Identified PDE
ut = 0.999620 + 0.999541uxx + 0.999577uyy − 3.298610u− 0.999578u2v

vt = 2.299442u− 0.999773u2v

Table 2: Identification of the Brusselator reaction-diffusion equation system with PDE-FIND.

4.2. Limited Data

In Section 3.4, it was referred that one of the cases
for which the PDE-FIND algorithm may not con-
verge to the desired solution is when there is not
a rich enough dataset with a sufficient number
of points to successfully numerically evaluate the
derivatives. To test this, the algorithm is applied on
a number of discretizations of the Brusselator equa-
tions, and the results are shown in Table 3. Initially,
the system was computed on a finer grid over 201
temporal points, and successively computed on to
coarser grids over shorter sampling times, in order
to evaluate the method with courser sampling.

Finally, another analysis was done by varying the
number of spatial sampling points numxy on a grid
of size 512, over an interval of 201 u.t. , where
only 85 sampling temporal points are chosen. This
was done to test the lower limit from which the
algorithm fails to correctly converge, and the results
are shown in Table 4. We can see that there is a
lower threshold of 25 sampling spatial points from
which the PDE stops being correctly identified.

Spatial Points (n)

512 256 128 64 32

201 0.041 0.041 0.049 0.28

101 0.77 0.71
Temporal

Points (m)
51

Table 3: Accuracy of the PDE-FIND algorithm
with various grids sizes on the Brusselator system.
Red table entries denote a misidentification of the
sparsity pattern either due to the inclusion of ex-
tra terms which are not present in the real PDE,
or missing any term of either the PDE for ut or
vt. Numbers shown represent the average parame-
ter error in percentage.

Number of sampling points 5000 1000 100 50 25 15 10

Error in percentage 0.041 0.039 0.036 0.041

Table 4: Accuracy of the PDE-FIND algorithm
with different numbers of spatial sampling points
numxy on the Brusselator system. The numbers
shown represent the average parameter error in per-
centage. Red table entries denote a misidentifica-
tion of the sparsity pattern due to missing any term
of either the PDE for ut or vt.
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5. Conclusions
In this work, we have analysed the possibility of
calibrating a reaction-diffusion partial differential
equation exhibiting travelling waves transient so-
lutions with the PDE-FIND algorithm. With this,
we have shown the possibility of introducing the BZ
data to obtain information about the local dynam-
ics and therefore for underlying kinetic mechanisms
of the BZ reaction. Our ultimate goal would be to
find the optimal R-D system that best fits the BZ
reaction data.

After having successfully calibrated the model,
the next step would be to capture and analyse im-
ages of reaction-diffusion travelling waves of the
Belousov-Zhabotinsky reaction in order to create a
dataset to be read by the algorithm. To do this,
we would start by creating the reaction in the lab,
by mixing sulphuric acid, ferroin solution, sodium
bromate, potassium bromide and sodium malonate.
Then, resorting to suitable material and software,
video footage of the evolution of the reaction would
be taken and analysed. For this work, only circular
waves would be studied. The different colour chan-
nels (red and blue) would be separated to represent
the X and Y variables, respectively. Then, a dataset
containing these variables would be created by scan-
ning images of the travelling waves during succes-
sive time instants, which would transform the visual
data into numerical data points. Finally, the algo-
rithm would read this dataset and deduce the ki-
netic mechanism associated with reaction-diffusion
waves observed in the Belousov-Zhabotinsky reac-
tion.
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