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Abstract

In modern software engineering, Continuous Integration (CI) has become an indispensable step
towards systematically managing the life cycles of software development. Large companies struggle with
keeping the pipeline updated and operational, in useful time, due to the large amount of changes and
addition of features, that build on top of each other and have several developers, working on different
platforms. Associated with such software changes, there is always a strong component of Testing. As
teams and projects grow, exhaustive testing quickly becomes inhibitive, becoming adamant to select
the most promising test cases earlier, without compromising software quality. After proving to be a
strategy as good as traditional prioritization methods in three different datasets, we test its ability to
adapt to new environments, by testing it on novel data extracted from a financial institution, yielding a
Normalized percentage of Fault Detection (NAPFD) of over 0.6 for the Network Approximator and Test
Case Failure Reward. Additionally, we studied the impact of experimenting a new model for memory
representation: Decision Tree Approximator, without producing significant improvements relative to
Artificial Neural Networks. Neural Network Embeeding for Test Case Prioritization (NNE-TCP) is a novel
Machine-Learning (ML) framework that analyses which files were modified when there was a test status
transition and learns relationships between these files and tests by mapping them into multidimensional
vectors and grouping them by similarity. When new changes are made, tests that are more likely to
be linked to the files modified are prioritized. Furthermore, NNE-TCP enables entity visualization in
low-dimensional space, allowing for other manners of grouping files and tests. By applying NNE-TCP, we
show for the first time that the connection between modified files and tests is relevant and competitive
relative to comparison methods. This research is carried out for Instituto Superior Técnico in collaboration
with BNP Paribas. I have benefited from a fellowship of the BNP Paribas, in the framework of the IST
Technology Transfer Office.
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1. Introduction

Given the complexity of modern software systems,
it is increasingly crucial to maintain quality and re-
liability, in a time-saving and cost-effective man-
ner, especially in large and fast-paced companies.
This is why many industries adopt a Continuous
Integration (CI) strategy, a popular software devel-
opment technique in which engineers frequently
merge their latest code changes, through a com-
mit, into the mainline codebase, allowing them to
easily and cost-effectively check that their code can
successfully pass tests across various system en-
vironments [9].

1.1. Regression Testing

One of the tools used to manage software change
is called regression testing. It is critical to ensure
that the introduction of new features, or the fix-

ing of known issues, is not only correct, but also
does not obstruct existing functionalities. Regres-
sions occur when a software bug causes an ex-
isting feature to stop functioning as expected after
a given change and can have many origins (e.g.
code not compiling, performance dropping, etc.),
and, as more changes occur, the probability that
one of them introduces a fault increases [10]. On
the other hand, progressions occur when the soft-
ware bug that was at the origin of a regression is
fixed, restoring the feature proper functioning.

As software development teams grow, identifying
and fixing regressions quickly becomes one of the
most challenging, costly and time-consuming tasks
in the software development life-cycle, rapidly in-
hibiting its adoption. Such teams often resort to
modern large-scale test infrastructures, like core-
grids or online servers [14]. Consequently, in the
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last decades, there has been intensive research
into solutions that optimize Regression Testing, ac-
celerating fault detection rates either by alleviating
the amount of computer resources needed or by
reducing feedback time, i.e. the time delay be-
tween a software change and the information re-
garding whether it impacts the system’s stability
[1, 2, 6].

One of the most prominent techniques for Re-
gression Testing optimization is Test Case Priori-
tization (TCP), that aims to find the optimal per-
mutation of test cases that match a certain target,
i.e. the ability to reveal failures as soon as possi-
ble, which is useful when time budget or computer
resources are limited [10]. Another common tech-
nique is Test Case Selection (TCS), where only a
relevant subset of all the tests is chosen.

The key aspect of this study is how to know a
priori, which test cases to prioritize i.e. without run-
ning them. One possibility is to have a professional
test engineer cherry-pick the most promising test
cases. Unfortunately manual test case executing
is time-consuming, counter-productive and error-
prone [4], and is not scalable. Therefore, there has
been a high demand for techniques that can auto-
matically pick test cases, minimizing human inter-
vention [14].

1.2. Machine Learning (ML)
In recent years, the field of Artificial Intelligence as
been expanding at an astounding pace, fueled by
the growth of computer power and the amount of
available data. Some problems can not be solved
by traditional algorithms, due to limited or incom-
plete information. In our case, we do not know
which tests are more relevant to apply first. How-
ever this information can be extracted from histori-
cal data and it can be learned to enable future pre-
dictions, by estimating the probability of being rel-
evant, e.g. probability of regression, progression
or or both, a transition. Hence, with the rise of data
availability, there has been a growing interest in so-
lutions that involve learning from data. Particularly,
in this thesis two ML framework were developed:
one adapted from the literature, based on Rein-
forcement Learning and one from scratch, based
on Neural Network Embeddings.

2. Background
In software engineering, version control systems
are a means of keeping track of incremental ver-
sions of files and documents, allowing the user to
arbitrarily explore and recall the past commits that
lead to that specific version[9]. Testing is a verifica-
tion method used to assess the quality of a given
software version. The building block of software
testing is the test case, which specifies on which
conditions the System Under Test (SUT) must be

executed in order to detect a fault, i.e. for a given
input, what are the expected outputs [4].

When test cases are applied, the outcome ob-
tained is in the form of PASS/FAIL, with the pur-
pose of verifying functionality or detecting errors.
However, testing is very much like sticking pins into
a doll - to cover its whole surface a lot of pins are
needed, and the larger the doll, the more pins we
require. Likewise, the larger and more complex the
SUT, the greater the variety of test cases required.
Therefore, to ensure that the health of the SUT is
maintained throughout time, exhaustive testing is
required to cover all possible scenarios [10].

Inevitably, this task becomes impractical or even
unfeasible due to the increasing complexity of the
SUT, so testers have to find scalable approaches
to counteract exhaustive testing, usually resorting
to three techniques: Test Case Minimization, Test
Case Selection and Test Case Prioritization (TCP),
the latter being the target of this work.

2.1. Test Case Prioritization
As mentioned before, TCP rearranges test cases
according to a given criteria, such as the probability
of revealing faults.

Definition 2.1. TCP Given the set of test cases, T ,
the set containing the permutations of T , PT , and
a function from PT to real numbers f : PT → R,
find a subset T ′ such that

[f(T ′) ≥ f(T ′′)], ∀T ′′ ∈ PT. (1)

In TCP, the function f should be some relevant cri-
teria such as code coverage, early fault detection,
fewer resource demand, etc. [10].

One possible way of evaluating the optimal per-
mutation is to compute the Average Percentage of
Fault Detection (APFD) metric [8].

Definition 2.2. APFD Let T be the set of tests con-
taining n test cases and F the set of m faults re-
vealed by T . Let TFi be the position, in a given
permutation, of the first test case that reveals the
ith fault [10]. Thus, APFD is defined as

APFD = 1− TF1 + · · ·+ TFn

nm
+

1

2n
. (2)

Simply put, higher values of APFD, imply higher
fault detection rates, i.e. when APFD has value 1,
all the failing tests are applied before all the ones
that are passing, whilst when it has value 0, all the
failing tests are applied at the end of the permu-
tation. Furthermore, the APFD metric can be ex-
tended to the case where only a subset of Ti is
executed, called Normalized Average Percentage
of Fault Detections (NAPFD) [11].
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In the literature, APFD is the most common met-
ric for measuring TCP performance across dif-
ferent methods [8]. Nonetheless, ee define, for
the first time, a metric for Test Case Prioritization
based on test case transitions, the Average Per-
centage of Transition Detection (APTD).

Definition 2.3. APTD Let T be the set of tests con-
taining n test cases and τ the set of m transitions
revealed by T . Let Tτi be the order of the first test
case that reveals the ith transition.

APTD = 1− Tτ1 + · · ·+ Tτn
nm

+
1

2n
. (3)

Therefore, similar to the APFD metric, if the
APTD is 1, all test cases that will suffer transi-
tions are applied first, and if near 0, all relevant test
cases will be the last to be executed. By being able
to create schedules that have a high APTD, we
shorten the the time needed to both detect newly
introduced regressions and find possible progres-
sions.

2.2. Reinforcement Learning
Reinforcement Learning (RL) handles problems
that involve learning which course of action to take,
given a set of possible states and possible actions.
Each action taken produces a given reward. In RL,
the goal of an agent, i.e. the decision maker, is
to interact with the environment and select the ac-
tions that maximize the cumulative sum of the re-
ward signal. The agent’s ability to design an opti-
mal strategy is strongly dependent on three factors:
the way the reward function is defined, which fea-
tures are fed into the model and its ability to gener-
alize instead of memorize.

When dealing with a large dataset, wherein state
space representation complexity grows, it is not
feasible to represent the state space in a tabular
manner, i.e. store the state space discretely in a
table. Hence, to reduce the memory needed to
represent the state space, we use Approximators
- a viable alternative of memory representation.
These can be ML algorithms (e.g. Artificial Neural
Networks (ANNs), Decision Trees (DTs), Nearest
Neighbours) [12].

In the context of TCP, we want the agent to learn
how to rank test cases, such that the ones that are
more prone to reveal faults have a higher priority
than the ones that are not. First, each test case
is prioritized individually, so that a test schedule is
created, executed and, finally, evaluated. Tradition-
ally, the only information provided to the algorithm
is historical results. The main contributors to this
field were Spieker et al. [11], that implemented
Reinforced Test Case Selection (RETECS) - the
framework adapted in this thesis - and, later, Wu
et al. [13] extended their work. In both publica-

tions, the method preferably prioritizes test cases
which have been failing recently.

2.3. Neural Network Embeddings
The goal of embeddings is to map high-
dimensional categorical variables into a low-
dimensional learned representation that places
similar entities closer together in the embedding
space. This can be achieved by training a neural
network [5].

One-Hot Encoding, the process of mapping dis-
crete variables to a vector of 0’s and 1’s, is com-
monly used to transform categorical variables, i.e.
variables whose value represents a category (e.g.
the variable color can take the value red, blue, pur-
ple, etc.), into inputs that ML models can under-
stand. One-Hot encoding is a simple embedding
where each category is mapped to a different vec-
tor (e.g. red, blue, purple can correspond, respec-
tively, to [1, 0, 0] ,[0, 1, 0] and [0, 0, 1]).

This technique has two severe limitations: first,
dealing with high-cardinality categories, (e.g. trying
to map each possible color with this method would
be unfeasible), and secondly, mappings are ”blind”,
since vectors representing similar categories are
not grouped by similarity (e.g. in this representa-
tion, the category purple is no closer to blue than it
is to yellow).

Thus, to drastically reduce the dimensionality of
the input space and also have a more meaning-
ful representation of categories, we could introduce
embeddings, lower dimensional vectors that repre-
sent categories by mapping similar categories to
similar vectors. For example, we could map the
variable color to a lower dimensional space, red
= [1, 0], blue = [0, 1] and purple = [1, 1], by taking
advantage of the fact that purple is a combination
of red and blue.

In our case, we take each file and each test and
represent them as n-dimensional vectors, with the
goal of representing similar files and similar tests
as similar vectors. The key aspect of embeddings
is that these n-dimensional vectors are trainable ,
which means that each vector component can be
adjusted in order to push vectors representing of
related objects together. As a result, after training,
the supervised learning task will be able to predict
whether two categories are similar.

3. Study I: RETECS
3.1. Implementation
RL is an adaptive method where an agent learns
how to interact with an environment that responds
with reward signals, which correspond to the feed-
back of taking a certain action. For example, when
driving a car, the environment is the real-world, the
state can be defined as the position, speed of the
car and neighbouring cars. Possible actions are
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turning the wheel and accelerating or braking. The
reward function can be calculated by how much
time it took to reach the destination, while respect-
ing traffic rules.

These back-and-forth interactions take place re-
currently: the agent receives some representation
of the environment’s state and selects actions ei-
ther from a learned policy - mapping from per-
ceived states of the environment to actions to be
taken when in those states - or by random explo-
ration - randomly choosing an action when in a
given state to account for environment changes.
Consequently, the environment responds to these
actions and presents new situations to the agent,
which finds itself in a new state after exercising its
action. The main goal of RL is to maximize the
cumulative sum of rewards, rather than just con-
sider immediate rewards [12]. Following the exam-
ple above, a possible action to take is to increase
the travel speed of the car. If there are no accidents
until the final destination, then the reward receive
will be higher.

More formally, considering a set of discrete time
steps, t = 0, 1, 2, ..., the representation of the en-
vironment’s state at time t is defined as St ∈ S,
where S is the set of all possible states. In St, the
agent has the option to select an actionAt ∈ A(St),
where A(St) corresponds to the set of actions ac-
cessible from state St. By applying At to state St,
the agent finds itself, one time step later, in a new
state St+1 and a reward Rt+1 is collected as feed-
back from action At.

In the context of TCP, RETECS prioritizes each
test case individually and, with these prioritizations,
a test schedule is then created, executed and fi-
nally evaluated. Each state represents a single
test case ti ∈ Ti, and it contains information on
the test’s duration, when it was last executed and
the previous execution results. The set of possi-
ble actions corresponds to the set of all possible
prioritizations a given test case can have in a com-
mit, which is translated into an integer, e.g. if test
A has prioritization equal to one, then it will be the
first to be executed. After all test cases are prior-
itized and submitted for execution, the respective
rewards are attributed based on the test case sta-
tus. From this reward value, the agent can adapt
its strategy for future situations: an action yield-
ing positive rewards is reinforced, whereas nega-
tive rewards discourage the current behaviour.

The RETECS framework has the following char-
acteristics:

1. Model-Free - has no initial concept of the en-
vironment’s dynamics or how its actions will af-
fect it.

2. Online - learns on-the-fly, adapting to a dy-

namic environment. It is particularly relevant
in environments where test failure indicators
change over time, so it is adamant to update
the agent’s strategy.

3.2. Results
In our experiments, we trained two RL agents. The
first resorts to an Network representation of states,
while the second uses a DT. On both cases, the
reward function varies between failure count, test-
case failure and time ranked. For each test agent,
test-cases are scheduled in descending order of
priority and until the time limit is reached, if there
is one. It is worth noticing that the IOF/ROL and
Paint Control datasets were already analysed by
Spieker et al. [11]. In this work, we replicate their
result to ensure that no errors were introduced by
us, while adapting their framework. Therefore we
will only describe the novelties.

Fig. 1 shows a comparison of the prioritization
performance between the Network Agent and the
DT Agent, with regards to different reward func-
tions (rows), applied to three different datasets
(columns). The commit identifier is represented
in the x-axis and for each one there is a corre-
sponding NAPFD value, ranging from 0 to 1. (rep-
resented as a line plot in red and blue for the Net-
work and DT agents, respectively). The straight
lines show the overall trends of each configuration,
which is obtained by fitting a linear function - full
line for Network and dot-dashed line for DT Approx-
imator. It is clear to see that Test Case Failure re-
ward function produces the best results, in terms of
maximizing the slope of the NAPFD trend. When
combined with the Network Approximator, this ap-
proach proves to be the best configuration overall,
for the three datasets, where we see a more sig-
nificant growth in the trend line, indicating that the
algorithm is learning from the data.

The supremacy of the Network Approximator re-
mains valid for the reward function that produces
the best results. Yet, in some cases, the DT Ap-
proximator was able to surpass its performance
by a small amount. If, for example, the Finance
dataset had more records, it is possible that DT
would follow the growing trend and surpass Net-
work by a significant amount. Therefore, the col-
lection of more data is crucial to correctly evalu-
ate the DT Approximator’s performance. Choosing
the best configuration, test case failure reward and
the Network Approximator, when RETECS is ap-
plied in an environment completely different from
Robotics and with different characteristics, it was
able to adapt and learn how to effectively prioritize
test cases. This shows that the RETECS domain of
validity expands to distinct CI environments, which
is particularly useful for companies that increas-
ingly rely on the health of these systems.

4



0.0

0.2

0.4

0.6

0.8

1.0

NA
PF

D

ABB Paint Control ABB IOF/ROL
(a) Failure Count Reward

Finance

Network DecisionTree

0.0

0.2

0.4

0.6

0.8

1.0

NA
PF

D

(b) Test Case Failure Reward

0 60 120 180 240 300
CI Cycle

0.0

0.2

0.4

0.6

0.8

1.0

NA
PF

D

0 60 120 180 240 300
CI Cycle

(c) Time-ranked Reward

0 60 120 180 240 300
CI Cycle

Figure 1: NAPFD Comparison with different Reward Functions and memory representations: best combination obtained for Test
Case Failure reward and Network Approximator (straight lines indicate trend)
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Figure 2: NAPFD difference in comparison to traditional methods: Random, Sorting and Weighting. Positive differences indicate
better performance from traditional methods and negative differences show better performance for RETECS
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Traditional MethodsThree methods were in-
cluded as a means of comparison: Random, Sort-
ing and Weighting.

• Random assigns random prioritizations to
each test case, and this serves as a baseline
method. The other two methods are determin-
istic.

• Sorting method sorts each test case accord-
ing to its most recent status, i.e. if a test case
failed recently it has higher priority.

• Weighting method is a naive version of
RETECS without adaptation, because it con-
siders the same information - duration, last run
and execution history - but uses a weighted
sum with equal weights.

The results are depicted in Fig. 2 as the differ-
ence between the NAPFD for the traditional meth-
ods and RETECS over several CI Cycles. Each bar
comprises 30 commits. For positive differences,
the traditional methods have better performance,
and on the contrary negative differences show the
opposite.

For the Finance data, there is clearly a learn-
ing pattern with an adaptation phase of around 90
commits which the RETECS method requires to
have a similar performance to the traditional meth-
ods and a significant improvement with respect to
Random. Then for the following commits, Random
method progressively catches up with other meth-
ods, which can be a sign of a mutating environ-
ment, i.e. test cases at commit 300 are not failing
for the same reasons that they were in commit 90.
Overall, the algorithm achieves promising results,
when applied to this novel dataset.

It is evident that RETECS can not perform sig-
nificantly better than traditional methods. RETECS
starts without any representation of the environ-
ment and it is not specifically programmed to
pursue any given strategy. Yet it is possible to
make prioritizations as good as traditional methods
commonly used in the industry and by increasing
the number of records available on each dataset,
adding more features and conducting a more re-
fined parameter tuning analysis, there is strong ev-
idence that there can be a performance boost.

4. Study II: NNE-TCP
4.1. Implementation
Our NNE-TCP approach is sustained by a predic-
tive model that tries to learn whether a modified file
and a test case are linked or not. After training, the
model can be used to make new predictions on un-
seen data and create test schedules that prioritize
test cases more likely to be related with files modi-
fied in a given commit.

The steps taken to develop the framework were:

1. Load and Clean Dataset.

2. Create Training Set.

3. Build Neural Network Embedding Model.

4. Train Neural Network Model.

5. Evaluate Model’s Performance.

6. Visualize Embeddings using dimensionality
reduction techniques.

1) The dataset should contain records of the files
modified in every commit, as well as test cases
that suffered transitions. Then to obtain a cleaner
dataset, to obtain better results, it is useful to elim-
inate redundant or outdated files and tests as well
as removing files and tests that have not been
modified or transitioned recently. Three important
parameters were defined to clean data:

• Date Threshold: timestamp from which we
consider file/test modifications/executions - if
a file/test has not been modified/executed for
n months, it is considered deprecated and is
removed.

• Individual Threshold: the individual fre-
quency of each element - files and tests that
appear fewer than n times are removed, be-
cause they are likely to be irrelevant.

• Pairs Threshold: frequency of file/test pairs -
pairs that occur fewer than n times are likely
to have happened by chance, so they are re-
moved.

To remove the noise from the data we need to
remove files, tests and pairs that rarely are part of
a commit in the dataset. A file/test is said to occur
in a commit, if it was modified/executed. We want
the average number of occurrences per file/test to
be larger, leading to a higher density of relevant
files and tests, in order to obtain a higher quality
dataset.

2) The supervised learning task we are trying to
solve can be stated as: given a file and a test case,
predict whether the pair is linked, i.e. predict if the
modification of a given file could impact the out-
come of a given test case’s execution, based on the
commit history. Subsequently, the training set will
be composed of pairs of the form: (file, test, label).
The label will indicate the ground-truth of whether
the pair is positve or negative - is or is not present
in the dataset.

To create the training set, we need to iterate
through each commit and store all pair-wise com-
binations of files and test cases. In any of the com-
mits, if there is a test case that suffered a transition
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where a given file was modified, then that file and
test case constitute a positive pair.

Then, because the dataset only contains posi-
tive examples of linked pairs, in order to create a
more balanced dataset we need to generate nega-
tive examples, i.e. file-test pairs that are not linked.
A negative example constitutes test case that is not
linked to a modified file.

As a result of having to create balanced exam-
ples for every commit and specially when dealing
with large datasets, it could become unpractical, in
terms of memory and processing power, to gener-
ate and store the entire training set at once. Con-
sequently, to alleviate this issue, the Keras class
Data Generator offers an alternative to the tradi-
tional method, by generating data on-the-fly - one
batch (i.e. subset of the entire dataset) of data at a
time [3].

3) Having created the training set, the next step
is to build the learning model’s architecture. The in-
puts of the neural network are each (file, test) pairs,
that will be mapped to a n-dimensional embedding
vector. Afterwards, the dot product of both vectors
is computed, to determine the similarity between
them. Subsequently, the output will be a predic-
tion of whether or not - positive values vs. negative
values of the dot product - there is a link.

The Keras Deep Learning model is depicted be-
low in Fig. 3 and is composed of the following lay-
ers:

• Input: 2 neurons. One for each file and test
case in a pair.

• Embedding: map each file and test case to a
n-dimensional vector.

• Dot: calculate the dot product between the
two vectors, merging the embedding layers.

• Reshape: reshape the dot product into a sin-
gle number.

• [Optional] Dense: generate output for classifi-
cation with sigmoid activation function.

The Dense layer is optional, because the super-
vised learning task can be classification or regres-
sion.

4) Having built the model’s architecture, the next
step is to train it with examples produced by the
Data Generator, for a certain number of epochs.
At this stage, the weights are updated such that
the respective loss function is minimized and the
accuracy when predicting whether the pair is posi-
tive or negative is maximized. If the algorithm con-
verges, the model is ready to make predictions on
unseen data and produce meaningful representa-
tions of file and test case embeddings.

Figure 3: Neural Network Embedding Model Architecture

5) After training the model, we are able to make
predictions on new, unseen commits. We can eval-
uate the true accuracy of our model using the test
set. To evaluate the model’s performance, we mea-
sure its APTD.

6) Lastly, a useful application of training embed-
dings is the possibility of representing the embed-
ding vectors in a reduced dimensional space, pro-
viding a helpful intuition about entity representa-
tion. Since embeddings are represented in an n-
dimensional manifold, one has to resort to manifold
reduction techniques to represent elements in 2D
or 3D, in order for the manifold to be understand-
able by humans.

4.2. Results
After framing the problem and having the data
cleaned, we can move on to training the model.
This process consists of learning the embedding
representation, by updating the neural network’s
weights, through backpropagation. Additionally,
we have some hyper-parameters that influence the
model’s performance, and these need to be fine-
tuned to reach the best results. Some examples
of hyper parameters are the embedding size, batch
size and negative-ratio. Fine-tuning analysis allows
us to find the best combination of parameters that
maximize our metrics, by experimenting different
values. To determine them, a grid search was con-
ducted, covering different combinations between
possible values for each parameter and the best
combination was used to produce the histogram
depicted in Fig. 4

We can conclude that the model managed to
produce a desirable result, with a fairly high APTD.
It can also be seen that highest bar in the his-
togram corresponds to an APTD near 1, which may
indicate that, for some commits, the algorithm was

7



0.0 0.2 0.4 0.6 0.8 1.0
APTD

0.0

0.5

1.0

1.5

2.0

2.5
De

ns
ity

Regression:
 APTD =  0.70 ±0.19

Figure 4: APTD histogram and density distribution function
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able to correctly predict which tests would suffer
transitions and prioritized them first.

Traditional Methods Having calibrated and
trained the NNE-TCP model to produce the best
APTD value, we are now able to study how this new
approach performs when compared to the three
traditional methods, described below. The results
of this comparison are depicted in Fig. 5.

• Random - each test is assigned a random pri-
oritization. This method will serve as a base-
line for comparison.

• Transition - a fixed prioritization of the test
cases is used across every commit. Tests are
ranked by their rate of transition, determined
by the number of times they have suffered
transitions in the past.

• History - tests that suffered transitions more
recently are assigned a higher rank. This
approach is based on two assumptions: re-
gressions are likely to be fixed quickly, i.e. a
test that just started failing should transition
through a progression soon, and stable test
cases, i.e. tests that rarely have any transi-
tions are less relevant. Furthermore, while a
project is in state of active development, it is
likely that only the same subset of test cases
will be involved in transitions, which will be pri-
oritized by History. However, this approach
does not take into account the fact that a test
case that has been failing for some time is
more likely to be fixed than a test that had just
started failing.

Out of the four methods presented, History is the
one that shows higher APTD trends, followed by
our approach NNE-TCP and, further down, Tran-
sition and Random, respectively. Table 1 shows
the average value for the APTD and the root-
mean-squared error (RMSE) - the average of the
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Figure 5: APTD Trend of NNE-TCP and traditional methods
for the test set. Each line is obtained by calculating the rolling
average over a 50 commit window (for a total of 600 commits).

quadratic difference between two curves - between
NNE-TCP and the other traditional methods.

Method Mean APTD RMSE
NNE-TCP 0.70 0
Random 0.50 0.21
Transition 0.59 0.16
History 0.87 0.17

Table 1: Performance comparison between TCP methods. The
RMSE value is calculated in relation to NNE-TCP

As expected for a baseline method, Random
(yellow line) has an approximately constant APTD
trend of around 0.5, meaning that, on average, rel-
evant test cases are not ranked in the beginning
nor the end of the test schedule, but are rather uni-
formly distributed.

Looking at the Transition method (green line) it
is possible to see a slight improvement relative to
Random. Although this method only considers the
frequency of past transitions for each test case it
is able to assign less relevance to stable tests, i.e.
test that almost do not cause transitions, have low
priority and are therefore ranked at the bottom of
the schedule.

The History method (red line) was able to
achieve the highest trend of the four methods, with
the assumption that tests that suffered transitions
recently, are more likely to transition again. In
short, the longer a test remains stable, the less rel-
evant it becomes and, consequently the lower pri-
ority it has. On the other hand, when a regression
is detected, it is expected that it will be fixed soon,
since the bug-source has clearly been identified,
causing a progression. For this reason, a test that
transitioned recently through a regression is more
likely to transition again through a progression. All
these factors help explain the success of the His-
tory method.
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It is worth noticing that NNE-TCP is a novel
approach that is evaluated by the equally novel
APTD metric and, to the best of our knowledge,
there are no other ML frameworks whose perfor-
mance can be compared to NNE-TCP. Thus, it is of
the utmost importance that we validate the model
against other traditional methods, that do not learn
from experience.

Entity Representation One of the advantages
of using embeddings is that, after solving a Super-
vised Learning problem, the results can be repre-
sented in low dimensional space with UMAP [7].
It aims to find a low dimensional projection of
the embeddings, while maintaining the same high-
dimensional topological structure. This allows us to
project multi-dimensional entities into two dimen-
sions, granting us the possibility to observe some
clusters of files and test cases with the same be-
haviour.

Fig. 6 shows the embedding representation for
files and test cases and by labelling them accord-
ing to the corresponding folder where they are
stored in the system. With these results, we can
see that in the test case projection, some dots
overlap. This is a clear indicator of test case redun-
dancy, i.e. test cases that suffer transitions concur-
rently, meaning they must have a very high degree
of similarity. This information can then be used by a
test engineer to inspect these particular test cases
and, if applicable, clean the redundant ones. Also,
because we can not observe any single color clus-
ters in the projections, it is possible to conclude
from the plot that there is no correlation between
the folder where files/tests are stored and whether
they cause/suffer transitions together. It should be
noted that there were cases where files and tests’
folder names were corrupted or unavailable.

5. Threats to Validity and Future Work
The first threat, associated with both ML frame-
works, is the quality of the dataset. It is relatively
small, facing the number of test cases and modified
files it encompasses. Adittionally, there is strong
evidence for the presence of noise, therefore col-
lecting more data is a crucial step for Machine
Learning models to learn better and more complex
relations between inputs and outputs.

Regarding Study I, it is not possible yet to com-
pare the APTD metric, defined by us, measured by
NNE-TCP with other ML algorithms defined in the
literature. Moreover, NNE-TCP was only applied to
one dataset from a specific industrial environment.
Hence, it is crucial to both measure the APTD with
other frameworks but also to evaluate the perfor-
mance of NNE-TCP in other environments.

Regarding Study II, RETECS’ major limitation
arises form only considering three features to de-
scribe a test case - its duration, timestamp of last
execution and failure history - that can and should
be extended to have a more complete picture of
what a possible failing test case looks like. Also
Decision Trees were used for the first time, in this
framework, and there are more ML algorithms that
can serve the same purpose, e.g. Nearest Neigh-
bours.

In both studies, due to limited time and computer
power, parameter tuning analysis was limited, but it
can be further refined by exploring more combina-
tions of parameters and the respective impact on
evaluation metrics.

Finally, we propose that the two algorithms are
”merged”, combining test history features with file
linkage. This way, by prioritizing not only tests that
have a strong failing history, but also only the rele-
vant ones given a commit, we expect to maximize
performance.
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Figure 6: Labelled Embeddings corresponding to the five most populated folders where files/test cases are stored in the system
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6. Conclusions
´ In this study, an extension of the RETECS frame-
work was developed, as well an original approach
to Test Case Prioritization using Machine Learning,
called NNE-TCP.

Results indicate that RETECS can effectively
create meaningful test schedules in different con-
texts. In the new Finance dataset, with a combina-
tion of the Test Case Failure reward with the Artifi-
cial Neural Network Approximator, around 90 com-
mits suffice to reach the performance of determin-
istic methods and surpass random prioritization of
test-cases. Initially, the evaluation metric NAPFD
starts at a value of only 0.2 but, as the algorithm
progresses, the trend shows values over 0.6. The
inclusion of DT’s in the framework failed to produce
better results relative to the Network, in the best
possible case. However in some cases, with other
reward functions, performance is comparable and
might not be discarded right away, as it can be use-
ful to apply, in future research, to other CI environ-
ments with distinct characteristics.

Our results point to a major improvement over
some traditional TCP methods, which we called
Random and Transition. However, NNE-TCP was
unable to match the performance of a third, more
complex traditional method, called History. Nev-
ertheless, we strongly believe that NNE-TCP has
enough potential to reach higher performance lev-
els. If a mapping between files and tests can
be effectively learned by a data-driven approach,
then only relevant tests will be executed, reduc-
ing feedback time. To validate this hypothesis, fur-
ther experiments must be conducted on richer and
cleaner datasets. Finally, the ability to visualise
embeddings in 2D space represents a valuable
improvement over other commonly used methods,
providing insights on the structure of the data. We
showed that there does not seem to be exist any
correlation between the folders where files/tests
are stored and the similarity between the files/tests
themselves. Notwithstanding, it is already possi-
ble to detect possibly redundant tests and discover
dependencies between files.

References
[1] S. Ananthanarayanan, M. S. Ardekani,

D. Haenikel, B. Varadarajan, S. Soriano,
D. Patel, and A.-R. Adl-Tabatabai. Keeping
master green at scale. In Proceedings of the
Fourteenth EuroSys Conference 2019. ACM,
2019.

[2] B. Busjaeger and T. Xie. Learning for test
prioritization: An industrial case study. In
Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Founda-
tions of Software Engineering, FSE 2016,

page 975–980, New York, NY, USA, 2016. As-
sociation for Computing Machinery.

[3] F. Chollet et al. Keras, 2015.

[4] V. H. S. Durelli, R. S. Durelli, S. S. Borges,
A. T. Endo, M. M. Eler, D. R. C. Dias, and
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