
MPC-Based Automated Evasive Manoeuvres for Electric Remove Control

Vehicles

Filipa Ribeiro
filipa.sousa.ribeiro@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

November 2020

Abstract

The main goal of this thesis consists of converting an electric remote control (RC) vehicle into a fully autonomous
vehicle. To this end, a Nonlinear Model Predictive Control (NMPC) approach for simultaneous path planning,
path tracking, and obstacle avoidance is presented. NMPC has the capacity of dealing with system nonlinearities,
foresee the future evolution of a process, and control it while fulfilling a set of constraints. The current work uses
a nonlinear dynamic bicycle model with the Pajecka’s tire model to predict the RC vehicle states throughout the
prediction horizon. The path planning, path tracking, and obstacle avoidance form a nonlinear optimization problem
that is solved in real time and during navigation of the RC vehicle (online). To implement a real-time NMPC scheme
on a low-cost embedded system, an efficient nonlinear programming (NLP) solver is required. In the scope of this
work, two different NLP solvers are investigated, which are the gradient search method and the state-of-the-art
solver IPOPT. The simulation results show that both solvers present similar solutions. However, the gradient search
method presents faster computational times. Furthermore, two local path planners, weighted distance and modified
parallax method, are compared through simulation. The results demonstrate that the modified parallax method is
more effective in obstacle avoidance maneuvers than distance-based methods, especially in cluttered environments.
The performance of the purposed controller is experimentally tested on an RC vehicle. The experimental results
prove that the gradient search method is a suitable NLP solver for real-time NMPC implementations in simple
embedded systems with limited computational power. The modified parallax method has proven itself superior to
the weighted distance approach, as it allowed the RC vehicle to avoid obstacles on its path to the destination point.

Keywords: Model Predictive Control, Path Planning, Obstacle Avoidance, Potential Functions, Autonomous Driving

1. Introduction

The last two decades have seen a growing trend towards
the development of autonomous vehicles due to their wide
range of applications, for example, in the automotive,
truck, public transport, industrial, and military fields [5].
Intelligent vehicles can lower fuel consumption, reduce pol-
lution rates [15], and prevent vehicle accidents [13].

In general, a fully autonomous vehicle must carry the ca-
pacity to perceive the local environment, such as recognize
static and dynamic obstacles [6], and to choose the most
adequate collision-free trajectory. Recently, researchers
have shown an increased interest in solving the path track-
ing, obstacle avoidance and path planning problems using
Model Predictive Control (MPC) techniques [22]. This is
because MPC is currently considered the most powerful
and complete approach for constrained control problems
[11]. However, it comes at the expense of high computa-
tional demand, especially in nonlinear setups, i.e., Non-
linear MPC (NMPC).

The study of real-time feasibility of NMPC-based steer-
ing control on a low-cost embedded system was conducted
by Quirynen et. al. (2018) [18]. To prove the concept,

the authors used a Raspberry Pi 2 and the ACADO code
generation tool. The results reinforced the importance
of choosing adequately the vehicle model, nonlinear pro-
gramming (NLP) solver, and control horizon length to ob-
tain the computations in real time. Liniger et. al. (2015)
[12] implemented hierarchical and one-level NMPC in RC
vehicles. The authors performed linearization of the ve-
hicle model to build local approximations of the control
NLPs in the form of convex quadratic programs. Despite
the recent successful results in NMPC applied to low-cost
embedded systems such as RC vehicles, most of its re-
search is still based on linear MPC implementations [10].

The current thesis focuses on developing an NMPC al-
gorithm for real-time path planning, obstacle avoidance
and path tracking. First, this problem is studied in sim-
ulation and, afterwards, experiments on a remote control
(RC) vehicle are performed in order to validate the pro-
posed controller.

2. Vehicle Model
NMPC algorithms require a dynamical representation of
the control system in order to foresee its future evolution.
This section derives an analytical model of the RC vehicle

1

dynamics and its tires. At the end, the vehicle model is
validated.

2.1. Dynamical Model of the Experimental Vehicle
The nonlinear dynamical bicycle model captures key as-
pects of vehicle dynamics, since it accounts for the forces
that act on the front and rear tires. Therefore, it rep-
resents more accurately the tire/ground interaction and
phenomenons as side and longitudinal slip. The nonlinear
model is transformed into a more computationally efficient
model without loss of key dynamic characteristics of the
vehicle. Consequently, the resulting simplified dynamical
bicycle model is given by

ẋ = f(x,u) =

−ϕ̇+

2Fs,f+2Fs,r+2Fl,fu
mv

ϕ̇
2LfFs,f−2LrFs,r+2LfFl,fu

Izz
v cosϕ− vβ sinϕ
v sinϕ+ vβ cosϕ

 , (1)

where m denotes the mass, Lf and Lr, correspond to the
lengths from the CoG to the front and rear wheels, Izz

is the inertial moment relative to the Z-axis and v is the
velocity of the vehicle. The state and control input vectors
are x = [β, ϕ, ϕ̇,X, Y]T and u = δf . In particular, β is
the side-slip angle, ϕ symbolizes the yaw angle, ϕ̇ denotes
the yaw angular rate, and X and Y are the Cartesian
coordinates in the inertial frame. Finally, δf corresponds
to the front steering angle. The dimensions of the state
and input vectors are nx and nu, respectively.

The output vector is given by

η = h(x) = [X,Y]T , (2)

since X and Y are the desired control variables.
The longitudinal and lateral tire forces in the tire frame,

i.e., Fl,f , Fl,r and Fs,f , Fs,r, are nonlinear functions that
depend on the slip angle α, slip ratio s, total vertical load
Fz, and friction coefficient µ between the tire and the road.
It is assumed that the front and rear vertical loads, Fz,f

and Fz,r, are constant and that their distribution depends
on the geometry of the vehicle. They are computed as

Fz,f =
Lrmg

2(Lf + Lr)
, Fz,r =

Lf mg

2(Lf + Lr)
, (3)

with g being the gravitational acceleration.
The slip angle of both front and rear tires, αf and αr,

are given by

αf = tan−1

(
(ẏ + Lf ϕ̇) cos δf − ẋ sin δf
(ẏ + Lf ϕ̇) sin δf + ẋ cos δf

)
, (4)

αr = tan−1

(
ẏ + Lr ϕ̇

ẋ

)
, (5)

The slip ratio of both front and rear tires, sf and sr,
are defined as

s? =

{
rw?

vl,?
−1 , if vl,?>rw?, vl,? 6= 0 for breaking

1− vl,?
rw?

, if vl,?<rw?, w? 6= 0 for driving
(6)

where w is the angular velocity of the tire and r is the
effective wheel radius. The subscript ? either denotes the
front or rear wheel {f,r}.

All parameter values of the RC vehicle are presented in
Table 1, with Izz being estimated in [7].

Parameter Value Unit
m 2.77 kg
Izz 0.015 kg ·m2

Lf 0.12 m
Lr 0.14 m
L 0.365 m
W 0.21 m
Fz,f 7.3160 N
Fz,r 6.2709 N

Table 1: Parameter values of the RC vehicle.

2.2. Tire Model
In a dynamic driving scenario, in which a vehicle tries
to avoid an obstacle through an evasive lateral maneuver,
accurate estimations of the lateral forces are required. For
this reason, this thesis uses the Pacejka’s Magic Formula
presented in [16], which is a high fidelity tire model. The
Magic Formula describes the characteristics of the side and
brake forces with good accuracy and physical meaning.

2.3. Model Validation
The simplified dynamical bicycle model presented in (1) is
compared with the fully nonlinear dynamic bicycle model,
for a constant vehicle speed of v = 1 m/s. The root-mean-
square error (RMSE) is used to measure the error between
the two models as follows

RMSEj =

√√√√M∑
i=0

(x̂j,i − xj,i)2

M+ 1
, (7)

where xj,i and x̂j,i represent any element of the state vector
x of the fully nonlinear and simplified dynamical bicycle
models, at time step i, in the simulation horizon M.

Table 2 presents the obtained RMSE and maximum
absolute error values. The Y state presents the highest
RMSE and absolute error of approximately 3.5 cm and 5
cm. Nevertheless, these values are still low and, therefore,
the difference between the simplified and fully nonlinear
models is negligible. For this reason, the simplified dy-
namical bicycle model in (1) is used in the NMPC imple-
mentation on the experimental vehicle.

States RMSE Max error
β 0.0035° 0.0052°
ϕ 0.0149° 0.0247°
ϕ̇ 0.0288 °/s 0.0503 °/s
X 0.0069 m 0.01 m
Y 0.0351 m 0.0478 m

Table 2: RMSE and maximum absolute state error values
of the simplified dynamical bicycle model.

2

3. Model Predicted Path Planning
The hierarchical approach is typically considered in au-
tonomous vehicles, which means that the path planning,
obstacle avoidance and path tracking problems are solved
separately [9]. Nevertheless, this thesis designs an NMPC
algorithm that combines those problems into a single NLP
problem.

3.1. NMPC Formulation
At time t, given the measurement of the current state
vector x̂t, the NLP solver computes the optimal control
sequence ut(·)∗ that solves the following NLP problem

min
xt(·),ut(·)

Φ(xN,t)+

N−1∑
k=0

L(xk,t,uk,t)+PFgoal,k,t

+ PFobs,k,t (8a)

s.t. x0,t − x̂t = 0 , (8b)

fdt(xk,t,uk,t)− xk+1,t = 0 , (8c)

|uk,t| − usat ≤ 0 , (8d)

|αf,k,t| − αf,sat ≤ 0 , (8e)

|αr,k,t| − αr,sat ≤ 0 , (8f)

where k = 0, ..., N − 1 and N is the prediction hori-
zon. Furthermore, at time t, the predicted state and input
trajectories are given by xt(·) = [x0,t ,x1,t , . . . ,xN,t] and
ut(·) = [u0,t,u1,t , . . . ,uN−1,t]. The term fdt(xk,t,uk,t)
denotes the nonlinear discrete-time system dynamics pre-
sented in Section 5.2.1. Equations (8e) and (8f) reflect
the preference for small slip angles on the vehicle’s perfor-
mance, where αf,sat and αr,sat are equal to 6°. Equation
(8d) corresponds to the steering angle saturation limit im-
posed by the steering actuator of the RC vehicle, whose
value is usat = 20°. Furthermore, the cost function terms
Φ and L are given by

Φ(xN,t) = x̃T
N,tP x̃N,t , (9)

L(xk,t,uk,t) = x̃T
k,tQx̃k,t + uT

k,tRuk,t , (10)

where x̃k,t represents the difference between the reference
xref,k,t and the predicted xk,t states.

At each time step t, the input uNMPC(t) = u∗0,t is ap-
plied to the system during the time interval [t; t+ δ] with
δ being the sampling time and u∗0,t the first term of the
optimal control input sequence. To achieve a real-time
NMPC implementation, each NMPC iteration needs to
be completed within the sampling time.

The reference state vector xref,k,t and the penalty func-
tion term PFgoal,k,t are computed by the global path gen-
erator in Section 3.1.1. On the contrary, PFobs,k,t is asso-
ciated with the local path generator of Section 3.1.2.

3.1.1. Global Path Planner
The global path planner comprises the procedures that
drive the RC vehicle towards the goal position, which in
this thesis corresponds to the computation of the reference
trajectory and the usage of the penalty function PFgoal.

First, the reference trajectory computation is performed
offline and consists of the shortest straight line connect-
ing the initial (X0,Y0) and final (Xf ,Yf) coordinate points.
Then, at each time step t, the reference trajectory xref(·)
is updated. Specifying the reference trajectory as a func-
tion of time t has no advantage since it would lead to
error accumulation, especially when new obstacles are de-
tected and the vehicle needs to deviate from them [22].
Therefore, at each time step, the reference trajectory is
composed by the set of coordinate points on the shortest
straight line with the same X or Y coordinate as the pre-
dicted X and Y states of the RC vehicle, depending on
which one is nearer the final (Xf ,Yf) position.

The penalty function term PFgoal,k,t behaves as an at-
tractive field that guides the RC vehicle towards the des-
tination point at every time step k within the look-ahead
horizon N . Without this term, the RC vehicle would,
most likely, excessively deviate from the obstacles and stop
planning its movement with respect to the goal position.
The potential-like function PFgoal,k,t is given by

PFgoal,k,t =
1

2
Kgoald

2
goal,k,t , (11)

where Kgoal corresponds to the weighting parameter and
dgoal,k,t is the distance, at time t, between the predicted
(Xk,t,Yk,t) and the goal coordinates (Xf , Yf).

3.1.2. Local Path Planner
This thesis implements a local path planner that uses re-
pulsion forces to drive the RC vehicle away from obstacles.
The local path planner has access to the most updated
LIDAR data available in order to react to changes in the
environment and allow the RC vehicle to drive in unknown
scenarios.

Weighted Distance Method

The weighted distance (WD) method uses the distance to
the nearest obstacle to construct the repulsive potential field
from the obstacles. Therefore, the term PFobs,k,t is given by

PFobs,k,t = Kobs
v

mini(dobs,k,t,i) + ε
, (12)

where Kobs represents the weighting parameter and ε a small
positive constant to avoid singularities when the distance to
the nearest obstacle mini(dobs,k,t,i) is null.

In this method, the vehicle’s dimension is indirectly consid-
ered, which is a positive characteristic. However, its actual
moving direction is not taken into account. For this reason,
equally distant obstacles represent the same level of threat to
the RC vehicle, regardless of its moving direction (Fig.1). This
fact provides a major drawback of distance-based methods.

Modified Parallax Method

The modified parallax (MP) method, as humans, perceives
the distance to an object by the angle between two different
lines of sight (parallax principle). However, the MP method
modifies the parallax principle in order to reflect the actual
moving direction of the vehicle as illustrated in Figure 2.

Suppose at time t, the set of obstacle points detected on the
forward and side sensing ranges are given by p and q. The coor-
dinates of the points belonging to the set p in the vehicle body

3

Figure 1: Penalty function of WD method. Connected
points of the same colour represent the same level of
threat. Points of lighter colour represent a higher level
of threat [21].

Figure 2: Modified parallax principle (cf.[21]).

frame throughout the prediction horizon N , (px,i,k,t,py,i,k,t),
are

px,i,k,t = (pX,i,t −Xk,t) cosϕk,t + (pY,i,t − Yk,t) sinϕk,t ,

py,i,k,t = (−pX,i,t +Xk,t) sinϕk,t + (pY,i,t − Yk,t) cosϕk,t ,

where i represents the i-th point on the set p and (Xk,t ,Yk,t)
are the predicted inertial coordinates of the RC vehicle, at
time t, with k = 0, . . . , N − 1. Furthermore, (pX,i,t , pY,i,t)
represents the inertial coordinates of the i-th obstacle in the
forward sensing range measured at time t. The coordinates of
the points belonging to the set q in the vehicle body frame,
(qx,i,t , qy,i,t), follow the same logic as the set p.

The expressions to calculate the parallax angles, θfl,i,k,t,
θfr,i,k,t, θrl,i,k,t and θrr,i,k,t, are

θfl,i,k,t =tan−1

(
px,i,k,t− L

2
W
2
−py,i,k,t

)
, θfr,i,k,t =tan−1

(
px,i,k,t− L

2
W
2

+py,i,k,t

)
,

θrl,i,k,t =tan−1

(
qx,i,k,t+ L

2
W
2
−qy,i,k,t

)
, θrr,i,k,t =tan−1

(
qx,i,k,t+ L

2
W
2

+qy,i,k,t

)
.

The moving direction of the four vertices of the vehicle are
denoted as βfl,k,t , βfr,k,t , βrl,k,t , βrr,k,t and are given by

βfl,k,t = tan−1

(
v sinβk,t + L

2
ϕ̇k,t

v cosβk,t − W
2
ϕ̇k,t

)
, (13)

βfr,k,t = tan−1

(
v sinβk,t + L

2
ϕ̇k,t

v cosβk,t + W
2
ϕ̇k,t

)
, (14)

βrl,k,t = tan−1

(
v sinβk,t − L

2
ϕ̇k,t

v cosβk,t − W
2
ϕ̇k,t

)
, (15)

βrr,k,t = tan−1

(
v sinβk,t − L

2
ϕ̇k,t

v cosβk,t + W
2
ϕ̇k,t

)
. (16)

The Algorithm 1 describes the steps to compute the front
and rear MP angles for every point in the sets p and q. Note
that np and nq correspond to the total number of points in
each set p and q.

Algorithm 1 Front and rear MP angles algorithm.

1: for i = 1, . . . , np do
2: if 0 < (θfl,i,k,t−βfl,k,t)+(θfr,i,k,t +βfr,k,t) < π then

3: θ̃f,i,k,t = π− [(θfl,i,k,t−βfl,k,t)+(θfr,i,k,t +βfr,k,t)]
4: else
5: θ̃f,i,k,t = 0
6: end if
7: end for
8: for i = 1, . . . , nq do
9: if 0 < (θrl,i,k,t−βrl,k,t)+(θrr,i,k,t+βrr,k,t) < π then

10: θ̃r,i,k,t = π−[(θrl,i,k,t−βrl,k,t)+(θrr,i,k,t+βrr,k,t)]
11: else
12: θ̃r,i,k,t = 0
13: end if
14: end for

Let the points of the obstacles with the largest front and rear
MP angles be denoted by pi,max and qi,max, then the potential-
like function PFobs,k,t at step k is given by

PFobs,k,t =

0 if no obstacles ,

Kobs exp

(
θ̃f,k,t
θcf (v)

)
if pi,max ,

Kobs exp

(
θ̃r,k,t
θcr(v)

)
if qi,max ,

Kobs exp

(
θ̃f,k,t
θcf (v)

+
θ̃r,k,t
θcr(v)

)
if pi,max and qi,max ,

(17)
where the front and rear MP angles, θ̃f,k,t and θ̃r,k,t are com-
puted for the respective pi,max and qi,max points. The terms

4

θcf(v) and θcr(v) correspond to the critical MP values that de-
pend on the vehicle velocity v. These values should decrease
as the speed increases and, therefore, they are defined as

θcf(v) =
Kcf

v
, θcr(v) =

Kcr

v
,

where Kcf and Kcr represent weighting parameters.
The MP method not only considers the vehicle dimensions

in an explicit manner as shown in (16) but also the moving
direction of the vehicle. For this reason, in the MP method,
obstacles at the same distance to the vehicle do not necessarily
represent the same level of threat, which is a clear advantage
over distance-based methods (Fig. 3).

Figure 3: Penalty function of MP method. Connected
points of the same colour represent the same level of threat
to the vehicle. Points of lighter colour represent a higher
level of threat [17].

3.2. Solution Methods for NLPs in NMPC
NMPC is based on the real-time optimization of an NLP prob-
lem which is still computationally challenging. In NMPC, sub-
optimal solutions that are computed fast enough are preferred
over precise solutions that require more computational effort
[19]. The NMPC problem with the gradient descent method
[20] as NLP solver can lead to a low enough computational load
for real-time control applications [22]. Therefore, this method
is used to solve the NLP problem in (8) and, in Section 4.3,
its performance is compared with the state-of-the-art IPOPT
solver.

3.2.1. Gradient Descent Method
The gradient descent method is an efficient NLP solver that
uses the indirect method of Lagrange multipliers to perform the
optimization process [20]. In this method, the cost function is
augmented with the equality and inequality constraints vectors
as follows

Faug(w,λ,µ) = Φ(x̃N,t)

N−1∑
k=0

+L(x̃k,t,uk,t) + λT
k+1G(xk,t,uk,t)

+ φ(xk,t,uk,t) + PFgoal,k,t + PFobs,k,t , (18)

where w corresponds to the vector of decision variables, i.e.,
w = [x0, ...,xN,u0, ...,uN−1], λk ∈ Rnx denotes the Lagrange
multiplier vector, and G is the vector of equality constraints
in (8b) and (8c). Similarly to the approach used to solve the
path planning problem, this thesis uses a penalty function φ
to integrate the inequality constraints in (8d)-(8f) into Faug.

After careful analysis of simulation results, the selected penalty
function φ consists of a logarithmic barrier function that is
given by

φ(w) =

nh∑
i=1

τ i φi(w) , φi(w) = − log(−Hi(w)) , (19)

where i ∈ {1, . . . , nh}, τ i ∈ R is the barrier parameter and
H ∈ Rnh corresponds to the vector of inequality constrains in
(8d)-(8f). The logarithmic barrier function adds a penalty that
tends to infinity as w approaches the inequality constrained
with equality. This method provides an alternative to the ex-
terior approaches especially when feasibility has to be strictly
fulfilled.

All things considered, a constraint optimization problem is
transformed into an unconstrained one. Consequently, the gra-
dient descent method minimizes, simultaneously, the objective
function and the infeasibility of the constraints. The gradient
descent numerical algorithm is described in [20].

4. Comparative Studies
This section presents two comparative studies: the first one
examines the performance of the two local path planners, WD
and MP, for a cluttered scenario. The second study compares
the gradient descent method and the IPOPT solver in terms
of computational efficiency and feasibility of solutions.

4.1. General Simulation Setup
The simulations were performed in Matlab 2019 [14] and
CasADI [3] on the desktop Intel(R) Core(TM) I5-5200U CPU
@ 2.20 GHz. The IPOPT software package used is included in
CasADI installations. The NMPC controller and gradient de-
scent method were first formulated using CasADI symbolic syn-
tax and Matlab programming language. The developed code
was converted into C-code using CasADI’s C-code generation
tool and, afterwards, compiled into a MEX function in order
to be executed from Matlab.

4.2. Local Path Planners Performance
The cluttered scenario is composed of fourteen 2m size squared
obstacles and two circular obstacles with 1m of radius. The dis-
placement between obstacles is 4 m in both X and Y directions.
In this study, the RC vehicle navigates at a constant speed v
of 1.5 m/s and the NMPC scheme uses N = 20 and δ = 0.1 s.

The WD method is not capable to avoid all obstacles in a
cluttered scenario. On the contrary, the MP performs success-
fully the obstacle avoidance task (Fig. 4). Furthermore, in
contrast to the MP, the NMPC with the WD method violates
the input constraints limits in t = 8.2 s and t = 14.5 s (Fig. 5).

The average NMPC computational times of the WD and
MP methods in the cluttered scenario are 0.035 s and 0.173 s.
Therefore, on average, both methods fulfill the time constraint
of δ = 0.1 s. However, the maximum run-times of the WD and
MP methods are 0.1087 s and 0.0291 s, meaning that the WD
occasionally violates the NMPC computational requirements.

In conclusion, the MP method outperformed the WD ap-
proach in terms of run-time efficiency and computation of
collision-free trajectories in the cluttered scenario.

4.3. NLP Solvers Performance
The scenario is composed of 9 blocks of 2 m x 2 m size separated
by 6.25 m and 5 m in X and Y directions. In this simulation,
the RC vehicle moves at a constant speed v of 1.75 m/s and
the NMPC scheme uses N = 40 and δ = 0.05 s.

5

6 8 10 12 14 16 18 20 22 24 26 28

5

10

15

20

25

X (m)

Y
(m

)

5 10 15 20 25 30

5

10

15

20

25

X (m)

Y
(m

)

Real trajectory Predicted trajectory

Reference trajectory Obstacle

Figure 4: Computed XY trajectories by WD (top) and
MP (down) methods in the cluttered scenario.

0 5 10 15 20 25

−20

0

20

t (s)

u
N
M

P
C
(d
eg
)

Weighted distance

Modified parallax

Control input limit

Figure 5: Computed control input sequence uNMPC(·) by
WD and MP methods in the cluttered scenario.

Both NLP solvers present identical collision-free trajecto-
ries (Fig.6) and kept the control input sequence within the
saturation limits (Fig.7). However, the control input solution

obtained by the gradient descent method is less oscillatory.

The average and maximum NMPC computational times
with the IPOPT are 44.6 ms and 72.2 ms, while for the gra-
dient search are 1.6 ms and 17.5 ms. Contrarily to the gradient
descent method, not all computations of the IPOPT method
were completed within the time constraint of δ = 50 ms. A
possible reason for this occurrence is that IPOPT is a complex
interior-point algorithm capable of solving general nonlinear
optimization problems, while the gradient descent method is
a simple algorithm that can be tuned for this specific NLP
problem, for example, by changing the step-size and barrier
parameter. Nevertheless, on average, the IPOPT satisfied the
computational requirements, which turned out to be enough to
compute a collision-free trajectory.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

X (m)

Y
(m

)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

X (m)

Y
(m

)

Real trajectory Predicted trajectory

Reference trajectory Obstacle

Figure 6: Computed XY trajectories by IPOPT (top) and
gradient descent method (down).

5. Implementation

This chapter presents the implementation steps of the purposed
NMPC scheme on the RC vehicle.

6

0 5 10 15 20

−20

0

20

t (s)

u
N
M

P
C
(d
eg
)

IPOPT

Gradient descent

Control input limit

Figure 7: Computed control input sequence uNMPC(·) by
IPOPT and gradient descent method.

5.1. Software Tools and Code Generation Proce-
dure

To rapidly develop and test the performance of the NMPC
framework and gradient descent NLP solver with the logarith-
mic barrier as penalty function, Matlab 2019 [14] and CasADI
[3] were used on the Intel(R) Core(TM) I5-5200U CPU @ 2.20
GHz desktop. Afterwards, the Matlab code was converted into
C-code using the CasADI’s C-code generation tool. Finally,
the generated C code was integrated into the Python software
package that controls the RC vehicle using the SWIG [2] soft-
ware tool.

5.2. Integration Methods in the NMPC context
NMPC relies on the model (1) to predict the future evolution
of a system. To solve this system of ODEs on a computa-
tional unit, first, it is necessary to discretize the continuous-
time equations using a numerical integration method. The goal
is to choose an adequate integration method with a suitable in-
tegration step size ∆t that provides reliable predictions of the
system’s evolution and allows the NMPC algorithm to meet
the computational constraints.

5.2.1. Integration Method Validation
Three numerical integration methods are tested for the step
sizes ∆t ∈ [0.01, 0.1] (s). Among them are the Euler method,
Fourth Order Runge-Kutta (RK4) method with one integration
step, M = 1, named RK4M=1, and a RK4 method provided by
CasADI that considers 25 intermediate steps, RK4M=25.

The advanced and variable step-size numerical integrator
CVodes [1] is used to evaluate the performance of the before
mentioned integration methods, whose accuracy is accessed by

di =
√
X2

cvodes,i + Y 2
cvodes,i , d̂?,i =

√
X2
?,i + Y 2

?,i , (20)

RMSE =

√√√√ N∑
i=0

(d̂?,i − di)2

N + 1
, (m) (21)

where Xcvodes,i and Ycvodes,i represent the X and Y states com-
puted by the CVodes integration method for the step i in the
simulation horizon N . The subscript ? corresponds to either
Euler, RK4M=1 or RK4M=25 methods. Furthermore, di and
d̂?,i denote, respectively, the distance to the origin of the refer-
ential computed at step i by CVodes and the Euler, RK4M=1,
and RK4M=25 methods.

In general, for high integration step sizes, both RK4 meth-
ods lead to a much better performance than the Euler method
(Fig.8). Moreover, from the observation of Table 3, one can
conclude that, with the RK4M=25 integration method, 25 in-
termediate steps were used without a considerable increase
in the computational time. Additionally, it can be verified
that the RK4M=25 method presents a low RMSE value, which
means that its XY state trajectory approximates accurately
the CVodes’ XY results. Thus, the RK4M=25 with ∆t = 0.1 s
is selected as the integration scheme in the experimental phase.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

∆t (ms)

R
M

S
E

(m
)

Euler

RK4M=1

RK4M=25

Figure 8: RMSE, in meters, of Euler, RK4M=1, and
RK4M=25 for ∆t ∈ [0.01, 0.1] (s).

Parameter CVodes RK4M=1 RK4M=25

Avg. run-time 8.2 ms 1.6 ms 1.9 ms
RMSE - 0.0168 m 0.0049 m

Table 3: Average computational time, in milliseconds, of
CVodes, RK4M=1, RK4M=25, and correspondent RMSE
values, in meters, for ∆t = 0.1 s.

5.3. Sampling Time and Computational Delay of
NMPC

The sampling time determines the resolution of the predictions
and how frequent control actions can be applied to the system
[4]. The integration step size ∆t and the sampling time δ are
related by the following inequality ∆t ≤ δ , which, according
to Section 5.2.1, leads to δ ≥ 0.1 s. Moreover, real systems are
affected by computational delays which provide a new lower-
bound to the sampling time δ. Thus, the sampling time δ value
of 0.2 s is used in the NMPC implementation, meaning that,
for each sampling time δ, the RK4M=25 performs δ/∆t = 2
integration steps.

To solve the computational delay issue on the RC vehicle,
this thesis implements the delay compensation by prediction.
This approach is often used in practical NMPC frameworks
with significant computational time [8]. The delay compensa-
tion by prediction consists of simulating the state at which the
system will be when the NLP problem is solved. This can be
performed using the NMPC system model and the open-loop
control inputs that will be applied to the system in the mean-
time [8]. In Figure 9 the delay compensation by prediction is
schematized for the implemented NMPC scheme with δ = 0.2 s
and ∆t = 0.1 s. The NMPC computations that start at time
t+ δ are supposed to finish at time t+ 2δ. For this reason, at
time t+ δ, the NMPC problem optimizes for the state that is δ

7

seconds ahead, i.e., t+2δ. The prediction of such state is done
using the RC vehicle model and the control input uNMPC(·)
obtained in the previous optimization period [t,t + δ]. This
process is repeated throughout the time.

Prediction Horizon

Computed in interval [t, t+ δ] Computed in interval [t, t+ 2δ]

Figure 9: Delay compensation by prediction for NMPC
with δ = 0.2 s and ∆t = 0.1 s.

6. Experimental Validation
The NMPC algorithm formulated in Chapter 3 is validated
using three different experiments: A, B, and C. The NMPC
problem is solved by the gradient descent method with the log-
arithmic barrier as penalty function. In order to perform obsta-
cle avoidance, the NMPC uses the modified parallax method.
Moreover, the selected integration method is the RK4M=25

with ∆t = 0.1 s and the NMPC sampling time is δ = 0.2 s.
Finally, the NMPC algorithm is based on the delay compen-
sation by prediction approach to solve the computational de-
lay issue. The driving scenario corresponds to the interior of
the institute’s building and the desired destination position is
(Xf ,Yf)=(30,35) m.

According to the comparative studies, the computation of
the reference trajectory xref as described in Section 3.1.1 is an
adequate approach, however, in the experimental phase that
is not verified. When the reference trajectory is considered,
the NMPC controller is difficult to tune and the RC vehicle
collides often with the walls of corridor. This is because a
straight line connecting the initial and goal positions is too far
off from the desired trajectory, especially from X = 5 m to
X = 15 m. For this reason, the matrices Q and P were set to
diag(0, 0, 0, 0, 0), which led to more freedom of movement and
successful experiments.

6.1. Experiment A
Experiment A tests the performance of the NMPC controller
for a low vehicle velocity, v = 0.6 m/s, and short prediction
horizon, N = 5, which naturally results in a short prediction
time, T = 1 s.

The RC vehicle with the purposed NMPC controller suc-
cessfully avoids the walls of the institute until the destina-
tion point (Fig. 10). The short prediction time T and the
low vehicle velocity v resulted in predicted XY trajectories
with 0.6 m of length. Consequently, the NMPC only detects
a potential collision on its horizon when the RC vehicle is al-
ready too close to the obstacles. For this reason, the vehicle
is forced to avoid the obstacles too aggressively, which can be
observed from (23, 16) [m] to (23, 18) [m]. Moreover, the RC
vehicle presents an oscillatory movement from (7.5, 6.3) [m] to
(12.2, 6.2) [m]. This is because the RC vehicle is strongly at-
tracted by the goal position and therefore tries to drive in its
direction. Then, the vehicle changes its direction of movement
because of the left lateral wall. Afterwards, the vehicle detects

the right lateral walls and tries to avoid it by steering to the
left. This process is repeated in time, which culminates in its
characteristic undulated movement. Comparing the real and
desired final positions, the obtained errors of the state variables
X and Y are relatively small, i.e., 4 cm and 8 cm, respectively.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

X (m)

Y
(m

)

Institute walls

Predicted trajectory

Initial position

Goal position

Real trajectory

Figure 10: Real and predicted XY trajectories of RC ve-
hicle in experiment A.

The purposed controller computes a control input sequence
within the saturation limits (Fig. 11). However, the control
input sequence given to the RC vehicle presents several oscilla-
tions in short periods of time, for instance, in the time interval
t ∈ [11, 18] (s). Finally, the average and maximum computa-
tional times of the NMPC algorithm are 0.1025 s and 0.1980 s.
Therefore, the computational requirements are satisfied in all
time steps since the NMPC iterations finish before the sam-
pling time δ = 0.2 s.

0 20 40 60 80 100 120

−20

0

20

t (s)

u
N
M

P
C
(d
eg
)

Control input

Control input limit

Figure 11: Control input uNMPC(·) in experiment A.

6.2. Experiment B
Experiment B tests the NMPC controller performance for a low
vehicle velocity, v = 0.6 m/s, and twice the prediction horizon
of experiment A, N = 10. This naturally results in a longer
prediction time T of = 2 s.

The purposed NMPC controller successfully avoids the walls
of the institute until the goal position (Fig. 12). Comparing
the real and desired final positions, the errors are 2.7 cm on the
X-axis and 4.5 cm on the Y -axis.

Moreover, the NMPC controller computes a control input
sequence within the saturation limits for all time steps (Fig.

8

13). The average and maximum computational times of the
NMPC algorithm are 0.1478 s and 0.2305 s, meaning that, oc-
casionally, the purposed NMPC controller does not satisfy the
computational requirement of δ = 0.2 s.

Comparing the results of experiments A and B, the exper-
iment B presents slightly less oscillations in the corridor from
(3.8, 5.1) m to (15.3, 7.5) m. Moreover, in experiment B, the
RC vehicle describes the curve from (15.3, 7.5) m to (17, 8) m
and avoids the front wall, from (25, 2.5) m to (25.3, 25.8) m,
more smoothly. Both experiments performed an aggressive
steering manoeuvre to successfully avoid the front wall from
(24.7, 16.5) m to (22.5, 22.4) m. Furthermore, experiments A
and B approximate reasonably the goal position. However, the
first experiment presents a final error that is 1.5 times higher
than in experiment B. As expected, by using a longer prediction
horizon N in experiment B than in experiment A, the compu-
tational time of the NMPC algorithm increased. On average,
the growth was 44.17 %.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

X (m)

Y
(m

)

Institute walls

Predicted trajectory

Initial position

Goal position

Real trajectory

Figure 12: Real and predicted XY trajectories of RC ve-
hicle in experiment B.

0 20 40 60 80 100 120

−20

0

20

t (s)

u
N
M

P
C
(d
eg
)

Control input

Control input limit

Figure 13: Control input uNMPC(·) in experiment B.

6.3. Experiment C
Experiment C tests the NMPC controller performance for a
higher vehicle velocity than in experiments A and B, v =
0.9 m/s. The NMPC prediction horizon N is equal to the one
used in experiment B, i.e., N = 10.

The RC vehicle with the purposed NMPC controller success-
fully avoids the walls of the institute until the destination point

(Fig. 14). In experiment C, the NMPC algorithm predicts XY
trajectories with 1.8 m of length. Therefore, the NMPC algo-
rithm detects a potential collision in its horizon when the RC
vehicle is still at a considerable safe distance from the obstacles.
For instance, from (22, 14) m to (22.5, 22.4) m, the RC vehicle
turns left at a bigger margin from the front wall than in ex-
periments A and B. Furthermore, in the experiment C, the RC
vehicle presents undulated movement in the corridors, similarly
to what was verified in the first two experiments. Comparing
the real and desired final positions, the errors are 4 cm on the
X-axis and 7 cm on the Y -axis.

The NMPC controller computes a control sequence that is
within the saturation limits for all time steps (Fig. 15). The
average and maximum computational times of the NMPC al-
gorithm are 0.1678 s and 0.2507 s. Thus, the computational
requirement of δ = 0.2 s was not fulfilled for all time steps.
Nevertheless, this didn’t represent a problem since, on aver-
age, the computational time is still far from the limit δ.

Comparing the results of experiments B and C, the last one
presents, in general, a bigger margin from the obstacles, due to
the larger length of the predicted XY states. Moreover, experi-
ments B and C present a soft real-time NMPC implementation
since the time requirements are not fulfilled in all times. As
the velocity increases, the optimization problem becomes more
computationally demanding for the NLP solvers. Therefore,
from experiments B to C, the computational time increased.
On average, it was verified a computation growth of 13.56 %.

The different NMPC setups present the same shortcomings
when driving the RC vehicle through the experimental sce-
nario, which are exiting the laboratory room in (3,5) m, os-
cillatory movement in the long horizontal corridor after the
laboratory room, agressive maneuver to avoid the large front
wall from (25, 2.5) m to (25.3, 25.8) m, and entering in the new
corridor at (22.5, 21) m, which is a similar problem as exiting
the laboratory room. It is believed that the online computa-
tion of a reference trajectory, instead of the offline approach
designed in Section 3.1.1, would solve or, at least, attenuate
the before mentioned problems.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

X (m)

Y
(m

)

Institute walls

Predicted trajectory

Initial position

Goal position

Real trajectory

Figure 14: Real and predicted XY trajectories of RC ve-
hicle in experiment C.

9

0 20 40 60 80

−20

0

20

t (s)

u
N
M

P
C
(d
eg
)

Control input

Control input limit

Figure 15: Control input uNMPC(·) in experiment C.

7. Conclusions
Based on the simulation results, the current thesis purposes an
NMPC algorithm that uses the MP as local path planner, the
gradient descent method as NLP solver, and the logarithmic
barrier as penalty function. Moreover, during the implemen-
tation of such controller on the RC vehicle, a significant delay
between the state information and the control input applied to
the system was verified. To solve this issue, the delay compen-
sation by prediction was implemented.

Experimental tests were performed on an RC vehicle to prove
the effectiveness of the designed NMPC controller. For a low
prediction horizon and vehicle velocity, the RC vehicle was able
to navigate through an unknown scenario without any collisions
with obstacles. As expected, the increase of the prediction hori-
zon and vehicle velocity led to a higher NMPC computational
time. However, the soft real-time NMPC implementations did
not worsen the RC vehicle performance as the time require-
ments were fulfilled on average. In conclusion, the successful
experiments show the utility of the formulated NMPC con-
troller in low-cost embedded systems and unknown scenarios.

Further work can be done to optimize the programming code
developed in the scope of this thesis. Furthermore, to obtain a
better performance of the NMPC controller in unknown scenar-
ios, it might be beneficial to create an algorithm that updates
the reference trajectory as soon as there is a complete change
in the scenario, e.g., when the RC vehicle enters a new room.

References
[1] Sundials. https://computing.llnl.gov/projects/

sundials/. Accessed: 2020-09-14.

[2] Swig. http://www.swig.org/. Accessed: 2020-08-26.

[3] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and
M. Diehl. CasADi – A software framework for nonlinear
optimization and optimal control. Mathematical Program-
ming Computation, In Press, 2018.

[4] V. Bachtiar, E. C. Kerrigan, W. H. Moase, and C. Manzie.
Smoothness properties of the mpc value function with re-
spect to sampling time and prediction horizon. In 2015
10th Asian Control Conference (ASCC), pages 1–6, 2015.

[5] R. Bishop. A survey of intelligent vehicle applications
worldwide. In Proceedings of the IEEE Intelligent Vehicles
Symposium 2000 (Cat. No.00TH8511), pages 25–30, 2000.

[6] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and
D. Hrovat. Mpc-based approach to active steering for au-
tonomous vehicle systems. International Journal of Vehi-
cle Autonomous Systems, 3:265–291, 01 2005.

[7] C. Burth. Modelling and identification of a vehicle dy-
namics model for an rc vehicle, 2018.

[8] M. Diehl and S. Gros. Numerical Optimization of Dy-
namic Systems. 02 2016.

[9] C. Huang, B. Li, and M. Kishida. Model predictive ap-
proach to integrated path planning and tracking for au-
tonomous vehicles. In 2019 IEEE Intelligent Transporta-
tion Systems Conference (ITSC), pages 1448–1453. IEEE,
2019.

[10] A. Huber and M. Gerdts. A dynamic programming
mpc approach for automatic driving along tracks and
its realization with online steering controllers. IFAC-
PapersOnLine, 50(1):8686–8691, 2017.

[11] J. H. Lee. Model predictive control: Review of the three
decades of development. International Journal of Control,
Automation and Systems, 9(3):415, 2011.

[12] A. Liniger, A. Domahidi, and M. Morari. Optimization-
based autonomous racing of 1: 43 scale rc cars. Optimal
Control Applications and Methods, 36(5):628–647, 2015.

[13] T. Luettel, M. Himmelsbach, and H. Wuensche. Au-
tonomous ground vehicles—concepts and a path to the
future. Proceedings of the IEEE, 100(Special Centennial
Issue):1831–1839, 2012.

[14] MATLAB. 9.7.0.1190202 (R2019b). The MathWorks Inc.,
Natick, Massachusetts, 2019.

[15] M. K. Nasir, R. Md Noor, M. Kalam, and B. Masum. Re-
duction of fuel consumption and exhaust pollutant using
intelligent transport systems. The Scientific World Jour-
nal, 2014, 2014.

[16] H. B. Pacejka. Modelling of tyre force and moment genera-
tion. In B. Jacobson and J. J. Kalker, editors, Rolling Con-
tact Phenomena, pages 277–327, Vienna, 2000. Springer
Vienna.

[17] J. Park, D. Kim, Y. Yoon, H. Kim, and K. Yi. Obstacle
avoidance of autonomous vehicles based on model predic-
tive control. Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering,
223(12):1499–1516, 2009.

[18] R. Quirynen, K. Berntorp, and S. Di Cairano. Embed-
ded optimization algorithms for steering in autonomous
vehicles based on nonlinear model predictive control. In
2018 Annual American Control Conference (ACC), pages
3251–3256, 2018.

[19] N. Saraf, M. Zanon, and A. Bemporad. A fast nmpc ap-
proach based on bounded-variable nonlinear least squares.
IFAC-PapersOnLine, 51(20):337 – 342, 2018. 6th IFAC
Conference on Nonlinear Model Predictive Control NMPC
2018.

[20] G. J. Sutton and R. R. Bitmead. Performance and com-
putational implementation of nonlinear model predictive
control on a submarine. In Nonlinear Model Predictive
Control, pages 461–472. Springer, 2000.

[21] Y. Yoon. Obstacle avoidance for wheeled robots in un-
known environments using model predictive control. pages
6792–6797, 07 2008.

[22] Y. Yoon, J. Shin, H. J. Kim, Y. Park, and S. Sastry.
Model-predictive active steering and obstacle avoidance
for autonomous ground vehicles. Control Engineering
Practice, 17(7):741 – 750, 2009.

10

