
Missing Data Imputation for Industrial Big Data

Pedro Allen Revez
pedroallen@ist.utl.pt

Instituto Superior Técnico, Lisboa, Portugal

September 2020

Abstract

Missing Data is a problem that is felt by all Machine Learning practitioners. Ranging from simple
statistical solutions, to complex Artificial Intelligence approaches, research and academia has mainly
shown that there is no correct solution when solving this problem. It is context dependent - on the type of
data, type of problem, and even domain knowledge. Missing Data is still an open problem.

This dissertation proposes a scalable, lightweight Autoencoder model for solving Missing Data in In-
dustrial Big Data. By combining modern Deep Learning approaches, and historically proven methods to
handle Time-Series data - Fourier Transformations - the proposed model is a synergistic approach for
Industrial Problems. We provide a generic framework of evaluation for Imputation methods, tailored for
Time-Series data.

The results on Wind-Turbine and Household Electrical Consumption data, show the ability of the
proposed model to handle Missing Data in different data conditions, while providing structured and
expressive representations for Time-Series data.
Keywords: Deep Learning, Industrial Big Data, Fourier Transformations, Missing Data

1. Introduction
An A.I. based company is heavily dependent on
the data it is using for producing value for any cus-
tomer. Therefore, Missing Imputation is a problem
that should not be overlooked, in order to ensure
the best quality data is provided for building better
Intelligence. Often, modern Deep Learning (DL)
and Machine Learning (ML) methods are not im-
pervious to incomplete data, and requires a set of
complete data in order to be able to function as in-
tended.

Industrial Sensors are known to be prone to fail-
ures. The origin and root of Missing Data is context
dependent, on the type of problem, type of data,
or other external factors. As the state-of-the-art
moves towards ML and DL methods, we focus our
research to solve the Missing Data problem, us-
ing DL methods. Solving Missing Data is an open
problem, and the main motivation of this disserta-
tion is to find a proper solution applied to Industrial
Processes.

We propose an imputation method for Multi-
Variate Time-Series that is scalable and efficient
for large Industrial applications. Below are outlined
the main contributions of this thesis.

1. Generic Imputation Evaluation Framework for
Time-Series, that takes into account both
Missing Rate and data missing in a sequence

2. Missing Data Imputation for Multi-Variate
Time-Series

3. A new class of Autoencoder model based on
Short Time Fourier Transformations

4. Application in Industrial Big Data

2. Background
2.1. Missing Data
During the collection procedure of data, errors
might occur. Some observations in the data will be
missing - Missing Data. Moreover, Missing Data
can originate under three distinct mechanisms.

2.1.1 Not a Number - NaN

In 1985 the IEEE754 standard introduced the use
of the Not A Number (NaN) data type [1]. It is
a data type that can be interpreted as undefined
or unrepresentable. Initially introduced to handle
floating-point arithmetic, it was also adopted to rep-
resent Missing Data in other data types, i.e. text.

Operating any value with a NaN will result in a
NaN value. The NaN value propagates it’s undef-
inition onto other values. The implications of this
behaviour in the arithmetic means that any statisti-
cal model or Machine Learning method that oper-
ated numeric values and encouters a NaN value,
all the following computations that depend on this
value will be NaN as well.

1

2.1.2 Missing Completely at Random - MCAR

When missing data occurs due to circumstances
that are external or unrelated to any of the past
observed or unobserved data, it is said that the
data is Missing Completely at Random [12].

2.1.3 Missing at Random - MAR

When Missing Data occurs because of past ob-
served behavior, it is a Missing at Random [12].
These occur when the cause is unrelated to the
value itself, but may be related to observed values
of other variables.

2.1.4 Missing Not at Random - MNAR

When data is missing due to it’s value, it is Miss-
ing Not at Random. [12], meaning that a value
is missing given that the past data showed a be-
haviour that led to a missing value, or a behaviour
that made it impossible to register any further val-
ues.

2.2. Autoencoders
In 1986 Rumelhart et al. [6] proposed the Autoen-
coder (AE) architecture. It is composed of an En-
coder model and a Decoder model. The objective
is to learn a decoding function gΘ that is able to
map latent-space representations z ∈ Z to the re-
constructed input x′ ∈ X ′. The representation z is
obtained through an encoding function fΦ.

Usually, latent-space z has lower-dimensionality
than the input-space x. The network will be forced
learn an efficient compressed representation,
that can capture most structure. This is highly sim-
ilar to PCA, as described by Hinton et. al [9].

2.3. Denoising Autoencoders
Since AE are trying to model an identity function,
there is great risk of overfitting. Denoising Au-
toencoders (DAE) by Bengio et. al [18] are exactly
what the name describes, it cleans noisy inputs.

By introducing a stochastic corrupting function
C that will partially corrupt the input, it acts as a
regularization agent that improves the robustness
of the model, and avoids overfitting by deviating
from the identity function. The corruption function
x̃i = CD(x̃i|xi) is applied over all the inputs, the
corruption is drawn from distribution D, usually a
Gaussian Distribution, with intensity σ.

The training procedure barely differs from a clas-
sic AE. The only difference is that the model opti-
mizes the reconstruction of the original input, when
it is given a corrupt input. Hence, the loss function
of a DAE is:

LDAE(θ, φ) =
1

n

n∑
i=1

(xi − gθ(fφ(x̃i)))
2 (1)

2.4. Fourier Transformations
The Fourier Transforms (FT) is a transformation on
the time-domain, into a spectral or frequency do-
main. The objective of a FT, is to decompose
a signal into a linear combination of periodic
waveforms (frequency constituents), generally si-
nusoidal waves[15].

2.4.1 Discrete Fourier Transform

Unfortunately in the realm of computers, there is
no continuous data. We are working with dis-
crete time steps n. The Discrete Fourier Trans-
form (DFT) is then defined by the discrete imple-
mentation of a FT [15]:

X[k] =

N−1∑
n=0

x[n]e−j
2π
N nk, k = 0, 1, . . . N − 1 (2)

The result of a DFT is a complex-valued num-
ber [19]. We can obtain a real-valued DFT, by us-
ing Euler’s identity. For a N point signal, real and
imaginary terms are projected into sine and co-
sine components. We get two resulting arrays of
size N

2 + 1, which can be synthesized to [15]:

X[k] =

N/2∑
n=0

Xre[n] cos(
2πkn

N
)−Xim[n] sin(

2πkn

N
)

(3)

2.4.2 Inverse Discrete Fourier Transform

The original signal can be recovered from the fre-
quency components, using the Inverse Discrete
Fourier Transform (IDFT):

x[n] =
1

N

N−1∑
n=0

X[k]ej
2π
N nk, n = 0, 1, . . . N − 1 (4)

2.4.3 Windowing Function

In spectral analysis, it is customary to analyze just
a short segment of the signal. Windowing functions
are zero-valued except for the chosen interval of
length N , usually symmetrical in the middle, where
the maximum of the function is. Then the window
tapers away from the center to the edges of the
interval. A windowing function is then to be multi-
plied by the signal, as to obtain a segment of that
signal, non-zero in the chosen interval. The Ham-
ming window is one of such functions [15] and is
defined by:

w(t) = 0.54− 0.46cos(
2πt

T
), 0 ≤ t ≤ T (5)

2

2.4.4 Short Time Fourier Transform

A Short Time Fourier Transform (STFT) is a DFT
applied to a finite partition of the whole signal. The
objective of a STFT is to observe the changes of
the frequency domain over time. In order to obtain
smooth transitions between the frequency domain
of contiguous segments, the data is partitioned into
overlapping segments, that are extracted every
R steps (hop size)[?]. The STFT, approximates the
true Fourier Transform [?], and as defined by Alen
et. al [?] is:

Xm[ω] =

∞∑
n=−∞

x[n]w(n−mR)e−jωn (6)

where w is a windowing function of length M , on
a signal partition centered in time mR.

2.4.5 Overlap-Add

The Hamming Window is one of the most popular
windowing functions, due to having the Constant
OverLap-Add (COLA) property. A window w(n)
is said to be COLA at hop-size R,w ∈ COLA(R)
i.f.f:

∞∑
m=−∞

w(n−mR) = 1,∀n ∈ Z (7)

If a windowing function has COLA property at
hop-size R, then the sum of successive DFTs
over time, will equal the DFT of the whole signal
X[ω] [15]. From equation 7, the sum of the DFTs
of extracted partitions of length M is:

∞∑
m=−∞

Xm[ω] =

∞∑
m=−∞

∞∑
n=−∞

x[n]w(n−mR)e−jωn =

(8)

=

∞∑
m=−∞

x[n]e−jωn
∞∑

n=−∞
w(n−mR) = (9)

If the windowing function w(n) ∈ COLA(R)
then, the right-hand sum will be 1, by definition:

=

∞∑
m=−∞

x[n]e−jωn = DFTω(x) = X(ω) (10)

The Hamming Window is COLA(M/2) which
means that windows are to be extracted with a 50%
overlap, in order to obtain the original signal from
the sum of contiguous segments [15].

2.5. F-Principle
Deep Neural Networks (DNN) are often called
”black-box” models - the internal workings are not
fully known. Yanyang et al. explored DNN gen-
eralization capabilities in terms of the frequency-
space - the F-Principle. The authors empirically

found that for a general class of functions domi-
nated by low-frequencies, a DNN would first gen-
eralize low-frequency components, and then slowly
learn high-frequency components [13].

According to the principle, for a class of data
dominated by low frequency components, the
model’s optimization can be stopped, as soon as
it reaches a plateau. This avoids overfitting high-
frequency components [21]. Moreover, if the data
is not low-frequency component dominated, Early
Stopping [4] is used for better generalization, not
fitting noisy components.

3. Proposed Model
3.1. FFTron Autoencoder
The model receives as an input a window - a se-
quence of m points of a Multi-Variate Time-Series
signal xi,m = (xi,1, xi,2, ·, xi,M). When training, a
Gaussian corruption function is passed over the in-
puts. A Hamming windowing function is applied on
the input window. The result of a DFT will only ap-
proximate the true FT. This leads to a phenomena
called spectral leakage where harmonics of itself
are leaked, because the data is a finite segment.

By tapering the window with a Hamming win-
dowing function, we can attenuate the effect of
spectral leakage. The sequence length of the win-
dow is a customizable hyper-parameter of the
model, where one is trading frequency-domain res-
olution for time-domain resolution.

The Encoder applies DFT onto the windowed in-
put data, and is then linearly mapped onto latent-
space dimensions.

Figure 1: A diagram of the overall architecture of a FFTron Au-
toencoder.

The latent-space representation z should be
vector composed of real and imaginary compo-
nents z = [~Re(X), ~Im(X)]N , due to the FT being a
complex-valued transformation. However, Yao et.al
[20] experimented with complex-valued Recurrent
Neural Networks in order to handle FT computa-
tions, and observed that by concatenating two
real-valued vectors of real and imaginary compo-
nents the task could still be solved.

The Decoder is the inverse operation of the En-
coder. It is composed of a linear mapping back into
the original dimensions, and then a IDFT is applied
to obtain the decoded signal in the time-domain.

The FFTron Autoencoder outputs a prediction
that is windowed (tapered at the edges). Given

3

that Hamming window is COLA(M2), the sum
of overlapping segments (by 50%), recovers the
original signal (Eq. 10). With the exception of the
beginning and the end of the prediction, which will
still be windowed due to not having an overlapping
segment. These are manually inverted. Therefore,
instead of outputting a batch of windows, the model
produces one singular sequence.

A variation of the MSE optimization objective is
used, by optimizing w.r.t. to the windowed version
of the target. The output of the model is a win-
dowed signal, which is used for overlapping pre-
dictions:

L(θ, φ) =
1

n

n∑
i=1

(wi · xi − gθ(fφ(x̃i)))
2 (11)

3.2. Imputation
Before using the model to impute, the data is re-
quired to be zero initialized. The proposed model
will encode the input, and then decode the en-
coded input, to produce a reconstruction of the
original signal. The original Missing Data will be
replaced with the reconstructed signal.

Algorithm 1: Generalized Autoencoder Im-
putation Algorithm
Result: Ω
Γ←− Read(ℵ)
Mid ←− GetMask(Γ)
Γ̂←− Initialize(Γ)
Γ̂←− Decode(Encode(Γ̂))
Ω←− Replace(Γ, Γ̂,Mid)

4. Experimental Setup
4.1. Data
The Wind-Turbines dataset comprises 8 sensor
readings. Examples of a wind-turbine are wind
speed measurements, rotations per minute on a
mechanical piece, etc. All the measurements used
in the dataset particular focus on a specific compo-
nent inside the Wind-Turbine.

The second dataset is about individual house
electrical consumption, provided by UCI Ma-
chine Learning, a popular repository of open-data
[5]. The data contains minutely measurements
of electrical power consumption, in an individual
household.

All the datasets underwent the same pre-
processing procedure. All the data was standard-
ized, to diminish the effect of different scales that
might bias the proposed algorithm. The datasets
were split 80/20% into a train and test set.

4.2. Testing Framework
A Missing Regime is defined by two values: Miss-
ing Rate (how much data is missing) and a Missing
Sequence (how many data points in a sequence

are missing). The test-matrix comprises 100 differ-
ent Missing Regimes. These regimes are the result
of the combination of a range of Missing Rate from
10% to 60%, and Missing Sequences from 1 point
to 100 points. Each experiment will be ran on a set
of 20000 data points drawn from the test-set. Ex-
periments across models are compared with one
another, averaged across Missing Rate or Missing
Sequence.

4.3. Evaluation Metrics
4.3.1 Mean Absolute Error

MAE(x̂, x) =
1

N

N∑
i=0

|x̂i − xi| (12)

The Mean Absolute Error metric evaluates the
residual error in absolute quantities, and is the
magnitude of the error of a prediction, on average.
It is a metric that is robust to outliers, given their
expression on average [2].

4.4. Mean Squared Error

MSE(x̂, x) =
1

N

N∑
i=0

(x̂i − xi)2 (13)

The Mean Squared Error metric measures the
squared error. In contrast to MAE, outlier residu-
als will have more expression [2].

4.5. Root Mean Squared Error

RMSE(x̂, x) =

√√√√ 1

N

N∑
i=0

|x̂i − xi| (14)

The Root Mean Square Error metric has the
same shape as the MSE, but it is square rooted.
This has the advantage of the metric being in the
same units as the data, and therefore more inter-
pretable metric [2].

4.6. R-Squared

R2(x̂, x) = 1−
∑N
i=0(x̂i − xi)2∑N
i=0(x̄i − xi)2

(15)

The coefficient of determination - R-squared
(R2) metric - is useful for discerning whether a
good performance is biased by being close to
mean values. High values of R2 means the the
model variance is similar to the variance in the data
[2]. If the metric value is low the prediction variance
correlates less with the data variance [2].

4.7. Inducing Missing Data
The only regime to be evaluated will be MCAR [12].
Assuming that the data is missing completely at
random, relaxes the problem of generating miss-
ing data, since there is no structure underlying the
appearance of a Missing Point. A sample is drawn

4

from a Uniform Distribution U [12], to determine
if we should turn a data point into a Missing Point.

Algorithm 2: Missing Data Induction Algo-
rithm
Result: Mid

MR←− MR
MS

uN ←− U .sample(N)
Mid ←− (uN > MR)
if MS < 1 then
Mid ←− ExtendSequences(Mid)

end

The Missing Rate is factored in function of
Missing Sequences, so that the total number
of Missing Points, approximates the desired rate.
Masks with Missing Sequences will be extended,
so that the sequential points after the initially se-
lected point, will also be Missing Points.

4.8. Baselines
1. Mean Imputation - All the data underwent

standard scaling, meaning that every variable
has zero mean and unit variance. The greedi-
est approach to imputation is to use the mean
value.

2. Forward Filling - Consists on filling missing
data with the last observed value.

3. Iterative PCA - An IPCA algorithm [10] was
implemented with the help of the main PCA
algorithm being developed by Scikit-Learn [3].
The algorithm is initialized with zero value, and
to k = 3 components. The tolerance for con-
vergence and stopping condition, was set to
ε = 1e− 5.

4. K-Nearest Neighbors - Non-parametric and
robust. It has been introduced in the Scikit-
Learn package [3] [17], in version 0.23. The
neighbourhood was defined to have k = 7
neighbors.

5. Denoising Autoencoder - As shown in [8],
DAE have a good overall performance
across a variety of Imputation tasks.

6. Variational Autoencoder - Deep Generative
models have been shown to improve [14]
missing data imputation and is a new outlook
on the old problem that is Missing Data Impu-
tation.

4.9. Training Regime
The model was optimized using a variation of MSE,
introduced in the proposal section. The Adam op-
timizer proposed by Kingma et. al [11] is used,
with a learning rate used across all experiments of
1e−3, and a weight decay factor of 1e−5.

The weights are initialized using Xavier Uni-
form Initialization introduced by Xavier and Ben-
gio [7], after showing that Neural Networks might
have problems converging from random initializa-
tion. The weight is drawn from a Normal distri-
bution with zero mean, and with

√
6√

#inputs+#outputs

variance, where # is the cardinality of a set.
The models were trained for a maximum of 200

epochs, with Early Stopping. It is shown that con-
tinuing to train a model after it reaches a conver-
gence plateau exacerbates overfitting. [4]. Addi-
tionally, we back the Early Stopping condition for
the FFTron model, following the works of Yanyang
et al., and the F-Principle [13] [21].

The model was trained using batches of size 64.
The windows had a empirically determined length
of 70 time-steps. For reproduce-ability purposes
the random seed generator was set to 7. The
model is optimized using complete data, being one
of the drawbacks of the proposed solution.

Hinton et al. introduced the Dropout technique,
as means to reduce overfitting [16]. The Dropout
in the input layer, synergizes with the missing data
algorithm zero initialization. Data is being dropped
at random, and it is shown to improve model ro-
bustness and stability, allowing better imputation
estimates.

5. Results & discussion
5.1. Imputation Results
In general, every Imputation Method will incur
more error as the Rate increases. Interest-
ingly, the inverse tendency is observed when an-
alyzing results in function of Missing Sequence.
With exception of Forward Fill, and KNN for the
Household-Consumption dataset, all other exper-
imented methods showcase a better performance
when the Missing Sequences are larger.

The KNN algorithm shows dominating perfor-
mance across all metrics, including a solid perfor-
mance in terms of R2 - meaning that the model fit
prediction is still good when distant from the mean.

Even though PCA and KNN performs better
for the Wind-Turbine dataset, in the Household-
Consumption dataset were the worst performant
methods, corroborating the fact that there is no
clear answer as to which imputation method one
should use. We verify that the performance of
both of these algorithms is tied to the correlation
of the dataset. If the data is correlated these
algorithms will perform well. Wind-Turbines are
naturally more correlated than human household
electrical-consumption.

Recurrent models like the Seq2Seq (S2S) and
LSTM-AE were the first research avenue. These
models performance for the imputation task is on
average worse than simple statistical imputation.
The huge gap of performance between the Recur-

5

Table 1: Missing Data Imputation results for the Wind-Turbine and Household-Consumption respectively.

Method MSE MAE RMSE R2

Mean 1.64 1.44 3.18 4.99
FFill 1.31 1.0 2.68 5.5
PCA 0.429 0.527 1.29 6.51
KNN 0.299 0.346 1.0 6.69
LAE 1.06 1.1 2.49 5.69
DAE 1.09 1.12 2.53 5.65
VAE 1.59 0.855 1.97 6.14
S2S 1.82 1.5 3.31 4.8

LSTM-AE 1.76 1.49 3.26 4.86
FFTron 0.645 0.805 1.87 6.22

Method MSE MAE RMSE R2

Mean 1.88 1.15 3.24 4.19
FFill 1.82 0.792 3.04 4.29
PCA 3.01 1.56 3.93 3.13
KNN 2.38 1.08 3.5 3.83
LAE 1.55 0.999 2.89 4.53
DAE 1.53 0.997 2.87 4.56
VAE 1.59 1.03 2.94 4.49
S2S 2.01 1.27 2.87 3.86

LSTM-AE 2.07 1.27 2.93 3.79
FFTron 1.55 0.988 2.9 4.54

rent Models and a KNN-Impute approach, led this
research avenue to a standstill, given that KNN
already performs pretty well for the case of the
Wind-Turbine dataset (sponsored data). The KNN
is costly, and as so time and resources are critical,
the Iterative PCA approach achieved very compet-
itive results for an industrial grade dataset.

Linear Autoencoders (LAE, DAE, VAE) achieved
better results on average than the Recurrent Au-
toencoders (LSTM-AE, S2S) and than simpler im-
putation methods. The Linear Autoencoders all
have very similar R2 metric values in function of
Missing Rate, meaning that they perform well when
distant from the mean. Though, linear models can’t
exploit temporal relationships.

Following the better performance of linear mod-
els, the FFTron was developed - both temporal
and linear. The FFTron model managed a better
performance than the Linear Autoencoders in this
dataset. Even though the method can’t beat the
KNN imputation (as well as PCA), it managed a
performance score in between the KNN approach
and Linear Autoencoder approach.

The FFTron, a more principled approach for han-
dling Time-series data, had a performance similar
to other linear methods. Furthermore, this model
is not dependent on dataset correlation. We con-
sider, that overall, the FFTron is a better approach
than the baselines.

Figure 2: FFTron prediction with heavy latent-space compres-
sion - 3 latent variables.

5.2. Latent-Space Analysis

Figure 3: Applying a IDFT on a latent-variable, we get a latent-
time signal.

The FFTron latent-space is the heart of the
FFTron generalization capabilities. As argued in
the motivation of this model architecture, by the F-
Principle, the model generalization capabilities lie
in the dominating low-frequencies.

Additionally, when the latent-space variables
(in frequency) are inverted into the time-domain,
the signal reveals harmonic structure. This phe-
nomenon occurs if the latent-space is minimally
compressed - meaning that the model’s latent-
space dimension should be at least one dimension
smaller.

Figure 4: The latent-space spectrum, with 3 latent variables.

The main differences between frequency com-
ponents of a compressed latent-space and a non-
compressed latent-space is the distribution of
the components, in frequency-space. When the
latent-space is compressed, instead of being low-
frequency component dominated, the components
are non-overlapping on their peaks, and well dis-

6

Table 2: Comparison between FFTron model and LSTM-AE model for latent-spaces with 3 dimensions.

Model FFTron LSTM-AE KNN PCA

Time/Epoch 0.93 5.48 - -
Epochs 37 138 - -

Test Error (Mae) 0.24 0.35 - -
Parameters 52 268 - -
Inference (s) 0.003 0.03 - -
Imputation (s) 0.13 0.54 1.99 0.84

tributed through the spectrum.
We also observe that the FFTron doesn’t neces-

sarily separate singular frequency components into
different latent-variables. We can observe in Fig.
4 that the first latent-space variable (in blue) has
two frequency components - a low-frequency and
a high-frequency component. While the second
latent-space variable (in orange), doesn’t seem to
have much expressiveness, when compared to the
other variables.

Since each of the latent-space variables is a fre-
quency spectrum, we can use a Spectrogram to
visualize the evolution of the latent-space variables
over the test-set. Fig 5 reveals the spectrogram
for one latent-variable. Although only empirically
ascertained, we observe that the spectrogram is
dominated by specific frequencies. The number
of dominating frequencies in the spectrogram will
equal the number of dimensions in the input-space.
This might reveal that the latent-space is in fact
storing information on each feature.

Figure 5: The latent-space spectrum, with 3 latent variables.

5.3. Imputation Method Comparison
The methods are compared using the Household-
Consumption dataset. The models were trained
using a CPU, in order to assess the usability in low-
end hardware. We additionally compare algorithm
times for the imputation of 20000 data points.

We observe that the FFTron can get a bet-
ter performance than Recurrent Models. The
FFTron model can converge faster than a Recur-
rent Model, due to two reasons: 1) the model has 5
times less parameters to optimize, than the struc-
tural equivalent with Recurrent Networks; 2) the
model is linear, which allows faster convergence
than non-linear models, like Recurrent Networks.

The time taken per epoch also reveals this 1:5
ratio. It takes on average 5 times less to train an

FFTron than a Recurrent Model. Inference time is
also a huge computational win for the FFTron tak-
ing 10 times less to infer on a batch of size 4.
This means that the FFTron will be on average, a
faster than a Recurrent Model to do an imputation.
We can observe that the FFTron took 4 times less
time to impute a dataset of 20000 points. For
comparison, the highly-performant industry grade
KNN imputation method, takes on average 2 sec-
onds to process 20000 data points and 7 features.
We remind the reader that the dimensions of this
test dataset does not represent an Industry-Grade
dataset, that can easily reach 1 million data points
with more than 50 features.

6. Conclusions
We consider that, for the datasets evaluated, the
FFTron is the best performant overall in the impu-
tation task.

The FFTron is a lightweight model. The train-
ing procedure is more swift and cheaper taking
25 times less time to converge than the Recur-
rent Network version. The model can output long
predictions with low computational cost, with
less memory and runtime - while being backed by
more than a century of research into Fourier Trans-
formations.

Moreover, the model offers good latent-space
capabilities. We found that the latent-space fre-
quency representations of the FFTron model build
a spectrum of dominating frequencies. It was found
that by compressing the latent-space the model
was forced to forego some information, and started
populating other frequency bands, besides the
low frequencies. The spectrogram of the latent-
space shows a number of dominating frequen-
cies throughout time, that match the number of in-
put dimensions - irregardless of the latent-space
dimensions.

The proposed model achieves good results in
both. It is not the best candidate, but by a very
small margin in all metrics. The error margin
comes as a trade-off for a still largely unexplored
type of latent-space.

We propose the following routes of research as
future work. For the imputation procedure using
the FFTron:

7

1. Optimization Procedure - The current model
still requires to be trained on complete data,
which is not always a possibility. Furthermore,
the algorithm has to be initialized with zero val-
ues, which can introduce artifacts, that pollute
the imputation.

2. Frequency Space Imputation - Due to the
fact that the FFTron models are based on
Fourier Transformations, means the Missing
Data problem can be handled using tradi-
tional spectral analysis. Examples include
algorithms in the area of Least Squares Spec-
tral Analysis - interpolation in frequency-space
can be done with the Lomb-Scargle algorithm.

3. Increased Sequential Performance when
Resampled - The phenomenon of increased
performance with longer Missing Sequences,
when the data is resampled, still remains a
mystery and was not looked into.

Questions still unanswered on the FFTron latent-
space:

1. Spectrogram Phenomenon - Why does the
latent-space (log) spectrogram showcase a
number of dominating frequencies equal in di-
mension to the input space? Additionally, this
phenomenon is not fact, and needs to be veri-
fied with more data;

2. Latent-Space Embeddings - The richness of
the found latent-space representations is left
unexplored. We recommend exploring if sim-
ilar representations in latent-space translate
into similar input windows. If this is the case,
the imputation method can be extended by us-
ing similar signals from the training set to im-
pute Missing Values.

3. Harmonic Distribution - Although not men-
tioned in the results, we suspect that when the
latent-space variables contain only one fre-
quency component, it shows a similar shape
of a Harmonic Distribution. It is recommended
to look into Probabilistic Programming.

References
[1] Ieee standard for binary floating-point arith-

metic. ANSI/IEEE Std 754-1985, pages 1–20,
1985.

[2] N. Balakrishnan, T. Colton, B. Everitt,
W. Piegorsch, F. Ruggeri, and J. L. Teugels,
editors. Wiley StatsRef: Statistics Reference
Online. Wiley, Apr. 2014.

[3] L. Buitinck, G. Louppe, M. Blondel, F. Pe-
dregosa, A. Mueller, O. Grisel, V. Nicu-
lae, P. Prettenhofer, A. Gramfort, J. Grobler,

R. Layton, J. VanderPlas, A. Joly, B. Holt, and
G. Varoquaux. API design for machine learn-
ing software: experiences from the scikit-
learn project. In ECML PKDD Workshop: Lan-
guages for Data Mining and Machine Learn-
ing, pages 108–122, 2013.

[4] R. Caruana, S. Lawrence, and C. Giles. Over-
fitting in neural nets: Backpropagation, conju-
gate gradient, and early stopping. volume 13,
pages 402–408, 01 2000.

[5] D. Dua and C. Graff. UCI machine learning
repository, 2017.

[6] D. E. Rumelhart, G. E. Hinton, and
R. J. Williams. Learning Internal Repre-
sentation by Error Propagation, volume Vol.
1. 01 1986.

[7] X. Glorot and Y. Bengio. Understanding the
difficulty of training deep feedforward neural
networks. volume 9 of Proceedings of Ma-
chine Learning Research, pages 249–256,
Chia Laguna Resort, Sardinia, Italy, 13–15
May 2010. JMLR Workshop and Conference
Proceedings.

[8] L. Gondara and K. Wang. Mida: Multiple im-
putation using denoising autoencoders, 2017.

[9] G. E. Hinton and R. R. Salakhutdinov. Reduc-
ing the dimensionality of data with neural net-
works. Science, 313(5786):504–507, 2006.

[10] H. A. L. Kiers. Weighted least squares fitting
using ordinary least squares algorithms. Psy-
chometrika, 62(2):251–266, Jun 1997.

[11] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization, 2014.

[12] R. J. A. Little. Statistical Analysis with Missing
Data. Wiley-Interscience, sep 2002.

[13] T. Luo, Z. Ma, Z.-Q. J. Xu, and Y. Zhang. The-
ory of the frequency principle for general deep
neural networks, 2019.

[14] P.-A. Mattei and J. Frellsen. Miwae: Deep
generative modelling and imputation of incom-
plete data, 2018.

[15] J. O. Smith. Spectral
Audio Signal Processing.
http:http://ccrma.stanford.edu/ jos/sasp///-
ccrma.stanford.edu/~jos/sasp/, 2020.
online book, 2011 edition.

[16] N. Srivastava, G. Hinton, A. Krizhevsky,
I. Sutskever, and R. Salakhutdinov. Dropout:
A simple way to prevent neural networks from

8

overfitting. Journal of Machine Learning Re-
search, 15:1929–1958, 06 2014.

[17] O. Troyanskaya, M. Cantor, G. Sherlock,
T. Hastie, R. Tibshirani, D. Botstein, and
R. Altman. Missing value estimation methods
for dna microarrays. Bioinformatics, 17:520–
525, 07 2001.

[18] P. Vincent, H. Larochelle, Y. Bengio, and P.-A.
Manzagol. Extracting and composing robust
features with denoising autoencoders. Uni-
versit e de Montr eal, Dept. IRO, CP 6128,
Succ. Centre-Ville, Montral, Qubec, H3C 3J7,
Canada, 2008.

[19] A. Wichert. Intelligent Big Multimedia
Databases, World Scientific. 07 2015.

[20] M. Wolter, J. Gall, and A. Yao. Sequence pre-
diction using spectral rnns, 2018.

[21] Z.-Q. J. Xu, Y. Zhang, and Y. Xiao. Training
behavior of deep neural network in frequency
domain, 2018.

9

