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Abstract—The work done has as starting point an indoor local-
ization system developed by Thales. It uses Open Beacon based
sensors and relies on RSS measurements. A method is studied
to obtain a target localization (mobile antenna) from RSS
measurements between the latter and the anchors - standing
sensors deployed in a strategic way and at a given space.
The goal was not to attain the exact target coordinates, an
Euclidean representation, but the one relative to the anchors:
a visual representation of the target positions over time that
shows the trajectory.

Among the used methodologies, there are filters resembling
the Kalman ones and others, MDS algorithm and Procrustes
Analysis. Other processes were discarded as they proved to be
unnecessary and/or unsuitable.

To obtain the needed data (RSS measurements) were
performed many instances of the anchors in various different
physical scenarios were tested. The selected setup to illustrate
the chosen methodologies was one of the ones that produced
the best results, showing the preferred features to this kind of
operation.

Keywords - RSS; Power; Sensors; Cooperative; Localiza-
tion; Algorithm;

1. Introduction

An indoor localization system is a system that can
determine the position of an object or person. These systems
are required by Wireless Sensor Networks, (WSNs).

The most famous localization system in the world is
GPS. The fact that it has a satisfactory precision in outdoor
environments [1] and is in consumer-oriented technologies
contributed to its large scale use. However, this system is
not fit for certain environments, such as indoor and aquatic,
producing erroneous data or not working at all. As it locates
devices using the Time of Flight (TOF) of radio signals
transmitted by satellites, in environments where the sky
view is obstructed, it is impossible to obtain the location
of the first ones. With the increasing complexity of the
infrastructures, the need to produce a system capable of
performing indoor localization have arisen.

1.1. Objectives

The main goal of this work is to develop a method to
obtain the location of a mobile sensor - target - from the
measurements of Received Signal Strength (RSS) between it
and the anchors - sensors strategically implemented in space
under study. The system must be as efficient as possible,
using the same sensors provided by Thales [2]. Given the
poor quality of the measurements, the realistic goal for this
work was only to obtain a rough estimate of the trajectory
of the target relative to a set of anchors, rather than to try
to attain a high-quality Euclidean representation.

1.2. Wireless Sensor Network

A WSN is a network in which the sensors (tags) are
spatially distributed and communicate with each other, if
the network is cooperative, or only with a Central Computer
(CC) in case the network is centralized (star topology). The
CC is necessary to act as a bridge between the sensors
and the user, but can also be used to make the necessary
calculations (which depend on the chosen algorithms and
equipment). The site where the network is implemented
can have arbitrary dimensions: from a single room to an
entire building. The object to be positioned is called a
target, while the remaining are anchors , if their location
is known a priori. All sensors perform one or more types
of measurements. In the present work, each of the sensors of
the network measures RSS , which is the value of the power
with which the transmitted signal reaches the receiver, that
is, each tag reports to the CC the received power value from
each other tags.

Unlike networks with devices that support GPS, the
sensors used in WSNs usually are inexpensive and easy to
assemble, although the life of their batteries can be reduced,
which it is undesirable. Another advantage of WSNs is
mobility, which for indoor systems has a key role. This
allows sensors to detect changing phenomena and it also
allows the existence of dynamic targets - dynamic location
.



2. State-of-the-Art on Localization Systems

2.1. Types of signals

In the recent years, the increase in interest in technolo-
gies that allow mobility for users has boosted the creation
of devices equipped with wireless communication technolo-
gies. In this subsection, the main focus will be on Radio
Frequency (RF) signals, since this type is used in this study.

2.1.1. Radio Frequency. Some of the most used RF tech-
nologies are briefly described below:

• Radio Frequency Identification (RFID): this tech-
nology is widely used for proximity detection sys-
tems [3], e.g., at the gates of the Lisbon metro. It
consists of a tag, a reader and an antenna. A tag is
embedded in some object, such as a card, that wants
to be detected. The reader, which is no more than
a transducer (emits energy to power the RFID tag),
is able to read the information (ID) provided by the
nearest tag.

• Ultrawideband (UWB): it is used for transmitting
information over a broadband (> 500 MHz) and
takes advantage of a large portion of the available
spectrum [4]. The UWB signals have a short dura-
tion, which makes it possible to filter the original
signals from the reflected ones and, therefore, attain
better reliability in the measurement of TOF and/or
TOA, which results in better accuracy. Another ap-
pealing feature is that they can penetrate various
obstacles, such as walls, although liquids and metals
are sources of interference.

• Wi-Fi: the mid-range Wireless Local Access Net-
works (WLAN), operating in the ISM band (from
2.4 to 2.485 GHz), have served to support local-
ization schemes, with the addition of a CC. With
a range of up to 100 m, IEEE 802.11 is the stan-
dard dominant in these networks [5]. Any device
with a Wi-Fi antenna can be a network node. This
node communicates with one or more Access Points
(APs), and vice versa, and records the RSS measure-
ments sending them to the CC, which determines the
its location.

• Bluetooth: the presence of Bluetooth technology
is very common on mobile devices. For informa-
tion transmission, its range is about 15 m with a
maximum bit rate around 1 Mb/s. This technology
is a lightweight and flexible standard that supports
services other than localization systems. However, in
itself it is not enough: due to its range, the system is
not accurate. It is then necessary to carry out other
measurements, such as RSS. With the creation of
new applications for healthcare, security, among oth-
ers, the Bluetooth Low Energy (BLE) [6], presents a
considerable reduction in energy consumption, con-
tinuing to operate in the ISM band.

2.2. Metrics

To determine the location of all tags on the network, the
localization systems need measurements that the latter take.
These measurements are based on several types of metrics.

• Angle of Arrival (AOA): it is the angle of the signal
intercepted by the receiver [7]. The direction of a
signal can be calculated by exploring and detecting
the phase difference between the antennas of the
antenna array at the receiver. The angle is calculated
by comparing the direction of the incoming signal
with a reference orientation.

• Time of Flight (TOF): it’s the time elapsed during
the propagation of a signal since it was sent to the
receiver. Its most desirable feature is that, if it were
possible to measure with precision and synchronism,
the distance calculation would be very easy: cal-
culate the product between the measured TOF and
the propagation speed. Due to synchronization lim-
itations in consumer-oriented technologies, another
metric has been created, the two-way TOF [8].

• Received Signal Strength (RSS): it is the power
with which the signal emitted by a source reaches the
receiver. It can be measured by any device that has
its own antenna. Observations are used to determine
the distance between the object to be located and a
beacon, given the relationship between distance and
power. However, RSS varies over time due to fading
by multipath and other phenomena, especially in
indoor scenarios. The greater the distance the greater
the attenuation.

2.3. Multipath and Fading

Radio waves do not remain constant over time. They are
influenced by the objects they encounter on their path and
can suffer reflection which leads to the existence of several
paths from an emitter to a receiver - multipath propagation
[9].It results in attenuation or amplification of the original
signal. The wave can also undergo diffraction, which results
in splitting the signal into several, or scattering, when the
it hits an uneven surface (fig.1). When hitting or passing

Figure 1. Reflection, Diffraction and scattering [10]

through objects, the waves incur in energy and amplitude



loss due to destructive interference, which is called fading.
The physical properties of the medium also influence the
signals; it’s almost impossible to design an algorithm capa-
ble of predicting all the losses during propagation, starting
with the great complexity of the input variables that would
be necessary.

When the propagation medium is air and the emitter
and receiver are in LoS (free space propagation), the Friis
formula can be used to calculate the received power , in dB

PR[dB]
= PE[dB]

+GE[dB]
+GR[dB]

−L[dB]−γ10log10(
λ

4πd
)

(1)
in which PR and PE correspond to the power measured at
the receiver and the output of the sender, respectively, GR

and GE to the antennas gains, d the distance between them,
λ the signal wavelength, L to losses and γ to the attenuation
coefficient, Path Loss Exponent (PLE). In outdoor scenarios,
the PLE is usually equal to 2, being higher in indoor scenar-
ios (higher attenuation). The signal is being attenuated since
it left the source and the Path Loss (PL) can be calculated
from (2)

PL[dB] = PL0[dB]
+ γ10log10(

d

d0
) (2)

where d0 is the reference distance for which the power is
known. However, as already mentioned, the signal in the
present work is strongly affected by multipath and fading,
which means that it is not possible to know the correct value
of PLE and the equations (1) and (2) cannot be used directly.

2.4. Algorithms

Detecting signals or obtaining certain metrics is not suf-
ficient for estimating distances between nodes. Calculations
are necessary and for that algorithms are used.

2.4.1. Range-based. These algorithms make use of the
measurements acquired through the sensors. To perform the
localization different techniques can be used, such as trilater-
ation (or triangulation, when using AOA), accompanied by
others that improve the accuracy of location [11]. Range-
based algorithms doesn’t require complex on-site settings,
it consists in the tags deployment. This way the installation
process is easier and quicker compared to Range-free.

• Geometric - Trilateration. Using this algorithm the
measurements made, namely RSS, can be translated
into distances using a propagation model. By esti-
mating the distance from a node to at least 3 other
nodes (not collinear and with known position) it
is possible to find the location of the node in 2D:
the intersection between the center circumferences
in each beacon and radius equal to the respective
estimated distance (fig.2). Due to the RSS variations,
impossible to control, the measurements can contain
a lot of noise. Increasing the number of beacons
increases its accuracy, however, it also increases
the area of uncertainty where the target may be.

Considering N beacons used (N ≥ 3), a target A
and the estimated distance dN (from the target to
beacon) using a propagation model, a system of N
quadratic equations (3) is obtained,

d2
1 = (x− x1)2 + (y − y1)2

d2
2 = (x− x2)2 + (y − y2)2

...

d2
N = (x− xN )2 + (y − yN )2

(3)

where xN and yN correspond to the coordinates of
each beacon, PN (xN , yN ). As the intersection of the
N equations isn’t a single point, it is then necessary
to find the most likely position of the target, PA,
within that area. This is one of the reasons why
geometric algorithms are often complemented with
Optimization-based algorithms.

• Optimization-Based - LLSQ One of the algorithms
proposed in [11] was the Linear Least Squares
(LLSQ) which consists of linearizing a system and
solving it in the sense of least squares, which is
obtained by subtracting each of the N equations with
the remaining N-1 . In R2, the obtained linear system
can be described by (4)

A(PA) = b (4)

where PA is the targets unknown position

A =

 x1 − xN y1 − yN
x2 − xN y2 − yN
. . . . . .

xN − 1− xN yN − 1− yN

 (5)

b =
1

2

 x2
1 − x2

N + y2
1 − y2

N + d2
1 + d2

N

x2
2 − x2

N + y2
2 − y2

N + d2
2 + d2

N
. . .

x2
N−1 − x2

N + y2
N−1 − y2

N + d2
N−1 + d2

N


(6)

The solution found is expressed by 7

PT = (ATA)−1AT b (7)

Figure 2. Triangulation with 3 anchors, located in p1, p2 and p3, and a
target located in p0 [12]

2.4.2. Range-free. These solutions do not use measure-
ments directly to infer distances. The measurements are
compared with a set of reference values (taken a priori)
and from there the location is found. For this reason, these
algorithms may have to use complex processes, which can
be expensive and time consuming.



• Fingerprinting: requires two phases: offline and on-
line. In the first one the space is mapped: samples of
RSS are collected and associated with coordinates,
forming a ’radio map’ of the entire space. During
the online phase, the system compares the measured
observations with the ones on the radio map to deter-
mine where the target is located. The cost function
c minimization can be solved using probabilistic
methods, Support Vector Machines (SVM), among
others. It is assumed that the RSS samples associated
with the same site do not change over time, which
constitutes a great challenge since it is known that
the signals are affected by diffraction, reflection,
scattering, etc.

3. Multidimensional Scaling

Multidimensional Scaling (MDS) emerged in the Psy-
chology community, and is still used today by many pro-
fessionals. It was created to be a model that would visually
explain how people form opinions [13] as well as relation-
ships between events. The objects of study are represented
in the plan as points. In fig.14b it appears that the ’Murder’
is closer to the ’Assault’ than ’Robbery’, which means the
correlation between ’Murder’ and ’Assault’ is higher than
the one between ’Murder’ and ’Robbery’. The input of the
MDS algorithm to produce the previous plot, proximities
or dissimilarities, were the correlations. The designation of
dissimilarity/proximity between two points comes from the
fact that the greater the value of this input variable the
smaller is the distance between the points.

Figure 3. Proximities plot.

3.1. Non Metric MDS

Non Metric MDS is the most well-known MDS model,
given its flexible character. It admits as proximities, pij ,
any type of metric or value derived from it, as long as
it reflects a relationship between the data of the sample
taken. The only condition imposed on this metric is that
it must be ordinal, the distances between the points of the
configuration X obtained by MDS, dij , will be ordered
according to pij ((8) and (9)). Although dij distances are
calculated as Euclidean distances, there is always a strong
chance that they cannot be interpreted as actual distances but
only as proximity between points. In the present work the

proximities pij are the symmetric of the RSS values taken
between the pair ij.

f : pij → dij(X) (8)

f : pij < pkl → dij(X) ≤ dkl(X) (9)

To reach from the proximities pij , matrix P, or dissimilarities
δij , matrix ∆, up to distances dij , one has to solve a
sequence of operations. It starts by centering the square of
the ∆ matrix (n×n matrix where n is the number of points),
which prevents the configuration from ”wandering” through
the plane, obtaining B∆, by the equation (10). In this, J is
obtained from (11).

B∆ = −1

2
J∆2J (10)

J = I − n−111′ (11)

B∆ = QΛQ′ (12)

X = Q+Λ
1
2
+ (13)

That said, X (n×m matrix being m the dimension of the
plan) is obtained through (13), where Q+ corresponds to
the first m columns from Q and Λ

1
2
+ to the first positive

m eigenvalues of B∆ eigen-decomposition (12). If the ∆
matrix were filled with Euclidean distances, all eigenvalues
would be positive or negative but very close to zero. The
main advantage of using the decomposition (12) is that the
configuration X is the one that minimizes the difference
between ∆ and the matrix containing the distances between
the points in X .

3.2. Classic MDS vs Iterative MDS

The classic form of solving an MDS algorithm assumes
that the surroundings are Euclidean distances and boils down
to solving the algorithm. Ideally, the proximities pij and the
distances between the points of the obtained configuration
d(X)ij , disparities, would be the same. However, when
computing the difference between them, what is left is a
matrix with values other than zero (P − D), except the
diagonal (dii = 0). Given what pij represents in this model,
the larger the module of the values of P − D, the further
the configuration obtained from reality will be.

Using a MDS algorithm on an iterative way, it starts
from a starting configuration (random or not) and focuses
on minimizing a cost function that leads to the minimization
of P−D. The points obtained are moved each iteration, very
slowly, until a convergence value of the chosen cost function
is obtained.

The most popular cost function is Stress. This can be
obtained by the expression (14), where wij are weights
corresponding to each dissimilarity δij . It is a residual sum
of squares, positive and the lower its value the closer to
reality is the configuration obtained (or not, if this value is
a local minimum). Stress can serve as ’fit index’, it aims



to assess whether the configuration approximates reality or
not, given the dissimilarities provided.

σr(X) =
∑
i<j

wij(δij − dij(X))2 (14)

3.3. SMACoF

This algorithm [14] consists of minimizing a complex
function, in this case Stress, through iterative majorization.
The main idea is to take a function that is (literally) compli-
cated (f(x)) and replace it with a simpler one (g(x, z)) and
greater or equal (f(x) ≤ g(x, z)) regardless of the number
of variables, such that z has a fixed value. These algorithms
are less likely that the solution found has been ”stuck” in a
local minimum than others. SMACoF algorithm has as input

Algorithm .1: SMACoF
Data: X0, ∆
Result: Points configuration, X
k=0;
ε=1e-4;
compute dij(X0);
apply PAVA in dij(X0): d̂ij ;
standardize d̂ij ;
compute Stress: σ(0)

r = σr(d̂, X(0));
σ

(−1)
r = σ

(0)
r ;

while k=0 ou (σ(k−1) − σ(k) > ε e k maximum of
iterations) do

compute Guttman transformed:
Xk = n−1B(Z)Z;

compute d(X(k))ij ;
apply PAVA in dij(X): d̂ij ;
δij = d̂ij ;
standardize d̂ij ;
compute Stress: σr(d̂, X(k));
Z = X(k);

end

an initial configuration, X0, which may have been generated
through the classic, random or other MDS provided by the
user and also the dissimilarities δij , ∆, which led to X0. The
distances dij(X0) are the Euclidean distances between the
points of the latter. Another way is to denote the distances
dij(X0) as a transformation of δij , as in (15). Thus, dij(X0)
is expected to have ”weak monotonicity” with respect to δij ,
that the distances dij(X0) are monotonically non-decreasing
in relation to δij , (16).

dij(X0) = f(δij) (15)

if pij < pkl then dij(X) < dkl(X) (16)

In order to guarantee (16) and later to obtain the disparities
d̂ij , a Pool-Adjacent-Violators Algorithm (PAVA), is used
and it is also with this algorithm that the distances are
”untied”; sometimes it can happen that there are two equal
dissimilarities (δij = δkl) and these can translate into equal

disparities or not (”primary approach”) which gives more
freedom to the data. When SMACoF ends, it is assumed
(but not guaranteed) that the obtained point configuration
corresponds to the global minimum of the Stress function.

3.4. MDSCALE - MATLAB

In this work the function ’mdscale’ provided by MAT-
LAB was also used. In this function, an algorithm is im-
plemented, which uses MDS. The big difference between
this and SMACoF is in the process of updating the point
configuration. That is, to minimize the Stress, MDSCALE
resorts to the ”Polak-Riviere” line search method [15].

4. Procrustes Analysis

The goal of Procrustes Analysis is to fit a configuration
of points Y in a configuration X , that is, the points of
Y occupy the same positions as those of X . This can
be done through rigid transformations (rotation, reflection,
translation and expansion) through minimization of the sum
squared error (SSE), L(T ) = ||X − Y T || being T some
linear transformation. After some simplification one can
reaches

L(T ) = c− 2trX ′Y T (17)

Algebraically it can be translated to the following steps:

• Computation of matrix C

C = X ′JY (18)

• Singular value decomposition of C

C = PφQ′ (19)

• Computation of optimal rotation matrix , T

T = QP ′ (20)

• If det T < 0 it is a sign that is necessary to perform
a reflection. In order to do that it equals matrix Q
to its symmetric,Q = −Q, and recomputes T ;

• Computation of the scaling factor s

s =
trX ′JY T

trY ′JY
(21)

• Computation of the optimum translation vector t

t = n−1(X − sY T )′1 (22)

• Compute the configuration Z

Z = sY T + t (23)

The matrix Z is the best possible approximation of Y
points to X points.



5. Thales Experimentation

The experience developed by Thales for the ”Viral”
exhibition at Pavilhão do Conhecimento Ciência Viva in
2015/16 aimed to recreate a propagation of a virus in the
community. It followed the scheme in Fig.4. The marker
tags behave in this work as anchors, except for a single one
that acts as a target (there were many targets in the Thales
setup, but in the present study there is only one). The sink
corresponds to the base station for the tags (is the bridge
between them and the CC). As demonstrated in [16], the

Figure 4. Packets exchange between tags and base station [16].

results using Thales’ approach are too far from optimal. In
the following text a different approach will be described,
using the same hardware that Thales and [16] did.

6. Experimental Work

6.1. Setups

Here, the deployment of a specific configuration of an-
chors in a specific area is denoted as a ”setup”. It covers the
implantation of the sensors and the communication between
them and with the CC, through an Open Beacon base station,
to acquire the RSS measurements.

6.2. Collaborative Scenario

In all setups all tags communicated with each other, with
a transmission power of 4 dBm.

6.3. Chosen Methodologies

This subsection illustrates the deployment made in ISR-
Taguspark, Fig.5. Here, all the anchors were placed at the
same height with respect to the floor and the only time they
might not be in LoS would be when the target interposes
between them. In this room there is a lot of glass and some
polished and unpolished metal structures, as well as the
existence of a water tank.

The coordinates occupied by the anchors can be seen in
Fig.6, considering a virtual space of 5.4 m x 5.45 m around
the anchor configuration.

The target described a square trajectory around the an-
chors for about 30 seconds.

Figure 5. Anchors configuration - DSOR.

Figure 6. Anchors coordinates, with origin in tag 4.

6.3.1. Power vs. Distance. Considering the equation (1), it
is easily inferred that if both variables are on the logarithmic
scale, their relationship is linear and decreasing

Pij = a− γdij (24)

where Pij is the RSS value between tags i and j and dij
the distance between them.

However, the plot in Fig.7 shows that condition (24)
is far from being verified in practice, and it is almost
impossible to discern any analytical relationship between
both variables.

6.3.2. Cleaning, Completion and Signaling. One of the
objectives of this study is to use the MDS algorithm as a
mean to improve the robustness of relative positioning using
spatial cues (RSS values) that are only weakly correlated
with physical distances. It was decided from the beginning
that its entry, the ∆ dissimilarity matrix, would be measure-
ments of RSS, power values. To calculate the position of the
target every second, it is necessary to have a matching value
of RSS and only one between each pair of tags. For that,
Algorithm .2 is proposed

• Cleaning and Completion: in the cleaning phase it
was ensured that there was only one measurement
per instant t (second). In case there is more than
one, the value of Pij(t) to be saved was the average
between them. On the other hand, sometimes there



Figure 7. Power variation for each distance (between anchors) - setup ”j01”.

was no recorded power value; then, in the Com-
pletion phase that value was filled. It was assumed
that the RSS measurements would have a monotonic
behaviour so, for a given Pij(t 6= 0) = 0 if the value
other than zero immediately before was less than
the non-zero value immediately afterwards then, in
this time, the powers would increase (increasing
monotony) and vice-versa.

• Signaling: the target was carried by a person. It
was considered that, on average, the normal walking
human speed is about 1 m/s. In the case of RSS
vectors referring to ’anchor-target’ pairs there were
sometimes large variations (greater than 10 dB) from
instant to instant. Taking into account the real con-
ditions of the experiment an attempt was made to
somehow limit the variations. A variable delta was
defined, which served as ”goal”: a measurement of
RSS could only be delta units greater or less than
the previous one: Pij(t) ∈ [Pij(t−1)−delta;Pij(t+
1) + delta]. If Pij(t) was not ”within the goal”, it
would take the average between its current value and
Pij(t−1). The delta value considered to be optimal
was 2.5 dB.

As can be seen in Fig. 8, the graphs in b) show less
abrupt variations, are smoother than those in a), maintaining
a shape that resembles their original one.

6.3.3. Kalman Filter. There was no intention to eliminate
variations in Pij vectors corresponding to ’anchor-target’
pairs, but only to mitigate their fluctuations so that they
were not too abrupt and ”unreal”. On the other hand, in
’anchor-anchor’ pairs the variations are inconvenient. Since
the latter are standing still, RSS measurements would be
expected to remain constant. However, this is not the case,
as these are contaminated with noise, sources of constructive
or destructive interference, and other unquantifiable losses.
It is necessary to infer power values of anchor pairs closer
to the real ones and more reliable than those obtained
by Algorithm .2. One of the most frequently used filters

Algorithm .2: Cleaning, Completion and Signaling
Data: Pij , time, delta
Result: Pij

// Cleaning
for each instant t do

if there is more than one Pij(t) then
p = average(Pij(t));

end
end
// Completion
if Pij(1) = 0 then

equal all Pij(t) equals to zero and previous to
the 1st Pij(t) different from zero,to the 1st

Pij(t) different from zero;
end
c=0;
for each instant t do

if Pij(t) = 0 then
if Pij(t− 1) = 0 then

c = c+1;
end
else

c=2;
end

end
if Pij(t) 6= 0 e c 6= 0 then

dif = (Pij(t)− Pij(t− c))/3; while c do
Pij(t− c− 1) = Pij(t− c− 2)+ dif
c = c-1;

end
c=0;

end
end
// Signaling
for for each instant t do

if Pij(t)− Pij(t− 1) > delta then
Pij(t) =average(Pij(t), Pij(t− 1));

end
end

for predicting and approximating values to reality is the
Kalman Filter [17]. The filter used was a very simplified
version of Kalman’s.The filter was divided into two phases:
prediction and updating. It also assumes a xk ’state’ and a
zk ’observation’, where k indicates the instant.

The state xk is described by xk = axk−1 + buk−1 +
wk−1 with a being the transition state model applied to xk−1

(relates the current and the previous states), bk the variable
that relates the control input to the state xk−1 applied to the
latter uk−1 and wk−1 is the process noise that is assumed to
have normal distribution and covariance q (mean equals to
zero). At each instant of time k a observation zk is obtained:
zk = hxk + vk where h related the real state xk with the
observation zk and vk is the observation noise, which is also
normal distributed its covariance is r.

• Prediction phase: being Σ̂apriori the covariance of



(a) (b)

Figure 8. Plots P(d) before (a) and after (b) Algorithm .2 was applied - horizontal axis: time(s); vertical axis: power(dBm).

the error

x̂apriori = ax̂k−1 + buk−1 (25)

Σ̂apriori = aΣ̂k−1 + q (26)

• Update phase: the optimal Kalman gain Kk is
estimated (27) as well as the state (28) and Σ̂k (29).

Kk = Σ̂apriorih
′(hΣ̂apriorih

′ + r)−1 (27)

x̂ = x̂apriori +Kk(zk − hx̂apriori) (28)

Σ̂k = (1−Kkh)Σ̂apriori (29)

Considering each pair of anchors as a system and that
it remains immutable, it is assumed that a = 1 and that the
only item exchanged between nodes is the RSS measure-
ment, with no control entry and u = 0. The variance of the
process q = 10−5 and r was taken as the variance of each
power vector between anchors. For initial values of state
and observation, x̂0 and Σ̂0, the average of the obtained
measurements was taken and 1, respectively. Given that, the
prediction phase simplified to (30) and the update to (31).{

x̂apriori = x̂k−1

Σ̂apriori = Σ̂k−1 + q
(30)


k =

Σ̂apriori

Σ̂apriori+r

x̂k = x̂apriori + k(zk−1 − x̂apriori)
Σ̂k = (1− k)Σ̂apriori

(31)

The application of the filter proved to be useful. Since
in this assembly there are 10 ’anchor-anchor’ pairs it would
be time consuming to present all comparisons, but as a
proof in Figure 9 it is possible to compare the RSS values
measured between the anchors 1 and 3 before applying the
filter (a) and after (b). Although there is no horizontal line,
the variation that is observed is very small (< 1dB) so
the values can be considered constant, approaching what
would be ideal but still preserving a certain experimental
component.

6.3.4. MDS Input. After the RSS values (related to the
pairs of sensors) are prepared, the created algorithm using
MDS begins. It receives as input a matrix of dissimilarities
∆ and each entry δij corresponds to the symmetric RSS
value Pij , that is, ∆ = −Pij .

6.3.5. MDSCALE VS SMACoF. To obtain at each instant
of time a configuration of points X from which it is possible
to extract the coordinates of the target, to visualize its
trajectory, the two algorithms SMACoF and MDSCALE
were compared; both had the same ∆ dissimilarity matrix
as input.

• Effect of Procrustes Analysis: it was found that this
analysis positively contributed to the improvement of
the results. To simplify, in order to support the latter
sentence, only the anchors were taken into account.
As seen in Figs.10 and 11, the Procrustes Analysis
was beneficial to both algorithms usages.

• Impact of Target Addition: as it has already been
verified, the coordinates of the anchors change over
time. It would be important that with the addition
of the ’target-anchor’ dissimilarities the anchors (ap-
proximately) maintain their configuration. Only then
can it be considered minimally reliable to equate vi-
sualizing the trajectory of a target. In Figs. 12 and 13
the shown points have already undergone Procrustes
analysis. After observing these, it was considered
that, even though they are not the same, they still
seem to be concentrated in 5 different zones. In fact,
there seems to be a greater demarcation of those
areas, which may indicate that a greater number of
nodes tags improves the quality of the solution.

• Procrustes Analysis - Target: having proved to
be a useful tool for this work, the intention was to
extend Procrustes Analysis to the coordinates of the
target as well. This constitutes a problem since this
analysis presupposes a real configuration for which
another will be adapted and in the case of the target
its position is not known a priori (contrary to the
anchors). The solution found was, at each instant,



(a) (b)

Figure 9. RSS values between anchors 1 and 3 before (a) and after (b) the approximated Kalman Filter.

to compute the transformation (23) that fitted the
anchors configuration obtained by MDS, and apply
it to the target. The graphics that were obtained are
shown in Fig.14.

• Distances Filtering: the filtering applied to the RSS
values was intended not to be too restrictive, since it
is complicated to define what is right or wrong when
it comes to the RSS metric. And so it is evident
that errors will continue to exist. Once again, a light
approach was chosen to perform a filtration of the
distances.
At this point, the target coordinates, at each instant,
are already computed.
The filter used is almost another type of filtering,
but now applied to distances. The walking speed
of the human being, of approximately 1 m/s, was
also considered. This means the distance between a
point and its consecutive one should not be greater
than 1 m. In Algorithm .3 it is illustrated that, if
the previous condition does not happen, a weighted
average is made, in which the last estimated point
X̂target(t−1) has a weight four times greater than
the point being analyzed Xtarget(t). It was assumed
that the Xtarget(1) (first point in time) was always
correct, which may not be true. The trajectories ob-
tained can be seen in Fig15. Although not perfectly,
the trajectory of a) (MDSCALE) traces a square-like
shape: it starts with something that appears to be u-
turns, but then it goes to something that resembles
the real path. The trajectory in b) (SMACoF) fell
slightly behind, although the sense of direction feels
right.
The Thesis provides experimental results for deploy-
ments in other areas of IST-Taguspark.

7. Conclusion

Numerical values of the stress cost function played only
a minor role when evaluating the results. This happened
because, although stress is an indicator of ”goodness-of-
fit” it is not an absolute indicator. As a matter of fact, in
the literature it is pointed out that: a low stress (< 1 %,

(a) (b)

Figure 10. Anchors’ coordinates: a) before and b) after Procrustes Analysis
- MDSCALE.

(a) (b)

Figure 11. Anchors’ coordinates: a) before and b) after Procrustes Analysis
- SMACoF.

does not necessarily indicate a good MDS solution [18].
It is always necessary to take into account the data being
studied, because if it is known it contains many errors, as
in this work, it’s not a good idea to be guided exclusively
by a measure that depends on them. Based on this, it was
considered that the best weapon for evaluating the solution
would be the human eye, since the actual assembly is
known.

Better performance was observed using the MDSCALE
algorithm. The trajectory obtained is quite similar to the real
one, considering the enormous amount of noise contained in
the RSS measurements. With respect to SMACoF, when it
did not converge to a local minimum, the corresponding co-
ordinates were discarded. This occured several times which
resulted in few target coordinates and a worse result. It is



(a) (b)

Figure 12. Anchors’ coordinates: a) before and b) after target addition -
MDSCALE.

(a) (b)

Figure 13. Anchors’ coordinates: a) before and b) after target addition -
SMACoF.

not clear that if it had not happened, it would have produced
good results.

8. Future Work

The most obvious issue: is to test the experimental part
with other equipment (sensors), more powerful and/or one
the supports wi-fi, for instance. The measurements could be
better or not.

There are numerous methodologies available which can
be adapted and applied to the problem under study. It will
be possible, with the same equipment, to test new filters,
invented or those already available in the literature, which
can allow the RSS values to be approximated to what would
be the correct ones. This, in addition to adding more sensors
to the setups should make it possible to single-out solutions
that best adapt to reality.

Finally, the most important aspect will be to compute
the targets path (location) in real time, using adequate
methodologies.
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