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Abstract

The comprehensive access to road traffic patterns in the continuously growing urban areas is key to

achieve sustainable mobility. However, the inherent complexity of urban traffic data poses many chal-

lenges to achieve this goal, including: (i) the spatiotemporal intricacies of geolocated speed and loop

count data; (ii) the need to integrate heterogeneous views of road traffic (such as speed limits, conges-

tion size, delay, throughput); (iii) the need to mine jam patterns with varying degrees of severity; (iv) the

inherent traffic variability and unexpected occurrence of events; (v) the need to guarantee the statistical

significance, actionability and interpretability of the target patterns; (vi) the difficulty of detecting emerg-

ing patterns not yet markedly noticeable at early stages; (vii) and massive data size. This work proposes

two methods for mining road traffic patterns from heterogeneous sources of spatiotemporal data, each

one tackling the challenges presented previously in different ways. The first method explores the rel-

evance of using biclustering for mining traffic patterns of road mobility. The second method proposes

E2PAT, a scalable method to detect emerging patterns from heterogeneous sources of spatiotemporal

data generated by large sensor networks. These contributions are comprehensively assessed in the

context of the Lisbon’s road traffic monitoring system, which features a large-scale network of mobile

and fixed sensors that produce geolocalized speed data and loop counter data.
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Resumo

O acesso a padrões de tráfego rodoviário nas áreas urbanas é fundamental para alcançar uma mo-

bilidade sustentável. No entanto, a complexidade inerente dos dados de tráfego urbano apresenta

inúmeros desafios para a sua descoberta, incluindo: (i) a natureza espacial e temporal dos dados de

velocidade geolocalizada e das espiras; (ii) a necessidade de integrar vistas heterogéneas do tráfego

rodoviário (como limites de velocidade, tamanho de congestionamentos, atrasos, fluxo); (iii) a neces-

sidade de extrair padrões de congestionamento com vários graus de severidade; (iv) a variabilidade

inerente do tráfego e a ocorrência inesperada de eventos; (v) a necessidade de garantir a significância

estatı́stica, praticabilidade e interpretabilidade dos padrões; (vi) a dificuldade em detectar padrões emer-

gentes, com mudanças ainda não marcadas o suficiente em estados iniciais; (vii) e o tamanho massivo

dos dados. Este trabalho propõe dois métodos para a descoberta de padrões de tráfego rodoviário

de fontes heterogéneas de dados espaço-temporais, cada um enfrentando os desafios apresentados

anteriormente de maneira diferente. O primeiro método explora a relevância do uso de biclustering para

extrair padrões de tráfego de mobilidade rodoviária. O segundo método propõe o E2PAT, um método

escalável para detetar padrões emergentes de fontes heterogéneas de dados espaço-temporais gera-

dos por grandes redes de sensores. Estas contribuições são avaliadas de forma exaustiva no contexto

do sistema de monitorização de tráfego rodoviário de Lisboa, que inclui uma grande rede de sensores

móveis e fixos que produzem dados de velocidade geolocalizada e dados de espiras.

Palavras Chave

mobilidade sustentável; descoberta de padrões espaço-temporais; redes de sensores heterogéneos;

padrões emergentes; biclustering; dados de tráfego rodoviário; séries temporais geolocalizadas; dados

de trajetória com registo de data e hora.
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Mobility in most capital cities is not yet sustainable. Road mobility is susceptible to significant exter-

nalities, causing daily congestions, in turn aggravating air pollution, accessibility problems, traffic noise,

and safety hazards [1,2]. Motivated by this observation, many cities are establishing initiatives to collect

heterogeneous sources of urban data to comprehensively monitor road traffic [3, 4]. Among them, the

Lisbon City Council (CML) is currently able to gather and consolidate different views on road traffic data

along the city from mobile sensors, road cameras, and loop counters.

Despite the relevance of these heterogeneous views to understand road traffic dynamics, the com-

prehensive discovery of traffic patterns is hampered by numerous challenges: (i) The inability of tradi-

tional pattern mining methods to handle the spatiotemporal intricacies of geolocalized speed and loop

count data; (ii) The need to combine multiple aspects of road traffic, including speed limits, congestion

size, duration, as well as frequentist views on traffic flow; (iii) The need to discover road traffic patterns

sensitive to varying jam levels; (iv) The need to mine patterns robust to the inherent traffic variability

and sporadic occurrence of unexpected events; (v) The need to find comprehensive sets of road traffic

patterns with guarantees of statistical significance, actionability and interpretability; (vi) The need for a

robust and timely detection of emerging patterns [5]; (vii) The massive size of data produced by traffic

monitoring systems.

1.1 Major Contributions

This work proposes two methods to comprehensively discover patterns from heterogeneous sources of

road traffic data, each addressing several of the challenges stated previously. The first method explores

the use of biclustering to unravel traffic patterns. In this method, a traffic pattern is defined as a recurring

congestion profile, possibly spanning diverse locations and time periods within a day. Biclustering, the

discovery of coherent subspaces within real-valued data, has unique properties of interest, thus being

positioned to unravel such traffic patterns, while satisfying the aforementioned challenges. Despite its

relevance, the potentialities of applying biclustering in the mobility domain remain unexplored.

The second method, referred as E2PAT (Emerging Event PATtern miner), proposes a scalable method

to comprehensively detect emerging patterns from heterogeneous sources of spatiotemporal data gen-

erated by large sensor networks, in particular in the context of the Lisbon’s road traffic monitoring system.

We combine simplistic time differencing and spatial intersection principles to identify all emerging pat-

terns distributed along geographies of interest. We show that the use of these principles guarantee a

linear-time efficiency of E2PAT on the size of the input data. In addition, we propose an integrative score

to measure the relevance of emerging patterns and show its role to support pattern retrieval, promote

usability, and guarantee the actionability of the found patterns.

Road traffic dynamics are also largely influenced by situational context such as public events (e.g.

5



sport events and concerts), bottlenecks in the roads (e.g. accidents and maintenance works), and

weather conditions. Integrating this view in the discovery of road traffic patterns gives us the unprece-

dented opportunity to further leverage the actionability and relevance of the discovered patterns.

In addition, given the inherent dependence of road traffic with different sources of situational con-

text (e.g. weather; road traffic interdictions; public events) we extended our methods to encompass

situational context in the pattern discovery task.

1.2 Organization of the Document

This thesis is organized in four parts, each part being divided in chapters. Part I is divided in three

chapters. It starts on Chapter 1 with an introductory note on the thesis, then on Chapter 2 we present

some essential concepts that are used throughout our work, and finally Chapter 3 reviews related work

within urban traffic analysis. Part II and Part III expose the two introduced methods developed in the

context of this thesis, each divided in three chapters:

1. Solution, where we detail the implementation of the method;

2. Results, where the results of the methods’ application is gathered and discussed;

3. Situational Context, where we detail how we extended each method to integrate situational context

in the pattern discovery task.

Part IV summarizes the achievements of this work and points out some possible future directions.

6
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This chapter provides essential background regarding the proposed methods to discover patterns from

road traffic data. Section 2.1 describes different types of spatiotemporal data structures. Section 2.2

details the two types of road traffic data that were used in this work. Section 2.3 introduces some

important aspects of biclustering. Section 2.4 introduces the concept of emerging pattern. Finally,

Section 2.5 describes road traffic patterns, as well as the desirable properties to be pursued during their

discovery.

2.1 Spatiotemporal data

2.1.1 Georeferenced time series

A time series is an ordered set of observations x = (x1, ...,xT ), each observation xt being recorded

at a specific time point t. Time series can be univariate, xt ∈ R, or multivariate, xt ∈ Rm, where

m > 1 is the multivariate order (number of variables). Time series recorded at a particular location are

mentioned as georeferenced. A georeferenced time series is a tuple GT = (φ,x), where φ is a pair

(latitude, longitude) describing the location where the series x is being recorded.

Time series can be decomposed into trend, seasonal, cyclical, and irregular components using addi-

tive or multiplicative models [6]. Classical approaches for time series analysis generally rely on statistical

principles, including auto-regression, differencing and exponential smoothing operations [7]

2.1.2 Trajectory

A trajectory is a sequence 〈φ1, φ2, · · · , φn〉, where φi is a pair (latitude, longitude). A timestamped

trajectory, 〈(φ1, t1), · · · , (φn, tn)〉, has its coordinates, φi, annotated with a timestamp, ti.

Floating car data are paradigmatic examples of timestamped trajectory data produced from mobile

devices with active global positioning systems (GPS), gathering the position of vehicles along time.

Methods for producing floating car data from GPS information generally produce rather sparse trajecto-

ries that need to be completed within the constraints of the road network mesh [8–10].

2.1.3 Spatiotemporal event data

An event is a tuple e = (x, s, τ), where:

– x = (x1, · · · , xm) is the observation, either univariate (m=1) or multivariate (m > 1) depending on

the number of monitored variables. For instance, given speed (y1) and throughput (y2) variables,

an illustrative observation is x=(x1=15km/h, x2=10cars/min);

9



– s is the spatial extent of the observation x. The spatial extent s can be any spatial representation

associated with the event, such as a geographic coordinate or a trajectory ;

– τ is the temporal extent of the observation x, either given by a time instant or a time interval.

A spatiotemporal event dataset is a collection of events, E = {e1, e2, · · · , en}, each event producing

a (multivariate) observation recorded along specific spatial and temporal context.

2.2 Road traffic data

2.2.1 Inductive loop detector data

Inductive loop detectors (ILDs), also referred as loop detectors or induction loops, are equipment in-

stalled under roads pavements that detect vehicle passages. Depending on the type of ILD, these

equipment are able to detect volume, speed and classify vehicles passing. ILDs are relatively suscepti-

ble to failure rates in their estimations. Martin et al. [11] provide a detailed summary on loop detectors.

ILD raw data are often aggregated to provide frequentist views on the cumulative number or average

speed of different classes of vehicles on a given road along specific time intervals, i.e. georeferenced

multivariate time series data. In the city of Lisbon, ILDs are placed on the major road junctions within

the city and are calibrated to stream the number of passing vehicles for every period of 15 minutes in

real-time.

Aggregated ILD data are a collection 〈gt1, gt2, · · · , gtn〉, where gtk = (φ,x) is a georeferenced time

series with m variables being monitored (e.g. number of vehicles) and T periods (e.g. intervals of 15

minutes).

2.2.2 Geolocalized speed data

Individual trajectories produced by mobile devices can be aggregated as spatiotemporal events, by

recording specific features of interest (such as speed) extracted from devices circulating throughout the

same trajectory segments at similar time periods [12]. Applications, such as GOOGLEMAPS1, WAZE2 or

TOMTOM3, installed in some of the mobile devices, offer localization and navigation facilities, providing

an aggregate view of the ongoing traffic dynamics within the city.

Geolocalized speed data is a common example of data produced by aggregating individual trajec-

tories’ features. Geolocalized speed data is a collection of events where each event, ei = (xi, si, τi),

is a traffic jam event that occurred at time ti in a trajectory (road segment) si. The set of observations

1https://www.google.com/maps
2https://www.waze.com/en-GB/
3https://www.tomtom.com/en_gb
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xi contains traffic information – such as the recorded speed, delay, severity level or road type – that

characterizes the occurring jam.

2.3 Biclustering

Given a dataset defined by a set of observations X = {x1, .., xn}, variables Y ={y1, .., ym}, and elements

aij ∈ R observed for observation xi and variable yj :

• a bicluster B=(I,J) is a n ×m subspace, where I = (i1, .., in) ⊆ X is a subset of observations

and J = (j1, .., jm) ⊆ Y is a subset of variables;

• the biclustering task aims at identifying a set of biclusters B = (B1, .., Bs) such that each bicluster

Bk = (Ik, Jk) satisfies specific criteria of homogeneity, dissimilarity and statistical significance.

Homogeneity criteria are commonly guaranteed through the use of a merit function, such as the

variance of the values in a bicluster [13]. Merit functions are typically applied to guide the formation

of biclusters in greedy and exhaustive searches. In stochastic approaches, a set of parameters that

describe the biclustering solution are learned by optimizing a merit (likelihood) function.

The pursued homogeneity determines the coherence, quality and structure of a biclustering solu-

tion [14]. The coherence of a bicluster is determined by the observed form of correlation among its

elements (coherence assumption) and by the allowed value deviations from perfect correlation (coher-

ence strength). The quality of a bicluster is defined by the type and amount of accommodated noise.

The structure of a biclustering solution is defined by the number, size, shape and positioning of biclus-

ters. A flexible structure is characterized by an arbitrary number of (possibly overlapping) biclusters.

These concepts, formalized below, are illustrated in Figure 2.1.

Figure 2.1: Biclustering with varying homogeneity criteria: three biclusters were found under a constant, additive
and order-preserving assumption. Illustrating, constant bicluster has pattern (value expectations) {c1 =
1.05, c2 = 0.45, c3 = 0.9} on x2 and x3 observations, while the order-preserving bicluster satisfies the
y1 ≥ y2 ≥ y3 permutation on {x1, x2, x3} observations.

Given a dataset, the elements within a bicluster aij ∈ (I, J) have coherence across variables

(pattern on observations) if wij=cj+γi+ηij , where cj is the expected value of variable yj , γi is the

adjustment for observation xi, and ηij is the noise factor of wij .
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A bicluster has constant coherence when γi=0 (or γj= 0), and additive coherence otherwise,

γi 6= 0 (or γj 6= 0).

Let r be the amplitude of values of the input data, coherence strength is a value δ ∈ [0, r] such that

aij = cj + γi + ηij where ηij ∈ [−δ/2, δ/2].

Given a real-valued dataset, a bicluster B = (I, J) satisfies the order-preserving coherence as-

sumption iff the values for each observation in I follow the same ordering π along the subset of variables

in J .

Figure 2.1 instantiates the introduced concepts, illustrating biclusters with constant, additive and

order-preserving coherence (right) found in real-valued data (left). The pattern of each bicluster is

further provided.

The bicluster pattern ϕJ is the set of expected values in the absence of adjustments and noise

{cj | yj ∈ J}. Consider the illustrative biclusters B1, B2 and B3 in Figure 2.1. Their patterns are

respectively given by ϕB1
={c1=1.05,c2=0.45,c3=0.9}, ϕB2

={c1=1.05,c2=0.45} (assuming aij=cj +γi and

additive factors γ1=0.65, γ2=0 and γ3=0) and ϕB3
=(y2 ≤ y3 ≤ y1).

Statistical significance criteria, in addition to homogeneity, guarantee that the probability of a bi-

cluster’s occurrence (against a null data model) deviates from expectations [15].

Finally, dissimilarity criteria can be further placed to guarantee the comprehensive discovery of

non-redundant biclusters [16].

Following Madeira and Oliveira’s taxonomy [13], existing biclustering algorithms can be categorized

according to the pursued homogeneity criteria and type of search. Hundreds of biclustering algorithms

were proposed in the last decade, as shown by recent surveys [17,18].

In recent years, a clearer understanding of the synergies between biclustering and pattern mining

paved the rise of a new class of algorithms, generally referred to as pattern-based biclustering algo-

rithms [14]. Pattern-based biclustering algorithms are inherently prepared to efficiently find exhaustive

solutions of biclusters and offer the unprecedented possibility to affect their structure, coherency and

quality [19]. This behavior explains why this class of biclustering algorithms are receiving an increasing

attention in recent years [14]. BicPAMS (Biclustering based on PAttern Mining Software) consistently

combines these state-of-the-art contributions on pattern-based biclustering [16].

Biclustering on traffic data. A traffic pattern produced by biclustering is a coherent form of traffic

behavior that satisfies a specific criterion of frequency, where frequency is often represented by a form

of temporal or spatial recurrence. An illustrative and self-explanatory road traffic pattern is:

< (jam extent in [1.5km,2km] | location φ1, [17h, 18h]) ∧

(speed limit in [15km/h,20km/h] | trajectory TA, [10h, 11h]) >

with recurrence in [Mondays,Fridays].
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In alternative to congestion extent and speed limits, patterns may further capture restrictions on vehicle

passage flow, average traffic delay per distance, or severity.

Integrative patterns of road mobility combining heterogeneous traffic views should be also pursued.

For instance, a low number of cars passing on a given road may be explained by a heightened speed

limitation on that same road, which in turn may be explained by the spatial extent of traffic on a nearby

location.

2.4 Emerging pattern mining

Emerging Patterns (EPs) were firstly introduced by Dong et al. [20] in the context of multivariate ob-

servations collected from two periods/datasets. An emerging pattern was in this context defined as a

multivariate pattern whose support suffered a significant change between the two given periods.

This work extends this early notion of emerging pattern to encompass an arbitrary number of time

periods and to further incorporate spatial information. Given a spatiotemporal dataset, an emerging

pattern is a set of spatially correlated observations whose values satisfy specific growth, fitness and

support criteria along time.

The growth criterion defines the rate at which observations change along time. For instance, given

a specific location and periodicity, a growth rate of 1% indicates that the values of a given observation

increase 1% on every period under assessment.

Given a specific growth rate, the fitness (error) criterion defines how well observations follow (deviate)

from the given expectations. For instance, fluctuations of the observed values around the expected

values produce residues that can be used to characterize the fitness (error) of a given emerging pattern.

Emerging patterns below a given accuracy threshold may be spurious findings and should therefore be

discarded.

Finally, support criterion defines the number of observations (temporal extent) satisfying the given

growth and accuracy criteria. In this context, emerging pattern discovery can be applied under minimum

growth, accuracy and support thresholds.

Emerging patterns on traffic data. An emerging pattern of road traffic is a coherent form of traffic

behavior that satisfies a specific criterion of periodicity, frequency, or growth. An illustrative emerging

pattern of road traffic is:

{(speed limit decrease at weekly growth rate 2% | trajectory sA),

(traffic throughput increase at weekly growth rate 3% | location φB)}

where = Areeiro, when = ( [10h,11h[ ∧ Mondays)

satisfying r2 > 0.5 ∧ support > 10
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where the coefficient of determination is used as the fitness criterion and at least 10 observations

(support criterion) are necessary to infer the observed growth rates, 2% and 3% from congestions on a

segment sA and location φB within the Areeiro region at Mondays, 10h.

In alternative to speed limits and traffic flow, emerging patterns of road traffic may further capture

growing mobility restrictions associated with the congestions’ extent, recurrence, average delay per

distance, and severity.

2.5 Road traffic patterns: qualities

Given a spatiotemporal dataset, a pattern is a spatially correlated set of frequent, periodic or coherently

changing observations along time. Illustrating, periodic patterns describe recurrent behavior over regular

time intervals at certain locations or trajectories. Graph patterns are sets of trajectories or locations

within the target traffic monitoring network that are frequently co-associated with an event of interest

(such as co-occurring congestions). Temporal association rules define hypothetical causal relationships

between correlated frequent events at nearby locations or trajectories. Each of this pattern solutions are

useful to gather different views that offer relevant opportunities to study road traffic patterns.

Patterns should satisfy a number of properties of interest, to ensure their quality and relevance:

– non-triviality (novelty) and actionability (support decisions);

– robustness (bounded noise tolerance);

– statistical significance (excluded spurious patterns that occur by chance);

– interpretability ;

– coverage (complete solutions spanning different geographies and time periods);

– efficiency of the pattern retrieval process.
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The discovery of actionable patterns of urban mobility has received particular attention in recent

years with the increased availability of urban data, advances on spatiotemporal data analysis, and

global pressure towards sustainability [4]. Yang et al. [21] define mobility patterns as ”an abstraction

of human movement’s spatiotemporal regularity according to human’s historical trajectories”. In addition

to individual trajectories from mobile users data [21,22], alternative sources of urban data are being un-

precedentedly consolidated by world city Councils and subjected to pattern recognition, including: smart

card data from integrated validation systems in public carriers [23]; aggregate event statistics from free

GPS systems such as GOOGLEMAPS and WAZE [12]; trajectories from GPS-equipped public bicycles

and taxis [24]; and traffic data from ILD and cameras found along the major arteries of cities. Under-

standing the patterns of human motion, both globally and individually, is crucial for different purposes,

among them urban planning [21], traffic forecasting [25], and monitoring the spread of an epidemic [26].

Although interest in mobility patterns dates back one century [27], their automated discovery is con-

sidered a recent research area [28]. Below, we group recent contributions on the discovery of urban

traffic patterns along three major categories: classic/statistical approaches (Section 3.1), clustering-

based approaches (Section 3.2) and pattern-centric approaches (Section 3.3) for understanding urban

mobility patterns. Then, Section 3.4 surveys works that integrate context in urban traffic analysis. Finally,

on Section 3.5 we show contributions on the discovery of emerging patterns.

3.1 Classic approaches to traffic data analysis

Classic approaches make use of statistics, parametric models and visualization principles to under-

stand spatiotemporal traffic dynamics. Liao et al. [4] introduced a data fusion approach encompassing

real-time traffic data and travel demand (estimated from Twitter data) that statistically assesses the dif-

ference in private versus public travel time for retrieving spatiotemporal patterns of time discrepancy. To

this end, time-annotated origin-destination matrices are inferred for four cities: São Paulo, Stockholm,

Sydney, and Amsterdam. Gonzalez et al. [22] analyzed trajectories of 10,000 mobile phone users for a

six month period. Inspired by the work of Mantegna and Stanley [29], they identified prominent statis-

tics, including returning peaks, to assess population’s mobility patterns. Dozens of additional studies on

traffic flow along major cities have been more recently conducted [30–34]. Li et al. [35] suggest catego-

rization of traffic flow studies in microscopic-level studies (e.g. car-following models and lane-changing

models), mesoscopic-level studies (e.g. headway/spacing distributions), and macroscopic-level studies

(e.g. fundamental diagram and traffic wave models). They also highlight the changes in traffic flow

models occurred from GPS-based and video-based trajectory data.

Guo et al. [24] proposed visualization principles to analyse a large point-based origin-destination

dataset collected from taxi rides in Shenzhen, China. Unlike most taxi trajectory datasets, this study
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contains only the origin and destination points per trip. To this end, they apply spatial clustering to trans-

form GPS points into meaningful regions, upon which they compute and plot statistics such as inflow,

outflow, and flow ratio along different periods of the day. Hasan et al. [23] provided visualization facili-

ties to understand spatiotemporal mobility patterns gathered from smart card transactions in London’s

public transportation system. Models for intermodal transportation networks proposed within previous

works [36–38] can be used to extend this work for multiple carriers.

Research on traffic predictive models with guarantees of interpretability also offer the possibility of

unraveling mobility patterns. Salamanis et al. [25] propose a method to predict traffic under normal and

abnormal conditions differing in type, severity and duration. To tackle the issue of abnormalities, their

method discovers traffic patterns that occur when an abnormal event of a specific class occurs using

open traffic data from Performance Measurement System (PeMS) in California, spanning a period of 10

years.

3.2 Clustering-based approaches towards traffic data analysis

Clustering methods have the potential to unsupervisedly discover regions of interest, making them can-

didates to offer discrete views of urban traffic data. Necula et al. [12] applied clustering to identify statis-

tically significant traffic patterns given by a contiguous road segments with similar traffic load over time

from 10,000 GPS traffic traces of vehicles from New Haven County, Connecticut, USA. Rempe et al. [39]

propose a graph-based approach to detect vulnerable parts of the road network, named by the authors

as congestion clusters. To identify these vulnerable areas, the authors use spatial smoothing to com-

pute areas with recurrent jams over time, termed congestion pockets. From the found time-dependent

congestion pockets, congestion clusters are inferred, and their statistics computed (e.g. starting and

ending time distributions) and visualized. Song et al. [3] propose the use of hierarchical clustering to

mine spatiotemporal patterns of traffic congestion using multi-source data collected from Beijing, China.

Once these patterns are discovered, geographical associations are retrived and assessed against in-

fluential factors (such as density, design, diversity, among others). Habtemichael et al. [40] introduce

a short-term traffic forecaster based on clustering, winsorization, and rank exponent sensitive to traffic

profiles over 36 freeway datasets from UK and USA.

Despite the relevance of the surveyed works, clustering-based approaches impose similarity to be as-

sessed on a daily basis, preventing the discovery of non-trivial, statistically significant and time-sensitive

associations.
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3.3 Pattern-centric approaches towards traffic data analysis

Gowtham et al. [41] conducted a survey on spatiotemporal pattern mining algorithms. In the context

of urban mobility, researchers have extended classic pattern mining algorithms to successfully discover

co-occurring and sequential patterns in urban traffic data. According to Treiber and Kesting [42], the

discovery of such traffic patterns can be used as features to improve descriptive and predictive mobility

models. Contributions from alternative spatiotemporal data domains can provide important principles

to this end, including research developed on the discovery of spatial dynamics of complex geographic

phenomena. For instance, He et al. [43] proposed an event-based spatiotemporal association pattern

mining approach that encompasses both point data representation and the geographic dynamics of

events using air quality data from Beijing–Tianjin–Hebei regions.

Giannotti et al. [44] proposed new methods to find trajectory patterns (T-Patterns) – location prece-

dences with timing constraints that occur frequently among trajectory instances – such as,

railway station 15min−−−−→ town square 2h15min−−−−−−→ museum.

To this end, the authors propose methods based on the identification of timestamped sequences of

regions of interest using a density-based spatial discretization of trajectory data, which are then used

as an input to the temporally-annotated sequence mining algorithm [45]. Inoue et al. [46] proposed

an extension of a classic pattern mining algorithm – FP-Growth – to mine patterns of daily congested

traffic based on traffic sensor data, and build a representation of congestion propagation processes in

the road network. The study separates weekdays and days with/without rainfall to identify differences

in congestion patterns based on those variables. In contrast with our proposal, the extended FP-growth

algorithm requires patterns to satisfy spatial and temporal contiguity. Chen et al. [47] proposed an

approach to discover patterns in congested traffic from taxi trajectory data by identifying congested links

at each time. Although resembling the idea proposed by Inoue et al. [46], the authors start by finding

Space-Temporal Congestion Subgraphs (STCS) – corresponding to congested roads – using a moving

sliding window, and then apply FP-Growth to mine frequent STCS. Yang et al. [21] study human mobility

patterns by finding hotspots from trajectories of 3474 individuals collected from mobile internet data for

22 days in China. The authors also extend classic pattern mining searches – here Apriori – to find

frequent hotspots, defined as ”the most significant locations along the human’s trajectories”.

Despite their relevance, the surveyed approaches are hampered by the discretization needs of clas-

sic pattern mining algorithms, and unable to handle event data or provide integrative views from hetero-

geneous sources of road traffic data.
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3.4 Context-sensitive analysis of urban traffic

Most of the research conducted to understand and model human mobility in urban areas relies on

observations of habitual behavior and historical data. Situational context such as public events, road

restrictions and meteorology largely influences mobility. Yet, that influence is often disregarded when

analyzing patterns and behaviors in urban traffic data. This section will provide an overview of works on

human mobility that integrate situational context in their analysis.

Situational context includes factors such as public events (e.g. festivals and sport games), that are

planned and known beforehand, as well as factors that aren’t planned (e.g. weather conditions and

incidents). The former factors are often mentioned as Planned Special Events (PSE), term that was

introduced by Latoski et al. in [48].

Kwoczek et al. [49] proposed a method for predicting and visualizing traffic congestions caused by

planned special events. The method is based on an observation of typical behavior in traffic due to PSEs,

which normally have two subsequent waves of congestion: people arriving an event and people leaving

it. Estimating the first wave of congestion is hard, because there are many variables that determine the

popularity of the event. The authors recognize this difficulty and develop a clustering based solution to

retrieve similar PSEs, and use that information to predict and visualize the second wave of traffic, based

on the information of the first wave and on the category of the event (e.g. concert, sports game).

Rodrigues et al. [50] introduced a Bayesian additive model (BAM) for decomposing traffic time series

into structural components – including routine behavior versus individual special events – in order to

estimate the number of arrivals in a given area. The incorporation of public event information improved

predictions. The proposed method has the additional advantage of disclosing each individual event’s

influence, making the model highly interpretable.

3.5 Emerging pattern discovery

The concept of emerging patterns (EP) can be traced back to two different research streams. In time

series data analysis, the discovery of emerging behaviors generally corresponds to the modeling of non-

linear trends within a time series [51]. In this field, emerging behaviors are generally approximated using

non-linear regressive or auto-regressive models, including regime switching models and neural network

models, approximated on the original time series or on a decomposed series after removing seasonal

and cyclical components [52].

In the pattern mining field, emerging behaviors were in 1999 coupled with the pattern concept, imply-

ing the satisfaction of well-defined frequency criteria. An emerging pattern (EP), as firstly introduced by

Dong et al. [53], is a set of data instances whose characteristics entail significant changes between two

(or more) timestamped datasets. Since then, this original notion of EPs has been extended and mostly
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applied in bioinformatic domains [53–57]. Nevertheless, and to our knowledge, EPs have not yet been

extended towards spatiotemporal data structures neither applied in the context of road traffic monitoring

networks.

Dong et al. [53] observed that, given the nature of the early-formulated EPs (larger in size and

small in support), naive algorithms are costly and the Apriori property does not hold for EPs, proposing

dedicated EP searches, and further extending these searches to build a classifier. Similarly, a substantial

number of following works proposed the use EPs in classification tasks [54, 54, 56, 58]. Liu et al. [54]

monitored gene expression under varying conditions, aiming at detecting trends under these conditions

across genes for cells of the same type in order to predict the class of cells from the underlying EPs. Li

et al. [55] extended these contributions using more efficient search variants. Fan et al. [59] propose a

hybrid version of previous EP classifiers and Naive Bayes, yielding interpretation facilities.

Novak et al. [57] presented a survey on supervised descriptive rule discovery, a framework combining

contrast set mining (CSM), emerging pattern mining (EPM), and sub-group discovery (SD). They explain

that ”while all these research areas aim at discovering patterns in the form of rules induced from labeled

data, they use different terminology and task definitions, claim to have different goals, claim to use

different rule learning heuristics, and use different means for selecting subsets of induced patterns”.

In terms of efficiency, Fan et al. [60] in an effort addressed the issue of a large number EPs being

generated by EP mining approaches by proposing an algorithm which considers only interesting EPs.

This interestingness score is based on: support, growth rate, and a relationship between EPs and

statistical measures. Soulet et al. [61] further proposed condensed representations of EPs based on the

classic concept of frequent closed pattern.

More recent contributions extend EP discovery towards large-scale data [62, 63] by combining evo-

lutionary fuzzy systems with the MapReduce paradigm; as well as towards streaming data [64] by com-

bining evolutionary algorithms with batch strategies.

Song et al. [65] developed a methodology to detect and assess emerging, unpexpected and added/per-

ished changes in customer behavior taking into consideration customer profiles and sales data along

time. In the same domain, Chen et al. [66] propose association rule discovery along different time pe-

riods. They extend the early Song et al. [65] concepts towards emerging, unexpected and added rules

and propose corresponding evaluation measures of growth, difference, and modified difference. Li et

al [67] considered data from online reviews to identify EPs of hotel features in order to give hotel man-

agers’ insights about travellers’ interests and expectations. For additional contributions and applications

on EP discovery, the reader is invited to consult the work of Garcia-Vico et al. [68]. Again, and despite

the relevance of the surveyed contributions on EP discovery, its applicability towards spatiotemporal data

structures and mobile sensor domains remains unexplored.
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Part II

Frequent Pattern Mining

23



24



The Lisbon city Council (CML) is currently able to gather different views on road traffic data along the

city. Despite the relevance of this data to understand road traffic dynamics, the comprehensive discovery

of traffic patterns is hampered by numerous challenges highlighted in our introductory chapter.

To address these challenges, this part of the thesis details our proposal on the use of biclustering –

the discovery of subspaces within real-valued data – to comprehensively find congestion patterns from

heterogeneous sources of road traffic data. A traffic pattern is here defined as a recurring congestion

profile, possibly spanning diverse locations and time periods within a day.

To this end, we first provide a discussion on what are actionable road traffic patterns. Second, we

propose a structured view on why, when and how to use biclustering for their effective and efficient

discovery. Finally, we show how each of the identified challenges can be addressed using integrative

data mappings and state-of-the-art principles on pattern-based biclustering. Although biclustering has

been largely used in the biomedical field [13,16], its potential in the mobility domain remains untapped.

We focus our study on the discovery of jam patterns from two major sources of road traffic: 1)

geolocalized speed data (WAZE data), and 2) loop detectors’ data. WAZE data contains information

relative to congestion events, where a congestion event is a road segment that, at some point in time, has

an average traffic speed significantly lower than the regular flow speed for that segment. Loop detectors

are commonly placed in city junctions to measure the number, speed and type of vehicle passages over

time. Both data sources offer relevant complementary views to find patterns in road traffic, including

speed limits, jam size, congestion duration, severity degree, and vehicle throughput. Considering the

Lisbon city as the study case, the gathered results confirm the relevance of biclustering to unravel non-

trivial, meaningful, actionable and statistically significant patterns able to combine heterogeneous road

traffic aspects.

We finalize by detailing the developed context-incorporation mechanism, which allows us to use

biclustering to discover patterns sensitive to situational context. As a case study, we use a dataset of

meteorological conditions in the city of Lisbon to gather jam profiles that are recurrent under specific

weather conditions. We also provide a small discussion on the several potentialities of integrating a

context view.
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As introduced, our work aims at discovering actionable patterns of road mobility from two heteroge-

neous sources of traffic data: georeferenced time series data from ILDs and multivariate event collec-

tions from GPS sensors. Given the spatiotemporal nature of road traffic data, as well as the desirable

properties of the pursued patterns (a complete list is provided in Section 2.5), this is a challenging task.

To solve this task, we propose a two-step methodology. First, transformation procedures are applied to

consolidate the original data sources and map them into new data structures appropriate to the subse-

quent mining task. Second, the use of pattern-based biclustering to discover traffic patterns from the

transformed data sources.

Accordingly, Section 4.1 describes the proposed data transformations and principles for biclustering

traffic data. In addition, Section 4.2 provides a structured view on why, when and how-to biclustering

road traffic data.

4.1 Road traffic patterns using biclustering

4.1.1 Data mappings

The first step of the discovery process is to fix spatial, temporal and calendric constraints, including the

target geographies, date intervals, and weekday annotations. In addition, the time granularity (e.g. 15-

minute, hour or on/off-peak intervals) can be optionally specified to guide road traffic data aggregation.

In its absence, the proposed pattern discovery is iteratively performed using multiple time aggregations.

Once these constraints are fixed, data mappings are applied to transform the original spatiotemporal

data structures into tabular data structures, more conducive to the subsequent pattern mining task. In

the target structure, each observation/row represents a day and each variable/column measures some

specific road traffic aspect on a specific location and time period of a day.

For the ILD data, each variable measures the number of cars passing over a single loop detector

in a specific time interval of the day. Figure 4.1 shows the original structure of the ILD data and the

corresponding data mapping.

For the geolocalized speed data (WAZE data), multiple measurements are taken per event, and

events can occur on different roads. Here the columns correspond to a measurement on a single road

for a specific time interval of the day. Figure 4.2 shows the original structure of WAZE data and the

corresponding transformed data.

The integration of the previous mappings is a simple concatenation of the variables resulting from

the transformation of each road traffic data source.
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(a) Original data structure

(b) Transformed data structure

Figure 4.1: ILD data mapping.

(a) Original data structure

(b) Transformed data structure

Figure 4.2: WAZE data mapping.

4.1.2 Biclustering

Under the previous mappings, traffic data still preserves their spatiotemporal content, yet denormalized

within a tabular data structure, turning it a candidate for the application of biclustering. In fact, the specific

properties of the introduced transformations were specifically proposed to this end. As a result, a traffic

pattern is elegantly seen as a recurrent and coherent congestion profile (w.r.t. speed, volume, extent)
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(a) Illustrative WAZE pattern.

(b) Illustrative ILD pattern.

(c) Illustrative integrative pattern.

Figure 4.3: Illustrative road traffic patterns given by biclusters separately and integratively found in ILD and WAZE
data (collected at Marquês do Pombal junction within the Lisbon city).

that can span diverse locations and different time periods.

Pattern-based biclustering approaches provide the unprecedented possibility to comprehensively

find patterns in real-valued data with parameterizable homogeneity and guarantees of statistical signifi-

cance.

Biclustering aims at finding subsets of observations with values correlated on a subset of variables.

In the context of our work, this means that the pattern of the bicluster corresponds to the jam profile,

the pattern support (i.e. number of observations) corresponds to the number of days with the given

jam profile (i.e. pattern recurrence), and the pattern length (i.e. number of variables) corresponds to

the number of locations and time periods within a day associated with the given jam profile. Figure 4.3

provides an illustration of spatiotemporal traffic patterns given by the target biclusters using BicPAMS
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[16]. The instantiated road traffic patterns were obtained through the application of biclustering over ILD

and WAZE data collected at the heart of the Lisbon city (Marquês de Pombal), Portugal.

To discover different jam profiles using biclustering, the coherence strength and coherence assump-

tion of the target biclustering solutions can be customized in accordance with the desirable profiles of

congestion.

Coherence strength. Biclustering also allows the calibration of coherence strength (Section 2.3) – e.g.

how much speed limits (or car flow) need to differ to be considered dissimilar.

Patterns are inferred from similar (yet non-strictly identical) congestion properties, whether they are:

1) numerical (speed limits, spatial extent), 2) integer (number of vehicles), or 3) ordinal (congestion

severity).

Figure 4.4a-b illustrates the impact that different coherence strength criteria can have on the found

patterns. Considering δ= Ā
|L| (Section 2.3), a looser coherence strength of |L|=3 allows the discovered

traffic patterns to be sensitive to 3 profiles (e.g. low, medium and high volume car passage), while higher

coherence strengths (such as |L|=7) indicates a greater sensitivity to traffic variability.

(a) Coherence assumption:
constant, |L|: 3, |I|: 152, |J|: 4.

(b) Coherence assumption:
constant, |L|: 6, |I|: 525, |J|: 4.

(c) Coherence assumption:
order-preserving, |I|: 462, |J|: 4.

Figure 4.4: Effects of coherence strength and assumption on the resulting traffic patterns.

Allowing these strength-based deviations from pattern expectations in real-valued mobility data is

key to prevent the item-boundaries problem associated with the discretization problems faced by classic

pattern mining methods.
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Constant mobility patterns. Depending on the goal, one or more coherence assumptions (Section

2.3) can be pursued. The classic binary coherence assumption is focused on patterns of congestion

independently of the level of congestion. Such coherence assumption has severe problems because it

is highly dependent on the criteria that determines what is a jam or not. This can be hard to identify given

the heterogeneity of speed limits in accordance with road types. In addition, such option is unable to

distinguish different levels of congestion, a necessary condition if we want to assess our traffic patterns

and guarantee that they are actionable. The binary assumption can thus be replaced by a constant

assumption. Figure 4.3 provides illustrative constant patterns of road traffic.

Non-constant mobility patterns. The constant assumption suffers from a problem: two days need

to satisfy the same jam profile in order to count as supporting observations for a bicluster. However,

congestion highly varies along days. Even when focusing on specific days (e.g. Tuesdays, Wednesdays

and Thursdays; Fridays; holidays), there is a high traffic variability dependent on the presence of public

events, weather context, or road traffic interdictions.

In this context, non-constant patterns should be pursued to guarantee a greater robustness to traffic

variability, while still guaranteeing the coherence of the target traffic patterns. In particular, two types of

traffic patterns are pursued:

• additive pattern: days with variations on the expected jam profile (along specific locations and time

periods of the day), coherently explained by shifting factors;

• order-preserving pattern: days with preserved orderings of jam intensity over a set of locations

and time periods (Figure 4.4c). Illustrating, if a specific location is always more congested than

another with regards to speed limits, the same order is observed irrespectively of the absolute

value associated with the speed limit. Illustrating, consider the measuring of jam extents (kilome-

ters) between 9h-9h15 in three locations (corresponding to variables y2, y3 and y7), days x1 and

x2 (y2, y3, y7|x1)={0.32,0.50,0.47} and p(y2, y3, y7|d2)={0.29,0.97,0.55} are coherently associated

since they preserve the permutation ai2 ≤ ai3 ≤ ai7.

As a result, pattern-based biclustering allows the discovery of less-trivial yet coherent, meaningful and

potentially relevant spatiotemporal associations that form the target traffic patterns.

Handling highly sparse traffic data. Road traffic data is inherently sparse, specially georeferenced

speed data. After the proposed data mappings, an arbitrarily-high fraction of elements from the trans-

formed data is empty due to the localized occurrence of jams in specific locations and time periods. This

creates a new requirement for the target approach: ability to discover patterns in the presence of highly

sparse data.

Since the proposal of BicNET [69], pattern-based biclustering approaches were enriched with prin-

ciples to efficiently explore sparse data. In fact, pattern-based biclustering approaches further enable
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the discovery of biclusters with an upper bound on the allowed amount of missings. This is particularly

relevant to guarantee that the sporadic absence of a jam on a specific time period does not impact the

target road traffic patterns as can be shown in Figures 4.3 and 4.4..

4.2 On why, how and when to apply biclustering

On WHY . As motivated, biclustering of traffic data should be considered to:

• avoid the drawbacks of classic pattern mining methods, including: 1) their susceptibility to the item-

boundaries problems1, and 2) inability to comprehensively explore the spatiotemporal content of

traffic data;

• discover non-trivial patterns of congestion given by constant, additive and order-preserving jam

profiles;

• combine heterogeneous aspects of road traffic, including limited speed, vehicle volume, and spatial

extent of jams;

• pursue patterns with parameterizable properties of interest by customizing the target coherence

strength, quality (noise-tolerance), dissimilarity and statistical significance criteria.

On WHEN . Similarly, biclustering of traffic data should be applied when: 1) jam intensity/profile matters;

2) pursuing less-trivial forms of knowledge (including the introduced constant or order-preserving as-

sumptions); 3) discretization drawbacks must be avoided; 4) heterogeneous sources of road traffic are

available; and when 5) one seeks to find comprehensive solutions of traffic patterns with customizable

homogeneity.

On HOW : comprehensive exploration of traffic data. Pattern-based biclustering offers principles to

find complete solutions of traffic patterns by: 1) pursuing multiple homogeneity criteria, including multiple

coherence strength thresholds, coherence assumptions and quality thresholds; and 2) exhaustively yet

efficiently exploring different regions of the search space, preventing that regions with large patterns

jeopardize the search [16]. As a result, non-trivial yet significant correlations within road traffic data are

not neglected.

In addition, pattern-based biclustering does not require the input of support thresholds as it explores

the search space at different supports [19], i.e. there is no need to place expectations on the minimum

1The possibility to allow deviations from value expectations (under limits defined by the placed coherence strength) together
with multi-item assignments [19] are placed to prevent discretization problems from occurring
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number of days for a jam profile to become relevant. The minimum number of locations and time pe-

riods within a day can be optionally inputted to guide the search. Dissimilarity criteria and condensed

representations can be also placed [16] to prevent the delivery of redundant patterns.

On HOW : statistical significance. A sound statistical testing of road traffic patterns is key to guarantee

the absence of spurious relations, and ensure the relevance of the given patterns to support mobility de-

cisions. To this end, the statistical tests proposed in BSig [15] are suggested to minimize false positives

(outputted patterns yet not statistically significant) without incurring on false negatives. This is done by

approximating a null model of the target traffic data and statistically testing each bicluster against the

null model in accordance with its underlying coherence.

On HOW : robustness to noise. Pattern-based biclustering can find biclusters with a parameterizable

tolerance to noise [19]. Illustrating, a quality of 80% indicates that an upper limit given by 20% of entries

within a bicluster may deviate from the target jam profile (µij /∈ [−δ/2, δ/2]). This possibility ensures

robustness to the inherent daily traffic fluctuations, as well as spontaneous jams caused by sporadic

events which do not yield particular significance.

On HOW : other opportunities. Additional benefits of pattern-based biclustering that can be carried

towards the analysis of traffic data include:

1. the possibility to remove uninformative elements in data to guarantee a focus, for instance, on

non-trivial jam profiles (removal of entries denoting highly congested traffic) [69];

2. incorporation of domain knowledge to guide the task in the presence of background metadata [70];

3. support classification and regression task in the presence of labels (e.g. traffic conditioning modes,

panel message recommendations, situational context) by guaranteeing the discriminative power of

biclusters [14].
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In this chapter we start by showing some preliminary results on Section 5.1, that were gathered prior

to the application of biclustering to get a better grasp on the data. Then, on Section 5.2 we apply the

proposed approach to discover road traffic patterns using biclustering. Finally, on Section 5.3 we show

that biclustering guarantees the statistical significance of the spatiotemporal associations found within

road traffic data, providing a trustworthy means to support mobility reforms.

5.1 Exploratory data analysis

Exploratory data analysis (EDA) is the process of applying different analysis techniques to a dataset,

to achieve a better understanding of its characteristics. The techniques applied are mostly done with

the resource of visualizations, which reveal structures that help analysts maximize their insight of the

dataset. We first conduct an EDA process on the loop detectors data and then on the WAZE’s geolo-

calized speed data.

5.1.1 Loop detectors

The dataset provided by CML contains measurements of 76 loop detectors scattered around Lisbon’s

road network, which count the number of vehicles that cross them with a temporal resolution of 15

minutes. Compared to other works that use data collected from sensors similar to these, the temporal

resolution of the ones under analysis is coarser, which makes deriving other variables such as traffic

speed harder. The analysis is conducted on a set of 4 loop detectors that are placed on roads near

Instituto Superior Técnico, Lisbon, as can be seen in Fig. 5.1.

Figure 5.1: Location of loop detectors under analysis. Loop detectors will be mentioned by their street name: Av.
Manuel da Maia(1) (top right), Av. António José de Almeida (top left), Av. Rovisco Pais (bottom left)
and Av. Manuel da Maia(2) (bottom right).
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The line chart on Fig. 5.2 shows the central tendency and standard deviation of the number of vehicle

passages on the loop detectors under analysis, over the whole period of time available in the dataset.

Cumulative counts over periods of one hour were considered, to show smoother tendencies. The figure

depicts interesting seasonal patterns and characteristics, as well as evidences of problems in the data.

Figure 5.2: Time Series plot of the four loop detectors under analysis.

In particular:

• There is a high variability between the volume of cars passing the different loop detectors. This can

be simply due to the road where each loop detector is located having different usage demands, or

in a worse case due to wrong calibrations of some loop counters causing the registry of abnormally

high/low values of car passages.

• The number of vehicle passages over the period of a day follows a clear pattern, where in early

hours (0-6 a.m.) there are almost no cars passing over the induction loops.

• There is a clear distinction in the volume of traffic on weekdays, which is significantly higher than

on weekends. The green box outlines an example of a workweek and the yellow box an example

of a weekend.

• There are some gaps in the dataset with no data, which are depicted by the red boxes in the figure.

• Between the orange box and the blue box, the volume of vehicles is remarkably different. In

particular, in the blue box the number of vehicle passages registered by the loop detectors is much

higher. A hypothesis for this abrupt growth is the start of the academic year.

40



Box plots offer a way to visualize distribution of data based on statistical summary values: the lower

and upper quartiles (respectively, the 25th and 75th percentile), the median and the extremes of the

data’s distribution. The values that lie outside of the extremes are represented as dots and denote

outliers.

Figure 5.3: Box plots of the four induction loops for weekdays and weekends.

The box plot in Fig. 5.3 shows the distribution of cumulative vehicle passages on the four induction

loops on day intervals, over the whole period of time of the dataset. Each induction loop has two box

plots, corresponding to the distributions for the weekdays and the weekends, because of the difference in

profiles for those periods. There are some properties derived from the figure that are worth mentioning:

• There is a clear difference in the profiles of each induction loop. In particular, the blue induction

loop has a much higher volume of cars passing and a bigger variability in its measures than the

others. As stated earlier for the time series plot, this can be due to errors in the sensor measures

and the sensor being placed in a busier road. The variability can also be caused by the seasonality

detected on the line chart presented before.

• The distribution for most of the loop detectors on weekdays is rather wide. This can be due to
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the difference in volumes remarked on Fig. 5.2 by the orange and blue box. The loop detector

Av. Manuel da Maia(1) in particular registers some skewness in it’s distribution that resembles the

proportion of data in the orange (less volume) and blue (more volume) boxes on Fig. 5.2.

• All the induction loops have significantly lower volume in the weekends, except for some outliers

which are also present on weekdays. This could be due to the effect of situational context such as

special planned events.

• The days that were missing are reflected on the distributions of the box plot, that reach zero for

every induction loop.

5.1.2 WAZE’s geolocalized speed data

The assessed data in this section contains results collected from the WAZE’s API between 2018-09-

03 and 2018-10-09 in the area of Lisbon. There are some missing days in the data probably due to

downtimes in the API server or in the server running the script that collected data from it.

Fig. 5.4 shows a heatmap of the number of congested trajectories by day and hour. On a quick

glance of the visualization, one can already notice some interesting characteristics of the data:

• The amount of missing days is relatively large. An example of a set of missing days is represented

by the red box in the figure.

• From the beginning of September until the week of September 23rd, a vertical gradient is almost

clear, meaning that the number of congested trajectories had a significant growth until that period.

Figure 5.4: Heatmap for the number of congested trajectories by day and hour in the city of Lisbon.
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We suspect that this might be an evidence of the effect of starting the school year and the ending

of summer vacations for most people. This effect was also noticeable on the loop detectors data.

• The number of congested trajectories is much lower in the weekends than during weekdays. The

green box highlights a weekday and the yellow box a weekend.

• During weekdays there are two peaks of congestions, on the morning between 8-10h and on the

evening between 17-19h.

Fig. 5.5 shows a progression of the congestion state in Lisbon’s road network, for the morning of

September 27th, 2018. The color encodes the delay registered at a trajectory, redder means a bigger

delay. It’s noticeable the effect of commuting in the congestion progression. At 8 a.m. there is already

a large amount of congested roads, and at 9 a.m. congested state reaches its peak. Coincidentally,

most people start working near this time. At 10 a.m. congestions start to decrease, and at 11 a.m. most

peripheral roads have no congestions while only some roads near the center of the city register delays

in traffic flow.

(a) 8 a.m. (b) 9 a.m.

(c) 10 a.m. (d) 11 a.m.

Figure 5.5: Congestion snapshots on 27th September 2018, between 8-11 a.m.
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5.2 Road traffic patterns

Considering the Lisbon city as a study case, we applied the proposed approach to comprehensively

discover road traffic patterns from geolocalized speed data from WAZE and inductive loop detector

(ILD) data collected during a two month period in central junctures of the city (Figure 5.6). To illustrate

the enumerated potentialities, experiments are discussed in three major steps, corresponding to the

analysis of the gathered results from ILD, WAZE, and consolidated ILD-WAZE data sources.

Experimental setting. BicPAMS [16] was the selected biclustering approach as it combines state-

of-the-art principles on pattern-based biclustering. BicPAMS is used with default parameters: varying

coherence strength (δ=Ā/|L| where |L| ∈ {2, .., 10}), decreasing support until 100 dissimilar biclusters

are found, up to 30% noisy elements, 0.01 significance level, and constant and order-preserving coher-

ence assumptions. Two search iterations were considered by masking the biclusters discovered after the

first iteration to ensure a more comprehensive exploration of the data space and a focus on less-trivial

patterns of road mobility.

Location-based distributions of speed, extent and frequency were approximated, and the statistical

tests proposed in BSig [15] applied to compute each pattern’s statistical significance.

5.2.1 ILD traffic patterns

Two months of observations produced from loop detectors placed at major junctures of the city were

collected (Figure 5.6a). Table 5.1 synthesizes the results produced by biclustering ILD data with Bic-

PAMS [16].

(a) ILD locations (b) WAZE events

Figure 5.6: Map visualization of the two sources of urban traffic data along the studied area (Marquês de Pombal):
a) ILD sensor placement; b) WAZE jam events on peak hour (1/14/2020, 9AM).
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Confirming the potentialities listed in Chapter 4, BicPAMS was able to efficiently and comprehensively

find homogeneous, dissimilar and statistically significant biclusters – recurrent variations on the flow of

vehicles (throughput) spanning diverse locations and different time periods. Consider, for instance, traffic

patterns given by constant biclusters sensitive to three degrees of volume (|L|=3) and 70% quality. These

traffic patterns have an average of µ(|J |)=20 features (corresponding to different city locations and time

periods of a day) and occur on µ(|I|)=43 days within a two month period (60 days). These initial results

further show the impact of tolerating noise, placing different coherence assumptions (such as the order-

preserving assumption) and parameterizing coherence strength (δ ∝ 1
|L| ) on the biclustering solution.

Figure 5.7 visually depicts a constant and order-preserving patterns of road mobility using a line chart

(where each line corresponds to a day when the traffic pattern was observed) and heatmap (where days

Query Assumption |L| quality #bics µ(|I|) ±σ(|I|) µ(|J |) ±σ(|J |) p-value<1E-3

1 Constant 3 70% 71 43.4±1.7 19.7±16.1 71
2 Constant 4 70% 42 43.0±1.3 10.2±4.4 42
3 Constant 5 70% 10 43.0±0.7 10.6±3.2 10

4 Order-preserving 20 70% 1273 44.5±0.5 6.0±1.7 1273

Table 5.1: Properties of biclustering solutions in ILD data using BicPAMS with varying homogeneity criteria.

(a) Constant assumption, |L|: 3, Quality: 70%, |I|: 44, |J|: 50

(b) Order-preserving assumption, Quality: 70%, |I|: 45, |J|: 13

Figure 5.7: Illustrative constant and order-preserving traffic patterns found in ILD data.
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correspond to rows). The traffic pattern captures coherent variations on the traffic flow across locations

and time periods.

ILD data are in essence georeferenced multivariate time series data (Section 2.1). Understandably,

biclustering can be as well applied over any alternative source of traffic data given by georeferenced

time series, such as the average car speed.

5.2.2 WAZE traffic patterns

WAZE events associated with jam problems at the Marquês de Pombal area within Lisbon were col-

lected for two months (Figure 5.6b). Table 5.2 synthesizes the biclustering results produced by the

application of BicPAMS over WAZE data. Similarly to ILD, we observe an inherent ability of biclustering

to efficiently retrieve a large number of robust, dissimilar and statistically significant patterns of road

traffic. These patterns are reocurring speed limits and jam extent that span specific trajectories and time

periods.

For this analysis we consider WAZE data in their whole richness, combining views on speed, jam

extent, and perceived severity. Illustrating, traffic patterns given by constant biclusters with coherence

strength determined by |L|=4 are sensitive to four levels of severity, speed and jam extension. We can,

for instance, observe that biclusters with |L|=4 and 70% quality have a median of 6 features (corre-

sponding to different city locations and time periods of a day) and occur on an average of µ(|I|)=42 days

within a two month period (60 days). These results further show the relevance of discovering patterns

with different homogeneity criteria (coherence assumption, coherence strength and quality).

Figure 5.8 depicts three constant road traffic patterns (and the respective jam profile, spanned loca-

tions, time periods of the day) using BicPAMS with default parameters.

Each bicluster shows a unique traffic pattern. For instance, the first traffic pattern (Figure 5.8a)

captures a congestion profile at the evening peak hour with locations where jam extensions are high

and locations where speed is severely limited. These results motivate the relevance of finding constant

biclusters to find patterns with coherent speed limits and congestion lengths for a statistically significant

number of days.

A closer analysis of the found road traffic patterns shows their robustness to the item-boundaries

Query Assumption |L| quality #bics µ(|I|)
±σ(|I|)

µ(|J |)
±σ(|J |)

p−value
<1E-3

1 Constant 3 70% 47 44.7±3.6 5.5±1.9 47
2 Constant 4 70% 79 42.1±3.6 5.7±2.0 79
3 Constant (only spatial extension) 3 100% 142 12.6±2.9 4.2±0.5 142

4 Order-preserving 20 70% 153 46.9±3.8 5.7±1.5 153
5 Order-preserving (only spatial extension) 20 70% 135 8.1±2.1 4.1±0.3 135

Table 5.2: Properties of biclustering solutions in WAZE data using BicPAMS with varying homogeneity criteria.
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problem: slight deviations from the expect speed limit or jam extension are not excluded from the biclus-

ter. The target patterns are thus not hampered by the drawbacks of discrete views on road traffic.

Non-constant patterns are in this work suggested to find more flexible patterns of road traffic, usually

associated with less-trivial traffic associations. Figure 5.9 depicts two non-constant traffic patterns with

an order-preserving assumption. This assumption is useful to capture coherent orders in jam profiles,

thus being able to account for coherent differences in speed limits, jam extensions and expected delays

across days. As one can clearly see on the heatmaps (Figure 5.9a and b), order-preserving patterns

are characterized by a well-established permutation on the features associated with a congestion.

(a) Constant assumption, |L|: 3, Quality: 70%, |I|: 49, |J|: 8

(b) Constant assumption, |L|: 4, Quality: 70%, |I|: 41, |J|: 12

(c) Constant assumption, |L|: 3, Quality: 100%, |I|: 5, |J|: 12

Figure 5.8: Three illustrative constant patterns of road traffic found in WAZE data.
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(a) Order-preserving assumption, Quality: 70%, |I|: 49, |J|: 8

(b) Order-preserving assumption, Quality: 70%, |I|: 13, |J|: 4

Figure 5.9: Three illustrative order-preserving patterns of road traffic found in WAZE data.

As introduced (Section 2.1), collections of WAZE events are characterized by an inherent structural

sparsity – i.e. the mapped data structure can have an arbitrary-high amount of missing entries depending

on the chose temporal granularity. In the conducted experiments, the amount of missing entries for the

15 minutes granularity surpasses 90%. This observation further confirms the robustness of pattern-

based biclustering in discovering mobility patterns from highly sparse traffic data.

5.2.3 Integrative patterns of road traffic

Finally, we briefly show integrative traffic patterns from the consolidation of ILD and WAZE data sources.

Table 5.3 describes the properties of the pattern solutions produced from specific biclustering searches.

Given the need to account for cross-source relationships, we can observe that the resulting traffic pat-

terns have in average either a lower number of supporting days (an average of 20 days from the mon-

itored 60-day period) or a lower number of jam features (an average of approximately 10 features). A

considerably high number of dissimilar and statistically significant patterns combining speed and volume

views on road traffic was discovered. Tolerance to noise of these solutions can be easily customized

in order to comprehensively find patterns with parameterizable degree of quality. In addition to noise-

tolerance, ηij /∈ [−δ/2, δ/2], coherence strength δ=Ā/|L| can be customized to comprehensively model
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Query Assumption |L| quality #bics µ(|I|)
±σ(|I|)

µ(|J |)
±σ(|J |)

p−value
<1E-3

1 Constant 3 70% 21 21.9±4.0 12.0±2.2 21
2 Constant 4 80% 56 20.5±2.1 11.4±1.3 56
3 Constant (speed limitation and ILD) 3 80% 77 5.3±2.7 10.6±1.0 77

Table 5.3: Biclustering results from consolidated ILD and WAZE data using BicPAMS with different homogeneity
criteria.

relations with slight-to-moderate deviations from traffic pattern expectations.

Figure 5.10 depicts three of the dozens of integrative traffic patterns found in Marquês de Pombal’s

junctures within the Lisbon city. The interesting aspects of all of these patterns is that they combine

frequentist views pertaining to ILD data, as well as continuous views on speed and jam extension,

pertaining to WAZE data. Considering the second depicted pattern (Figure 5.10b), it captures a traffic

profile spanning different streets around Marquês de Pombal along different periods of the afternoon

with a delineated jam profile in terms of flow, speed and spatial extent.

5.3 Statistical significance

Table 5.1 shows the ability of the target biclustering searches to find statistically significant relations

within road traffic data. A bicluster is statistically significant if the number of days with a given conges-

tion profile is unexpectedly low [15]. Figure 5.11 provides a scatter plot of the statistical significance

(horizontal axis) and area |I|x|J | (vertical axis) of constant biclusters with |L|=3 and >70% quality.

This analysis suggests the presence of a soft correlation between size and statistical significance. We

observe that a few biclusters from both ILD and WAZE data sources have low statistical significance

(bottom right dots) and can therefore be discarded not to incorrectly bias mobility decisions.
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(a) Constant assumption, |L|: 3, Quality: 70%, |I|: 5, |J|: 14

(b) Constant assumption, |L|: 4, Quality: 80%, |I|: 26, |J|: 16

(c) Constant assumption, |L|: 3, Quality: 80%, |I|: 8, |J|: 12

Figure 5.10: Illustrative mobility patterns found from heterogeneous traffic data (event and time series traffic data),
integrating views on traffic flow, speed and jam extension.
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(a) Traffic patterns from ILD data.

(b) Traffic patterns from WAZE data.

Figure 5.11: Statistical significance versus size of the collected constant patterns of road traffic (|L|=3 and 70% of
quality).
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Integrating situational context in the discovery of road mobility patterns allows us to further leverage

our pattern mining solution. By integrating context in the discovery of patterns, we are able to find traffic

profiles that are recurrent under specific context conditions. In this work we consider meteorological

context, as this information can be crucial to reveal important aspects of the road infrastructure and

personal travelling choices. For example, deficient water drainage can cause a recurrent profile of

severe jams in a road, or high temperatures can cause people to prefer taking a road near the ocean,

which in turn can cause abnormal congestions there. This section shows how we can use biclustering

to find congestion profiles sensitive to situational context.

6.1 Context-incorporation mechanism

The first step to incorporate situational context in our solution is to apply appropriate data mappings to

the context data, in our case meteorology data. These transformations will be similar to the ones applied

to road traffic data, where temporal and calendric constraints are fixed, including date intervals, weekday

annotations and time granularities to guide the context data aggregation. This will allow us to gather a

structure that is conveniently designed to be integrated with road traffic data for the pattern discovery

task.

Figure 6.1: Time series plot of normalized meteorological variables between 27th October of 2018 and 8th Novem-
ber of 2018.
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The used context dataset contains a diverse set of variables of meteorological conditions along time,

namely temperature, humidity, wind intensity, and radiation levels (Figure 6.1). Figure 6.2 shows the

original structure of the meteorological data and the corresponding data mappings for the temperature

attribute.

(a) Original data structure

(b) Transformed data structure

Figure 6.2: Meteorological data mapping.

Traffic-context consolidation. Under the previous mappings, situational context data can be matched

to the road traffic data by day and time point. We discretize the road traffic data and the situational

context mask separately, which allows us to calibrate independently the coherence strength for both

data sources. As an example, consider |L|=3 (symbols {A,B,C}) for the road traffic data and |L|=2

(symbols {A,B}) for the situational context mask, where each symbol represents a value range that can

overlap with others to prevent discretization problems. Table 6.1a illustrates road traffic data, Table 6.1b

the situational context mask and Table 6.1c the result of the concatenation between both. The resulting

concatenation between road traffic data and the context mask still preserves a structure adequate for

the application of biclustering.

6.2 Results

To illustrate the potentialities of integrating situational context in the discovery of road traffic patterns, an

experiment was conducted using the same experimental setting as in Section 5.2. For this analysis we

consider only WAZE’s geolocalized speed data since we want to focus on explore context’s influence on

congestion profiles, information that is given in a more confiable way in WAZE’s data than on ILD data.
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Day ILD1 00:00h · · · ILDn 23:00h Delay Road1 00:00h · · · Delay Roadn 23:00h

D1 A · · · B C · · · A
D2 C · · · A C · · · B
· · · · · · · · · · · · · · · · · · · · ·
Dn−1 A · · · B C · · · B
Dn B · · · C A · · · B

(a) Illustrative road traffic data with |L|=3 (symbols {A,B,C}).

Day ILD1 00:00h · · · ILDn 23:00h Delay Road1 00:00h · · · Delay Roadn 23:00h

D1 D · · · E E · · · D
D2 E · · · E E · · · D
· · · · · · · · · · · · · · · · · · · · ·
Dn−1 E · · · E D · · · D
Dn E · · · D D · · · E

(b) Illustrative situational context mask with |L|=2 (symbols {D,E}).

Day ILD1 00:00h · · · ILDn 23:00h Delay Road1 00:00h · · · Delay Roadn 23:00h

D1 A:D · · · B:E C:E · · · A:D
D2 C:E · · · A:E C:E · · · B:D
· · · · · · · · · · · · · · · · · · · · ·
Dn−1 A:E · · · B:E C:D · · · B:D
Dn B:E · · · C:D A:D · · · B:E

(c) Result of concatenation between a) and b).

Table 6.1: Illustrative example to demonstrate the concatenation between road traffic data and situational context
mask.

Figure 6.3 visually depicts two constant road traffic patterns from WAZE’s geolocalized speed data

and the corresponding situational context mask. Each context-incorporated traffic pattern capture coher-

ent variations of traffic that are recurrent under specific context conditions, in this case meteorological

conditions.

Figure 6.3a shows an evening peak hour congestion profile that is recurrent under medium-low wind

intensity. It also shows that our solution preserves the robustness to the items-boundaries problem,

allowing slight deviations in the context mask. Figure 6.3b depicts a profile with large jam extensions

and severe speed limitations over a large period of time where the atmospheric pressure varies between

medium-high and high values.
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(a) |L|: 3, Context |L|: 4, Quality: 70%, |I|: 8, |J|: 8

(b) |L|: 3 Context |L|: 4, Quality: 80%, |I|: 13, |J|: 4

Figure 6.3: Illustrative patterns found using context-incorporation on geolocalized speed data.
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Part III

Emerging Pattern Mining
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This part of the thesis details E2PAT, a scalable method to comprehensively detect emerging patterns

from heterogeneous sources of spatiotemporal data generated by large sensor networks.

Similarly to the method proposed on Part II of the thesis, we want to address the challenges posed

by the inherent complexity of traffic data to comprehensively discover patterns of urban traffic. Here we

consider the traffic data gathered by mobile sensors, road cameras, and loop detectors, to be a hetero-

geneous sensor network. Heterogeneous sensor networks include systems such as traffic monitoring

systems and telemetry systems, which produce massive spatiotemporal data that offer the opportunity

to acquire comprehensive views of systems’ behavior along time.

Discovering emerging patterns in such heterogeneous sensor networks is essential to identify im-

portant changes that reveal needs for actuation [71]. Illustrating, increased utility, processing and com-

munication needs along certain routes of a supply network may reveal future bottlenecks, propelling

dynamic rebalancing initiatives. In urban mobility, emerging patterns reveal ongoing changes in city traf-

fic dynamics, whose growth along time may indicate the establishment of new congestion trends with

impact on the normal traffic flow [4, 46]. Those trends can evolve to create traffic bottlenecks if timely

precautions are not taken [47]. As such, the early detection of emerging patterns offers urban planners

the opportunity to make the necessary provisions to urban mobility.

The proposed method E2PAT, is able to discover emerging patterns from heterogeneous spatiotem-

poral data in linear-time. It combines three simplistic yet effective operations – time series differencing,

spatial intersection and regression calculus – for the efficient discovery of all emerging patterns observed

along geographies of interest. In addition, we propose an integrative score to measure the relevance

of emerging patterns that yield statistical properties of interest. To mine emerging patterns sensible to

situational context, we propose a context-aware filtering mechanism that filters data according to several

context variables, guiding E2PAT’s pattern discovery.
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As introduced, our work aims at efficiently discovering emerging patterns from heterogeneous sources

of spatiotemporal data produced by sensor networks. In particular, and as the motivating study case, we

focus on emerging patterns of road mobility from georeferenced time series data produced by stationary

loop counters, and multivariate event collections produced by GPS sensors. This task is challenged by

the inherently complex spatiotemporal nature, heterogeneity, and massive size of the target sensor data.

To address these challenges, we propose a linear-time method to comprehensively discover emerging

patterns, termed E2PAT (Emerging Event PATtern miner).

E2PAT combines three simplistic yet effective principles: i) spatial intersection and time windowing

operations for the comprehensive traversal of search space (Section 7.1); ii) combined use of time series

differencing operations with linear regressors (Section 7.2); and iii) integrative scoring to measure the

relevance of emerging patterns and control the amount of false positive and false negative discoveries

(Section 7.3). E2PAT is available at Github.

7.1 Spatiotemporal data mappings

E2PAT is a two-step process. First, transformation procedures are applied to consolidate the original

spatiotemporal data sources and map them into new data structures more conducive to the subsequent

mining task. To this end, spatial and temporal constraints can be inputted at this stage to guide the dis-

covery. Second, emerging patterns are discovered from the transformed data by combining differencing,

regression and integrative scoring principles.

7.1.1 Spatial constraints

For handling trajectories of arbitrary length, there is the need to fix an adequate spatial granularity.

E2PAT offers two major possibilities. First, E2PAT can rely on an already established categorization. For

instance, street names in the context of road trajectory data or every segment between two junctures/n-

odes from a sensor network are supported criteria.

Second, the categorization can be automatically produced using a geographical mesh/grid for seg-

menting the set of all possible trajectories. The granularity of the input mesh can either create coarser

or finer spatial views in comparison with the first option.

Under the selected spatial granularity, events are then linked to one or more segments in accordance

with their spatial extent. To this end, simplistic yet efficient trajectory-mesh indexation and trajectory-

segment intersections are applied to associate events to segments in linear time (Section 7.4).

Finally, the events associated with each one of the identified segments are temporally ordered to

compose a sparse (multivariate) time series from each event’s timestamp, t, and (multivariate) observa-

tion, x.
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7.1.2 Temporal constraints

Three major types of temporal constraints can be placed. First, calendrical constraints can be placed

to segment the available data in (possibly overlapping) data chunks, and data transformations applied

on each chunk. By default, the day of the week, weekdays, holidays, and on/off-academic period calen-

dars are considered. Emerging patterns are discovered in linear-time for each one of these calendars

(Section 7.4).

Second, a time granularity (e.g. 15-minute, hour or on/off-peak intervals) can be optionally specified

to guide the discovery of emerging behaviors. In its absence, the proposed pattern discovery is itera-

tively performed using multiple time aggregations. Note that emerging patterns are not detected over

a continuous timeline due the daily traffic cycles. Instead, they are discovered on these time windows

throughout the days of the previously fixed calendar.

Given a specific time granularity, georeferenced time series can then be resampled using aggrega-

tors (e.g. sum of vehicles per time interval, average vehicle speed per time interval). In the context

of spatiotemporal event data, the sparse series produced under the principles introduced in previous

Section 7.1.1 are as well resampled using aggregation procedures in accordance with the target vari-

ables (e.g. event with maximum spatial extension per time interval, or severity mode from the occurring

events).

Third, larger time windows, spanning a fixed number of days, can be optionally specified to guide the

discovery of patterns whose emerging behavior is only recently elicited (spanning just a partial period).

By default, a single window spanning all the available data is considered since late-occurring patterns

can still be detected under the proposed differencing operations.

7.1.3 Data transformation

Once these constraints are fixed, data mappings are applied to transform the original spatiotemporal

data structures into multivariate time series structures, more conducive to the subsequent step. In the

target structure, each observation corresponds to a day from a specific calendar at a specific time (see

Section 7.1.2) and each variable measures some aspect of the target system at a specific location.

Considering road traffic monitoring systems, the transformed ILD data measures the number of cars

passing over a single loop detector during a specific time interval for each calendar day. For the ge-

olocalized speed data, multiple measurements are taken per event and principles from Section 7.1.1

applied to aggregate events per road segment. Figure 7.1a and 7.1b show the original structures of ILD

and geolocalized speed data.

The integration of the previous mappings is a simple concatenation of the time series variables

resulting from the transformation of each data source, as shown in Figure 7.1c.
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(a) Original ILD data structure

(b) Original geolocalized speed data structure

(c) Integrative series data structure

Figure 7.1: Original and transformed spatiotemporal data structures.

7.2 Series differencing and emergence

7.2.1 Comprehensive emerging pattern discovery

The proposed mapping generates as many multivariate time series as the number of calendars, time

intervals per day, and fixed spatial granularity (Section 7.2), i.e. number of regions in the context of

mobile sensors and sensorized locations in the context of stationary sensors.

E2PAT is then applied for each variable of each multivariate time series in order to detect isolated
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(a) Original time series (b) Differenced time series

Figure 7.2: Role of time series differencing operations for detecting emerging trends using linear models.

emerging behavior in accordance with differencing and regression principles (Sections 7.2.2 and 7.2.3).

The found emerging behaviors are then comprehensively assessed using integrative scoring principles

(Section 7.3) and combined to produce the target emerging pattern profiles.

7.2.2 Differencing

Given the fact that heterogeneous sensor networks produce massive data, learning non-linear (auto-

)regressive models is a computationally expensive task, intractable to the target end. To tackle this

observation, we make use of simple yet effective time series differencing operations.

Time series differencing is the act of subtracting consecutive observations from a time series, xt+1−

xt. Time series differencing has been traditionally applied in time series analysis to stationarize non-

stationary time series. In the context of our work, we use this principle with a different end, to approxi-

mate emerging trends using linear regressions as illustrated in Figure 7.2. When a time series follows

an exponential trend explained by a certain growth factor (e.g. Figure 7.2a), the differenced time series

will have a linear behavior (e.g. Figure 7.2b). This turns time series differencing a robust candidate for

the targeted task.

7.2.3 Regression

E2PAT allows the search for three types of patterns: simple, emerging and abruptly changing patterns.

Simple patterns are simple trends in the original time series data, approximated by a linear regression

with the dependent variable being a variable (e.g. speed limit or jam spatial extent) and the independent

variable the calendar day.

Emerging patterns are trends when the target series variable is differenced, allowing us to capture

exponential trends.
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Finally, abruptly changing patterns are trends observed in time series after two differencing opera-

tions (i.e. second-order differenced series).

To identify the linear trends on the (differenced) time series, a simple linear regression is estimated

on each variable using the least squares method, with slope, d,

d =

∑n
i=1 xiti −

∑n
i=1 xi

∑n
i=1 ti

n∑n
i=1 x

2
i −

∑n
i=1 x

2
i

n

, (7.1)

and a coefficient of determination, r2,

r2 =

∑n
i=1(x̂i − ¯̂x)2∑n
i=1(xi − x̄)2

. (7.2)

Linear-time decomposition of the time series can be optionally applied to remove seasonal and cycli-

cal components for a more correct approximation of the determination coefficient.

7.3 Integrative scoring

An integrative scoring, yielding statistical properties of interest, is proposed to quantify the relevance

of patterns. The score is further used filter the outputted emerging patterns in order to minimize the

presence of both false positive patterns (retrieved yet not relevant) and false negative patterns (not

retrieved yet relevant).

The proposed score function is influenced by four major attributes:

• the slope of the linear regression, measuring the growth rate of the pattern;

• the r2 of the regressive model, measuring the accuracy term of the pattern (1 when optimal and

near 0 when random);

• the relative support of the pattern (i.e. the number of observations in the pattern divided by the

maximum number of observations found within the same data source);

• the differencing order (Section 7.2.2), a term to favour emerging patterns against simple trends.

The proposed scoring function is given by:

score(d, r2, sup, p) = (α1 × d+ α2 × r2 + α3 × sup)α4(1+p) (7.3)

ooooo

where d is the slope of the fitted linear regression (1), r2 is the coefficient of determination (2), sup is the

relative support, and p is differencing order (0 if absent). α1, α2, α3 and α4 are parameterizable weights
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for each factor that can obtain under a sensitivity analysis. Compelling empirical evidence from road

monitoring traffic systems suggests α1=0.3, α2=0.5, α3=0.2 and α4=1 as default values.

The d term is bounded between -1 and 1, while r2 and sup terms are bounded between 0 and 1. As

a result, the proposed score function is also bounded between -1 and 1.

Because the sign of the score is dictated by the slope d, it easily informs whether we are in the

presence of a congestion pattern (positive score) or a decongestion pattern (negative score). In the

context of urban mobility, some of the monitored variables including speed limits, jam spatial extent,

jam recurrence, jam delay, jam severity, and car frequencies. With the exception of speed limits, all the

values measured for the remaining road traffic variables increase when congestion levels increase. As

such, we change the sign of the slope of the speed limit variables, so that patterns with different road

traffic variables can be interpreted seamlessly.

In addition to its easily interpretable bounds, the statistical distribution of the scores computed for the

found patterns from spatiotemporal traffic data reveals the the observed values approximately follows a

centered Gaussian distribution, passing tests of normality at α=0.05 significance level.

7.4 Computation complexity of E2PAT

Theorem. E2PAT has linear time complexity on the input data size.

Proof. First, considering georeferenced time series data. Let us assume the presence of r stationary

devices, each measuring m variables along T steps. Input data in this context has O(rmT ) size. Now

consider the presence of k1 calendars and the presence of k2 time periods per day. The proposed

transformation process will lead to the formation of k1k2r time series, each with a m multivariate order.

This leads to time series data of size O(k1k2rm
T
k2

)=O(k1rmT ). Note that the number of calendars is

always a small constant. For instance, considering the days of the week, where weekdays are further

decomposed according to on and off-academic periods, k1=2+5×2=12. As such, the produced time

series have size O(rmT ). As the data transformation step is just based on linear-time segmentation and

resampling operations, the computational complexity of this step is in fact O(rmT ).

Three differencing operations, k3=3, are applied to allow the discovery of emerging and abruptly

changing patterns. As differencing is a linear operation, this step takes O(k3rmT )=O(rmT ) time. Finally,

linear regressions are learn for each variable of each time series. Since the calculus of formulae (1) and

(2) is also accomplished in linear time, the time complexity of this step is O(k3rmT )=O(rmT ).

Let us now consider spatiotemporal event data, and the presence of massive number of q events with

varying timestamps and trajectories spanning different geographies. Let us consider the presence of a

total number of k4 trajectory segments. The production of these segments against a user-defined mesh

can be understandably performed in linear time using a simple spatial data structure. In addition, the
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indexation of the q events into these segments has time complexity ofO(k4q). Since k4 is also a constant,

the time complexity of the transformation stage is O(q). Similarly as described for georeferenced time

series data, the subsequent steps on the transformed event series with total size O(qm) (where m is the

multivariate order of the events) can be computed in linear time, yielding O(qm) complexity. �
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Considering the Lisbon city as a study case, we applied the proposed approach to comprehensively

discover emerging traffic patterns of road mobility from geolocalized speed data provided by WAZE

and inductive loop detector (ILD) data collected during a two month period in central junctures of the

city (Figure 8.1). To illustrate the enumerated potentialities, the gathered results from consolidated ILD-

WAZE data sources are discussed.

(a) ILD locations (b) WAZE events

Figure 8.1: Map visualization of the two sources of urban traffic data along the studied area: a) ILD sensor place-
ment; b) WAZE events.

Experimental setting. The score parameters were chosen by empirically experimenting different values

and validating the relevance of the best scored patterns with mobility experts from LNEC1 and CML2.

Upon experimental analysis, a higher weight was allocated to the r2 term to ensure that high scored

patterns corresponded to regressions with a good degree of fitness. Since we are analyzing consolidated

sensor data from ILD and WAZE event data, a lower weight was given to the support terms so that

patterns from the sparser event data are not penalized in relation to the more dense stationary ILD data.

The fixed score parameter values were: α1 = 0.3; α2 = 0.5; α3 = 0.2; α4 = 1.

8.1 Emerging patterns of road traffic

Table 8.1 presents the best scored congestion and decongestion traffic patterns on the consolidated

ILD-WAZE data. The results gathered from our solution capture a wide variety of simple and emerging

patterns on different traffic variables, spanning different road segments at different periods of the day. By

having a quick overview of the table results, we can remark some interesting aspects: (i) the discrepancy

1http://www.lnec.pt/en/departmental-units/transportation-department/
2https://www.lisboa.pt/cidade/urbanism
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between the support of ILD and WAZE patterns did not prevent the discovery of varied patterns, showing

the importance of a proper score parameterizations able to handle arbitrarily-high data sparsity levels;

(ii) the r2 of emerging patterns from the stationary ILD sensors is generally lower than those produced

from mobile sensors. A minimum threshold on the r2 term can therefore be place to guarantee the

absence of false positive discoveries; (iii) among the highest and lowest scored patterns, we find an

emerging sharing the same street (R. Castilho) and time (13:00) due to an increase of jam extensions

but, simultaneously, a higher throughput of cars.

To guide the interpretation of the found patterns and the associated scores, Figure 8.2 visually depicts

four of the found patterns (two emerging and two simple patterns from each data source). The red

line corresponds to the resulting regression and the blue dots are the data points after the undertaken

Time Location Attribute Pattern
Type

Score R2 Slope Support

13:00 R. Castilho Spatial Extension Emerging 0.51 0.81 0.50 5
22:00 Av. da Liberdade Spatial Extension Simple 0.39 0.75 1.00 6
08:00 R. Castilho Spatial Extension Emerging 0.36 0.68 0.31 5
13:00 R. Braamcamp Spatial Extension Simple 0.33 0.98 0.20 6
22:00 Túnel do Marquês Speed Simple 0.28 0.61 -0.94 9
03:00 Av. da Liberdade Spatial Extension Emerging 0.27 0.55 0.26 6
10:00 R. Sousa Martins Delay Emerging 0.24 0.60 0.10 5
18:00 R. Sol ao Rato Spatial Extension Simple 0.24 0.74 0.61 5
16:00 R. Joaquim António de

Aguiar
Delay Emerging 0.24 0.54 0.20 5

20:00 ILD cod3:id9 Car Frequency Emerging 0.22 0.01 0.07 48
19:00 ILD cod21:id12 Car Frequency Emerging 0.22 0.02 0.05 48
19:00 ILD cod3:id23 Car Frequency Emerging 0.22 0.02 0.05 48
12:00 ILD cod3:id14 Car Frequency Emerging 0.22 0.03 0.06 47
12:00 ILD cod21:id24 Car Frequency Emerging 0.22 0.03 0.06 47
13:00 ILD cod3:id9 Car Frequency Emerging 0.21 0.00 0.06 47
19:00 ILD cod21:id24 Car Frequency Emerging 0.21 0.01 0.04 48
19:00 ILD cod3:id14 Car Frequency Emerging 0.21 0.01 0.04 48
16:00 ILD cod3:id9 Car Frequency Emerging 0.21 0.00 0.05 47
22:00 ILD cod21:id24 Car Frequency Simple 0.21 0.58 0.31 48
22:00 ILD cod3:id14 Car Frequency Simple 0.21 0.58 0.31 48

18:00 R. Sol ao Rato Delay Emerging -0.21 0.39 -0.34 5
07:00 ILD cod3:id9 Car Frequency Emerging -0.22 0.00 -0.07 47
12:00 ILD cod3:id9 Car Frequency Emerging -0.22 0.00 -0.07 47
08:00 ILD cod3:id9 Car Frequency Emerging -0.22 0.00 -0.08 47
22:00 ILD cod3:id9 Car Frequency Emerging -0.22 0.00 -0.08 48
18:00 ILD cod3:id9 Car Frequency Emerging -0.22 0.00 -0.08 48
11:00 R. Silva Carvalho Speed Emerging -0.23 0.24 0.56 5
10:00 ILD cod3:id9 Car Frequency Emerging -0.23 0.00 -0.11 47
11:00 R. Viriato Spatial Extension Simple -0.24 0.89 -0.17 6
09:00 ILD cod3:id9 Car Frequency Emerging -0.24 0.00 -0.15 47
04:00 Av. da Liberdade Speed Simple -0.27 0.78 0.57 6
23:00 Av. da Liberdade Spatial Extension Emerging -0.31 0.15 -0.90 5
03:00 Av. da Liberdade Speed Simple -0.34 0.76 0.87 6
08:00 R. das Amoreiras Speed Emerging -0.34 0.14 1.00 5
13:00 R. Castilho Speed Simple -0.35 0.72 1.00 5
08:00 R. Castilho Speed Simple -0.36 0.83 0.75 5
18:00 R. Sol ao Rato Speed Simple -0.39 0.77 0.99 5
22:00 Av. da Liberdade Speed Simple -0.45 0.81 1.00 6
08:00 R. Castilho Speed Emerging -0.49 0.76 0.56 5
13:00 R. Castilho Speed Emerging -0.65 0.82 0.94 5

Table 8.1: Top 20 congestion and decongestion traffic patterns in the studied area under a weekday calendar.
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transformation procedures. Fig.8.2a presents an emerging pattern associated with an increased traffic

queue. The pattern has a considerably good score, which is visually justified by the accentuated slope

and moderate fitness to the data points. Fig.8.2b depicts a speed congestion pattern, which for this

variable has negative slope (decreasing limit). Fig.8.2c shows an ILD emerging pattern with a relatively

low r2, but with a small moderately positive tendency from many available data points. Finally, Fig.8.2d

is one of the top simple ILD patterns, showing an accentuated slope and a good fitness term.

(a) Emerging congestion pattern (growing jam extension) with
score:
0.25 = (α1 ∗ 0.24 + α2 ∗ 0.12 + α3 ∗ (13/15))2

(b) Simple congestion pattern (decreasing speed limit) with
score:
0.28 = (α1 ∗ −0.94 + α2 ∗ 0.61 + α3 ∗ (9/31))1

(c) Emerging traffic throughput trend with score:
0.21 = (α1 ∗ 0.06 + α2 ∗ 0.03 + α3 ∗ (47/48))2

(d) Simple traffic throughput trend with score:
0.21 = (α1 ∗ 0.31 + α2 ∗ 0.58 + α3 ∗ (48/48))1

Figure 8.2: Illustrative set of patterns found by E2PAT in consolidated ILD-WAZE data.
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8.2 E2PAT visualization tool

A visualization tool was developed to support the analysis and guide the navigation throughout the out-

putted pattern solutions. The E2PAT tool is integrated within a decision support system that is currently

being deployed in the Lisbon city Council to support urban mobility reforms.

An overview of the tool is shown in Figures 8.3 and 8.4. The tool provides a user friendly interface

for querying the desirable sources of spatiotemporal data by selecting the desirable types of sensors

spread across the Lisbon’s city and variables of interest. The data can be queried by date, under

different calendrical and time granularity constraints, as well as filtered spatially using the geometric

selection tool in the map.

The pattern solutions are presented using both interactive tables and interactive maps. The listed

emerging patterns can be sorted by spatial and temporal criteria in order to aggregate potentially corre-

lated patterns; as well as by the final score or by each one of the constituent terms (growth, fitness and

support). The E2PAT further supports different importation-exportation facilities, allowing the queried

data and pattern solutions to be exported into a CSV format to perform further analyzes.

Figure 8.3: Overview of the user dashboard for querying the road traffic data sources.
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The outputted maps offer a wide-range of possibilites for users to comprehensively explore emerging

patterns in accordance with their relevance and spatiotemporal properties. The map has a time selector

which allows the user to select specific time points or aggregate results produced over a time range.

The visualizations can also vary in accordance with the selected variables of higher interest. The count,

which represents the number of times a trajectory was congested between a certain period, is summed,

and for the speed and delay the mean is calculated.

(a) Congestion patterns (b) Decongestion patterns

Figure 8.4: Map visualization of the found patterns from both ILD-WAZE data sources using score-based coloring
of point-based and trajectory-based emerging patterns.
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Likewise to the work done on Chapter 6 of the biclustering method, we developed a solution to

mine emerging patterns sensible to context for E2PAT. The developed solution could also be applied to

biclustering as it consists on applying additional filters in the data consolidation step, where spatial and

temporal constraints are fixed to guide the pattern discovery.

9.1 Context-aware filtering mechanism

In addition to the querying abilities stated in Section 8.2, the tool also provides a user friendly inter-

face (Figure 9.1) for querying data by situational context. The data can be queried by meteorological

conditions allowing the guidance of the pattern discovery algorithm for specific weather states. This func-

tionality can leverage our pattern mining solution by granting the ability to discover emerging patterns

under specific meteorological conditions. Data can also be queried to filter out observations spatially and

temporally close to road restrictions (e.g. road works, road narrowings). This functionality can potentially

leverage the quality of the discovered emerging patterns, since we can remove observations that could

possibly skew the results. Consider for example a road restricted by renovation works, this would likely

cause a series of abnormal congestions in a certain area, that in turn would be discovered as emerging

patterns. However, these congestions do not necessarily represent a change in traffic behavior that

reveal needs for actuation, and the discovered patterns can be considered false positives.

Figure 9.1: Overview of the interface for filtering road traffic data by situational context.
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9.2 Results

To illustrate the potentialities of integrating situational context in the discovery of emerging road traffic

patterns, an experiment was conducted using the same experimental settings as in Chapter 8 and data

from geolocalized speed data provided by WAZE collected during a two month period. We analyze the

results by presenting the discovered emerging patterns without situational context, and comparing them

to the results with filtered road restrictions and under specific weather conditions (Figure 9.2).

Road restrictions. Table 9.1 presents the best scored congestion and decongestion traffic patterns

on WAZE’s geolocalized speed data without situational context, capturing a wide variety of simple and

emerging patterns spanning different road segments at different periods of the day. By comparing the

results to the ones gathered after removing observations that happened under the same time span as

the captured restrictions (Table 9.2), we can remark some interesting aspects: (i) any of the captured

congestion patterns captured without situational context were caught when filtering by road restrictions.

This hints that most of the congestions weren’t caused by emerging traffic behaviors on those locations

and are a consequence of road restrictions in the area; (ii) the scores of the decongestion patterns are

generally higher after filtering by road restrictions, hinting that some patterns weren’t being captured

due to the presence of observations that were skewing the results; (iii) the patterns on Av. Calouste

Gunbenkian that were caught after filtering by road restrictions are also present in the results without

situational context, however their score is different because of the use of relative support.

(a) Original (b) Filtered by road restrictions (c) Filtered by weather conditions

Figure 9.2: Map visualization of the geolocalized speed data: a) without situational context; b) filtered by road
restrictions (visually depicted in black); c) filtered by air humidity superior to 80%.
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Meteorological conditions. Table 9.3 presents the results gathered by filtering the road traffic data by

observations recording while air humidity was superior to 80%. We can note that the captured patterns

were different when applying a restriction on weather condition, proofing that we can guide the pattern

discovery to be sensitive to contextual variables.

Time Location Attribute Pattern
Type

Score R2 Slope Support

19:00 Av. Miguel Bombarda Speed Emerging 0.24 0.47 -0.29 5
15:00 Av. Ant. Aug. de Aguiar Speed Emerging 0.20 0.00 -0.01 23
15:00 Av. Ant. Aug. de Aguiar Delay Emerging 0.20 0.00 0.00 23
15:00 Av. Ant. Aug. de Aguiar Spatial Extension Emerging 0.20 0.00 0.00 23
10:00 Av. Ant. Aug. de Aguiar Spatial Extension Emerging 0.18 0.00 0.01 20

15:00 Av. Miguel Bombarda Spatial Extension Simple -0.25 0.90 -0.11 7
13:00 Av. Calouste Gulbenkian Delay Emerging -0.25 0.09 -0.68 5
15:00 Av. Calouste Gulbenkian Speed Emerging -0.30 0.16 0.73 8
13:00 Av. Calouste Gulbenkian Spatial Extension Emerging -0.31 0.13 -0.87 5
19:00 Av. Miguel Bombarda Spatial Extension Emerging -0.33 0.65 -0.26 5

Table 9.1: Top 5 congestion and decongestion traffic patterns without situational context.

Time Location Attribute Pattern
Type

Score R2 Slope Support

08:00 R. Prof. Lima Basto Delay Emerging 0.38 0.74 0.21 5
14:00 R. Pinheiro Chagas Speed Simple 0.34 0.84 -0.26 17
12:00 R. Pinheiro Chagas Speed Simple 0.34 0.83 -0.24 19
14:00 Al. Card. Cerejeira Spatial Extension Simple 0.28 0.92 0.19 6
16:00 R. Pinheiro Chagas Speed Simple 0.25 0.85 -0.08 13

13:00 Av. Calouste Gulbenkian Spatial Extension Emerging -0.32 0.13 -0.90 5
14:00 R. Pinheiro Chagas Spatial Extension Simple -0.33 0.88 -0.16 17
12:00 R. Pinheiro Chagas Spatial Extension Simple -0.37 0.89 -0.14 19
14:00 Al. Card. Cerejeira Speed Simple -0.39 0.96 0.38 6
15:00 Av. Calouste Gulbenkian Speed Emerging -0.40 0.33 0.94 7

Table 9.2: Top 5 congestion and decongestion traffic patterns with filtered road restrictions.

Time Location Attribute Pattern
Type

Score R2 Slope Support

12:00 Av. Ant Aug. de Aguiar Speed Simple 0.37 0.74 -0.81 5
18:00 Av. Calouste Gulbenkian Speed Emerging 0.32 0.62 -0.14 5
18:00 R. de Campolide Speed Emerging 0.30 0.46 -0.29 6
17:00 Av. Miguel Torga Delay Emerging 0.26 0.10 0.53 5
17:00 Av. Miguel Torga Spatial Extension Emerging 0.25 0.11 0.51 5

18:00 R. de Campolide Spatial Extension Emerging -0.24 0.42 -0.16 6
17:00 Av. Ant Aug. de Aguiar Delay Emerging -0.25 0.43 -0.24 5
15:00 Av. Calouste Gulbenkian Speed Emerging -0.28 0.42 0.34 5
12:00 Av. Ant Aug. de Aguiar Spatial Extension Emerging -0.30 0.42 -0.39 5
17:00 Av. Ant Aug. de Aguiar Spatial Extension Emerging -0.41 0.65 -0.36 5

Table 9.3: Top 5 congestion and decongestion traffic patterns for high humidity conditions (>80%).
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10.1 Discussion

The present thesis proposes two distinct methods to address the problem of mining actionable patterns

of road mobility from heterogeneous sources of traffic data while addressing the influences of situa-

tional context. The first method proposes the combined use of data transformations and pattern-based

biclustering searches to comprehensively explore spatiotemporal associations within road traffic data.

Pattern-based biclustering holds unique properties of interest making it a great candidate for mining

patterns in traffic data: efficient yet exhaustive searches; non-trivial traffic patterns with parameterizable

coherence; tolerance to noise and missing data; ability to incorporate domain knowledge; and sound

statistical testing. To integrate situational context into the pattern mining task we developed a context-

consolidation mechanism that make use of data mappings to create a mask over the road traffic data,

enabling the discovery of traffic profiles that are recurrent under specific context conditions.

Results from geolocalized speed and loop counter data confirm the unique role of biclustering in find-

ing relevant patterns given by recurrent jam profiles spanning diverse locations and time periods within

the day in accordance with inputted spatial and temporal constraints. Non-constant road traffic patterns

can be further pursued to guarantee a greater robustness to traffic variability while still guaranteeing

the coherence of the target traffic patterns. The target traffic patterns can combine different jam-related

aspects, such as speed limits, vehicle passage frequencies, and the spatial extent of congested road

segments. Results evidence the ability to unveil actionable, interpretable and statistically significant

patterns of road mobility, thus providing a trustworthy context with enough feedback to support mobility

reforms.

The second method proposes E2PAT, a method to discover emerging patterns from heterogoeneous

sensor networks in linear time. E2PAT combines spatiotemporal data mappings with simple yet effec-

tive time series differencing operations to find emerging behaviors. Differencing orders are explored

to further find regular trends and emerging behaviors. E2PAT further provides statistical guarantees

of pattern growth, support and accuracy, as well as visualization and navigation facilities, to safeguard

the soundness and usability of the pattern analysis process. An integrative score is also proposed to

measure the relevance of emerging patterns, offering a sound criterion to control the false positive and

negative discovery rates. Remarkably, we show that the proposed score yields statistical properties of

interest: bounded, easily interpretable, and passes normality tests for the found pattern solutions. A

context-aware filtering mechanism was also developed to enable the discovery of emerging patterns

sensitive to context attributes, such as road restrictions and meteorological conditions.

Results from geolocalized speed and loop counter data confirm the ability to fully retrieve all the

emerging congestions, spanning diverse city regions and time periods of the day in accordance with

the inputted spatial criteria and calendrical constraints. The found emerging patterns of urban mobility

explore the multivariate nature of the gathered data, covering different jam-related views, such as speed
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limits, vehicle passage frequencies, and the spatial extent of congested road segments. Results fur-

ther evidence the ability to unveil actionable, interpretable of road mobility, thus providing a trustworthy

context with enough feedback to support mobility reforms.

10.2 Future work

Starting with the biclustering method, we first intend to provide spatiotemporal navigation facilities among

the multiplicity of traffic patterns present within a city at a certain time, as well as more usable visual rep-

resentations of each pattern. Second, we expect to extend this analysis to other modalities of transport

within the city of Lisbon, and then apply the proposed approach to urban data collected from other cities.

Finally, we aim to extend the proposed approach to discover patterns sensitive to situational context, to

other sources of contextual data such as road restrictions and large-scale events.

For E2PAT, we first expect to extend the conducted analysis towards other sources of urban data.

Second, we intend to find new pattern abstractions from emerging behaviors that are spatially and

temporally related. Third we look forward to provide other pattern navigation facilities. Finally, we expect

to extend E2PAT to combine other sources of situational context such as public events.

10.3 Scientific communication

The development of this thesis resulted in the creation of two articles:

• Mining actionable traffic patterns of road mobility using biclustering (under review);

• Efficient discovery of emerging patterns in heterogeneous spatiotemporal data from mobile sen-

sors (accepted).
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