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Abstract

Infer is a Static Analysis tool that analyses code statically and returns warnings on the errors and possi-

ble bugs. Infer reports these warnings to the developers without a specific order and without an assigned

priority. In this work, we focus on the problem concerning the fact that a significant number of these

warnings can turn out to be False Positives. It is important to keep control of false positives since they

negatively impact users of this kind of tools, making them lose confidence on the tool they are using and

wasting time looking at issues that are not real errors. In this work, we perform a review of state-of-the-

art Static Analysis tools warning classifying techniques and develop a Neural Language Model based on

LSTM networks, capable of successfully modelling Infer’s symbolic execution thus allowing the discovery

of patterns that lead to the creation of false positive warnings. We evaluate the model on two different

case scenarios and evaluate different data preparation routines for the use of LSTM networks, showing

that these routines have a substantial impact in classification accuracy. The experimental results show

a warning classification accuracy of approximately 86% when analysing the same program over time,

which is Infer’s most common application scenario. Overall, our study shows that the proposed model is

capable of correctly identifying false positive Infer warnings and consequently improve the usability and

effectiveness of Infer Static Analysis tool by prioritizing true positives over false positives warnings.
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Resumo

O Infer é uma ferramenta de Análise Estática que analisa código estaticamente e retorna avisos sobre

erros e possı́veis bugs. O Infer devolve estes avisos aos programadores sem uma ordem especifica

e sem atribuir a cada aviso um nı́vel de prioridade. Neste trabalho, focamos-nos no problema relativo

ao facto de um número significativo destes avisos possam ser falsos positivos. É importante manter o

controlo sobre o número de falsos positivos pelo facto de que eles podem influenciar negativamente os

utilizadores deste tipo de ferramentas, fazendo-os perder confiança na própria ferramenta que estão a

usar e perder tempo na análise de avisos que na realidade não são erros. Neste trabalho, fazemos uma

revisão do estado-da-arte relativo à classificação de avisos provenientes de ferramentas de análise

estática e desenvolvemos um Modelo de Linguagem Neuronal, baseado em redes LSTM, capaz de

modelar com sucesso o resultado da execução simbólica do Infer, permitindo por sua vez a deteção de

padrões que conduzem à origem de avisos que são falsos positivos. Avaliamos este modelo em dois

cenários diferentes e considera-se o uso de diferentes técnicas de preparação de dados para o uso de

redes LSTM mostrando que esta preparação tem um impacto significativo na precisão da classificação.

Os resultados experimentais mostram uma precisão de classificação de aproximadamente 86% quando

lidamos com o caso mais comum em que o Infer é usado, isto é, quando é usado para analisar o

mesmo programa ao longo do tempo. Em geral, este estudo mostra que o modelo proposto é capaz

de identificar corretamente avisos do Infer que são falsos positivos e consequentemente capaz de

melhorar a usabilidade e a eficácia da ferramenta de análise estática Infer ao priorizar os avisos que

são verdadeiros positivos.

Palavras Chave

Infer; Análise Estática; Identificação de Falsos Positivos; Priorização de Avisos; Aprendizagem.

v





Contents

1 Introduction 1

1.1 Work Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work 7

2.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 False Positives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Infer Static Analysis Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Warning Prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 False Positives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3.A Apache commons-lang project . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3.B Closure Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Language Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 N-gram Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Neural Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 Neural Language Models in Software Engineering . . . . . . . . . . . . . . . . . . 17

2.5 Long Short-term Memory Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Language Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 False Positive filtering using Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Infer Warning Prioritization 23

3.1 Solution Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Infer and Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Infer intermediate language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 Infer report evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



3.3.1 Tokenizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 LSTM Network Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 LSTM Network Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.3 Machine Learning Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Infer integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Solution Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Experimental Results 37

4.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 LSTM approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Training Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.3 Output Prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Conclusions 49

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



List of Figures

2.1 Continuous development and deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Infer warning example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Code analysed by Infer that lead to a RESOURCE LEAK issue reported . . . . . . . . . . . 14

2.4 Issues found by Infer when running on top of Apache Commons-lang . . . . . . . . . . . . 15

2.5 Internal structure of a simple long short-term memory (LSTM) unit. . . . . . . . . . . . . . 19

3.1 Workflow of the proposed model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Infer intermediate language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Example resultant of applying transformations 1 to 3 to the original code. . . . . . . . . . 31

3.4 Architecture of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Summary of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Variation of the Accuracy score, considering the word embedding size . . . . . . . . . . . 40

4.2 Variation of the Accuracy score, considering the size of the LSTM layer . . . . . . . . . . 41

4.3 Variation of the Accuracy score, considering the batch size . . . . . . . . . . . . . . . . . 41

4.4 K-fold cross validation technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 First 10 warnings of the prioritized output. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 First 10 warnings of Infer’s original output. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



x



List of Tables

3.1 Programs of the Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Infer report manual classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 LSTM approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Optimal configuration of the LSTM network . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Measure results sorted by Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Dataset size statistics for each LSTM approach . . . . . . . . . . . . . . . . . . . . . . . . 46

xi



xii



Acronyms

SA Static Analysis

ACM Association for Computing Machinery

FP False Positives

RNN Recurrent Neural Network

RNNs Recurrent Neural Networks

LSTM Long Short Term Memory

NLP Natural Language Processing

AST Abstract Syntax Trees

NLM Neural Language Modeling

LM Language Modeling

NLP Natural Language Processing

IR Information Retrieval

CI Continuous Integration

LOC Lines of Code

SIQR Semi-interquartile Range

xiii



xiv



1
Introduction

Contents

1.1 Work Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1



2



Nowadays, the majority of software development companies take advantage of automated bug find-

ing tools to ensure that their products achieve a certain level of quality. However, given the size of

real-world systems and its complexity, the number of errors identified can grow too large to properly be

considered and addressed by the developers.

Infer is a Static Analysis (SA) tool that analyses code statically and returns warnings on the errors and

possible bugs [1]. This tool is one the most relevant and exciting automated bug finding tools of today.

It grew out of academic work on Separation Logic [2, 3], which aimed to scale algorithms for reasoning

about memory safety of programs that manipulate pointers. It arrived at Facebook with the acquisition

of the program proof startup Monoidics in 2013, and its deployment has resulted in tens of thousands

of bugs being fixed by Facebook’s developers before they reach production. It is open source [1] and is

currently used in several major companies including Amazon, Spotify, and Mozilla.

Infer returns the generated error reports to the developers without a specific order and also without

assigning to each report a level of priority. This can turn out to be problematic since developers are

expected to judge the importance of each error report on their own, having only their experience and

some context of the system to make a decision. Many times this is insufficient, leading to a waste of

time looking at issues that will not be materialized in true errors or are not as important as others.

One of the most critical challenges faced regarding this matter involves the accuracy of the reported

warnings. Since static program analysis is performed without executing the software under analysis,

static analysis tools must speculate on what the actual program behaviour will be, often resulting in

a over-estimation of possible program behaviours. This leads to spurious warnings called False Posi-

tives (FP), that do not correspond to true defects. This also happens because these kind of tools rely

on approximations and assumptions that help their analyses scale to large and complex software sys-

tems. The trade-off is that analysis results become imprecise, leading to false positives. For example,

Kremenek et al. reported that at least 30% of the warnings reported by sophisticated static analysis

tools are false positives [4]. This is an issue to developers since they will waste their time analysing

and evaluating false positives while trying to find the real errors that affect the system. In some cases

developers stop inspecting the tool’s output since it is not reliable.

1.1 Work Objectives

The main objectives of this work are to improve the reliability of Infer and increase its performance by

dealing with false positive warnings presents in the output.

To address these objectives, we develop a Neural Language Model, based on LSTM networks, ca-

pable of successfully modeling Infer’s symbolic execution thus allowing the discovery of false positive

patterns that lead to spurious warnings. This solution involves the analysis of the symbolic execution

3



performed by Infer while analyzing a program. The reasoning behind this idea is to look out for patterns

in the code that would correspond to a false positive warning. We decided to specifically use Long

Short Term Memory (LSTM) networks to perform neural language modeling. This is because LSTM

networks are better suited to model longer sequences than other similar machine learning techniques,

e.g., Recurrent Neural Networks (RNNs), being able to capture much longer dependencies which are

common in source code. In this work we study the use of this kind of networks applied to our context and

find out the optimal network parameters for our specific problem. We create a benchmark of more than

500 Infer reports manually labeled as false/true positives in order to train and test our model. We dis-

cuss a set of transformations to be applied to Infer’s intermediate language with its respective symbolic

execution, and evaluate the impact each one of them has in the performance of the machine learning

model. As well as that, we study two different application scenarios where this model could be applied.

Our experimental results provide understanding into the applicability and performance of the devel-

oped models as well as the impact of each data preparations in two distinct application scenarios. First,

we concluded that the data preparation for the LSTM networks has a significant impact on the perfor-

mance of the model and that more detailed data preparations leads to better performance. Second, with

the two application scenarios studied, we demonstrated that the abstraction aspect is key when deal-

ing with cross-project warning classification, so that the generalizability of the model allows the correct

classification of samples original from programs never seen before. Lastly, our model is able to correctly

classify Infer output warnings, especially when dealing with within-project warning classification, which

is the most common use case for Infer. This translates to a significant improvement in Infer’s usability

and effectiveness.

In summary, in this work we explore how neural language models can be used to prioritize bug reports

produced by Facebook’s Infer. In particular, we propose to address the following research questions:

• RQ1: What is the overall performance of the model in classifying Infer Static Analysis Tool warn-

ings?

In this first research question, we are interested in measuring the accuracy of the model when

classifying Infer Static Analysis Tool and make a comparison with existent techniques.

• RQ2: What is the effect of different data preparations on performance?

In this research question, our objective is to assess the impact that each data preparation had in

the performance of the model.

• RQ3: What is the variability in the results?

In this research question, we analyse the variance in the Accuracy, Recall and Precision measures

of the different model variations.

• RQ4: How do different application scenarios impact the performance of the model?

Finally, in this last research question we compare the overall performance of the model in the two
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studied case scenarios: one where static analysis tools analyse the same program over time and

the other where a static analysis tool analyses a new subject program.

1.2 Organization of the Document

In this document we specify all the details constituent of our solution as well as the research work that

has been done to support it. Some important topics that are discussed include:

• The importance of false positive filtering;

• An overview on the current source code analysis techniques;

• How and why Machine Learning techniques can be effective in this domain;

• Our solution to the proposed problem;

• The experimental results achieved;

This thesis is organized as follows. In Chapter 2, we present the most relevant research done in the

scope of this project. In Chapter 3, we explain our solution and the reasoning behind it. In Chapter 4,

we detail the experimental results obtained and their respective analysis. Finally, in Chapter 5, we draw

conclusions from the work that has been developed and point out some areas of improvement.
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This chapter presents the concepts and techniques necessary to understand the foundations of this

work and its motivations. The main topics include Static Analysis, False Positives, Language Modeling

and Machine Learning. In addition, the tool under study, Infer, is thoroughly analysed and finally, similar

works and studies are examined and discussed.

2.1 Static Analysis

Static Analysis (SA) is the process of analyzing a program’s source code to find flaws without executing it.

Usually it is performed by automated tools that assist programmers and developers in carrying out static

analysis. These tools are programs that examine source code, executables, or even documentation, to

find problems before they happen (i.e, without actually running the code [5]). The process provides an

understanding of the code structure and helps ensuring that the code complies to modern-day industry

standards. The software will analyse all code in a project checking for vulnerabilities while validating

the code. These tools can be applied in different contexts and can detect a variety of issues including

potential security violations [6] (e.g., SQL injection) , runtime errors (e.g., dereferencing a null pointer)

and logical inconsistencies (e.g., a conditional test that can’t possibly be true).

SA is an active research topic and for this reason there are many tools being used and built that

implement this technique, e.g., FindBugs [7], Checkstyle [8] and PMD [9]. However, in this chapter we

will discuss Infer (2.3) in particular, since this is the tool that we aim to extend.

2.2 False Positives

“Static analyses should strike a balance between missed bugs (false negatives) and un-

actioned reports (false positives).” [10]

A true positive is a report of a potential bug that can happen in a run of the program in question

(whether or not it will happen in practice) and a false positive is one that is impossible to happen with

the current state of the program. A common knowledge in static analysis is that it is important to keep

control of the false positives because they can negatively impact engineers who use the tools, as they

tend to lead to apathy towards reported alarms. This has been emphasized in previous Communications

of the Association for Computing Machinery (ACM) articles on industrial static analysis [11] [12]. False

negatives, on the other hand, are potentially harmful bugs that may remain undetected for a long time.

An undetected bug affecting security or privacy can lead to undetected exploits. In practice, fewer false

positives often implies more false negatives, and vice versa, fewer false negatives implies more false

positives. For instance, one way to deal with false positives is to fail to report when you are less than

sure that a bug will be real. Unfortunately by silencing an analysis in this way (say, by ignoring paths or

9



by heuristic filtering) has the effect of missing bugs. And, if you want to discover and report more bugs

you might also add more spurious behaviours i.e false positives. The false positive rate is challenging

to measure for a large and rapidly changing codebase since it would be extremely time consuming for

humans to judge all reports as false or true as the code is changing [10].

With this in mind, here are some reasons why ranking of error reports based on their probability of

being false positives should be done:

1. When a tool is first applied to code, the initial few error reports should be those most likely to

be true positives so that the developers can easily see if the rest of the errors are worth inspect-

ing. Developers tend to immediately discard a tool if the first two or three error reports are false

positives, giving these first few slots an enormous importance [4].

2. Even if the initial reports are true positives, in many cases a run of more than 10 false positives

will cause a developer to stop inspecting the tool’s output. This means that it is crucial to rank as

many true positives at the top.

3. It is important to put the true positives at the top rank since developers will look at these first as

being more urgent, thus solving the real problems of the program. With this, they can afford the

time to check the following errors to see if they are indeed false positives and if not, to solve them.

2.3 Infer Static Analysis Tool

Infer is a static analysis tool developed by Facebook that can be applied to Java, Objective C, and C++

source code [1]. It started as a specialized analysis based on Separation Logic [2] [3] that targeted

memory issues, but has evolved into an analysis framework supporting a variety of sub-analyses. It

reports errors related to memory safety [13], to concurrency [14], to security (information flow), and

many more specialized errors.

Infer’s main deployment model is based on fast incremental analysis of code changes [10]. Facebook

practices continuous software development where a codebase is altered by thousands of programmers

submitting code modifications, i.e. ‘diffs’. A programmer prepares a diff (a code change) and submits it

to code review. Figure 2.1 shows a simplified picture of this process: Diff time corresponds to the time

when a developer submits a diff to the system for review. Post land, or commit, is the period after a

diff has been incorporated into the master build of the system. Continuous Integration (CI) refers to the

continuous integration of diffs into the code base subject to code review. The developers share access

to a single codebase and they commit a diff to the codebase after passing code review. Infer is run at

diff time, before the commit occurs, while other longer-running tests are run post commit. When a diff

is submitted an instance of Infer is run in Facebook’s internal CI system (Sandcastle). Infer does not

have the need of processing the entire code base in order to analyse a diff, and for this reason it is fast.
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Figure 2.1: Continuous development and deployment.

Infer will take 10min-15min to run on a diff on average, this includes the time to check out the source

repository, build the diff, and to run on base and parent commits. Infer then writes the output to the code

review system. In the default mode used most often it reports only regressions: new issues introduced

by a diff. In contrast, when Infer is run in whole-program mode it can take more than an hour (depending

on the app being analysed).

2.3.1 Workflow

There are always two phases of an Infer run, regardless of the input language (Java, Objective-C, or C):

1. In the Capture phase the compilation commands are captured by Infer to translate the files that

are to be analysed into Infer’s own internal intermediate language. This translation is similar to

compilation, Infer takes information from the compilation process to perform its own translation.

This is why Infer is called with a compilation command:

infer run -- javac File.java

What happens is that the files get compiled as usual, and they also get translated by Infer to be

analysed in the second phase. If no file gets compiled, also no file will be analysed. Infer stores

the intermediate files in the results directory which by default is created in the folder where the

Infer command is invoked, called infer-out/.

2. In the Analysis phase the files present in infer-out/ are analysed by Infer. Infer analyses each

function and method separately. If Infer encounters an error when analyzing a method or function,

it stops there for that method or function, but will continue the analysis of other methods and

functions. So, a possible workflow would be to run Infer on the code, fix the errors generated, and

run it again to find possibly more errors or to check that all the errors have been fixed. The errors

will then be displayed in the standard output (Figure 3.5) and also in a file infer-out/bugs.txt.
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Figure 2.2: Infer warning example

2.3.2 Warning Prioritization

Facebook uses static analysis in the form of Infer to prevent bugs that would affect their products, and

so they rely on the engineers judgement as well as the data from production to provide them with the

information on which bugs matter the most.

It is crucial for a developer to be able understand that not all bugs are the same: different bugs can

have different levels of importance or severity depending on the context and the nature. For instance,

a memory leak on a rarely used service might not be as important as a vulnerability that would allow

attackers to gain access to unauthorized information. Additionally, the frequency of a bug type can affect

the decision of how important it is to attend to it. If a certain kind of crash, such as a null pointer error

in Java, were happening hourly, then it might be more important to target than a bug of similar severity

that occurs only once a year [10].

The problem with this type of evaluation is the fact that it can be subjective to the experience of

each developer, and furthermore conditioned by the specific pieces of information that were available.

For these reasons it is of the uttermost importance that the feedback that Infer gives to the engineers

containing the errors found in the program it is already, in some way, prioritized.

2.3.3 False Positives

”We want to be clear that if you run Infer on your project you might get very good results, but

it is also possible that you don’t.” 1

1https://fbinfer.com/docs/limitations.html
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Infer developers do not make strong claims about rates of false alarms or similar when applied to

arbitrary codebases. For example, the developers state that they had some success getting bugs fixed

in the DuckDuckGo Android App using Infer, but that they found many false positives when running Infer

on GNU coreutils.

We can then conclude that Infer does not guarantee that a large number of false positives warnings

will not be present in the output. This situation presents a real problem that requires a solution. To

further exemplify this problem we decided to run Infer on real life applications. We used Defects4J [15],

a collection of reproducible bugs, which, among other things, contains a list of open-source projects

written in Java and the number of bugs that were found on each one. We decided to run Infer on two of

those projects: Closure compiler and Apache commons-lang.

Infer was executed with the following checkers:

• Biabduction (C/C++/ObjC, Java)

• Fragment retains view (Java)

• Inefficient keyset iterator (Java)

• RacerD (C/C++/ObjC, Java)

• Starvation analysis (C/C++/ObjC, Java)

These checkers are by default included in an Infer run and they can detect a number of bug types,

including: Deadlock, Dead store, Memory leak, Null dereference, and others2.

2.3.3.A Apache commons-lang project

Infer was executed on a version of this system that contained three reported bugs that correspond to

four application tests failed. Infer found 7 issues:

• Null Dereference: 5

• Resource Leak: 1

• Thread Safety Violation: 1

None of the issues found by Infer corresponded to bugs in the application that were previously ac-

counted for. We manually analysed each issue raised by Infer in order to check if they were indeed true

positives and concluded than more than a half of the issues reported were False Positives: 3 True Posi-

tives and 4 False Positives. An example of a False Positive warning regards the second issue reported

by Infer, that claims the existence of a Resource Leak in the file SerializationUtils.java at line 106.

Infer reported that the resource acquired in line 88 is not released, however, by looking at the code in

Figure 2.3 we can conclude that the resource will always be released in the Finally block at line 103.

The remaining 3 False Positive warnings were all of the Null Dereference type.

2https://fbinfer.com/docs/checkers-bug-types.html
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Figure 2.3: Code analysed by Infer that lead to a RESOURCE LEAK issue reported

2.3.3.B Closure Compiler

Infer was executed on a version of this system that contained 1 reported bug that correspond to 8

application tests failed. Infer found a total of 338 issues:

• Null Dereference: 160

• Resource Leak: 23

• Thread Safety Violation: 91

• Deadlock: 59

• Inefficient Keyset Iterator: 5

None of the issues found by Infer corresponded to bugs in the application that were previously ac-

counted for. Since this is a larger application a lot more issues were found. This test demonstrates the

large amount of data that is output by Infer which developers need to analyse and the need of employing

bug prioritization techniques in this context.
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Figure 2.4: Issues found by Infer when running on top of Apache Commons-lang
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2.4 Language Modeling

Language Modeling (LM) is a function that captures the statistical characteristics of the distribution of

sequences of words in a natural language, typically allowing one to make probabilistic predictions of

the next word given preceding ones. In the Natural Language Processing (NLP) context these models

have been used in several different tasks including machine translation, handwriting recognition, speech

recognition, and information retrieval.

2.4.1 N-gram Language Models

The dominant methodology for probabilistic language modeling since the 1980’s has been based on

n-gram models [16, 17]. The probability of a token is computed based on the n previous tokens in the

sequence. N-gram language models have shown extensive success in NLP applications. However, such

models have two issues. First, they operate on small ranges (the n previous tokens), with usually low

values of n. Increasing n does not scale well if the vocabulary is large: for a vocabulary of size m, there

are mn possible n-grams. Second, they suffer from a data sparsity problem: not all possible n-grams

are present in the corpus.

2.4.2 Neural Language Models

The state-of-the-art in NLP is made of Neural Language Modeling (NLM) [18]. A NLM is a language

model based on Neural Networks, and exploits their ability of learning distributed representations to

reduce the impact of the curse of dimensionality. In the context of learning algorithms, the curse of

dimensionality refers to the need for huge numbers of training examples when learning highly complex

functions. When the number of input variables increases, the number of required examples can grow

exponentially. The curse of dimensionality arises when a huge number of different combinations of

values of the input variables must be differentiated from each other, and the learning algorithm needs at

least one example per relevant combination of values. In the context of language models, the problem

arises from the huge number of possible sequences of words.

A distributed representation of a word is a vector of features which characterize the meaning of the

word and are not mutually exclusive. The basic idea is to learn to associate each word in the dictionary

with a continuous-valued vector representation [19]. Each word corresponds to a point in a feature

space, e.g., each dimension of that space corresponds to a semantic or grammatical characteristic of

words. The intention is that functionally similar words get to be closer to each other in that space. A

sequence of words can thus be transformed into a sequence of these learned feature vectors. The

neural network learns to map that sequence of feature vectors to a prediction such as the probability

distribution over the next word in the sequence.
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The advantage of this distributed representation approach is that it allows the model to generalize

well to sequences that are not in the set of training word sequences, but that are similar in terms of their

distributed representation. Because neural networks tend to map nearby inputs to nearby outputs, the

predictions corresponding to word sequences with similar features are mapped to similar predictions.

Because many different combinations of feature values are possible, a very large set of possible mean-

ings can be represented compactly, allowing a model with a comparatively small number of parameters

to fit a large training set.

In addition, some neural architectures such as RNNs [20], LSTM networks [21, 22] or Transformers

[23] are able to model relatively long range dependencies [24]. LSTM based language models can also

be easily adapted to classification tasks by just replacing the last layers, that perform word predictions,

with ones performing classification [25]. They are also highly effective in a variety of additional NLP

tasks, including sequence to sequence models for translation or summarization tasks [26].

2.4.3 Neural Language Models in Software Engineering

Neural language models have also been used to analyse and model source code. In this section we

review and discuss several different works in this area.

Babii et. al [27] started by making a list of important modeling choices for source code vocabulary

and explores their impact on the resulting vocabulary on a large-scale corpus of almost 15.000 projects.

Most importantly they show that a subset of modeling decisions have a major impact when modeling a

language, thus allowing to train both accurately and quickly Neural Language Models on a large project

corpus. Another study [28] contrasts programming languages against natural languages and discuss

how these similarities and differences drive the design of probabilistic models. Allamanis et. al [29]

introduced the use of graphs to both represent the syntactic and semantic structure of source code.

They use graph-based deep learning methods for learning how to reason over program structures by

constructing graphs from source code and scaling Gated Graph Neural Networks training to such large

graphs. Zhang et. al [30] proposes a Neural Network for source code representation using Abstract

Syntax Trees (AST). They split each large AST into a sequence of small statement trees and encode

the statement trees to vectors by capturing the lexical and syntactical knowledge of statements. Based

on the sequence of statement vectors, a bidirectional Recurrent Neural Network (RNN) model is used to

leverage the naturalness of statements and finally produce the vector representation of a code fragment.

Alon et al. presents CODE2SEQ [31]: an approach that leverages the syntactic structure of programming

languages to better encode source code. The model they propose is able to represent a code snippet as

the set of compositional paths in its AST and uses attention to select the relevant paths while decoding.

Later in 2019 a work by the same authors made a presentation of a neural model for representing

snippets of code as continuous distributed vectors (”code embeddings”). The main idea is to represent
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a code snippet as a single fixed-length code vector, which can be used to predict semantic properties of

the snippet. To this end, code is first decomposed to a collection of paths in its AST. Then, the network

learns the atomic representation of each path while simultaneously learning how to aggregate a set of

them [32].

2.5 Long Short-term Memory Networks

For text classification RNNs [33, 34] have emerged as a strong alternative approach that views text as

a sequence of words, with arbitrary-length, and automatically learns vector representations for each

word in the sequence [35]. Even though RNNs can be successfully used to model sequences, they are

not quite efficient when applied to relatively long sequences. This can be explained by the vanishing

gradient problem [36] that prevents standard RNNs from learning long-term dependencies.

LSTM networks were first proposed in 1997 by Sepp Hochreiter and Jürgen Schmidhuber [21], and

are among the most widely used models in Deep Learning for NLP today. The main advantage of LSTM

networks relies on the fact that they do not suffer from problems such as gradient vanishing or exploding,

thus making these type of networks capable of modeling long sequences as well as making the training

phase much easier.

2.5.1 Network

An LSTM network memory unit consists of four attributes, namely a forget gate, a cell state, an input

gate, and an output gate. The cell state remembers the information of the entire sequence and the three

gates control the input and output of the cell, as shown in Figure 2.5.

At the start of the process, the forget gate checks which information to throw away and which infor-

mation to keep in the cell state. Equation 2.1 is used for the forget gate. It is calculated at cell state ct−1

using hidden state ht−1 and input xt. The output of the forget gate, between 0 and 1, is produced by the

sigmoid function. An output value of 1 means keep all information in the cell state.

ft = σ(Wf [ht−1, xt] + bf ) (2.1)

To store a new piece of information in the cell state, the input gate decides which value will be updated

using the sigmoid function. The tanh function creates a new candidate value c̃t for the cell state.

it = σ(wi · [ht−1, xt] + bi) (2.2)

c̃t = tanh(wc · [ht−1, xt] + bc) (2.3)
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Figure 2.5: Internal structure of a simple long short-term memory (LSTM) unit. (Source: [37])

Then, the old cell state ct−1 is used to update ct.

ct = ft ∗ ct−1 + it ∗ c̃t (2.4)

We can now calculate the output of LSTM, which is based on a filtered version of the cell state.The

sigmoid function decides which part of the cell state is going to the output and then updates the weight

accordingly.

ot = σ(wo.[ht−1, xt] + bo) (2.5)

ht = ot ∗ tanh(ct) (2.6)

The gating mechanism is what allows LSTMs to explicitly model long-term dependencies. By learn-

ing the parameters for its gates, the network learns how its memory should behave. There are many

more variations of this model. LSTM: A Search Space Odyssey empirically evaluates different LSTM

architectures [38].

2.5.2 Language Modeling

Neural networks have become increasingly popular in the development of language models, to the point

that it may now be the preferred approach. In source code, a single line may have reliance on the
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preceding lines and this can lead up to the need of remembering very long sequences, making it difficult

to evaluate complex source code by any conventional language model.

This can be solved by using LSTM Neural Networks for Language Modeling [22]. The fact that

LSTMs are able to model very long sequences [39] is key for being able to successfully model source

code and its dependencies. Because of this many researchers have used this type of models to detect

source code errors in software engineering and programming education. In this section we review some

of these works.

Pu et al. proposed a source code correction method based on LSTM using code segment similarities.

The study leveraged the sequence-to-sequence (seq2seq) neural network model with natural language

processing tasks for the code correction process [40]. Another study [41] proposed an LSTM-based

model for programming education where the model predicts the next word by analyzing incomplete

source code. To help novice programmers the model predicts the next word to complete a program.

The model achieved a high degree of prediction accuracy. Reyes et al. [42] classified archived source

code by type of programming language using an LSTM network. Empirical results showed that the

proposed network outperformed both the Naive Bayes classifier and linguist classifier. In another study

[43], a source code bug detection technique that uses LSTM was proposed. The hyper parameters of

the network were adjusted to determine the optimal perplexity and training time. The LSTM network

produces a plausible outcome for source code bug detection. Rahman et al. [37] presented a sequential

language model that uses an attention-mechanism-based LSTM to assess and classify source code

based on the estimated error probability. The proposed model was trained using correct source code

and then evaluated its performance. The experimental results show that the proposed model has logic

and syntax error detection accuracies of 92.2% and 94.8%, respectively, outperforming state-of-the-

art models. Their proposed model can be effective various settings including programming education

and software engineering by improving code writing, debugging and error-correction. Yu et al. [44]

proposed a classification model for classifying a bug report as either helpful or unhelpful using an LSTM.

By filtering unhelpful reports before running an Information Retrieval (IR) based bug locating system,

their approach helps reduce false positives and improve the ranking performance. The model was

tested on over 9,000 bug reports from three software projects. The evaluation results show that the

model improves a state-of-the-art IR based system’s ranking performance under a trade-off between

the precision and the recall. They also concluded that their LSTM-network achieves the best trade-off

between precision and recall than other classification models including convolutional neural networks

and multilayer perceptrons. Dam et al. proposes a novel approach to build a language model for

software code for being able to capture a long context where dependent code elements scatter far apart.

Their language model is built upon a deep learning based Long Short Term Memory architecture that

is capable of learning long-term dependencies which happen frequently in software code. Results from
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the evaluation of the model on a corpus of Java projects have demonstrated the effectiveness of this

language model [45].

LSTM networks have also been used in sentiment analysis and classification in several works, being

able to successfully model the intricate aspects of the natural language. In this work [46] researchers

propose an Attention-based LSTM for aspect-level sentiment classification. The attention mechanism

can concentrate on different parts of a sentence when different aspects are taken as input. Their re-

sults show that the model achieves state-of-the-art performance on aspect-level sentiment classification.

Chen et al. proposes a hierarchical neural network to incorporate global user and product information

into sentiment classification. They first build a hierarchical LSTM model to generate sentence and docu-

ment representations. Afterwards, user and product information is considered via attentions over differ-

ent semantic levels due to its ability of capturing crucial semantic components. The experimental results

show that this model achieves significant and consistent improvements compared to all state-of-the-art

methods [47].

2.6 False Positive filtering using Machine Learning

There are several existing techniques that aim for a prioritization of bugs having in mind the false pos-

itives problem in the context of automated bug reporting tools. Research efforts have successfully

applied machine learning techniques to filter out the false positive error reports from other SA tools. In

this section we present some of these works.

For example, Kremenek and Engler [4] proposed z-ranking, a technique to rank error reports emit-

ted by static program checking analysis tools. It employs a simple statistical model to rank those error

messages most likely to be true errors over those that are least likely. It was also demonstrated that

z-ranking applies to a range of program checking problems and that it performs up to an order of mag-

nitude better than randomized ranking. Yüksel and Sözer [48] evaluated the application of machine

learning techniques to classify alerts based on a set of artifact characteristics. The study was made

in the context of an industrial case study to classify the alerts generated for a digital TV software. It

was created a benchmark based on this code base by manually analyzing thousands of alerts. Then,

evaluated 34 machine learning algorithms using 10 different artifact characteristics and identified char-

acteristics that have a significant impact. Tripp et al. [49] efforts focused on the false positive problems

within static security checkers and address this problem by introducing a general technique to refine

their output. The main idea was to apply statistical learning to the warnings output by the analysis based

on user feedback on a small set of warnings. This leads to an interactive solution, whereby the user

classifies a small fragment of the issues reported by the analysis, and the learning algorithm then clas-

sifies the remaining warnings automatically. An important aspect of this solution is that the user can
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express different classification policies, ranging from strong bias toward elimination of false warnings

to strong bias toward preservation of true warnings, which the filtering system then executes. Ruthruff,

Joseph R., et al. [50] reports automated support using logistic regression models that predicts the fore-

going types of warnings from signals in the warnings and implicated code. Because examining many

potential signaling factors in large software development settings can be expensive, they use a screen-

ing methodology to quickly discard factors with low predictive power and cost-effectively build predictive

models. The empirical evaluation indicates that these models can achieve high accuracy in predicting

accurate and actionable static analysis warnings, and suggests that the models are competitive with

alternative models built without screening. It was proposed by Koc et al. [51] , a process whose goal is

to discover program structures that cause a given static code analysis tool to emit false error reports,

and then to use this information to predict whether a new error report is likely to be a false positive as

well. To do this, the code is first pre-processed to isolate the locations that are related to the error report.

Then, machine learning techniques are applied to the pre-processed code to discover correlations and

to learn a classifier. Later in 2019 a study by the same authors [52] was conducted with the objective

of empirically assessing machine learning approaches for triaging reports of a java static analysis tool.

They describe a systematic, comparative study of multiple machine learning approaches for classifying

static analysis results. Their experimental results provide significant insights into the performance and

applicability of the ML algorithms and data preparation techniques. It was observed in this study that the

recurrent neural networks perform better compared to the other approaches. And that with more precise

data preparation, large performance improvements over the state of the art could be achieved.
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The following section describes in detail the implemented solution. The solution consists in prioritiz-

ing Infer Static Analysis tool warnings by identifying False Positive reports. To achieve this objective we

take advantage of Machine Learning techniques, more specifically LSTM networks.

We describe our solution using a top-down approach. We start in Section 3.1 by making an overall

description of our approach and explain the configuration of each part of the solution. In Section 3.2

we analyse Infer in further detail and we build a benchmark consistent of real world programs that will

allow us to train and evaluate the model. Then, we talk about the data processing phase in Section

3.3, presenting a set of transformations used to extract meaningful information from Infer’s symbolic

execution by normalizing and transforming the language into a sequence of tokens. As well as that we

also explain the translation of the sequence of tokens into a representation that can be processed by the

machine learning model. Finally, in Section 3.4, we talk about the machine learning model we chose to

tackle this problem and the reasons behind it and as well as explain in detail the choice and configuration

of each layer present in the model.

3.1 Solution Description

To prioritize Infer warnings based on false positive identification, we will need to correctly analyse and

assess the symbolic execution where Infer bases its analysis. For this task, we will use LSTM networks

applied to language modeling to extract and learn the features necessary to successfully identify false

positive reports. This solution will be able to analyse each of the warnings present in Infer’s output

individually and assign to each one their probability of being a false positive.

The main advantage of this approach is that saves Infer users valuable time and effort when analysing

the output reports since they are already filtered and ranked accordingly. Besides that, it adds value to

the tool, since the output is more reliable and consistent. Also, since the analysis made by Infer is based

on their own symbolic execution, this model could possibly be applied to different kinds of analysis as

well as different programming languages.

The workflow of the proposed model is separated in three different phases as described in Figure 3.1:

(a) data processing (b) supervised training of the LSTM network (c) false positive probability prediction

and warning classification.

In the first phase, the output of the symbolic execution which Infer generates when analysing source

code is processed. The processing is done by applying a set of transformations in order to normalize

the code. These transformations are explained in detail in Section 3.3. The preprocessed data is also

tokenized and encoded into integer vectors, allowing this information to be fed into the network.

In the second phase, an LSTM network is used to model data that is already normalized and en-

coded. The implementation details regarding the model construction and parameters are explained in
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Section 3.4.

Finally, in the third and final phase, the already trained LSTM network is used to classify each warning

present in the output of Infer, these warnings are then sorted accordingly and reported to the user. The

classification process is carried out by the softmax layer of the model.

3.2 Infer and Benchmarks

In this work, we study Infer version 0.17.0 and focus on Java written applications. Furthermore, we only

evaluate reports that do not correspond to test files. When an Infer run occurs several checkers which

identify different kinds of errors are active. These are the default checkers for the Java programming

language:

(1) Biabduction (C/C++/ObjC, Java)

(2) Fragment retains view (Java)

(3) Inefficient keyset iterator (Java)

(4) Starvation analysis (C/C++/ObjC, Java)

(5) RacerD (C/C++/ObjC, Java)

For this work we disabled RacerD (C/C++/ObjC, Java) checker. The reason behind this decision

is mentioned by Blackshearer et al. [14]. It states that RacerD performs a different kind of analysis

than typical checkers, where the importance relies in keeping the false positive rates low even though it

can cause the existence of false negatives. This is why this checker has a very low false positive rate

compared to other types of analysis. We also disabled Fragment retains view (Java) checker since it

is only focused on Android specific errors.

With the checkers that remain active, Infer is expected to detect the following type of errors 1:

• Checkers Immutable Cast

• Deadlock

• Field should be nullable

• Null dereference

• Resource leak

• Retain cycle

• Inefficient keyset iterator

• UnsafeGuardedByAccess

1https://fbinfer.com/docs/checkers-bug-types
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3.2.1 Infer intermediate language

In this work we decided not to analyse the source code present in the input program’s, or bytecode as

similar works do in order to track false positive warnings. This is motivated by the fact that Infer bases its

analysis in the self-generated intermediate language. It was mentioned before while explaining Infer’s

workflow in Section 2.3.1, that in the capture phase Infer translates the files that are to be analysed

into Infer’s own internal intermediate language. This translation is similar to compilation, Infer takes

information from the compilation process to perform its own translation. Infer, therefore, does not directly

analyse input source code or even bytecode, it analyses the files translated to its own intermediate

language. Therefore in this work we analyse and model Infer’s intermediate language and subsequent

symbolic execution. An example of this language and its respective symbolic execution, can be seen in

Figure 3.2.

Figure 3.2: Infer intermediate language

This decision can have a major impact in the accuracy score of the model, since the code analysed

does not depend on different programmers and styles of coding. As all the information that is generated

by Infer it has the same style independent of the program it is analyzing, only differing in some program

specific words. This property makes it easier for the machine learning model to pick up false positive

patterns and to more accurately model the language. This also has an impact in the way the information

is preprocessed as reported in Section 3.3.

3.2.2 Benchmarks

The benchmark in this evaluation consists of 5 real-world programs that cover a wide range of issues.

We analyse these programs using Infer and then manually classify the reports as true or false positives.
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We selected these programs using the following criteria:

• The programs have to be written in Java.

• The programs must be open source since we need to access the source code to analyse each one

with Infer.

• The programs are under active development and are highly used in order to increase relevancy.

Table 4.1. shows the programs we chose. All the entries of are from the Dacapo Benchmark [53,

54], except for JODA-TIME that was used by Koc et al. 2019 [52] as part of their proposed real-world

benchmark. The number of Lines of Code (LOC) was calculated by using Cloc (version 1.84) [55].

Table 3.1: Programs of the Benchmark

Program Description LoC

1. Apache Tomcat Implements Java Servlet [56] 435438

2. Apache Xalan Java Transforms XML docs into HTML [57] 205644

3. Avrora Simulation and Analysis Tool [58] 92041

4. Joda-Time Date and time framework [59] 94973

5. Jython Python for the Java Platform [60] 945500

3.2.3 Infer report evaluation

Running Infer on top of each program of the benchmark resulted in more than 500 reports. We then la-

belled the reports by manually reviewing the code, resulting in 313 true positives and 230 false positives

as can be seen in Table 3.2. To label a SA report, we first analyse the method containing the line where

the warning originated from and the call tree originated from that reported error line, if existent. Then we

inspect all the code present both in the call tree and in the method under analysis until either we find the

error reported by the tool — indicating a true positive — or we exhaust the call tree without identifying

any issue — indicating a false positive. False positives represented more than 40% of all the reports

output by Infer when analysing our benchmark.

By looking at each false positive report we concluded that 89% of them were NULL DEREFERENCES

and the remaining 11% were RESOURCE LEAKS. We therefore decided to focus on these two types of

bugs.
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Table 3.2: Infer report manual classification

Program Warnings True Positives False Positives

1. Apache Tomcat 265 153 112

2. Apache Xalan Java 50 27 23

3. Avrora 51 39 12

4. Joda-Time 12 11 1

5. Jython 165 83 82

TOTAL 543 313 230

3.3 Data Processing

Differently from many other SA tools that directly analyse the source code or bytecode that is generated

in compilation time, Infer analysis falls on their own intermediate language.

In this section we present and discuss a set of modeling choices for source code vocabulary that we

implemented in this work. All these transformations were studied in the past and applied in the context of

false positive report classification [52]. In this work we decided to apply this set of transformations to our

dataset with some changes. The first one is that we only abstract program-specific words after extracting

english words from identifiers and not the other way around. We do this for the simple reason that when

we extract english words from the identifiers we are reducing the vocabulary. If we abstracted program-

specific words before applying this transformation to the dataset many identifiers would be eliminated

and the information present on those identifiers would be lost. The second change we applied, was to

split literals in order to reduce vocabulary. This transformation was studied in a recent work [27] and

works particularly well in our case since the intermediate language generated by Infer contains literals

on almost all of its identifiers. Lastly, we do not apply the same program slicing techniques used in

the work mentioned above [52], which include computing backward slices and the program dependency

graph. Instead we extracted the necessary information directly from the node responsible for the line

where the error originated and the symbolic execution session when the error was reported.

The set of transformations used is described below. We list the transformations in order of complexity,

and a transformation is applied only after applying all of the other less complex transformations.

1) DATA CLEANSING (Tcln): this transformation consists in performing basic data cleansing. First,

whitespacing is fixed by placing a single space character between words and eliminating tabs, relevant

special characters are replaced with tokens and irrelevant special characters are deleted. Second,

tokens from paths of classes and methods are split by replacing the delimiters ‘.’ or ‘/’ for whitespaces.

2) ABSTRACTING NUMBERS AND STRINGS BOTH IN LITERALS AND IDENTIFIERS (Tans) : This

transformation replaces numbers and string literals that are present in the code with abstract values.
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This improves the learning phase of the model by reducing the size of the vocabulary of the dataset

and helps us in the training of more generalizable models. First regarding literals, two digit numbers are

replaced with N2, three digit numbers are with N3, and numbers with four or more digit are with N4+.

We applied similar transformations for negative numbers as well. Next, we extract the list of string literals

and replace each of them with the token STR followed by a unique number. For example, the first string

literal in the list are replaced with STR1. To number literals that are also identifiers we decided to split

them in their constituent digits in order to reduce the size of the vocabulary without losing information.

To string literals that are also identifiers we attributed each one an unique token, e.g., VAR1.

3) EXTRACTING ENGLISH WORDS FROM IDENTIFIERS (Text) : Many identifiers are composed of

multiple English words. For example, the GETFILEPATH method from the Java standard library consists

of three English words: get, File, and Path. To make our models more generalizable and to reduce the

vocabulary size, we split any camelCase or snake case identifiers into their constituent words.

4) ABSTRACTING PROGRAM-SPECIFIC WORDS (Taps) : In Infer intermediate language and respec-

tive symbolic execution one can find, as in source code, program specific words. Learning these program

specific words and identifiers may not be useful for classifying SA reports in other different programs.

Therefore, this transformation focus on abstracting certain words from the dataset that occur less than a

certain amount of time, or that only occur in a single program. We do this by replacing the least common

N words with the token UNK. Similar to the two previous transformations, it is expected to improve the

effectiveness of the model by reducing the vocabulary size and generalizability via abstractions.

Figure 3.3: Example resultant of applying transformations 1 to 3 to the original code.

3.3.1 Tokenizer

Before feeding the processed text to the machine learning model, first, it must be tokenized, that is,

transformed into a sequence of words. Then, we transform each word into a numerical index that
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represents it. For this we use Keras2 implementation of a Tokenizer 3 for preprocessing the text, turning

each text into a sequence of integers (each integer being the index of a token in a dictionary).

We also use this tokenizer implementation to perform the fourth transformation discussed in this sec-

tion. This is done by setting the NUM WORDS parameter when creating the tokenizer. This allows it to only

consider the most common words in the training set, by only keeping the most common NUM WORDS-1

words and replacing the rest with the token UNK.

3.4 Machine Learning Model

To efficiently find and locate false positive patterns in source code several works have successfully used

machine learning approaches in the past. In a recent work several machine learning techniques were

compared when used to identify false positives in the static analysis context [52]. In this work, the

authors concluded that RNNs obtained the best results, in particular LSTM networks. These networks,

with their proven ability to model long sequences [39], achieved the best accuracy, precision and recall

when tested in a dataset of 400 static analysis reports.

For these reasons, we use LSTM networks to automatically learn features from token vectors ex-

tracted from source code, and then utilize those features to build false positive probability prediction and

warning classification models. In this section we detail how the model is built, explaining all the decisions

made on the choice of layers and parameters, and the measures chosen to evaluate it.

3.4.1 LSTM Network Layers

Our solution follows the architecture specified in Figure 3.4. Each of the layers present in the LSTM

network have the following purpose:

• Embedding layer:

◦ This layer turns positive integers (indexes) into dense vectors of fixed size.

◦ A word embedding is an approach to representing words and documents. This effectively

diminishes the complexity of the data and eliminates sparse vectors.

◦ In sum, it transforms the sparse index-based representation of words into a dense represen-

tation.

• LSTM layer:

◦ Learns long-term dependencies between time steps in time series and sequence data.

◦ This layer performs additive interactions, which can help improve gradient flow over long

sequences during training.

2https://www.tensorflow.org/api_docs/python/tf/keras
3https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer
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• Fully Connected Layer: (Dense layer)

◦ Applies an activation function to an output.

◦ Applies softmax probability prediction and enables classification.

Figure 3.4: Architecture of the model

3.4.2 LSTM Network Parameters

Parameters constituent of each layer are of key importance when building a machine learning model,

and make the difference between efficient or unreliable models. In this section we discuss the relevant

parameters in an LSTM network.

• Embedding layer:

◦ Number of features:

This corresponds to the number of unique tokens per dataset. It encapsulates the vocabulary

of a given dataset.

◦ Embedding size:

The output dimension of the layer. It determines the size of the dense vector.

◦ Maximum sequence length:

Maximum size of the input data.

outputsize = #vocabularysize ∗#Embeddingsize (3.1)
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• LSTM layer:

◦ Number of Units:

Positive integer, dimensionality of the output space.

◦ Activation:

Activation function to use. Default: hyperbolic tangent (tanh).

outputsize = 4 ∗ (#Embeddingsize +#units) ∗#units (3.2)

• Fully Connected Layer: (Dense layer)

◦ Number of units:

Number of hidden units in a layer

◦ Activation:

Activation function to use. In our case we will use softmax activation function, which is why

the output shape is 2.

outputsize = #units ∗#prev units+ 2 (3.3)

Here is a example of the model summary used during false positive report classification:

Figure 3.5: Summary of the model

3.4.3 Machine Learning Model Evaluation

In this section we define the metrics to evaluate our LSTM network approach in correctly classifying Infer

Static Analysis tool warnings based on their probability of being false positives. These metrics allow us

to compare our proposed model and approaches to state-of-the-art static analysis report classification

techniques.
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The metrics used to evaluate our model are the common standards used to evaluate machine learn-

ing models. Therefore, we consider:

• Accuracy

• Precision

• Recall

Accuracy is represented as the number of correctly classified samples divided by the set of all

samples (test set). It is a good indicator of effectiveness for our study since we have an even distribution

of samples for each class. More formally:

Accuracy =
tp+ tn

tp+ fp+ tn+ fn
(3.4)

Precision is the ratio of correctly classified faulty samples among all samples classified as faulty. It

is particularly useful when the cost of reviewing false positive reports is unacceptable. More formally:

Precision =
tp

tp+ fp
(3.5)

Recall is the number of faulty samples correctly classified by the evaluated model divided by the total

number of faulty samples. It is important when missing a true positive report is unacceptable (e.g., when

analyzing safety-critical systems). More formally:

Recall =
tp

tp+ fn
(3.6)

All these metrics are composed of three parameters. These parameters correspond to the number

of elements that are regarded as:

• True Positives (tp) : Total number of reports that were predicted to be defective and are actually

defective.

• True Negatives (tn) : Total number of reports that were predicted to not be defective and are

actually not defective

• False Positives (fp) : Total number of reports that were predicted to be defective but are actually

not defective.

• False Negatives (fn) : Total number of reports that were predicted to not be defective but are

actually defective.

We comment on the obtained experimental results based on these metrics and draw conclusions

about the proposed model. We compare the developed models under the same conditions i.e, to the

same dataset and parameters. All three metrics are computed using the test portion of the datasets.

35



3.5 Infer integration

We develop an application that complements the analysis performed by Infer Static Analysis tool. We do

this by utilizing the Neural Language Model discussed in this section and pair it with two other programs.

The idea consists in retrieving the original output given by Infer and trace the warnings to the line

they originated from. From there, the information present in the node and session responsible for raising

the warning is captured and preprocessed. The data is then fed into the neural language model which

returns the probability of the input warning to be a false positive.

Finally, the output is ranked accordingly placing true positives over false positives and given to the

user.

3.6 Solution Requirements

In order to implement the solution we presented in this chapter, we took advantage of several different

technologies. To reproduce the results the following tools are required:

• Java Programming Language version 1.8

• Infer version 0.17.0

• Python Programming Language version 3.5.2

• Maven version 3.3.8

• Ant version 1.10.7

• Keras Library with TensorFlow version 2.2.0 backend

The dataset with all the programs of the benchmark and their respective analysis can be found at

https://github.com/joaofranciscomartins/infer_warning_classification.

The developed application’s code and the datasets used to train the model can be found at https:

//github.com/joaofranciscomartins/infer_output_prioritization .
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In this chapter we detail the experimental evaluation and discussion of the results of the proposed

solution concerning Static Analysis tool warnings classification. We begin by laying out the test environ-

ment, then we describe the different LSTM approaches to be studied as well as two different application

scenarios and the creation of two different datasets to address each scenario, then we cover the exper-

iments made to achieve an optimal model parameter configuration and finally, we present the results for

each model variation for the two different scenarios. These results are then discussed and analysed and

the research questions are answered.

4.1 Experimental Environment

All the experiments were carried out in a Debian 10 server composed by a 32-core Intel(R) Xeon(R)

Silver 4110 CPU @ 2.10GHz and 64GB of RAM, and in a Debian 10 server composed by a 24-core

Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz and 64GB of RAM.

The machine learning model implementation is done with the Keras Library using a Tensorflow back-

end. All the datasets are obtained from the previously mentioned repositories in Section 3.6.

4.1.1 LSTM approaches

In this work, we study how much each transformation applied to the dataset in Section 3.3 impacts the

performance of the model. Each approach consists in the set of transformations mentioned in the table

below.

Table 4.1: LSTM approaches

Applied Transformations Approach Name

Tcln LSTM-CLN

Tcln + Tans LSTM-ANS

Tcln + Tans + Text LSTM-EXT

Tcln + Tans + Text + Taps LSTM-APS

4.1.2 Application Scenarios

Most program defect predicting studies have been conducted under two different scenarios [52,61]. We

evaluate our approach considering these two types of scenarios:

1. Within-project false positive classification

2. Cross-project false positive classification
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The first scenario considers the case where developers might continuously run static analysis tools

on the same set of programs as those programs evolve over time i.e they use Infer for ‘diff’ time analysis

as explained in Section 2.3. In this scenario, the models might learn signals that specifically appear in

those programs, certain identifiers, API usage, etc. To mimic this scenario, we divided our benchmark

randomly into training and test sets. Doing so, both training and test sets will have samples from each

program in the dataset. We refer to the random-wise split benchmark as B-Rand for short.

The second scenario concerns the case where developers might want to deploy static analysis on a

new subject program. In this scenario, the training would be performed on one set of programs, and the

learned model would be applied to another. To emulate this scenario, we divided the programs randomly

so that a collection of programs form the training set and the remaining ones form the test set. We refer

to the program-wise split benchmark as B-Prog for short.

4.2 Parameter Tuning

In this section we introduce the choices that lead to the optimal configuration of our machine learning

model. The parameters which had the biggest impact in the performance of the model are: the size of

the embedding, the number of LSTM layer units and the batch size. We chose the optimal values for

each parameter where the model attained the highest Accuracy measure. We trained every model for

20 epochs with a patience of 5 epochs, using the B-Rand dataset and the LSTM-APS approach.

The following Figures 4.1, 4.2 and 4.3 show the variance of the Accuracy metric by each of the three

parameters:

Figure 4.1: Variation of the Accuracy score, considering the word embedding size
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Figure 4.2: Variation of the Accuracy score, considering the size of the LSTM layer

Figure 4.3: Variation of the Accuracy score, considering the batch size
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First, let us look at the variance of the Accuracy measure depending on the word embedding size.

The analysis of the Figure 4.1 is clear. The accuracy value first decreases to 0.60 at size 16, but after

that it steadily increases until embedding size 128 when it starts to decrease again. Thus, considering

this scenario the optimal choice is an embedding word size of 128.

Second, we analyse the variance of the Accuracy measure depending on the number of LSTM layer

units. The analysis of the Figure 4.2 is straightforward. The accuracy value increases until 128 units,

from there is starts decreasing again. Thus considering this scenario, the optimal choice for the number

of LSTM layer units is 128.

Finally, we analyse the variance of the Accuracy measure depending on the batch size. As can be

seen in the chart, the accuracy value steadily decreased from 4 until 32. We therefore concluded that

the optimal choice is a batch size equal to 4. We also tested with batch size 2, but the training time was

too high comparing to the other approaches and therefore it was not considered.

In summary, the optimal configuration used for testing corresponds the following parameter settings

listed in Table 4.2.

Table 4.2: Optimal configuration of the LSTM network

Parameters Optimal Value

Embedding Size 128

Number of LSTM units 128

Batch Size 4

4.3 Results

4.3.1 Training Configuration

Evaluating machine learning algorithms requires separation of the data points into a training set, used

to estimate model parameters and a test set, used to evaluate the classifier’s performance. The training

method utilized was k-fold cross validation. As illustrated in Figure 4.4, the total data set is split in k sets.

One by one, a set is selected as test set and the k-1 other sets are combined into the corresponding

training set. This is repeated for each of the k sets. A set of data is stored as the validation set where

the model is tested to measure the accuracy of the obtained solution.

For both application scenarios mentioned in the previous Subsection 4.1.2 we perform 5-fold cross

validation. Furthermore, we repeat each execution 5 times with different random seeds. The purpose of

these many repetitions (5-fold cross-validation × 5 random seeds = 25 runs) is to evaluate whether the

results are consistent.
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Figure 4.4: K-fold cross validation technique. (Source: [62])

4.3.2 Analysis of Results

Dataset Approach Accuracy Recall Precision

B-Rand LSTM-APS 85.80 0.40 85.20 1.05 82.05 0.50

LSTM-EXT 85.65 1.40 84.21 5.65 84.88 1.70

LSTM-ANS 72.51 5.50 66.89 9.50 74.52 3.50

LSTM-CLN 65.29 2.50 52.91 8.50 61.15 3.00

LSTM-APS 66.00 4.82 39.24 3.96 35.00 6.96

B-Prog LSTM-ANS 60.39 7.50 40.00 9.50 36.27 5.00

LSTM-EXT 57.60 7.50 26.95 5.50 29.39 5.00

LSTM-CLN 51.59 5.00 38.26 8.50 37.40 9.00

Table 4.3: Measure results sorted by Accuracy.

In total we trained 200 Infer warning classification models: 2 different datasets × 5 splits × 5 random

seeds × 4 data preparation routines for the LSTM network. The summary of the results can be found

in Table 4.3, as the median and Semi-interquartile Range (SIQR) of 25 runs. Numbers in bigger font

are the median, and numbers in smaller font are the SIQR. We report median and SIQR as we do not

make any assumptions on the underlying distribution of the data and also, we want to be able to directly

compare our results with state-of-the-art SA tools report classification models.
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We now answer each research question.

RQ1: What is the overall performance of the model in classifying Infer Static Analysis Tool

warnings?

In this section we analyse the overall performance of our model using the Accuracy score and make

a comparison with state-of-the-art SA tools report classification models.

The different LSTM approaches used by Koc et. al [52], when analysing the FindBugsSec SA tool

warnings on a real-world random-wise split dataset, achieved a maximum Accuracy score of 89.33%

and a maximum of 80.00% Accuracy score when analyzing a real-world program-wise split dataset.

By using identical LSTM approaches, our model obtained 85.80% and 66.00% Accuracy score on

the B-Rand and B-Prog datasets respectively, as stated in Table 4.3. These values indicate that our

model is effective when modeling long sequences as can be seen in Table 4.4, as well as in accurately

modeling the language, thus allowing the finding of false positives patterns in the symbolic execution

performed by Infer. These results also validate the capability of this model of correctly classifying Infer

output reports.

However, our model did not match the results achieved by the work mentioned above [52], as our

model’s maximum Accuracy score was lower for both random and program wise split datasets. This

could be due to a few reasons:

1. Only 11% of the false positives warning samples are of the RESOURCE LEAK type. This makes it

harder for the model to correctly identify false positives patterns correspondent to such errors in

the symbolic execution since there are not that many spurious samples. This causes for the overall

Accuracy score of the model to drop.

2. As can be seen in Table 4.4, we are dealing with relatively long sequences, with a maximum of up

to 17 700 words. Since the sequences are so long and we do not have a large number of samples,

it is harder for the neural language model to correctly capture all the features of the language and

its dependencies. This ultimately takes a toll in the Accuracy score of the model, since its harder

to identify patterns in the language.

RQ2: What is the effect of different data preparations on performance?

We now analyse the effect of the different data preparations on the performance of the machine

learning model. The data preparation process is done with the objective of providing the best use for the

information present in Infer’s symbolic execution. We found that LSTM-APS data preparation provided

the best accuracy results for both variations of the dataset. The main reason for this result is the fact

that on top of all the previous preparations that were applied, which include basic cleansing, abstracting

variable identifiers and splitting class paths, it removes program specific words increasing furthermore

the level of abstraction. The difference between the LSTM-APS and LSTM-EXT is not as clear when
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analyzing the B-Rand dataset, due to the fact that both train and test sets contain warning samples from

every program present in the dataset. However, this difference becomes noticeable when analyzing the

B-prog dataset results, with LSTM-APS outperforming LSTM-EXT by 8.40% in Accuracy. The reason

for this difference is that the program under evaluation is not present in the training set, which makes

vocabulary abstraction more relevant to deal with program-specific words.

The LSTM-CLN approach got the lowest Accuracy score in both datasets. This is due to the simple

fact that the level of abstraction is to low to correctly identify false positive patterns even between samples

of the same program.

It is also worth mentioning that LSTM-ANS approach achieved a better score in the B-program

dataset than the LSTM-EXT. This happens because the sequence length increases substantially from

the LSTM-ANS approach to the LSTM-EXT as seen in Table 4.4 and it is aggravated by the fact that the

programs under evaluation are not present in the training set, meaning that they have a bigger number

of unknown words. This makes it harder for the model to identify patterns, and ultimately resulting in an

Accuracy score drop.

RQ3: What is the variability in the results?

By using the SIQR values present in Table 4.3, we analyse the variance in the Accuracy, Recall and

Precision measures.

On the B-Rand dataset, SIQR values are relatively low for all approaches, except for the recall

values in the LSTM-ANS and LSTM-CLN approaches. The LSTM-APS approach obtained the minimum

variance for accuracy, recall and Precision, followed by the LSTM-EXT approach.

On the B-Prog dataset, the variance is in general bigger than in the previous dataset. With a maxi-

mum SIQR value obtained of 7.50, 9.50 and 9.00 for Accuracy, Recall and Precision respectively. Again

the LSTM-APS approach obtained the minimum variance across all metrics followed by LSTM-EXT.

Overall, we conclude that applying more data preparations to the datasets usually leads to a smaller

variance for all the three metrics in both case scenarios.

RQ4: How do different application scenarios impact the performance of the model??

The maximum Accuracy score achieved is clearly higher for the B-Rand dataset scenario, reaching

to a score of almost 86% against the 66% achieved in the B-Prog dataset scenario.

The almost 20% Accuracy difference between case scenarios is caused by the very nature of the

programs under analysis which are complex and considerably large. This complexity and size means it

is hard to capture false positives patterns in a program never seen before, with new vocabulary and de-

pendencies. Although this effect is mitigated by the fact that we are analyzing Infer’s symbolic execution

which is somewhat regular, the results still show the consequences of analyzing a new subject program.

Our model does not demonstrate significant effectiveness when dealing with cross-project warning
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classification, regarding Infer output warnings.

Table 4.4: Dataset size statistics for each LSTM approach

Approach Dictionary Size Minimum Sequence Length Maximum Sequence Length

LSTM-CLN 10805 418 13960

LSTM-ANS 3807 404 12955

LSTM-EXT 3189 501 17610

LSTM-APS 2000 491 17599

4.3.3 Output Prioritization

In this section we present the output of our application as described in Section 3.5 and compare it with

the original output of the Infer when analysing the same program. As can be seen in Figure 4.5, Infer

warnings are prioritized according to their probability of being false positives, thus reducing the number

of spurious warnings in the first lines of the output, having 0 False positives in the first 10 warnings. Infer

in the first 10 output entries, Figure 4.6, reports a total of 5 false positive warnings. This example shows

the effect and importance of warning prioritization. It also allows the programmer to choose with more

precision which warnings to review since the probabilities are discriminated.

Figure 4.5: First 10 warnings of the prioritized output.
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Figure 4.6: First 10 warnings of Infer’s original output.

4.4 Summary

This chapter described the testing environment, presented the different model approaches tested in dif-

ferent application scenarios, described how the optimal model configuration was obtained, discussed

the experimental results and compared them with state-of-the-art approaches. The LSTM network neu-

ral language model achieved good results when dealing with within-project false positive classification,

which is the most common use case for the Infer Static Analysis Tool. Our approach was not able to

match the results obtained by previous works when using similar techniques. This is mainly due to the

lack of spurious samples regarding a specific type of error as well as dealing with long-sized text se-

quences without an abundance of samples. All the decisions made were able to produce an effective

model, capable of correctly identifying false positive Infer warnings, however, the results achieved do not

represent a significant improvement over current techniques.
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Infer is one of the most relevant Static Analysis tools of today. In this work we contributed to im-

prove the usability and relevancy of this tool by identifying and filtering false positive warnings from its

output. We presented a Neural Language Model, based on the use of LSTM networks, which allows to

successfully model the symbolic execution performed by Infer while analysing a program, enabling the

identification of false positive patterns in the analysis. We enumerated state-of-the-art static analysis

tools warnings false positives identification techniques. We also introduced a dataset of more than 500

Infer Static Analysis Tool warnings labeled as false/true positive that can serve as a reference dataset

to the research community. In our experiments, we studied four different data preparations as input for

the language model in two different contexts with the end purpose of prioritizing Infer output by filtering

false positives from true positives. We discussed the results and got important remarks and insights.

Using our model, we were able to successfully classify Infer’s output, with a percentage of 86%

correctly classified warnings when dealing with within-project warning classification, which is the most

common use case for Infer. As well as that, we created an application that combines the proposed model

with Infer Static Analysis tool which sorts the output by prioritizing true positives over false positives. We

also observed in both application scenarios that more detailed data preparation with abstraction and

word extraction leads to significant increases in accuracy. Finally, we observed that the second appli-

cation scenario, with cross-project false positive classification, is more challenging since it is required to

learn patterns of true/false positive reports that can hold across different programs.

5.1 Future Work

In future work, we believe that there are some areas of improvement regarding this subject that should

be explored.

Firstly, the construction of a larger dataset with more samples and with balanced data, i.e., with a

significant number of samples of false positive warnings for every type of error identified by the tool, so

the neural network is more efficiently trained and also with higher confidence. This should allow the

model to be more generalizable focusing specifically on Infer’s symbolic execution false positive patterns

and less on program specific words and also for the model to have enough spurious warnings examples,

so it can confidently report the nature of any kind of error detected by the tool

Secondly, Infer supports the analysis of a variety of languages and would be interesting to find out

whether if the model here developed is generalizable enough to be capable of correctly modeling the

symbolic execution that Infer performs for analyzing programs written in other languages than Java.

Lastly, having a different strategy towards the parsing phase, where less data is extracted from Infer’s

symbolic execution. This increasing of abstraction and decrease in specificity may result in a model that

is highly capable of making prediction for a given dataset, especially when performing cross-project false
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positive classification where the programs under evaluation are different from the ones present in the

training set.
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