
Sentiment Analysis for Financial Data Prediction

Frederico Pascoal Gaião Martins Monteiro

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Diogo Manuel Ribeiro Ferreira

Examination Committee

Chairperson: Prof. Alberto Manuel Rodrigues da Silva
Supervisor: Prof. Diogo Manuel Ribeiro Ferreira

Member of the Committee: Prof. Bruno Emanuel Da Graça Martins

November 2020

ii

Dedicated to both my grandfathers.

Fernando and José, you will be forever missed.

iii

iv

Acknowledgments

I would like to start by thanking my M.Sc. Thesis supervisor. I want express my gratitude for the constant

availability to share knowledge and clarify questions about my research or writing. Professor Diogo R.

Ferreira allowed this dissertation to be my own work, but guided me in a direction he thought I needed.

Without Prof. Diogo’s help this dissertation would have never reached good terms.

I would also like to credit my parents and sister. Their patience when returning home from long days

of work was immeasurable. They encourage me to pursue my dreams and support my decisions.

In addition, I would like to thank my friend Luı́s by always giving me the right advice at the right time.

To my friend Diogo, a person ready to give his input whenever I was facing a mental block. Likewise, a

big thank you to José and Henrique. Two colleagues that became friends throughout this process.

Last but not least, Amalia. You picked me up when I was down. You forced me to rest and stop when

needed. You were my rock throughout this project. Sincerely, thank you.

To all the aforementioned and, to other friends and colleagues who were there for me, either for work

or for distractions, my sincere gratitude. My journey at Instituto Superior Técnico would not have been

the same without you.

v

vi

Resumo

Os mercados financeiros, como a bolsa de valores, são extremamente voláteis e sensı́veis às notı́cias

publicadas nos meios de comunicação. Através da análise do sentimento dessas notı́cias, para além

da análise de séries temporais de cotações, deverá ser possı́vel fazer uma melhor previsão do compor-

tamento futuro de um determinado ativo financeiro. O principal objetivo deste trabalho é quantificar o

benefı́cio que pode ser obtido através da análise de sentimento, quando comparada com a análise de

séries temporais apenas, para prever o movimento futuro de ações em bolsa. Para atingir esse objetivo,

a abordagem proposta utiliza vários modelos diferentes de aprendizagem profunda. Começamos por

utilizar modelos simples que dependem apenas de indicadores dos mercados financeiros, passando em

seguida para a utilização de redes recorrentes que incorporam o sentimento de notı́cias relacionadas

com ativos financeiros. Surpreendentemente, os resultados obtidos sugerem que o benefı́cio da análise

de sentimento é diminuto. No entanto, é possı́vel obter melhores resultados com modelos de apren-

dizagem mais sofisticados, nomeadamente utilizando mecanismos de atenção.

Palavras-chave: Previsão de Ações, Análise de Sentimento, Aprendizagem Profunda, Atenção

vii

viii

Abstract

Financial markets, such as the stock exchange, are known to be extremely volatile and sensitive to

news published in the media. Using sentiment analysis, as opposed to using time series alone, should

provide a better indication for the prospects of a given financial asset. In this work, the main goal is

to quantify the benefit that can be obtained by adding sentiment analysis to predict the up or down

movement of stock returns. The approach makes use of several different deep learning models, from

vanilla models that rely on market indicators only, to recurrent networks that incorporate news sentiment

as well. Surprisingly, the results suggest that the added benefit of sentiment analysis is diminute, and

a more significant improvement can be obtained by using sophisticated models with advanced learning

mechanisms such as attention.

Keywords: Stock Prediction, Sentiment Analysis, Deep Learning, Attention

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xiii

List of Figures . xv

List of Acronyms . xvii

1 Introduction 1

1.1 Predictability of the Stock Market . 1

1.2 Media Influence on the Stock Market . 2

1.3 Main Goals of this Work . 3

1.4 Document Structure . 3

2 Components of Stock Prediction 5

2.1 Time Series Prediction . 5

2.2 Sentiment Analysis . 10

2.3 Sentiment Analysis for Time Series Prediction . 14

2.4 Summary . 17

3 Deep Learning for Stock Prediction 19

3.1 Fundamentals of Deep Learning . 19

3.2 Neural Network Models . 21

3.3 Attention Mechanisms . 24

3.4 Summary . 29

4 Case Study and Approach 31

4.1 Data Source . 31

4.2 Data Description . 32

4.3 Data Preprocessing . 33

4.4 Model Input . 35

4.5 Model Architecture . 37

4.6 Evaluation Metrics . 38

xi

5 Experimental Results 42

5.1 Feed-Forward Neural Network . 42

5.2 Convolutional Neural Network . 44

5.3 Recurrent Neural Network . 45

5.4 Long Short-Term Memory . 46

5.5 Bidirectional LSTM . 48

5.6 LSTM with Attention . 49

5.7 Bidirectional LSTM with Attention . 51

5.8 Transformer . 53

5.9 Comparison and Discussion . 55

6 Conclusion 59

6.1 Main Contributions . 60

6.2 Future Work . 60

Bibliography 63

xii

List of Tables

2.1 Techniques and data sources for stock prediction based on time series. 8

2.2 Comparison of financial data sources. 9

2.3 Comparison of text data sources. 13

2.4 Techniques and data sources for stock prediction based on sentiment analysis. 16

3.1 Alignment score functions. 24

5.1 Accuracy comparison of FNN models. 43

5.2 Accuracy comparison of CNN models. 44

5.3 Accuracy comparison of RNN models. 45

5.4 Accuracy comparison of LSTM models. 47

5.5 Accuracy comparison of bidirectional LSTM models. 48

5.6 Accuracy comparison of LSTM models with Attention. 50

5.7 Accuracy comparison of bidirectional LSTM models with Attention. 52

5.8 Accuracy comparison of Transformer models. 54

5.9 Accuracy comparison of different models. 56

5.10 Comparison of additional measures. 57

xiii

xiv

List of Figures

1.1 Examples of the impact of media articles on stock prices. 2

1.2 Outline of work areas of study. 4

2.1 Sentiment Analysis phases. 10

3.1 Single neuron. 20

3.2 Feed-Forward Neural Networks. 21

3.3 Convolutional Neural Network. 22

3.4 RNN neuron unrolled. 22

3.5 LSTM neuron architecture. 23

3.6 RNN vs Attention RNN. 25

3.7 Attention mechanism. 26

3.8 Transformer Encoder architecture. 27

4.1 Training-window options. 34

4.2 General Input block. 36

4.3 FNN Input block. 36

4.4 Transformer Input block. 37

5.1 Best FNN architecture. 43

5.2 FNN performance during training. 44

5.3 Best CNN architecture. 45

5.4 CNN performance during training. 45

5.5 Best RNN architecture. 46

5.6 RNN performance during training. 46

5.7 Best LSTM architecture. 47

5.8 LSTM performance during training. 48

5.9 Best bidirectional LSTM architecture. 49

5.10 Bidirectional LSTM performance during training. 49

5.11 Best LSTM with Attention architecture. 51

5.12 LSTM with Attention performance during training. 51

5.13 Best bidirectional LSTM with Attention architecture. 53

xv

5.14 Bidirectional LSTM with Attention performance during training. 53

5.15 Transformer performance during training. 55

5.16 Training and Validation Loss during training. 57

xvi

List of Acronyms

AF Activation Function

AI Artificial Intelligence

AR Autoregressive

ARCH Autoregressive Conditional Heteroscedasticity

ARIMA Autoregressive Integrated Moving-Average

ARMA Autoregressive Moving-Average

AUC Area Under the ROC Curve

BOW Bag-Of-Words

BP Back-Propagation

BPTT Back-Propagation Through Time

CNN Convolutional Neural Network

DL Deep Learning

EMH Efficient-Market Hypothesis

EWT Elliott Wave Theory

FA Fundamental Analysis

FNN Feed-Forward Neural Network

GARCH Generalized Autoregressive Conditional Heteroscedasticity

GRU Gated Recurrent Unit

HL Hidden Layer

LSTM Long Short-Term Memory

MA Moving-Average

MCC Matthews Correlation Coefficient

ML Machine Learning

NLP Natural Language Processing

NN Neural Network

NPV Negative Predictive Value

PPV Positive Predictive Value

RL Reinforcement Learning

RNN Recurrent Neural Network

RWT Random Walk Theory

xvii

SA Sentiment Analysis

SL Supervised Learning

SP Stock Prediction

SVM Support Vector Machine

TA Technical Analysis

TS Time Series

TSP Time Series Prediction

UL Unsupervised Learning

xviii

Chapter 1

Introduction

Financial markets are part of the core structure of modern society, since the stability and prosperity of

these markets have a great impact on economic development. However, financial markets are known to

be extremely volatile and sensitive to its surrounding environments. The ability to forecast stock price

movement allows to avoid losses and grow gains, consequently preventing crisis like the ones occurred

in 2009 or 2018 and increasing general prosperity. Therefore, apart from obvious benefits to investors,

to accurately predict future stock behavior is a crucial activity with clear interest to protect interests of

public companies and governments.

Stock Prediction (SP), i.e. the prediction of the future value of a company stock, is an extremely

difficult task due to intense amount of data produced, its high degree of uncertainty and noise. As a

result, the extent to which the future price of a stock can be predicted from its past history has always

been the source of much debate [1].

In this work, besides predicting stock price movement based in its past history, we will be interested in

checking whether such prediction can be improved based on the perceived sentiment from market news.

For this purpose, besides Time Series (TS) we will also use Sentiment Analysis (SA). Both components

being described in greater detail in the following Chapter 2. In the remaining of this chapter, we will

concentrate on introducing Stock Prediction main theories and explain media influence on the stock

market.

1.1 Predictability of the Stock Market

In essence, there are three main theories about the predictability of the stock market: Random Walk

Theory (RWT) [1], Elliott Wave Theory (EWT) [2] and Efficient-Market Hypothesis (EMH) [3].

RWT endorses that markets are completely arbitrary and stock prices are not predictable, having

random and independent movements. On the contrary, EWT is based on stock trends following a re-

peating pattern that can be forecast. Thus, through careful analysis of technical indicators charts, an

understanding of these patterns can be developed to predict stocks future movements.

1

EMH advocates that stock prices reflect all information. There are three forms of EMH: weak, where

only past historical stock data is integrated; semi-strong, where in addition all public information is in-

corporated; and strong, where private information is also considered. The latter supports that any price

change not based on available information is inherently unpredictable [4].

Financial data plays a key role in all of the above theories, and its analysis is divided in two categories:

1. Technical Analysis (TA), supporting EWT, is a short-term approach used for trading. It examines

peaks, bottoms and trends based on financial data to find the correct timing to enter and exit

the market. It makes use of statistical techniques and visual pattern recognition methods further

explored in Section 2.1. However, it is somewhat subjective in nature, since it depends on each

trader interpretation of technical charts and data.

2. Fundamental Analysis (FA), supporting EMH strong form, is a long-term approach used for stable

and long investments. FA tries to predict changes before they appear on charts by analyzing

intrinsic value, hence harder to formalize into rules. It integrates multiple sources of distinct data

such economic indicators, financial reports from banks and textual information from the media.

The challenge in this form of analysis is to deal with unstructured data in a systematic manner.

It is interesting to observe how both approaches above can be mapped to two fundamentally different

data sources. On one hand, there are market indicators that reflect the day-to-day evolution of stock

prices and can be used for TA. On the other hand, there are other complementary sources, such as

media news and sentiments, that ultimately contribute to shape the evolution of those stocks, and are

important for FA. While TA can be addressed, for example, with Time Series Prediction (TSP), FA may

require the use of additional data sources and techniques, e.g. Sentiment Analysis, to fully understand

how the current stock price synthesizes all the information available about a company.

1.2 Media Influence on the Stock Market

From traders’ traditional use of technical methods, to an easier accessibility and processing of financial

data when comparing to textual information, the great majority of approaches always revolved around

Technical Analysis. However, people use media to be informed about what is happening and what

might happen. Moreover, the stock market is driven by humans, their judgment and conflicting thoughts.

Therefore, analyzing media articles as the ones in Fig. 1.1 can be useful to gain a deeper insight when

predicting stock price future movement.

Figure 1.1: Examples of the impact of media articles on stock prices.

2

As sentiment can be detected from an article [5], it is rational to expect that media articles containing

negative words such as “hacked” or “cuts” precede a downward trend in the stock price. In contrast,

positive terms like “merger” or “acquisition” should be followed by an upward trend [6]. In addition, a

specific number of relevant entities and related events directly affect companies and their assets [7].

Based on this fact, it is logical to expect that cases as Amazon acquiring Whole Foods would positively

impact Amazon.com share prices. Or negative events such Steve Jobs death and Elon Musk mocking

the SEC on Twitter to impact Apple and Tesla shares in a negative way, correspondingly. In addition,

analyzing Google Trends or searches on Wikipedia pages related with stock assets can capture public

interests and help to better predict stocks’ prices [8].

1.3 Main Goals of this Work

Stock market data and news articles are constantly being produced, released and in permanent change.

However, human perception is limited and incapable of effectively handling all information available. As

the two types of data have a unique time date, both can be considered Time Series and analyzed as

such. Numerous attempts to predict stock price movement have been proposed using this approach.

Although is general belief among researchers that news sentiment will never replace financial data

as primary source when doing SP [9–12], this type of data can be used as a complement. But how

much can one gain by incorporating Sentiment Analysis over a pure Technical Analysis such as Time

Series Prediction? In principle, SA should be able to provide some explanation for the seemingly random

evolution of a Time Series, so it should be possible to achieve an increase in the accuracy of any Stock

Prediction model. The question that we address in this work is how much of an improvement can one

actually obtain by incorporating Sentiment Analysis.

A panoply of techniques can be used to analyze financial data and do SA. Since recently there has

been an increasing focus on addressing both TSP and SA with Deep Learning (DL) models, we also

use DL to facilitate the development of prediction models that combine both components.

Lastly, a state-of-the-art approach for Natural Language Processing tasks, the Attention mechanism,

was developed recently. This has achieved promising results in machine translation and SA. As a result,

we employ this mechanism in our models to measure its performance on financial data as well. A

comparison using DL techniques with, without and solely relying on Attention will also be included. To

measure the impact of Sentiment Analysis and Attention when doing Stock Prediction, the directional

accuracy will be used as evaluation metric.

1.4 Document Structure

Following this introductory section, Chapter 2 reviews the main techniques used when doing SP, namely:

Section 2.1 only with historical financial data; Section 2.2 introduces the field of Sentiment Analysis; and

Section 2.3 combines financial data and media Sentiment Analysis for Stock Prediction.

3

Chapter 3 details the application of Deep Learning to Stock Prediction, namely: Section 3.1 intro-

duces the field of Deep Learning, its origins and components for a better comprehension of this work;

Section 3.2 analyses most known Neural Network models; Section 3.3 details Attention mechanisms

and how they can be incorporated into Stock Prediction.

Chapter 4 describes the experimental approach to SP with and without SA, namely: Section 4.1

where we detail the origin of the data; Section 4.2 where the features used are described; Section 4.3

details the preprocessing done; Section 4.4 explains the input layers for each model; Section 4.5 char-

acterizes the different models employed; and Section 4.6 specifies how the results are going to be

evaluated and which metrics are used.

Chapter 5 describes the results obtained by NN models introduced throughout this document, having

a section for each NN with its best architecture. In the end of the chapter, Section 5.9 summarizes all

results and draw more broader conclusions.

Chapter 6 concludes the document with our major contributions, providing some final remarks about

potential uses of our approach and some of its limitations.

Section	2.3

Deep	Learning
Section	3.1	&	3.2

Section	2.1 Section	2.2

Time	Series
Section	2.1

Sentiment	Analysis
Section	2.2

Figure 1.2: Outline of work areas of study.

In summary, the main areas of study involved in this work are represented schematically in Fig. 1.2.

It is important to notice that Deep Learning has brought the possibility of uniting financial data as Time

Series and Sentiment Analysis to develop better models for Stock Prediction as we will see in the next

chapter.

4

Chapter 2

Components of Stock Prediction

Based on the Efficient-Market Hypothesis (EMH), a possible definition of successful Stock Prediction

(SP) is to achieve the highest accuracy while using the smallest amount of information possible. The

goal being to reduce investors’ risk while maximizing profits [13].

Numerous attempts have been made to predict the movement of stock prices. Since stocks are in

a continuous shaping process due to new information [14], their associated data is usually complex,

uncertain, incomplete, and vague [15]. SP is acknowledged to be one of the most challenging Time

Series (TS) tasks [16], with the hardest part being to select relevant features and learning mechanisms.

In this chapter, we have a look at how other authors have approached Stock Prediction from two

different perspectives, namely from the perspective of Time Series Prediction (TSP) and from the per-

spective of Sentiment Analysis (SA), which are the most relevant components for our purpose. Rather

than an in-depth study of each technique, the intention is to reflect about their purpose and gain insights

regarding their performance. In Section 2.1, models only using financial data and their challenges are

detailed. Section 2.2 introduces SA, a field of Natural Language Processing (NLP) that analyses in-

vestors sentiment and published media. Finally, Section 2.3 highlights how both historical data and SA

are incorporated to achieve state-of-the-art accuracy. Later on Chapter 3, Deep Learning (DL) tech-

niques and their application to Stock Prediction will be described in detail.

2.1 Time Series Prediction

Any problem where order of data captured is registered and taken into account can be considered a

TSP problem [17]. Therefore, Stock Prediction is a TSP problem composed by several indicators.

Consequence of the stock market being affected by a myriad of factors, financial data is comprised by

a great set of unstructured nature features causing complex behavior with hidden relationships between

different stocks. These circumstances cause a constant evolution, leading to highly noisy and chaotic

data that has neither stationary (mean, variance, and frequency change over time) or linear properties

[18]. As a result, Stock Prediction is acknowledged as one of the most challenging TSP tasks [16],

numerous models based on Statistical, Machine Learning and Reinforcement Learning techniques have

5

been proposed for financial data prediction [19]. Below each technique will be briefly described.

• Statistical Techniques such as AR [20], MA, ARMA and ARIMA models make the assumption

that stock data has linear properties. Additionally, all except ARIMA, assume that variables also

have stationary properties [21]. By employing moving averages, these models are sufficient to

describe a trend, hence recognizing patterns [22, 23]. As a drawback, when in market reversions,

significant losses are suffered [24]. In addition, only a stock is predicted.

Moreover, aforementioned models assume homoscedasticity (constant variance of the error term

over time). Although, as a consequence of assets volatility from their dynamic variables rela-

tionship, financial data is heteroscedasticity [25, 26]. Advanced models such as ARCH [27] and

GARCH [28] already consider that error variance.

To mitigate the uni-variable constraint above mentioned, alternative models like VAR were pro-

posed. These models are able to cope with multi-variable data however, making presumptions

about data distribution as well. Therefore, likewise resulting in an inability to perceive underlying

non-linear behavior or existent dynamic between stocks [29]. Consequently, these models adop-

tion on complex real-world problems produce unsatisfactory predictions [20].

From economic decisions to political events, every aspect influences stocks fluctuation and thereby

its corresponding valuation or devaluation [30]. Based on this information, no model aforemen-

tioned can yield significant forecasting accuracy with such disparate data in such noisy environ-

ments. All models discussed within statistical techniques, derived from a poor generalization ability,

underperform when used for live forecasting.

• Machine Learning (ML) Techniques adapt well to noisy environments having great tolerance to

imprecision. These techniques are able to forecast multiple stocks at the same time, consequently

allowing them to capture non-linear relations and to make statistical assumptions about training

data with partially unknown parameters [31–33].

– Support Vector Machine (SVM) is a common approach when dealing with TSP [19, 34, 35].

Through its risk minimization principle, better generalization than previous models is reached

even outperforming some Neural Networks [36–38] .

Nonetheless, a disadvantage is the large amount of computation time required when solving

large problems. A dimensionality reduction, through preprocessing and clustering, is required

in order to expedite the process and diminish the overfitting risk [39, 40].

– Neural Network (NN) learns from examples, understanding underlying patterns in them [41].

In addition, it can generalize from past experience and predict on data that might never been

previously observed, without a priori assumptions about its properties [42].

NN adapts non-linear functions to training data [43]. This contributes for NN to have the

highest accuracy, outperforming statistical techniques by at least 10% [42, 44, 45] and other

traditional ML models such as SVM and Random Forests [46, 47].

6

Noise tolerance and the ability to handle incomplete or corrupted data are also advantages

when comparing to previous models. Aforementioned factors, the ability to generalize its

prediction to any asset and the relative ease when dealing with complex data jointly justify

why NN are chosen for financial data prediction [48]. Deeper NN outperform more simpler

ones [49–51].

– Convolutional Neural Network (CNN), through convolutions in the form of a sliding window

over its input, are capable of capturing variable correlations, hence discovering hidden fea-

tures and understanding non-linear relations. CNNs are very popular in image processing

where the input is 2D, but they are also very successful at 1D input processing such as text

sentences [52] and Time Series [53]. Additionally, they can also be used in 3D inputs.

Recently, several models based on the WaveNet [54] have been proposed. These often

perform better than DL models with memory [55]. This is due to a CNN analysis be only

based on the current window. Therefore, when applied to financial data, this model better

captures sudden changes, hence obtaining its best results on high volatility markets [56–58].

CNN models are able to follow trends, however, cannot predict stock price [59].

When dealing within the Time Series tasks scope, ref. [53] argues that CNN is the most

widely applied model due to its robustness and relatively small amount of training time when

compared to Recurrent Neural Network.

– Recurrent Neural Network (RNN) are very appropriate for sequence processing [60], since

they keep an internal state and have a feedback loop to use that internal state as an additional

input at each time step. Based on this assumption, it is possible to reuse historical stock

information from the past to predict the future. [21, 56, 58, 61, 62]. However, simple RNNs

are unable to perform well when a long-term context is required [63].

– Long Short-Term Memory (LSTM) is a type of RNN with the ability to capture past data influ-

ence over the course of time. The LSTM architecture [64] improves on long-term dependen-

cies by keeping a cell state with the possibility of carrying past information across multiple time

steps. LSTM, due to their longer memory, improved results and allow to outperform memory-

free models [65–67]. From all discussed models, LSTM is presenting the most promising

results for Stock Prediction.

Recently, slightly different recurrent versions as the GRU model have been proposed [68].

However, LSTM models can still provide state-of-the-art results [69]. Nonetheless, in ref.

[10] it is hypothesized that the inclusion of Attention mechanisms can capture longer-term

dependencies and even outperform stand-alone LSTM.

• Reinforcement Learning (RL) Techniques train an agent through trial and error in order to max-

imize a reward [62]. With this strategy, Technical Analysis (TA) noisy and uncertain environments

can be overcome [70]. The agent automates trades and diminishes costs by classifying and sys-

tematizing TA as a set of rules to anticipate future price shifts [71].

7

Most studies use the Sharpe Ratio [72, 73] or the Calmar Ratio [74] as objective function and

a measure of performance. Trading frequency can also be increased to lower the agent’s per-

formance degradation [73]. Quality-Learning algorithm (QLa), by not having a limited number of

states [72], can also be a solution to better cope with confused markets where stocks’ value may

assume an infinite number of values [75].

However, using RL techniques for Stock Prediction has challenges. Due to high volatility and noise,

common in financial data, patterns may be unclear in training data and significant differences may

be observed between training and test dataset. Both factors cause the agent to underperform.

Another difficulty, in order to maximize profit, is to determine an optimal number of shares to

buy/sell instead of trading a fixed number, which is a tremendous task for the agent to execute.

The paragraphs above summarize the main techniques used for Stock Prediction. In order to have a

broader overview of these works, Table 2.1 and Table 2.2 present the literature on TSP in an alternative

format.

Table 2.1 presents a summary of the methods employed, the stock indexes and the data sources

used by different authors. This survey leads us to conclude that Yahoo Finance and Thomson Reuters

have been the most popular data sources; other sources used are Bloomberg, Google Finance and

public datasets. 25% of the articles did not reveal its origin. It is our assumption, due to the time range

periods analyzed, that their origin must be similar to aforementioned sources. On the other hand, the

most common indexes and markets are the American (S&P, NASDAQ, DJIA and NYSE) and the Asian

(NSE, Nikkei, KOSPI and CSI); others include EuroStoxx50 and Ibovespa.

Table 2.1: Techniques and data sources for stock prediction based on time series.

Technique Index Yahoo Finance Thomson Reuters Other Unidentified

Stats American [76–79] [80, 81] [82]
Asian [81, 83] [21, 42, 58, 66]

ML American [4, 7, 8, 61, 79, 84, 85] [47, 80, 81] [46, 86, 87] [56, 59, 82]
Asian [85, 88] [81, 83] [89] [21, 56, 69, 90, 91]
Other [85] [34]

NNs American [7, 8, 51, 61, 79, 92, 93] [43, 47, 67, 80] [10, 46, 94] [56, 59, 82]
Asian [51] [67] [89] [21, 42, 56, 58, 66, 69, 90, 95]

RL American [62, 74, 75] [75]
Asian [75] [75]
Other [75] [75]

From Table 2.2 it is possible to conclude that regarding the time frame for training and evaluation, the

shortest period found in these works was one month [4] and the longest was 66 years [59]. It is worth

noting that statistical techniques tend to use shorter time frames to avoid noise and dimensionality issues

[76–79], while ML techniques tend to use longer time frames to properly train the models [47, 59, 67, 80].

Also, the directional movement of stocks (up or down) is the most common prediction goal, and arguably

the most important one [86]. Only two articles tried to predict the actual stock price [87, 93].

In conclusion, models employed vary frequently, corroborating that SP is a very well explored field.

It is important to notice that almost every article often used ML techniques, in particular at least one

NN model. The latter have been reaching remarkable results when predicting financial Time Series.

Especially LSTM, the state-of-the-art approach, appearing as one of the most promising models [69].

8

Table 2.2: Comparison of financial data sources.

Ref. Algorithm Source Index Time-Frame Period Forecast Type

[59] MLP, CNN, LSTM – S&P 500 Daily 01/1950 – 12/2016 Direction
[82] GARCH, MLP, NN – NASDAQ Daily 10/2008 – 06/2009 Direction
[42] AR, NN – KOSPI Daily 01/2010 – 12/2014 Direction

[69] MLP, CNN, LSTM
LSTM + Attention – KOSPI 200 Daily 01/2000 – 07/2018 Direction

[66] LSTM + GARCH – KOSPI 200 Daily 01/2001 – 09/2011 Direction

[21] AR, RF, SVM, CNN
RNN, LSTM, MFNN – CSI 300 Minutely 12/2013 – 12/2016 Direction

[90] AR, MLP, RNN, LSTM – Nikkei 225 Daily 01/2001 – 12/2008 Direction
[95] NN – TWSE 1 Daily 01/2013 – 12/2014 Direction
[91] Random Forests – SGEM 2 Daily 01/2010 – 10/2016 Direction

[58] ARIMA
CNN, RNN, LSTM – NSE Minutely 07/2014 – 06/2015 Direction

[56] MLP, CNN
RNN, LSTM – NSE

NYSE Daily 01/1996 – 06/2017 Direction

[6] – Yahoo! Finance S&P 500 Hourly 10/1999 – 02/2000 Direction
[76] VAR3 Yahoo! Finance S&P 100 Daily 11/2012 – 02/2013 Direction
[77] VAR3 Yahoo! Finance S&P 100 Daily 11/2012 – 04/2013 Direction
[4] SVM Yahoo! Finance S&P 500 Daily 10/2005 – 11/2005 Direction

[7] SVM
NN Yahoo! Finance S&P 500 Daily 10/2006 – 11/2013 Direction

[92] CNN Yahoo! Finance S&P 500 Daily 10/2006 – 11/2013 Direction
[61] SVM, CNN, RNN Yahoo! Finance S&P 500 Daily 10/2006 – 11/2013 Direction
[62] RL Yahoo! Finance S&P 500 Daily 01/1990 – 09/2015 Direction

[51] EMD2FNN Yahoo! Finance
S&P 500

SSEC7

NASDAQ
Daily 01/2012 – 12/2016 Direction

[84] SVM Yahoo! Finance NYSE
NASDAQ Daily 07/2012 – 07/2013 Direction

[8] SVM, NN
Random Forest Yahoo! Finance NASDAQ

DJIA Daily 01/2013 – 12/2016 Direction

[93] SOFNN5 Yahoo! Finance DJIA Daily 02/2008 – 12/2008 Price
[78] Pearson Correlation Yahoo! Finance DJIA Minutely 11/2014 – 03/2015 Direction
[79] AR, SVM, SOFNN5 Yahoo! Finance DJIA Daily 06/2009 – 12/2009 Direction
[88] SVM Yahoo! Finance HKEX6 Daily 01/2003 – 03/2008 Direction

[74] RL Yahoo! Finance
IWD, IWC
SPY, DEM

CLY
Weekly 01/2011 – 12/2015 Direction

[85] Bayesian Network Yahoo! Finance
iBOVESPA

DJIA, NYSE
Nikkei 225

Daily 06/2005 – 04/2012 Direction

[75] RL Yahoo! Finance
Thomson Reuters

S&P 500
KOSPI, HSI
EuroStoxx50

Daily 01/2001 – 12/2017 Direction
#Shares

[43] FNN Thomson Reuters S&P 500 Hourly 04/2011 – 04/2016 Direction

[80] AR, Random Forest
NN, LSTM Thomson Reuters S&P 500 Daily 12/1989 – 09/2015 Direction

[67] LSTM Thomson Reuters S&P 500
KOSPI 200 Daily 01/2000 – 07/2017 Direction

[81]
AR

SVM
Random Forest

Thomson Reuters

S&P 500
FTSE 100

NIKKEI 225
TWSE, KSE

Daily 01/1995 – 12/20016 Direction

[83] AR, SVM Thomson Reuters SSEC7 Daily 12/2014 – 04/2016 Direction

[47] NN
Random Forest Thomson Reuters S&P 500 Daily 12/1992 – 10/2015 Direction

[86] Decision Tree Bloomberg DJIA Daily 04/2012 – 04/2013 Direction
[34] SVM Bloomberg Ibovespa Daily 06/2001 – 12/2016 Direction

[94] CNN
LSTM Google Finance S&P 500

DJIA Daily 01/2006 – 11/2017 Direction

[87] SVM Google Finance Panasonic
Sharp, Sony Daily 01/2006 – 08/2008 Price

[89] SVM, LSTM Wind Database CSI 300 Daily 01/2009 – 10/2014 Direction

[46] SVM, NN
Random Forests

FRED database
SNL S&P 500 Daily 01/1996 – 12/2017 Direction

[10] LSTM Kaggle’s Two Sigma S&P 500 Daily 01/2007 – 12/2007 Direction
1 Taiwan Stock Exchange
2 Shenzhen Growth Enterprise Market
3 Vector Autoregression
4 Support Vector Regression
5 Self-Organizing Fuzzy Neural Network
6 Hong Kong Stock Exchange
7 Shanghai Stock Exchange Composite

9

However, there are still limitations. The major drawback is the large amount of training data required

to achieve robust generalizations and satisfactory results due to other factors aside technical indicators

affecting the market [14].

As the goal of this work is to improve accuracy when predicting stocks, not only technical indica-

tors must be analyzed but, perceived investors sentiment and media that revolve around those must

be analyzed as well. Therefore the next Section 2.2 will introduce SA, a subfield of NLP, and the fol-

lowing Section 2.3 will resume the state-of-the-art approaches combining SA and financial Time Series

prediction.

2.2 Sentiment Analysis

Natural Language Processing focuses on developing computational techniques to provide machines

the ability to process and understand human languages. These abilities are built through models that

analyze, identify and classify attributes such as:

• Author: person or entity that expresses a specific opinion;

• Polarity: emotion of author’s opinion;

• Subject: entity referred on author’s opinion.

While SA can be regarded as a subfield of NLP, its fast growth in recent years [96] has been propelled

by numerous applications that transform human-generated information (news, tweets, etc.) about any

topic (companies, products, politics, etc.) into a sentiment signal (usually positive or negative).

Sources Classification	Level Sentiment	PolaritySentiment
ClassificationFeature	Selection

Figure 2.1: Sentiment Analysis phases.

In stock markets, participants take actions (to buy, hold or sell stocks) that are defined and affected

by what they read and by what those surrounding them read and share, including the opinions of sources

they trust, which are also influenced by market news. From this point of view, the emotional sentiment

upon a particular stock or company has become a fundamental part of stock prediction [97, 98], and

many authors have included this additional component in their prediction models. Sentiment Analysis

main topics are detailed below as structured in Fig. 2.1.

• Sources are where authors provide opinions and from where information is retrieved. These

supply new perspectives about facts while invoking sentiment within their content creating comple-

mentary information to complete SP [99].

– News are published as soon as information is released or discovered. General news, head-

lines [7, 100] or only specific financial related news [12] can be used in SP. The latter has

the advantage of avoiding noise. This type of media is the most popular source due to easy

10

gathering of information from trustworthy authors or newspapers [101]. However, news are

very objective and impartial, a serious challenge for when attempting to determinate senti-

ment. In addition, news relevancy is very time dependent [98]. Typically causing traders to

immediately react after its release [102].

– Reviews in opposition to news, are biased therefore easier to determine sentiment. According

to ref. [103], 90% of customer’s purchases depends on online reviews.

– Social Media Platforms allow quick spread of information, being Twitter the most common

source due to a simple and structured way to retrieve data [104, 105]. However, due to

character limitation, tweets are not suited for long pieces of text or fully justified opinions on a

subject [106]. In addition, the common use of jargon, misspellings and very few full sentences

on posts lead to this type of media requiring a lot of preprocessing when doing SA tasks.

– Blogs more likely express its author’s opinion than traditional media. However, there is a

need to determine if the opinion is relevant regarding the targeted topic and if the author

is trustworthy [107]. An additional drawback is that financial blogs tend to discuss multiple

stocks or companies in a single article.

– Financial Reports produced by organizations are also used (e.g. [101]).

• Feature Selection is a task of SA to extract, select and reduce text features. When training a

model, it is important to reduce time and computation power required. Some methods used are:

tokenization, stop-word removal, stemming, term presence and frequency [108].

The most common and simplest method is to tokenize the document, use word frequency and

presence to classify important features [106]. However, this approach assigns importance to terms

that may not contribute to overall sentiment. A circumventing approach is Bag-Of-Words (BOW),

though losing word order therefore causing inability to understand any linguistic patterns [109].

In addition, BOW does not consider any synonyms, co-references, and pronoun resolution [90].

Other possible alternatives are Noun Phrasing and Named Entities that only use certain parts of

speech as features.

• Classification Level is essential to define at which scope level SA tasks are going to be per-

formed. Being the main goal to determine and examine the final sentiment, classification can be

done at:

– Document Level, the simplest form of SA, assumes the author expresses throughout an entire

document a single opinion about a single subject.

– Sentence Level assumes that a document contains multiple opinions. More weight is given

to local sentiment because it is easier to agree on sentence than document sentiment [110].

Only subjective sentences are analyzed being objective ones discarded. In addition, it is rec-

ommended to have specific strategies to handle different types of sentences such as sarcastic

11

[111], interrogative [112] and conditional [113, 114].

– Aspect Level is useful when a document/sentence refers to more than one entity at a time

[115] and focuses on identifying its sentiment. For example, an opinion about a company is

made of different aspects, such as profit, wages, conditions, etc. Aspects can be: Explicit,

where all nouns are identified; or Implicit, where each explicit aspect relates with other implicit

ones (e.g. a review mentioning a heavy object is implicitly referring to its weight);

– Comparative Level is used when the author, providing an opinion, is not direct about the entity

but instead compares it with others [116].

• Sentiment Classification can be divided in three approaches:

– Lexicon-Based approaches collect known terms with preassigned sentiment. The challenge

is to adapt/customize from a particular domain to a different one [5, 117–119]. There are

three main methods:

∗ Manually, where lexicon is created by hand. Commonly more accurate due to careful

word selection by linguistic experts but unfeasible due to colossal amount of work re-

quired.

∗ Dictionary-based, where a set of seed words is expanded through its synonyms and

antonyms in the dictionary (e.g. WordNet 1). The main disadvantage being that is more

generalist due to domain independent lexicon also being acquired [88, 120, 121].

∗ Corpus-based, where a domain specific corpus of documents is used to expand an exis-

tent set of words. Each word sentiment polarity is detected through linguistic connectors

such as “and” or “but” [122], and by using synonyms and antonyms polarity [123]. It is

the only feasible and efficient choice.

Nonetheless, some words will always need disambiguation. For example, “growth” in the fi-

nancial domain is always positive, whereas in medical terms might not be. Some alternative

solutions are to detect sentiment based on the co-occurrence with another word with senti-

ment already assigned (statistical method) or to give the same polarity to semantically close

words (semantic method).

– Machine Learning approaches, yielding the best accuracy, can be divided into supervised

and unsupervised strategies. These strategies are described with more detail further ahead

in Section 3.1.

– Hybrid approaches combine merits of both previous ones. Generally built in a cascade man-

ner so that when one classifier fails, the following tries to classify, and so on until a document

is categorized.

1https://wordnet.princeton.edu/

12

Table 2.3: Comparison of text data sources.

Ref. Algorithm Text Type Source

[61] SVM, CNN, RNN News Headlines Thomson Reuters
[94] CNN, LSTM News Headlines Thomson Reuters

[92] CNN News Headlines Thomson Reuters
Bloomberg

[10] LSTM News Headlines Kaggle’s Two Sigma

[7] SVM, NN News Headlines
News Articles

Thomson Reuters
Bloomberg

[6] Naı̈ve Bayes News Articles Yahoo! Finance
[88] Lexicon Based News Articles FINET 13

[95] NN News Articles

NowNews
AppleDaily

Liberty Times Net
MoneyDJ Finance

[90] LSTM News Articles Nikkei Newspaper

[87] SentiWordNet2 News Articles
Comments Engadget3

[109] SVM, CNN News Articles
Reviews

Thomson Reuters
IMDB: movie reviews

Electronics product reviews

[124] Attention LSTM, CNN News Articles
Social Media

Baidu News
Sina Weibo8

[125] SVR4 Financial News Articles Yahoo! Finance
[8] Pre-maid Financial News Articles FinSentS Web News Sentiment

[126] LSTM+Attention Reviews SemEval-2014 Task 4 [127]
[128] CNN Reviews SemEval-2014 dataset

[129] CharSCNN5 Movie Reviews
Tweets

Stanford Sentiment Treebank
Stanford Twitter Sentiment corpus

[130] SVM Amazon Reviews Dataset6

[131] Attention LSTM Reviews Dataset7

[132] Bidirectional LSTM Reviews
Micro-blogs

Amazon Reviews
Sina Weibo 8

[133] Attention LSTM Reviews
Yahoo! Answers

SemEval-2015 Task 12 [134]
SentiHood [135]

[107] Naı̈ve Bayes
SVM Blogs Financial Blogs

[89] Naı̈ve Bayes Forum Texts guba.eastmoney.com
[76] Lexicon Based Tweets Twitter API
[83] Naı̈ve Bayes Tweets Sina Weibo8

[136] CNN Tweets SemEval-2015 Dataset
[78] Random Forest Tweets Twitter API
[79] Lexicon Based Tweets Twitter API

[93] OpinionFinder
Lexicon Based Tweets Twitter API

[77] SSN9 Tweets Twitter API
[137] CNN, LSTM Tweets Twitter API
[138] Attention Bi-LSTM Tweets SemEval-2017 Task 4 [139]
[86] Lexicon Based StockTwits Twitter API

[101] Naı̈ve Bayes
Decision Trees Board Messages Yahoo! Finance Message Board

[84] TSLDA10 Board Messages Yahoo! Finance Message Board
[98] Random Forest Regulatory Announcements Dataset12

1 Topic Sentiment Latent Dirichlet Allocation
2 https://github.com/aesuli/sentiwordnet
3 http://www.engadget.com/
4 Support Vector Regression
5 Character to Sentence CNN
6 http://www.cs.jhu.edu/ mdredze/datasets/sentiment/
7 http://tcci.ccf.org.cn/conference/2013/index.html
8 http: //weibo.com/
9 Semantic Stock Network
10 Topic Sentiment Latent Dirichlet Allocation
11 Extreme Gradient Boosting
12 http://www.dgap.de/dgap/News/?newsType=ADHOC
13 http://www.finet.hk/mainsite/index.htm

13

• Sentiment Polarity is the classification of an author’s opinion. In its simplest form it involves

just two classes: {positive, negative}. A simple extension is ternary polarity by adding a neutral

class [99]. More fined-grained SA can be achieved by detailing positive and negative categories,

by adding a category for objective sentences, by categorizing flavors of feelings {fear, rage, joy,

interest}, emotions [140] such {Pleasantness, Attention, Sensitivity, Aptitude} and its level of in-

tensity [97].

Other approaches, such as review systems, typically use a 3- or 5-star classification system. Usu-

ally, qualitative and quantitative systems can be mapped into each other, as long as they have the

same number of categories.

In alternative, some authors [141] have also used a continuous value in a certain range, e.g.

[−1,+1].

Table 2.3 summarizes the text sources used in the literature. From the works included is possible to

conclude that:

• The most frequent sources are News (12) and Twitter (8).

• News, articles or headlines, are frequent due to its structured form. Headlines are the less senti-

ment ambiguous form from these three [92]. The most frequent news source is Thomson Reuters

because it is the only one without scraping limitations [94].

• Tweets are frequent due to easily detection of sentiment and simple form of accessing and collect-

ing data.

• Again, almost all include a NN model or a comparison between several such models, a major topic

of this thesis.

A Stock Prediction system is highly context specific, so it is important to explore multiple financial

markets and media sources to build the most accurate possible system [11]. Having this in mind, jointly

with EMH strong form, Section 2.3 will resume state-of-the-art approaches combining SA and prediction.

2.3 Sentiment Analysis for Time Series Prediction

Stock Prediction deals with an immense amount of trades and complementary information on a daily

basis. Furthermore, according to EMH strong form, markets immediately process and adapt to any

information released. Therefore, to solely rely on humans to analyze financial and media data in order

to efficiently do SP is inconceivable. Consequently, it is necessary to automate both financial and media

data process of scraping and examination [22].

Opposed to Section 2.1 where SP only considers individual [93] or multiple [87] stocks, and after Sec-

tion 2.2 introduction to the field of SA, Section 2.3 includes approaches that use media information SA as

additional features to do financial data prediction [84] thereby improving directional movement accuracy

[88, 94]. In addition, sometimes it is even possible to predict its interval growth/decline duration [91].

14

DL techniques, in particular NN models, achieve the highest accuracy [132]. RNN, due to its ability

for SA tasks, is the most complete model to build a SP system incorporating media analysis [142].

Several comparisons between RNN models such as Elman, Jordan and LSTM were made [143], having

the latter the highest directional accuracy registered throughout our review [89].

The media sources used with ML models are:

• News [144] and headlines [145] being the most analyzed type of media. Almost every type of

model from Statistical [4, 146] to Naı̈ve Bayes [147], KNN [146], CNN [61] and RNN [61] used this

source. Refs. [4, 12, 125, 148] used a more fine-grained scope, only analyzing financial news

articles. Ref. [149] compared the impact of major and once-occurrence events, causing dramatic

impact on the stock market against minor and more frequent ones, that cause a lower impact on

prices. It was concluded from all articles regarding news that:

– Private information causes insignificant or low changes in stock price [150] and contrarily,

public information causes significant changes [151]. Therefore it is consensual that predic-

tion accuracy is primarily influenced by public information. Nonetheless, the use of private

information allows the possibility to improve the accuracy a bit further.

– Markets tend to overreact when presented with bad news [145].

– It is easier to predict downward trends than upward trends [152].

– In general, pessimism tends to increase trading volume and lead to predictions of negative

returns the next day [153]. However, disappearing within one week.

• Social Media Platforms nowadays have more influence in stock performance than conventional

media attributes [154]. Not much work has been done over Facebook information due to privacy

concerns restraining data availability [155, 156]. However, both trends and searches of Google

and Wikipedia are useful tools to measure investors attention and interests [157, 158]. Both have

successfully complemented financial data prediction [159] having a direct correlation with volatility

and trading volume [160].

• Twitter sentiment and message volume showed a consistent correlation with stock movement and

traded volume, correspondingly [161–164]. An additional feature is the author’s trustworthiness

[78, 105]. Similarly to financial news, to use StockTwits instead of tweets for a more fine-grained

SA analysis can be beneficial [165]. Alternative approaches proposed to:

– exploit character- to sentence-level tweets information in order to acquire more context from

Tweets [129];

– create a stock graph based on stocks similarity between historical prices or co-occurrence in

the same tweet [77];

– create a concept map relating different concepts present on tweets and organize them hier-

archically [166];

– visualize the sentimental trajectory of each emotion in retweets through Google Maps [137].

15

• Blogs, chat rooms and discussion boards are tools which users can use to form opinions and

quickly share them widely [167]. Information can be searched, diffused and authored with ease.

This can make a sentiment about specific stock assets or entire markets go viral [168].

Refs. [107, 169] demonstrated promising results as the baseline, strongly correlating frequency

with stock trading volume and producing significant results regarding price movement. Minor works

were proposed with forum texts [89]. Out of this work scope, YouTube data and its comments were

analyzed in order to measure online radicalization and its overall usefulness [170].

• Financial Reports released by companies, public media or third-party institutes contribute to EMH

semi-strong form by fully reflecting publicly-available information. Based on this premise, it is

expected that whenever reports enter the market a price changes occur [98]. When the market is

in uptrend and optimistic reports were released, the investors reacted positively. On the contrary,

in the presence of a downtrend and negative reports were released, the investors tend to react

more [171].

In the real world, in order to provide equal access to all participants, regulators ensure that stock-

relevant information is revealed via regulatory disclosures. However, it cannot be guaranteed that

no misleading information is present.

Table 2.4 provides an overview of the results reported in the literature in terms of directional predic-

tion accuracy. Each column details a source, mentioned in Section 2.2; each row a NN model further

analyzed in Section 3.2; and each cell a financial data prediction work detailed in Section 2.1 (without

SA) or in Section 2.3 (with SA).

Table 2.4: Techniques and data sources for stock prediction based on sentiment analysis.

Model
Source News Social

Media Twitter Blog &
Forums

Financial
Reports None

Statistical [4, 90, 146] [83, 159] [76, 77, 79]
[23, 42, 82, 172, 173],

[19, 38, 44, 57, 66],
[21, 45, 58, 81]

KNN [12, 146] [12] [12] [38]
Naı̈ve Bayes [12] [12] [166] [12] [101] [85]
MLP [90, 174] [174] [56, 59, 69, 82]
Random Forest [8] [158] [86, 166] [101] [38, 46, 80, 81, 91]

SVM [7, 87, 88, 175],
[8, 12, 61, 125] [12, 83, 158] [79, 166, 175] [12, 89] [84] [19, 30, 36–38, 46],

[21, 34, 39, 81, 89, 176]

NN [7, 8, 146] [158] [79, 93]
[23, 42, 46, 49, 50, 67, 80, 95],

[19, 30, 37, 38, 57, 66, 82, 173],
[21, 43–45, 47, 51]

CNN [92, 174, 177, 178],
[61, 94, 179] [174, 177, 179] [21, 56–59, 69]

RNN [61, 90] [21, 56, 58, 59, 67]

LSTM [90, 175, 180],
[10, 94, 177] [159] [175, 177] [89] [21, 56, 58, 65–67, 69, 80, 89]

RL [62, 72–75]

In the previous Table 2.1 and Table 2.2 we have provided information about stock data sources and,

in Table 2.3 we have provided information text data sources. Each of the aforementioned tables focusing

exclusively on one specific topic. On the other hand, Table 2.4 focuses on aggregating those works.

From this table we were able to conclude that:

16

• Nearly half of the articles only use financial data when doing prediction, due to being support

literature of Section 2.1.

• Most frequent type of media source used are News and Headlines (grouped together) and Twitter

(due to its frequency is distinguished from other social media sources).

• Most works focused on increasing predictability and decreasing stock movement volatility [172].

By combining multiple sources, confidence when predicting is augmented. However, it rarely is

employed more than one media source. When taking into consideration EMH strong form, in my

opinion this can be viewed as contradiction.

• Accuracy values tend to increase from top to bottom rows. Traditional statistical models, KNN,

Naı̈ve Bayes, MLP, Random Forest and SVM have problems integrating SA features into its models

due to sparsity problems, or simply can not, hence achieving lower accuracy than DL models.

• LSTM is the model registering the best accuracy overall [89], corroborating the idea that DL models

are better suited for incorporating SA when doing Stock Prediction.

However, a word of caution is necessary regarding these models performance. According to [10],

academic works about financial predictions are often misleading. It is believed that many papers tend to

overfit models due to heavy simulations and exaggerate results to gain recognition. It is also stated that

many works can not be generalized, being used only in very specific contexts with artificial data, with

many of the simulations being hard to reproduce. In addition, it is likely that the best performing models

are developed and kept secret in private companies for competitive reasons.

Since each work in Table 2.4 uses a different dataset, the prediction models cannot be compared

directly, even if their evaluation results are available. However, it is fair to say that prediction accuracy

tends to increase from the top row to the bottom rows. In general, it is not easy to integrate SA features

into statistical models, KNN, Naı̈ve Bayes, MLP, Random Forests and SVM due to sparsity issues.

Hence, they achieve lower accuracy than DL models. On the other hand, a LSTM incorporating SA

registered the highest directional accuracy [89]. For us, this is not surprising since RNNs are especially

appropriate for NLP and SA tasks.

2.4 Summary

In conclusion, SP is a field that has been thoroughly explored, and there is a wide variety of models

being employed. Since the goal of this work is to improve the accuracy when predicting stock movement,

models with and without perceived investors sentiment were the subject of analysis. Having this in mind,

we reviewed state-of-the-art approaches both with and without SA. From works including SA it was

possible to conclude that news were the most frequent source.

Finally, it is worth noting that many of these works employ ML techniques, which often provide the

best results. Especially deep learning models, such as LSTM, appear to be one of the most promising

17

approaches [69]. However, there are still limitations. Therefore, in the following chapter we will better

explore the architecture of deep learning models.

18

Chapter 3

Deep Learning for Stock Prediction

In Chapter 2, we provided a literature review over the main components of Stock Prediction (SP). It was

possible to notice that, due to its properties, Deep Learning (DL) techniques are the best performing so-

lution when combining both components in this prediction task. In particular Long Short-Term Memory,

a type of Recurrent Neural Network, registered the highest accuracy.

In this chapter, Section 3.1 and Section 3.2 review the origins of DL, the fundamental concepts of

Neural Networks and the most well-known models. A reader already familiar with the topic and concepts

can start directly in Section 3.3, where Attention is introduced and we discuss how this mechanism can

be incorporated into Stock Prediction.

3.1 Fundamentals of Deep Learning

Deep Learning [181], a field of Machine Learning, empowers most human-like Artificial Intelligence (AI)

tasks. Models are used to parse data, learn from it, and make decisions based on what it has learned

using strategies such as:

• Supervised Learning (SL) [182], in which the model should reach the same answer as the solution

provided by examples;

• Unsupervised Learning (UL) [182], where there is no correct answer. No explicit instructions on

what to do are given, raising challenges [183], solved by methods such as association rules [184],

auto-encoders [185], anomaly detection [186] and clustering [187];

• Reinforcement Learning (RL) [188], that attempts to find the optimal way to accomplish a particular

goal. This is achieved by trying to predict the best next action in order to earn the biggest final

reward possible.

In recent years, DL has become of more frequent use as available amount of training data increased

and as computer hardware and software infrastructures improved [189]. In addition, NNs are a gen-

eral model, that easily adapts to multiple domains significantly outperforming other ML techniques in

19

problems such as Computer Vision [190] and Natural Language Processing [191]. Deep Learning has

become the state-of-the art approach in many fields, including Stock Prediction.

• Origins of Deep Learning can be traced back to AI’s definition as “the science and engineering of

making intelligent machines, especially computer programs”1. AI motivation is to create the ability

for a computer to learn from data and intelligent enough to automate tasks that people feel being

redundant or time consuming. However, intuitive tasks for people such as face recognition are the

real challenge to AI. These are complex to formally describe, therefore hard to solve.

Machine Learning derives as AI field of study where tasks are performed without explicit instruc-

tions. This is based on the premise that solely relying on statistical techniques, algorithms and

inference, computers learning can improve with experience. A Neural Network [192] is the most

known model of ML along with: Random Forest [193], K-Nearest Neighbour [194], Hidden Markov

Model [195], Support Vector Machines [196], Naive Bayes [197], Decision Trees [198], etc.

Deep Learning2 refers to the use of deeper NNs, i.e. networks with multiple Hidden Layers (HLs).

A NN can have a single or multiple HLs. Deep NNs have two or more, hence the name. The

additional HLs allow to build complex concepts out of simpler ones and to eliminate the feature

selection and reduction processes necessary for classical ML models to perform well.

• Neurons and Activation Functions are the basic units in a NN [199]. As shown in Fig. 3.1, a

neuron receives values as inputs (x) associated with weights (w) assigned by their importance in

comparison to other x. These w are updated through Back-Propagation (BP), the calculation of a

function loss gradient (difference between generated and desired output). The higher a gradient

is, faster the learning. BP increases generalization and minimizes output error.

f()

b

y

x1 w1

x2 w2

xn

wn

.

.

.

Figure 3.1: Single neuron.

y = f(b+

n∑
i=1

xi × wi) (3.1)

Output value (y) is calculated as described in Eq. (3.1). f is an AF that can be linear or non-linear.

Non-linear AFs are the most used since real data is non-linear, thereby being capable of more

complex representations. Sigmoid, tanh and Rectified Linear Unit (ReLU) are the most known

non-linear AFs. ReLU, the most commonly used, saves a great amount of time and a complex

calculating process [95], effectively improving NNs training speed.

In the next section we will explore NN models in more detail.

11956 – John MacCarthy
22000 – Igor Aizenberg

20

3.2 Neural Network Models

Neurons, also called nodes, are organized into groups forming layers and can be one of three types:

• Input Node where each independent variable is represented by one node and, collectively are

referred as the Input Layer providing information from outside the NN;

• Hidden Node that performs computations through an AF and do not have a connection with NN’s

outside. Grouped, form one or more Hidden Layers;

• Output Node responsible for transferring results to NN’s outside, jointly forming the Output Layer.

The most common NN models are:

• Feed-Forward Neural Network (FNN), the simplest architecture. Based on the Single-Layer Per-

ceptron [200], its name derives from the fact that information flows one-way, from input to output

layer, across a set of densely-connected layers. A FNN is composed of multiple Perceptrons,

where all nodes are fully connected to subsequent layers in the network, hence its designation of

Multi-Layer Perceptron. There are also Deep FNNs composed by at least two HLs (Fig. 3.2).

Input	Layer Output	Layer

Perceptron Feed-Forward	Neural	Network Deep	Feed	Forward	Neural	Network

Input	Layer Hidden	Layer	1 Hidden	Layer	2 Output	LayerInput	Layer Hidden	Layer	1 Output	Layer

Figure 3.2: Feed-Forward Neural Networks.

As information always moves in a forward direction, a node has no memory of previously received

inputs. A FNN only considers the current input, having no notion of order in time, thus not the best

in prediction tasks containing time correlations. Deep FNNs are the most general-purpose NNs

being able to provide the best performance given enough layers, neurons in each layer, data and

time to train the network [201]. This model is primarily used in Supervised Learning regression

and classification tasks where data to be learned is neither sequential nor time dependent usually

finding local minima, which is often enough.

• Convolutional Neural Network (CNN) was designed to receive as input matrix shaped data

thereby requiring a much smaller number of parameters when dealing with 2D data in compar-

ison to other NNs [52]. CNNs are very popular in image processing where the input is 2D, but they

are also very successful at processing 1D input such as text sentences and Time Series [53], as

previously mentioned in Section 2.1. CNNs are composed by:

– Convolution Layers comprising a set of independent filters [52, 202]. Each filter trained to

detect a specific feature present in an image (e.g. an edge), returning a value representing

21

how much confidence there is in its presence. The result is a matrix that stores convolutions

results over the various parts of an image (Fig. 3.3).

– Pooling Layers [202] aiming to reduce dimensionality of each feature mapped (decrease num-

ber of parameters) while maintaining crucial information. Commonly known as downsampling

or subsampling, the most common is Max Pooling [203], which selects the largest element

within that pooling window. By concentrating information, computation is reduced and the

network becomes translation invariant (e.g. a face slightly translated from the middle of an

image). By reducing memory consumption more Convolutional Layers can be used, hence

more complexity can be represented.

Input

Subsampling

Convolutional	Layer

Convolution

Convolutional	Layer Pooling	LayerPooling	Layer

FlatteningConvolution Subsampling

Figure 3.3: Convolutional Neural Network.

In addition, pooling is also used to handle overfitting, a situation when the model cannot generalize

future unseen data. This model requires significantly less parameters and can even outperform

humans at image recognition tasks [129]. However, the pooling area can not be too large, oth-

erwise too much information is lost and performance decreases. Despite not being rigid about a

fixed data size, there is still a need for minimum shape/dimension of data and a concern that input

size does not vary to wildly.

• Recurrent Neural Network (RNN) differs from previous models since they keep an internal state

and have a feedback loop (left of Fig. 3.4) to use that internal state as an additional input at each

time step. The recurrence loop provides the ability to consider past activations, hence making

more informed predictions [60]. When solving problems involving sequential and temporal data,

RNN should be the model used because it is able to handle inputs of arbitrary lengths. For Stock

Prediction, this means that it is possible to reuse past stock behavior to predict the future.

N

x

h

=

xt

ht

tahn ht
ht-1

Figure 3.4: RNN neuron unrolled.

ht = f(b+ xt ·W + ht−1 · U),

where 1 ≤ t ≤ T
(3.2)

RNN can be seen as a sequence of neurons trained where information passes from one time-step

to the next. Eq. (3.2) details the output computation on time-step t. Typically, tanh is used as AF

(f). Instead of BP, Back-Propagation Through Time (BPTT) (the same algorithm for recurrence

[204]) is used to update the weights (W and U) in order to minimize the output error [205]. However,

22

since the error of a given time-step depends on the previous one, if the network has a high number

of time-steps, BPTT can be computationally expensive [63].

Two additional RNN problems are: Vanishing Gradients [206, 207], where low values are assigned

to weights, causing information to rapidly be lost over time and; Exploding Gradients [207, 208],

where high values are assigned to weights, giving them excessive importance or causing overflow.

In both cases, the state will not be very informative. Elman [209] and Jordan [210] are variants

using the previous HL and Output Layer, correspondingly. Nevertheless, memory loss remains

challenging.

RNN can only remember recent past, being unable to perform well when a long-term context is

required. RNN is not simultaneously robust enough to handle input noise and efficiently trainable

by gradient descent when more context is necessary [63].

• Long Short-Term Memory (LSTM) [64], a type of RNN, improves learning of long-term dependen-

cies due to Ct. In addition to the current input (xt), a LSTM cell also receives the previous LSTM

hidden state (ht−1) and the previous LSTM cell state Ct−1. All inputs being provided in a vectorial

format. This cell state enables LSTM to better deal with long range dependencies when compared

to standard RNNs [211], by enabling to carry these dependencies across multiple time-steps.

xt

ht

tanhσσ σ

tanh

ft it ot
ht-1

Ct-1 Ct

ht

Figure 3.5: LSTM neuron architecture.

ft = σ(bf + xt ·Wf + ht−1 · Uf) (3.3)

it = σ(bi + xt ·Wi + ht−1 · Ui) (3.4)

C̃t = tanh(bc + xt ·Wc̃ + ht−1 · Uc̃) (3.5)

Ct = ft � Ct−1 + it � C̃t (3.6)

ot = σ(bo + xt ·Wo + ht−1 · Uo) (3.7)

ht = tanh(Ct)� ot (3.8)

The key difference being that information is transferred along the entire chain with only some minor

interactions mitigating RNN gradients growth or decay difficulty in long input sequences [63, 206–

208]. This is possible because each LSTM neuron contains an additional three gates (Fig. 3.5):

– “Forget Gate Layer” (Eq. (3.3)) decides which information received from the past (C t-1) is

going to be remembered or forgotten (0 – forget and 1 – remember).

– “Input Gate Layer” (Eq. (3.4)) decides which values will be updated in the new state and tanh

(Eq. 3.5)) creates a vector of possible values (C̃t) to be added. In order to actually update the

state, the old state (Ct−1) is added with the updated (it) and candidate (C̃t) values (Eq. (3.6)).

– “Output Gate Layer” (Eq. (3.7)) decides which information is going to be outputted (ot) by com-

bining the cell state and the input at time-step t through an element-wise multiplication (de-

noted by the operator �). tanh forces the output to be between -1 and 1 (Eq. (3.8)).

23

As NNs are further researched, slightly different versions are being developed. A very well know

alternative is Gated Recurrent Unit (GRU) [68] that only has an update gate. Modifications such

as coupling the Input and Forget gates simplify LSTM models without significantly decreasing

performance [212]. This variant is attractive because it reduces the number of parameters and

the computational cost. GRU merges the cell (Ct) and hidden state (ht), and also combines the

forget (ft) and input (it) gates. As it is more efficient computationally, more use has been seen

recently. However, removing or changing the Forget Gate and the Output AF significantly impairs

performance, proving the mandatory presence of these components. GRU is a simple model when

compared to LSTMs, however as a drawback this model exposes the hidden content represented

without any control.

3.3 Attention Mechanisms

Sequence to sequence problems [213] such as chatbots [214], language translation [215–217] and text

summarization [218, 219] are the most common tasks solved by RNNs. However, these are distance

dependent and RNNs are not capable to cope with too long sequences. The same situation happens

when considering long time-frames for Stock Prediction. Although an improvement is noticed with LSTM

models, there are still limitations regarding vanishing gradient [220]. To summarize, relevant information

is lost when dealing with long sentences because RNN tends to only remember the previous state and

LSTM is unable to compress all information into a fixed-length vector.

Table 3.1: Alignment score functions.

Name Equation Paper

Content-Based score(st, hi) = cos(st, hi) [221]
Additive score(st, hi) = vTa · tanh(Wa · [st;hi]) [215]

Location-Based αt,i = softmax(Wa · st) [217]
General score(st, hi) = sTt ·Wa · hi [217]

Dot-Product score(st, hi) = sTt · hi [217]

Scaled Dot-Product score(st, hi) =
sTt ·hi√

n
[222]

st is the target state at time-step t
hi is the source hidden state at time-step i
va is a trainable weight vector in the Attention layer
Wa is a trainable weight matrix in the Attention layer
n is the dimension of the source hidden state
T is the Transpose

Attention mitigates this constraint [223] by selectively retrieving information from hidden states with

an alignment score function [215], with the most known functions being detailed in Table 3.1. The

underlying rationale behind Attention is to increase the focus on important parts of the input instead of

just trying to remember it afterwards [213]. This method allows to select the most relevant features.

Results suggest that the use of attention can capture longer-term dependencies and outperform stand-

alone LSTMs [10].

The existing types of Attention are:

• Sequential Attention mechanism [215], where the model creates a representation of the input

and then attention focus on specific parts of that representation. This process enables a faster

24

learning and to more accurately represent an input [213], being the main advantage achieving

higher performances.

Without attention and when predicting with a RNN model, hT (final output on the left of Fig. 3.6)

contains the representation value for each time-step of the input. In our task, in order to determine

a trend, hT is fed into a softmax layer which outputs the Time Series belonging probability to each

of the target classes. However, hT is not able to store all relevant information given a long input.

In addition, for example in SA tasks, the overall sentiment of a sentence is decided by a small set of

words, hence the same importance should not be given to all words, nor more importance to more

recent ones. The same happens with financial data and its price peaks and bottoms throughout

time.

When using Sequential Attention, this mechanism is typically located at the end of the model.

Therefore, allowing this mechanism to use hidden states outputs of previous layers to support

predictions (Fig. 3.6). There are two types of Sequential Attention: local, where only some hidden

states are used, normally near time-step t; and global, where all hidden states are used [217].

N

x1

h1

N

x2

h2

N

xT

hT

...
N

x1

h1

N

x2

h2

N

xT

hT

...

α

r

RNN Attention	RNN

w

Figure 3.6: RNN vs Attention RNN.

The Attention mechanism is composed by a fully-connected layer that receives hidden states as

input (Fig. 3.7). This layer applies the additive alignment score function (Eq. (3.9)) and calculates

et (Eq. (3.10)), the importance value of t hidden state. Sequentially, all e1, e2, ..., eT will be used to

calculate α1, α2, ..., αT through a softmax function (Eq. (3.11)) [126, 133, 138]. Each α captures

the probabilistic degree of importance that input t has on the whole input. All verify the properties

stated in Eq. (3.12). The higher α the higher importance, and consequently effect t input has on the

global category prediction. In order to determine the final category, r (Eq. (3.13)), the equivalent

to hT in RNN without attention, must be fed into a softmax layer which returns the belonging

probability to each of the target classes.

25

fc

softmax

e1 e2 eT

w

α2α1 αT

r

e...

α...

α

h1 h2 hT...

Figure 3.7: Attention mechanism.

fc(ht) = vTa · tanh(bh + ht ·Wt) (3.9)

et = fc(ht), where et ∈ [−1, 1] (3.10)

αt =
exp(et)∑T
i=1 ei

, 1 ≤ t ≤ T (3.11)

αt ∈ [0, 1] and w =

T∑
i=1

αt = 1 (3.12)

r = H · wT , H = [h1, ..., hT]

w = [α1, ..., αT]
(3.13)

• Parallel Attention mechanism, was purposely designed for NLP sequence to sequence tasks

and is currently state-of-the-art for translation. Created in the Transformer [222], Parallel Attention

is a novelty because it does not involve any recurrence. This mechanism solely relies on atten-

tion, not requiring prior calculation of all previous hidden states, therefore enabling significantly

faster computation and consequently reducing training time. As the importance of every input is

calculated at the same time, all inputs interact simultaneously with each other. Therefore, when

processing long textual sequences, Parallel Attention improves the extraction of dependencies.

To our best knowledge this model was never applied to Time Series Prediction tasks. Therefore we

will be providing a full explanation on how this model was implemented for textual inputs process-

ing. Fig. 3.8 details the part of the Transformer architecture necessary for NLP classification tasks,

the Encoder. However, in our context the Transformer architecture can even be more simplified.

This will be further explained in Section 4.5.

PE(pos;2i) = sin

(
pos

10000
2i

dmodel

)
, where 1 ≤ i ≤ n (3.14)

PE(pos;2i+1) = cos

(
pos

10000
2i

dmodel

)
, where 1 ≤ i ≤ n (3.15)

When working with textual inputs, it is necessary to convert the input words x1, ..., xn to vectors,

hence the necessary input embedding. In addition, as the Transformer does not have any type of

recurrence, positional encoding is necessary to have some notion of order to deal with sequential

data (Eq. (3.14) and Eq. (3.15)). Both vectors, having the same size (dmodel), are summed thus

attributing a relative position to each word. The functions sin and cos are used because no training

is necessary, there is no need to know maximum length of sequence allowing them to vary in the

training and test set.

26

x1 x2 xn...

Input	Embedding

Positional	Encoding

Multi-Head
Attention

Add	&	Norm

FFNN

Add	&	Norm

Linear

Softmax

N	×

Linear Linear LinearLinearLinear LinearLinear LinearLinear

Q K V

Scaled	Dot-Product	AttentionScaled	Dot-Product	AttentionScaled	Dot-Product	Attention
h

h

Concat

Linear

MatMul

Q K V

Scale

Mask	(opt.)

Softmax

MatMul

Multi-Head	Attention Scaled	Dot-Product	Attention

Figure 3.8: Transformer Encoder architecture.
Following embedding and encoding, a stack of N identical components follows, each containing

two main layers. The first layer incorporating a Multi-Head Attention mechanism and the second a

fully connected NN.

The Multi-Head Attention layer, instead of an individual calculation for each word xi, groups all

words forming a matrix X = [x1, ..., xn] allowing parallel computation and speeding up the process.

By multiplying X with matrices Wq (Eq. (3.16)), Wk (Eq. (3.17)) and Wv (Eq. (3.18)) all queries (Q),

keys (K) and values (V) are calculated at the same time. For word i its encoding is xi, its query

Qi, its key Ki and its value Vi (being i the row in each matrix). Representing Qi the target state

(st), Ki the current hidden state (hi) and Vi all hidden states. This is relevant because each word

can interact with all other words at the same time, both backwards and forwards, a significant

difference when compared to RNNs.

Q = X ·Wq (3.16)

K = X ·Wk (3.17)

V = X ·Wv (3.18)

Following, the scaled dot-product alignment score function (Table 3.1) can be adapted to matrices

and applied to all time-steps simultaneously (Eq. (3.19)). Similarly to Sequential Attention, a soft-

max function (Eq. (3.11)) is applied to obtain a probabilistic importance value for each input term

x. A scaling factor of
√
dK (dimension of K) is used to guarantee a mean of 0 and variance of 1

thereby improving numerical stability as Q, K and V grow obtaining a gentler softmax. Then, each

probabilistic value is multiplied by the value of each word V resulting in Z (similarly to Eq. (3.13)).

Each row of matrix Z represents the weight of each input xi (right of Fig. 3.8).

27

Z = Attention(Q,K, V) = softmax
(
Q ·KT

√
dk

)
· V (3.19)

All the aforementioned is only for one Head of the Transformer. In ref. [222] h = 8, meaning that

exist 8 Parallel Attention heads focusing on different features thereby allowing the representation

of multiple subspaces. Ultimately, with enough parameters it is possible to simulate a convolution.

Each head can focus on the next word; or on the previous word; or in identifying identical or related

words in the same sentence; or in other sentences. Or in case of NLP tasks, analyze the three

most important features in a sentence: “Who?”, “Did what?” and “To whom?”. However, the next

layer is expecting a single matrix not h matrices. Therefore, these h matrices are concatenated

into one (middle of Fig. 3.8).

The second layer, is applied to all positions independently and with different parameters (W1 and

W2) in each layer (Eq. (3.20)).

FNN(x) = b2 + max (0, b1 + x ·W1) ·W2 (3.20)

Both layers have an Add & Normalize component following them (Eq. (3.21)). Adding allows to

carry positional information to next layers and as NN is computationally expensive, normalization

can speed-up the training [224].

Add & Norm (x) = LayerNorm (x+ Sub-layer(x)) (3.21)

A Linear layer then performs dimensionality reduction/augmentation to a predefined space of di-

mension d. In the end, similarly to previously mentioned approaches, a softmax layer predicts a

sentence belonging probability to each of the target classes.

The Transformer was initially designed for NLP sequence to sequence tasks. Nonetheless in our

context, Time Series Prediction, the Transformer architecture can be simplified.

As already previously mentioned, when doing classification tasks with a Transformer-like model the

decoder component can be removed. In addition, when working with numerical data as financial

Time Series, the embedding layers typically used for NLP tasks are not necessary, hence can be

removed.

Additional modifications to this model can be made. As choosing between one and several heads

of attention. This choice relies in whether try to leverage multiple layers of attention in parallel in

order to enhance the extraction of dependencies from the input sequence or not. An interesting

approach is the Self-Attention Network (SANet) [225], a Single-Head Attention approach.

28

3.4 Summary

Previously, Chapter 2 detailed several approaches to SP with and without SA. In that chapter, we con-

cluded that DL models are the most frequently employed due to its adequacy when performing SP tasks.

In this Chapter 3, we detailed the fundamentals of those models, the most relevant architectures and the

Attention mechanisms. The goal was to provide a broader view in order to better leverage the financial

and sentiment features when predicting stock’s movement. The next chapter presents our proposed

approach and a case study. In that chapter it will be detailed what type of data is going to be incor-

porated, how it was obtained, the preprocessing performed, the characteristics of each NN model, and

how performance will be evaluated.

29

30

Chapter 4

Case Study and Approach

In conformity with the main goal of this dissertation, which is to determine how much Sentiment Analysis

(SA) helps improving Stock Prediction (SP) accuracy, this chapter describes the experimental approach

and corresponding evaluation methodology employed on a specific case study. To quantify the benefit

of incorporating SA into SP we will mainly employ Deep Learning (DL) models, which came out as the

most successful approach from our literature review in Chapter 2.

Our work also contains a comparison of models with, without and solely relying on Attention. In

particular, Parallel Attention its a novelty and state-of-the-art approach for NLP tasks that to our best

knowledge was never employed in Time Series Prediction (TSP) tasks.

In order to achieve these goals, this chapter is subdivided into: Section 4.1 where we detail the origin

of the data; Section 4.2 where the features of each dataset used are described; Section 4.3 details

the preprocessing done on that data; Section 4.4 explains the input layers for each model; Section 4.5

characterizes the different models employed, explaining the architectures used to compare performance

when doing SP with and without SA while incorporating different types of Attention; and Section 4.6

specifies how the results are going to be evaluated and which metrics are used. The next chapter will

analyze the results obtained from these experiments.

4.1 Data Source

In Chapter 2, several works were analyzed with the most common data sources being described and

summarized. From this review it was possible to conclude that news were the most often used data

source. Therefore, in alignment with the goal of this work, for our experimental approach two types of

data are necessary:

• Market data, with typical indicators about stock prices, trading volumes and calculated returns.

This type of data can be acquired from popular financial platforms, previously detailed in afore-

mentioned Table 2.1 and Table 2.2 on pages 8 and 9, respectively.

• News data, referring to a specific stock asset or set of assets and the corresponding sentiment

31

for each news item. This type of data can be acquired from previously detailed main sources in

aforementioned Table 2.3 on page 13.

An alternative to the previously mentioned data sources is to retrieve data from prepared datasets

with fixed and past time frame such as the ones available in Kaggle (https://www.kaggle.com) or

SemEval [126, 128, 133, 136, 138] competitions.

In our evaluation, we report on a series of experiments that we performed during the Kaggle com-

petition Two Sigma: Using News to Predict Stock Movements.1 The aim of this event was very much

aligned with our goal, since it focused on understanding how news sentiment might influence stocks fu-

ture return. One key aspect of this competition was that it provided two different datasets: one containing

market data and other with already analyzed news data with assigned sentiment.

The option of utilizing a prepared dataset enabled us to skip the data retrieval phase, allowing us to

place our focus on testing different model architectures instead.

4.2 Data Description

The original dataset contained market and news data from the beginning of 2007 to the end of 2016. The

market data included information on ∼3000 US-listed companies, containing over 4 million samples with

14 features such as date, asset code, asset name, daily open and close prices, daily trading volume,

and open-to-open and close-to-close returns. These returns were calculated both daily and for a 10-day

period, and also both in raw and market-residualized form (i.e. by removing the movement of the market

as a whole and leaving only the movement inherent to the asset).

On the other hand, the news data was collected from 30 different news media companies such as

Reuters News and Business Wire. The news dataset contained about 9 million samples (daily news

items) regarding the same market dataset companies or related ones. The news dataset was much

larger than the market dataset due to typically existence of multiple news items per stock on a given

day. For each news item, the sentiment was given as a probability distribution over 3 classes: positive,

neutral and negative. Measures for the novelty and volume counts of each news item were also available,

where novelty was calculated by comparing the asset-specific content of a news item against a cache of

previous news items, and the volume was calculated by counting how many news items mentioned the

asset within a certain time frame. However, for this work we used only the sentiment features of each

news item as sentiment signals for each company in a determinate date.

As for the target variable, the competition used the open-to-open market-residualized return over

a 10-day period into the future, with this feature being an integrating part of the market dataset. To

calculate this variable, two metrics are necessary: the open-to-open return over a 10-day period of a

specific asset, and the open-to-open return over a 10-day period of that specific asset index. The open-

to-open return over a 10-day period for an asset is calculated by the ratio between the difference of the

open price on t and t − 10 days, and the open price on t − 10 day, multiplied by 100. Concerning the

1https://www.kaggle.com/c/two-sigma-financial-news

32

https://www.kaggle.com
https://www.kaggle.com/c/two-sigma-financial-news

return of an index, this is the sum of all its assets open-to-open returns over a 10-day. To obtain the

market-residualized return for an asset, it is necessary to subtract the open-to-open return over a 10-day

period of a specific asset by the same metric of its corresponding index. In essence, the target variable

represents the actual movement of a particular asset by removing its inherent fluctuations caused by the

market as a whole.

4.3 Data Preprocessing

To answer the main goal of this work, i.e. to quantify by how much news sentiment influence the future

return of stocks, we used 2 categorical and 15 numerical features as our data. The categorical features

were asset code and asset name, common in both the market and news datasets. We used both features

because each asset name (i.e. company) may have several asset codes, but each asset code belongs

to a single company. This is due to a company being present in more than one stock exchange market,

hence having a specific asset code for each market. As for the numerical features, 12 of those features

came from the market dataset, and the remaining ones correspond to the 3 aforementioned sentiment

classes from news data.

As we want to determine the influence of news SA influence on SP accuracy, we will compare models

using solely the market data versus models incorporating the aforementioned sentiment classes of news

data. This can be translated into two sets of inputs: models without sentiment, using 2 categorical and

12 numerical features from the market dataset; and models with sentiment, using 2 categorical features,

12 numerical features from the market dataset and 3 numerical features from the news dataset.

The sentiment classes have to be mapped from the original news data to the market dataset. This

mapping is done by using the categorical features as primary key, as both features are common elements

in the two datasets. When joining the news data sentiment classes with the market data, it may be the

case that there are several news items for a given asset on a given date. In this case, we group those

news items together and compute their average sentiment. On the other hand, it may be the case that

there are actually no news items for a given asset on a particular date. In this case, we have tried three

different approaches to fill in the sentiment for the asset, namely:

• propagation, where we use the sentiment of the previous date as the current sentiment, hence

propagating the sentiment across multiple days;

• balancing, where we use a uniform probability distribution over the three classes (positive, neutral

and negative, with 1
3 probability for each);

• neutralizing, where we assign zero probability to the positive and negative classes, and 1.0 to the

neutral class.

The goal, as identified by the target variable, is to predict stock returns over a 10-day period of time

into the future. Therefore, we need to apply a training window technique to input several samples into

the model in order to make a prediction.

As observed in Fig. 4.1, the training window can vary across the following options:

33

Training Testing

Training Testing

Training Testing

Training Testing

Training

TrainingTraining

TrainingTrainingTraining

Time

0 1 2 3 4

Fixed	Training-Window Sliding	Training-Window

Time

0 1 2 3 4

Training Testing

Testing

Testing

Testing

Training

Training

Training

Time

0 1 2 3 4

Training Testing

Training Testing

Training Testing

Training Testing

Incremental	Training-Window

Figure 4.1: Training-window options.

• fixed, where the training-window will always be the same. This approach cause poorly accurate

predictions due to information not being up-to-date derived from the existing gap between training-

and testing-window.

• sliding, where the training-window will have a predetermined size and will move alongside with the

testing-window. This approach guarantees that the last training point is adjacent to the first testing

point, thus mitigating the aforementioned drawback.

• incremental, where training-window will start as in the fixed approach, however growing by con-

sequent inclusion of predicted-windows. It is important to mention that new training included will

have the true values and not the predicted ones.

We opted for a sliding training-window as the fixed training-window would under-perform due to

aforementioned reasons and the incremental training-window being ruled out due to memory constraint.

The window size chosen was 10, meaning that when predicting at t time-step we will use information

from t− 10 to t time-steps. For us, the underlying rational was to use the previous 10 time-steps in order

to predict the 10-days returns movement, our target variable. Intuitively, in order to create a training-

window for a specific asset it is required for that particular asset to have at least 9 more days of history.

As it was verified that some assets did not verify this constraint we opted by removing those assets.

After joining both data sources according to the above described process, the new dataset was split

into 2007–2014 for training, 2015 for validation, and 2016 for testing. Therefore, ending with∼ 2.760.000

samples for training, ∼ 578.000 samples for validation and ∼ 577.000 samples for testing.

As for the target variable, the competition used the open-to-open market-residualized return over

a 10-day period into the future. In our experiments, and following common practice in the literature

reviews, we used only the directional movement (up or down) of this target variable. Therefore, turning

our problem into a binary classification task.

Preprocessing was implemented in Python (https://www.python.org) relying on packages such as

numpy [226] (https://numpy.org), scikit-learn [227] (https://scikit-learn.org/stable) and pandas

[228] (https://pandas.pydata.org).

34

https://www.python.org
https://numpy.org
https://scikit-learn.org/stable
https://pandas.pydata.org

4.4 Model Input

In the previous section it was detailed how data was preprocessed and the different approaches we

chose to fill Null values. This resulted in four different datasets, namely:

• Market only, containing data solely retrieved from the market dataset;

• Market+News propagated, using the same data as the Market only dataset plus the sentiment

signals propagated throughout time;

• Market+News balanced, using the same data as the Market only dataset plus sentiment signals

with 1
3 probability for each class when no news exist;

• Market+News neutralized, using the same data as the Market only dataset plus sentiment signals

with 1.0 probability to the neutral class and 0.0 probability to the remaining sentiment classes when

no news exist;

The way the categorical and numerical features have been combined in order to be provided as input

to a model is illustrated in Fig. 4.2. This is the general approached used for all models with the exception

of Feed-Forward Neural Network (FNN) and the Transformer-like models.

In essence, the categorical features go through an embedding layer before being concatenated to-

gether with the numerical features. We have chosen to use an embedding layer instead of other ap-

proaches such as a one-hot encoding vector or similar alternatives due to the dimensionality present in

the categorical features. As described in Section 4.2, there are ∼ 3000 companies, which means that

there are ∼ 3000 asset names and even more asset codes to represent, as one asset name can have

multiple asset codes. This characteristic would lead to an enormous number of dimensions if we have

chosen a one-hot encoding approach to represent the categorical features, hence the embedding layer.

The embedding layer used has an input dimension with the same size as the number of different values

existent in the categorical feature and represents the corresponding feature into a three-dimensional

output.

As presented in Fig. 4.2, the general input block provides an input of 10 time-steps at a time for

all models. The only exception being Feed-Forward Neural Network (FNN) models which use a single

time-step, as represented in Fig. 4.3. Regarding Fig. 4.2 and Fig. 4.3, there is an additional relevant

difference to highlight: Fig. 4.2 input is the Market+News dataset constituted by market and sentiment

features, whereas Fig. 4.3 input is solely composed by market features, hence from Market only dataset.

The difference is the number of features fed to the numerical input layer.

Concerning the Transformer-like model, Fig. 4.4 details how the 10 time-steps input is fed to this

model. To allow parallel computation, after the categorical and numerical features are concatenated the

data is reshaped, hence allowing all time-steps to be processed at the same time.

35

assetCode_input:	InputLayer

input: output:

[(?,	1)] [(?,	1)]

assetName_input:	InputLayer

input: output:

[(?,	1)] [(?,	1)]

Embedding

input: output:

(?,	1) (?,	1,	3)

Embedding

input: output:

(?,	1) (?,	1,	3)

Concatenate

input: output:

[(?,	1,	3),	(?,	1,	3)] (?,	1,	6)

Flatten

input: output:

(?,	1,	6) (?,	6)

RepeatVector

input: output:

(?,	6) (?,	10,	6)

numerical_input:	InputLayer

input: output:

[(?,	10,	15)] [(?,	10,	15)]

Concatenate

input: output:

[(?,	10,	6),	(?,	10,	15)] (?,	10,	21)

Figure 4.2: General Input block.

assetCode_input:	InputLayer

input: output:

[(?,	1)] [(?,	1)]

assetName_input:	InputLayer

input: output:

[(?,	1)] [(?,	1)]

Embedding

input: output:

(?,	1) (?,	1,	3)

Embedding

input: output:

(?,	1) (?,	1,	3)

Concatenate

input: output:

[(?,	1,	3),	(?,	1,	3)] (?,	1,	6)

Flatten

input: output:

(?,	1,	6) (?,	6)

numerical_input:	InputLayer

input: output:

[(?,	12)] [(?,	12)]

Concatenate

input: output:

[(?,	6),	(?,	12)] (?,	18)

Figure 4.3: FNN Input block.

36

assetCode_input:	InputLayer

input: output:

[(?,	1)] [(?,	1)]

assetName_input:	InputLayer

input: output:

[(?,	1)] [(?,	1)]

Embedding

input: output:

(?,	1) (?,	1,	3)

Embedding

input: output:

(?,	1) (?,	1,	3)

Concatenate

input: output:

[(?,	1,	3),	(?,	1,	3)] (?,	1,	6)

Flatten

input: output:

(?,	1,	6) (?,	6)

RepeatVector

input: output:

(?,	6) (?,	10,	6)

numerical_input:	InputLayer

input: output:

[(?,	10,	15)] [(?,	10,	15)]

Concatenate

input: output:

[(?,	10,	6),	(?,	10,	15)] (?,	10,	21)

Reshape

input: output:

[(?,	10,	21)] [(?,	1,	210)]

Figure 4.4: Transformer Input block.

4.5 Model Architecture

After detailing the input format, this section introduces the architectural variations and specificities of

each model. To compare each set of features and different models performance, an extensive experi-

ment was conducted where several hyper-parameters were varied.

The number of layers that compose each model have been alternated between 1, 2 and 4. As

well as the number of neurons forming each layer, starting from the number of input features to 100

neurons. In bidirectional Long Short-Term Memory (LSTM) models case until 200 neurons. Regarding

neurons, we tested two approaches. Firstly, we kept the number of neurons constant throughout layers

and, secondly, we reduced the number of neurons present in each layer. The reduction was defined by

dividing the original number of neurons by the cardinality of each layer, i.e. 1, 2, 3 or 4.

All models were trained through back-propagation in combination with the Adam optimization algo-

rithm. We also applied the binary cross-entropy as loss function to be optimized.

In order to control overfitting and improve the generalization capabilities of the models, we decided

to also use dropout regularization layers. This is a technique where neurons are randomly dropped

from a layer during training, i.e. each neuron has a fixed probability p independent of other neurons to

be temporarily removed from the network during training. Therefore, allowing to prevent neurons from

co-adapting too much [229]. We started by using no dropout and then included dropout layers with

probabilities of 0.2 and 0.5.

In addition, we varied the training batch size. A batch is the number of samples that a model trains

with before updating its internal parameters, aforementioned referred as weights in Section 3.1. For

FNN, RNN, LSTM and bidirectional LSTM models, training batches varied between 1% and 10%. For

CNN and Transformer-like models a training batch of 1% was used. Due to memory restrictions, LSTM

and bidirectional LSTM models with Attention used a 0.1% training batch.

Also, we have trained all models for several epochs. An epoch is the total number of times that the

37

training dataset will be passed into the model in order to adjust its weights. As too few training epochs

can lead to a model underfitting, i.e. a model unable to generalize well by not learning enough patterns

from data, the models were set to have a training of 5000 epochs. As too many training epochs can lead

to a model overfitting, i.e. a model focus on a specificity of the data and over specializes also leading

to poor performance, the models also employed Early Stopping on validation loss with a patience of 10

epochs. This allows to stop training once the model validation loss stops decreasing for 10 epochs in a

row.

In order to provide a more detailed view, some additional comments are necessary regarding CNN

and Transformer-like models.

As above explained, when experimenting with CNN models we vary the layers between 1, 2 and 4,

and used a batch of 1% of the training dataset. Additionally, in this model other hyper-parameters were

tested. For instance, we changed the kernel size value between 2, 3 and 5, and the number of filters

between 2, 3, 5, 10, the number of features in the input and 100.

Regarding the Transformer-like model, we decided to alter the dmodel and experiment with a different

number of heads and layers. When observing aforementioned explained Eq. 3.14 and 3.15, there are

two hyper-parameters pos and dmodel. We decided to maintain the value of pos as the original, since it

does not have a direct correlation with the size of the input. On the contrary, we altered dmodel value.

This hyper-parameter was experimented in the original paper [222], and was defined because typical

NLP tasks performed with the Transformer model were of variable and unknown size. dmodel in the

original paper was defined with a value of 512, hence allowing this number of words to be inputted. This

value guarantees a good performance and at the same time an extensive number of inputs in parallel.

In our task, as the input size is fixed to #features× 10, we chose to alter dmodel value to our input size.

Other hyper-parameters, such as the number of neurons in the FNN layer, were kept untouched.

However, there is a constraint defined in the model stating that the dimension of the model (dmodel)

must be divisible by the number of Attention heads the model incorporates (Eq. (4.1)). Therefore, we

were restricted to experiment the number of heads with the values 5, 6, 7, 9, 10 and 14. Values divisible

by the input size. We also varied the stack of N components between 2, 4, 6 and 8.

dmodel
#heads

== 0 (4.1)

Prediction Models were, as the Preprocessing, implemented in Python (https://www.python.org)

using the Keras API on top of TensorFlow (https://www.tensorflow.org). The experiments were

conducted in Google Colab (https://colab.research.google.com) and Jupyter Notebooks (https:

//jupyter.org).

4.6 Evaluation Metrics

In order to be able to compare either different models or different datasets performance an evaluation

metric must be chosen. Some papers of Table 2.4 on page 16, due to being regression tasks, determine

38

https://www.python.org
https://www.tensorflow.org
https://colab.research.google.com
https://jupyter.org
https://jupyter.org

the difference between predicted and actual values, hence consequently using metrics that do not apply

to our problem such as Mean Squared Error (MSE), Root MSE, Mean Absolute Percent Error (MAPE),

Cosine Proximity or similar.

As our target is to predict direction (upwards or downwards) of Stock Prediction, this work is a clas-

sification task to predict the right “class” of the test set instances: True, if our system predicts a down or

up trend and in fact the stock price went down or up, correspondingly; False, if it went in the opposite

direction as the predicted one. The comparison of models performance will be done with the metric

on Eq. (4.2), which describes the percentage of correct predictions against all predictions made. This

metric is commonly referred as Accuracy.

Accuracy =
of correct predictions

of predictions
× 100 =

TP + TN
TP + TN + FP + FN

× 100 (4.2)

In this context, a correct prediction is an agreement between the model output (an up or down

prediction) and the actual market trend. This turns out to be equivalent to binary accuracy as in a binary

classification problem, which is one the most common approaches in the literature.

As when preprocessing our target variable we labeled down trends as 0 and up trends as 1, a True

Positive (TP) is when a model predicts an up trend correctly, and a True Negative (TN) is when a model

predicts a down trend correctly. False Positive (FP) and False Negative (FN) cases occur when a model

predicts a trend contrary to the one that actually occurred, downwards and upwards correspondingly.

Therefore, Eq. (4.2) can be extended to the formula on the left part.

Accuracy is the measure chosen to determine which architecture variation performs best within each

Neural Network (NN) type of model. Nonetheless, additional measures will be used to compare each

type of NN model confidence when predicting both positive and negative classes. Matthews Correlation

Coefficient (MCC) and Area Under the ROC Curve (AUC) are the main measures used to make more

complete comparisons.

MCC is useful because it only generates high scores if the model is able to predict both high per-

centages of TP and TN, as can be perceived from Eq. 4.3. MCC ranges from -1, an inverse prediction

to 1, a perfect prediction. A value of 0 corresponds to an average random prediction.

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN+FP)(TN+FN)
(4.3)

The AUC is a metric that measures the True Positive Rate against the False Positive Rate. The

greater the AUC value the more number of instances are correctly classified, hence higher the number

of TP and TN.

More fine-grained metrics such as Recall, Precision, Specificity and Negative Predictive Value (NPV)

will not be analyzed by themselves as they focus solely on Positive or Negative instances. These are

helpful metrics when one class has more importance than the other, e.g. identifying card fraud or

terrorists faces. As down and up trends have equal importance, it is our opinion that these metrics of

comparison alone do not add any additional benefit. We will only briefly comment and compare on each

model ability to better identify a trend, and the confidence on that identification when predicting both

39

upwards or downwards trends.

In essence, as shown in Eq. 4.4, Recall, also commonly referred as Sensitivity or True Positive Rate,

is the ratio between the correct number of up trends predicted and the total number of up trends, even

if they were incorrectly identified as a down trend (i.e. measures the model accuracy on classifying up

trends).

Recall = Sensitivity = TPR =
TP

TP + FN
(4.4)

Precision, as shown in Eq. 4.5, also commonly referred as Positive Predictive Value (PPV), is the

ratio formed by the number of correctly up trends divided by the total predictions of up trends. In other

words, Precision measures the hit accuracy when identifying up trends (i.e. from all classified labels as

up trends the ones that actually are up trends).

Precision =
TP

TP + FP
(4.5)

A complementary remark about the up trend classifying metrics is that Precision can be improved at

the expense of Recall. Therefore, in order to equally weight Precision and Recall the F1-measure will

also be computed (Eq. 4.6).

F1 = 2× Precision× Recall
Precision + Recall

(4.6)

Specificity, as shown in Eq. 4.7, is the ratio formed by the number of correctly predicted down trends

and the total number of down trends existing, even if they were identified as an up trend. It gives an

overview similar to Recall for down trends.

Specificity =
TN

TN + FP
(4.7)

NPV, as shown in Eq. 4.8, is the ratio formed by the number of correctly predicted down trends

divided by the total predictions of down trends. In other words, NPV measures the hit accuracy when

identifying down trends (i.e. from all classified labels as down trends the ones that actually are down

trends). It gives an overview similar to Precision for down trends.

NPV =
TN

TN + FN
(4.8)

Note that all metrics referred evaluate model performance after training. However, as explained in

Section 3.1, a loss function is required to train the models. Since none of the above metrics are differ-

entiable, a differentiable loss function must be selected. The typical choice for classification problems is

to choose a loss function based on some form of cross-entropy, since this is more effective in punishing

misclassification, where the loss value tends to infinity. In contrast, distance-based measures, such as

MSE or similar, are specifically devised for regression tasks, and should not be employed here. Since

what we have is a binary classification problem, we will use binary cross-entropy (BCE) as loss function:

40

BCE = − 1

N

N∑
i=1

[yi log pi + (1− yi) log(1− pi)] (4.9)

In the formula above, N is the number of training samples, yi ∈ {0, 1} is the true label of sample i,

and pi ∈ [0, 1] is the corresponding prediction produced by the model.

In the next chapter we will present the results obtained with the data described in Section 4.1, with

the architectural variations detailed in Section 4.5 in order to find the best performing model with the

metrics presented in this section.

41

Chapter 5

Experimental Results

In this chapter, we will detail the results obtained from the proposed approach in previous Chapter 4. For

each Neural Network (NN) model we detail its best architecture and discuss the corresponding hyper-

parameters. In particular, we will also analyze the impact of introducing both recurrent and attention

mechanisms.

As detailed in Section 4.5, we have experimented several architectural variations for each type of

NN model, namely: FNN (Section 5.1), CNN (Section 5.2), RNN (Section 5.3), LSTM (Section 5.4),

bidirectional LSTM (Section 5.5), LSTM with Attention (Section 5.6), bidirectional LSTM with Attention

(Section 5.7), and Transformer (Section 5.8). To conclude this chapter, Section 5.9 provides a compari-

son aggregating all models and best performances where more broader conclusions are drawn.

5.1 Feed-Forward Neural Network

In the first experiment with a simple FNN model (Fig. 3.2), we tested 48 combinations of hyper-

parameters. Having each model taken in average between 1 and 2 minutes to train. As we had 4

different datasets to experiment our models with, the training process took about 4 hours in order to

obtain results.

As mentioned in the previous chapter, we varied training batches from 10% to 1%, experimented

architectures with a different number of layers (1,2 and 4) with no dropout and with dropout rates of

0.2 and 0.5. Additionally, we used several different quantities of neurons in each layer, as described in

Section 4.5.

In Table 5.1 are presented the architectures with the best performance, i.e. the ones achieving the

highest accuracy. In order to better understand the table, a notation explanation is required: ↓ represents

the fact that the number of neurons keeps decreasing across layers, and = represents the fact that it is

kept constant across layers. When the number of neurons decreases, it corresponds to the number of

input features divided by a factor of 1, 2, 3, 4, etc. When it is kept constant, it is equal to the number

of input features. The underline highlights the highest accuracy achieved for a particular dataset and

the bold highlights the best accuracy obtained with a FNN model overall. This terminology will be used

42

Table 5.1: Accuracy comparison of FNN models.

Market only Market + News Market + News Market + News
FNN propagated balanced neutralized

4 layers ↓ neurons 0.501 0.532 0.531 0.532
4 layers 100 neurons 0.2 dropout 0.533 0.501 0.533 0.533

↓ represents the number of neurons decreasing across layers.

throughout the whole chapter when presenting results.

By looking at Table 5.1, this experiment already provides an interesting conclusion: when using an

FNN, the sentiment features do not have any influence in the output predictions As can be observed, the

same model using three different datasets obtained the same accuracy. In our view, this is due to FNN

models do not incorporate any information on past behavior. Therefore, this type of model is unable to

better leverage the sentiment history present. Both with and without the sentiment features, this model

scored a test accuracy of 53.3%.

Additionally, another conclusion is possible to draw. As can be perceptible in Table 5.1, more complex

models have better results. Having all the best performing FNN models a 4 layers architecture and a

training batch of 1%.

Fig. 5.1 details the best FNN architecture. This is composed by 4 layers each formed by 100 neurons.

A training batch of 1% is used and a 0.2 dropout rate was employed. This model achieved a 53.3%

accuracy.

Dense

input: output:

(?,	18) (?,	100)

Dropout

input: output:

(?,	100) (?,	100)

Dense

input: output:

(?,	100) (?,	100)

Dropout

input: output:

(?,	100) (?,	100)

Dense

input: output:

(?,	100) (?,	100)

Dropout

input: output:

(?,	100) (?,	100)

Dense

input: output:

(?,	100) (?,	100)

Dense

input: output:

(?,	100) (?,1)

Figure 5.1: Best FNN architecture.

Fig. 5.2 details the loss function performance and corresponding accuracy throughout training. This

model achieved a Matthews Correlation Coefficient (MCC) of 0.070 and an Area Under the ROC Curve

(AUC) of 0.532. Related with up trends the results of additional measures were a Recall of 0.728, a

Precision of 0.524 and a F1Score of 0.609. For down trends the FNN model obtained a Specificity of

0.336 and Negative Predictive Value (NPV) of 0.552.

As our dataset is balanced, having approximately the same number of up and down trends, the above

presented metrics allow us to conclude that a FNN architecture can considerably better identify up trends

(72.8%) than down trends (33.6%). In fact, this particular FNN model scored the highest Precision from

all NN models experimented, reaching the highest F1Score as well. In our opinion, this is caused by

the stock market being in constant growth throughout recent years combined with this model inability to

capture market reversions, hence predicting more uptrends than downtrends. When comparing certainty

on classification, this is very similar. 52.4% on up trends versus 55.2% on down trends.

43

0 10 20 30 40 50 60 70 80 90
Epochs

0.8

1.0

1.2

1.4

1.6
Lo

ss
Training Loss
Validation Loss

0 20 40 60 80
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Accuracy
Validation Accuracy

Figure 5.2: FNN performance during training.

5.2 Convolutional Neural Network

Using CNN models (Fig. 3.3) we tested 42 different architectural variations. As mentioned in Section 4.5,

in addition to varying the number of layers between 1,2 and 4 layers, we have also varied the kernel size

between 2, 3 and 5, and the number of filters between 2, 3, 5, 10, the number of features in the input

and 100. With CNN models we did not varied the batch size, having always used a training batch of 1%.

Each model took between 5 and 15 minutes to run, having the 4 datasets taken around 2 and half days

to be tested.

CNN models, by using a 10 time-step window into the past, improved the prediction accuracy. When

analyzing Table 5.2, it is possible to see a 1.8% accuracy increase if we compare the best CNN model

against the best FNN model.

Table 5.2: Accuracy comparison of CNN models.

Market only Market + News Market + News Market + News
CNN propagated balanced neutralized

4 layers 100 filters kernel=2 0.551 0.538 0.540 0.548

1 layers 100 filters kernel=3 0.539 0.539 0.540 0.539
2 layers 10 filters kernel=3 0.538 0.540 0.538 0.535
2 layers 100 filters kernel=3 0.539 0.539 0.540 0.539
2 layers 10 filters kernel=5 0.538 0.538 0.541 0.537
2 layers # features filters kernel=5 0.538 0.538 0.540 0.537
2 layers 100 filters kernel=5 0.538 0.543 0.543 0.542

In addition, by observing the architectures detailed in Table 5.2, it is possible to draw the same

conclusion as in previous Section 5.1 with FNN models. The best performing CNN model has a 4 layers

architecture. In addition, it uses 100 filters and a kernel size of 2. This model achieved an accuracy of

55.1%. However, the test accuracy was higher without the sentiment features (55.1%) than with those

features included (54.8%). We attribute this fact to overfitting, and dropout did not help in this case.

More detailed information about this model architecture can be observed in Fig 5.3. This model,

using the Market only dataset, achieved a 0.097 MCC score, a 0.547 AUC and 0.591 F1Score. Due

to additional measures used, we can conclude that the model can better identify up trends than down

trends having a Recall of 0.649 against a Specificity of 0.446. Regarding certainty on classification, the

44

model has a Precision of 0.542 and a NPV of 0.557.

Conv1D

input: output:

(?,	10,	18) (?,	9,	100)

Conv1D

input: output:

(?,	9,	100) (?,	8,	100)

MaxPooling1D

input: output:

(?,	8,	100) (?,	4,	100)

Conv1D

input: output:

(?,	4,	100) (?,	3,	100)

Conv1D

input: output:

(?,	3,	100) (?,	2,	100)

MaxPooling1D

input: output:

(?,	2,	100) (?,	1,	100)

Dense

input: output:

(?,	100) (?,	18)

Dense

input: output:

(?,	18) (?,	1)

Flatten

input: output:

(?,	1,	100) (?,	100)

Figure 5.3: Best CNN architecture.

Fig. 5.4 details the loss function performance and corresponding accuracy throughout training.

0 8 16 24 32 40 48 56 64
Epochs

0.7

0.8

0.9

1.0

1.1

Lo
ss

Training Loss
Validation Loss

0 10 20 30 40 50 60
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Accuracy
Validation Accuracy

Figure 5.4: CNN performance during training.

5.3 Recurrent Neural Network

For RNN models we have made a similar evaluation as the one detailed FNN. The number of layers,

neurons, training batches and dropout rates were varied in the same way as detailed in Section 5.1.

With this type of NN (Fig. 3.4) we have tested 39 different sets of hyper-parameters. Each variation took

around 40 minutes to train, having the 4 datasets results been determined after around 4 days from the

starting of the RNN models experiment.

Table 5.3: Accuracy comparison of RNN models.

Market only Market + News Market + News Market + News
RNN propagated balanced neutralized

2 layers ↓ neurons 0.545 0.547 0.552 0.550

4 layers ↓ neurons 0.546 0.541 0.545 0.537
4 layers 100 neurons 0.552 0.538 0.546 0.545
4 layers 100 neurons 0.2 dropout 0.541 0.539 0.541 0.541

↓ represents the number of neurons decreasing across layers.

RNN is the first model in our experiment employing recurrence mechanisms. As can be noted in

Table 5.3, when we employ these mechanisms into our models a subtle improvement in accuracy occurs,

having the best RNN model outperformed the best CNN model by 0.1%. When we make use of a 10

45

time-step window jointly with recurrence mechanisms we can observe a more noticeable improvement.

The RNN model outperformed all FNN models by at least 1.9%.

The RNN model achieving the highest accuracy has a 2 layer architecture, with no dropout and

a training batch of 1%. Again, all best performing models used a training batch of 1%. Regarding

neurons, the quantity is decreasing throughout layers with the approach described in Section 5.1. This

model achieved an accuracy of 55.2%, and is described with more detailed in Fig 5.5.

SimpleRNN

input: output:

(?,	10,	21) (?,	10,	21)

SimpleRNN

input: output:

(?,	10,	10) (?,	10)

Dense

input: output:

(?,	10) (?,1)

Figure 5.5: Best RNN architecture.

Fig. 5.6 details the loss function performance and corresponding accuracy throughout training of the

RNN model detailed in Fig 5.5. This model achieved an MCC of 0.103, an AUC of 0.552, Recall of

0.581, Precision of 0.551, F1Score of 0.566, Specificity of 0.522 and NPV of 0.552.

0 40 80 120 160 200 240 280 320
Epochs

0.7

0.8

0.9

1.0

1.1

Lo
ss

Training Loss
Validation Loss

0 50 100 150 200 250 300
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Accuracy
Validation Accuracy

Figure 5.6: RNN performance during training.

Contrary to the previous models, this model’s Recall is rather similar to its Specificity, leading us to

conclude that RNN models identify down trends almost as well as up trends. It is also noticeable that

the capability to identify up trends has been descending (Recall ratio decline from FNN to RNN), while

the capability to identify down trends has been improving (Specificity ratio rising from FNN to RNN). In

our opinion, mainly due to the introduction of recurrence mechanisms, which enable better identification

of market reversions.

Regarding certainty when identifying both up and down trends, we can notice that it has been signif-

icantly rising for up trends and remaining constant for down trends.

5.4 Long Short-Term Memory

LSTM models (Fig. 3.5) experimental approach was the same as the one employed in previous models

experiments. The number of layers, neurons, batches and dropout rates was varied in the same way for

both FNN, RNN and LSTM models. These models training took longer as the neurons composing their

46

layers are more complex, hence requiring more computational time. It lasted 5 days.

As can be noted in Table 5.4, when we employ a more powerful recurrence mechanisms into our

models, an accuracy improvement of 0.1% is noted. Although very modest, when comparing against

RNN models, accuracy improved from 55.2% to 55.3% when the sentiment features were included.

Table 5.4: Accuracy comparison of LSTM models.

Market only Market + News Market + News Market + News
LSTM propagated balanced neutralized

1 layer 0.551 0.545 0.542 0.542
4 layers ↓ neurons 0.552 0.540 0.542 0.540
4 layers 100 neurons 0.2 dropout 0.543 0.551 0.553 0.551

4 layers 100 neurons 0.2 dropout 0.552 0.539 0.547 0.547

↓ represents the number of neurons decreasing across layers.

As in FNN and CNN experiments, we observe that one of our more complex LSTM models trained

achieved the best score. Intuitively, this leaves the following open question: if we increase the number of

layers in this type of models the accuracy increase as well? Unfortunately, due to memory constraints,

we are unable to provide an informed answer.

Another particularity when comparing FNN, RNN and LSTM models training is that almost all best

performing models use a batch of 1%. In our opinion, this is due to more optimizations being done in the

same amount of epochs, hence the model generalizes better and accuracy increases. On the contrary,

with a larger batch (10%) the model training significantly degrades its quality, hence affecting the model

ability to generalize.

The LSTM model achieving the highest accuracy has its architecture detailed in Fig 5.7. The model

has a 4 layer architecture, with 100 neurons per layer, makes use of a dropout layer with a 0.2 rate and

uses a batch of 1%. This model achieved an accuracy of 55.3%.

LSTM

input: output:

(?,	10,	21) (?,	10,	100)

Dropout

input: output:

(?,	10,	100) (?,	10,	100)

LSTM

input: output:

(?,	10,	100) (?,	10,	100)

Dropout

input: output:

(?,	10,	100) (?,	10,	100)

LSTM

input: output:

(?,	10,	100) (?,	10,	100)

Dropout

input: output:

(?,	10,	100) (?,	10,	100)

LSTM

input: output:

(?,	10,	100) (?,	100)

Dense

input: output:

(?,	100) (?,1)

Dropout

input: output:

(?,	100) (?,	100)

Figure 5.7: Best LSTM architecture.

Lastly, Fig. 5.8 details the loss function performance and corresponding accuracy throughout training

of the LSTM model detailed in Fig 5.7. This model achieved an MCC of 0.109, an AUC of 0.553, Recall

of 0.673, Precision of 0.545, F1Score of 0.603, Specificity of 0.433 and NPV of 0.567.

When comparing this model with the previous RNN model, we observe that the LSTM better identifies

up trends (67.3% vs 58.1%). However, its performance degrades when identifying down trends (43.3%

vs 52.2%). Regarding certainty when identifying trends, the confidence remains more or less the same,

although LSTM have a slight improvement when classifying down trends. In our opinion, due to the fact

of worst deciding when a trend is downwards. The LSTM better identification up trends cause them to

have an higher F1Score when compared to RNN (0.603 versus 0.566).

47

0 4 8 12 16 20 24 28 32 36
Epochs

0.8

1.0

1.2

1.4

1.6

Lo
ss

Training Loss
Validation Loss

0 5 10 15 20 25 30 35
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Accuracy
Validation Accuracy

Figure 5.8: LSTM performance during training.

5.5 Bidirectional LSTM

In this section we detail the experiments done with bidirectional LSTM models. This model is very similar

to a standard LSTM, however with twice the neurons per layer given the same hyper-parameters. The

bidirectionality allows the models to analyze inputs in both directions, forwards and backwards.

The same hyper-parameter and architectural variations were made with bidirectional LSTM as with

previously discussed RNN and LSTM models, and as detailed in Section 5.1 for FNN models. However,

due to the number of neurons present in each layer, a memory limit was reached. As a result, when

training, a 0.1% batch was used for all architectures. We have tested 25 hyper-parameter and architec-

tural variations with bidirectional LSTM models, having this experience lasted for about 5 days. The best

results are detailed in Table 5.5.

Table 5.5: Accuracy comparison of bidirectional LSTM models.

Market only Market + News Market + News Market + News
Bidirectional LSTM propagated balanced neutralized

1 layer 100 neurons 0.542 0.543 0.543 0.548
1 layer 100 neurons 0.2 dropout 0.541 0.540 0.544 0.547
2 layers ↓ neurons 0.543 0.541 0.545 0.542
2 layers ↓ neurons 0.2 dropout 0.542 0.541 0.542 0.540
2 layers ↓ neurons 0.5 dropout 0.542 0.541 0.540 0.540
4 layers ↓ neurons 0.541 0.541 0.540 0.539
4 layers ↓ neurons 0.2 dropout 0.541 0.548 0.540 0.549
4 layers ↓ neurons 0.5 dropout 0.541 0.541 0.547 0.547

↓ represents the number of neurons decreasing across layers.

In the presented table is possible to notice that simpler models tend to perform well. In our opinion,

due to each layer having twice the neurons when compared with previous approaches, hence being

able to represent more complex relations with simpler models. In this case, it is also perceptible that

dropout has a bigger effect than with previous models, hence helping to prevent overfit in simpler models

and increasing their accuracy. A great number of models made use of dropout, especially with a 0.2

probability rate.

Nonetheless, although we have employed an extra direction of analysis to our input, therefore the-

oretically enabling this model to better represent more complex relationships, bidirectional LSTM per-

48

formance was worst when compared to aforementioned recurrent models. We justified this due to the

overfit verified on more complex models, particularly the ones using 200 neurons per layer.

Fig. 5.9 details the best performing bidirectional LSTM architecture achieving an accuracy of 54.9%.

This model is composed by a 4 layers architecture, containing each layer a decreasing number of neu-

rons (as explained in Section 5.1) and leveraging a dropout rate of 0.2. The training batch size used was

of 0.1% due to memory constraints.

Bidirectional(LSTM)

input: output:

(?,	10,	20) (?,	10,	14)

Dropout

input: output:

(?,	10,	14) (?,	10,	14)

Bidirectional(LSTM)

input: output:

(?,	10,	14) (?,	10)

Dropout

input: output:

(?,	10) (?,	10)

Dense

input: output:

(?,	10) (?,1)

Bidirectional(LSTM)

input: output:

(?,	10,	21) (?,	10,	42)

Dropout

input: output:

(?,	10,	42) (?,	10,	42)

Bidirectional(LSTM)

input: output:

(?,	10,	42) (?,	10,	20)

Dropout

input: output:

(?,	10,	20) (?,	10,	20)

Figure 5.9: Best bidirectional LSTM architecture.

Fig. 5.10 details the loss function performance and corresponding accuracy throughout training of the

bidirectional LSTM model detailed in Fig 5.9. This model achieved an MCC of 0.098, an AUC of 0.548,

Recall of 0.627, Precision of 0.545, F1Score of 0.583, Specificity of 0.470 and NPV of 0.555. When

compared to an LSTM, bidirectional LSTM most accurate model better identifies down trends (47.0%

versus 43.3%). However, it performs worst when identifying up trends (52.7% versus 67.3%).

0 8 16 24 32 40 48 56 64
Epochs

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

Lo
ss

Training Loss
Validation Loss

0 10 20 30 40 50 60
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Accuracy
Validation Accuracy

Figure 5.10: Bidirectional LSTM performance during training.

We conclude that recurrence mechanisms are essential in order to leverage information from the

past. However, a bidirectional LSTM did not improve the results, which is understandable, since the

most recent history is probably more relevant for prediction than the distant past, so only the forward

direction is useful.

5.6 LSTM with Attention

In the following sections will employ the Attention Mechanisms previously detailed in Section 3.3. The

present Section 5.6 and the following Section 5.7 will make use of Sequential Attention mechanisms,

49

where an Additive alignment score function is used. Section 5.8 will experiment a recently proposed

model, where a Parallel Attention mechanism is the core of predictions.

In this section we detail the experiments using LSTM models with an Additive Attention mechanism.

This model is very similar to a standard LSTM, however it has attached at the end of the LSTM layers an

attention mechanism to increase focus on specific parts of the input. This mechanism allows to selec-

tively highlight the most relevant features of the input and give them more importance when predicting a

trend. A more detailed explanation was already provided in Section 3.3.

The same hyper-parameter and architectural variations were made with this kind of NN as the ones

discussed in previous sections and as detailed in Section 4.5. We have tested 25 hyper-parameter

and architectural variations with LSTM with Attention models, having this experience lasted for about

6 days. However, as this model employs an extra layer (Attention layer), a memory limit was reached.

Therefore, when training these models, as it happened with bidirectional LSTM experiments, the different

architectures solely used a 0.1% training batch.

As can be observed in Table 5.6, the addition of an attention layer to recurrence mechanisms and to

a 10 time-step window dramatically increased accuracy. Having the LSTM with Attention outperformed

all models without Attention by at least 4.7%.

Table 5.6: Accuracy comparison of LSTM models with Attention.

Market only Market + News Market + News Market + News
LSTM with Attention propagated balanced neutralized

1 layer 0.503 0.594 0.503 0.503
2 layers ↓ neurons 0.503 0.599 0.598 0.598
2 layers ↓ neurons 0.2 dropout 0.598 0.595 0.600 0.592
2 layers = neurons 0.595 0.594 0.596 0.590
2 layers = neurons 0.2 dropout 0.503 0.592 0.503 0.503
4 layers ↓ neurons 0.503 0.503 0.592 0.507
4 layers ↓ neurons 0.2 dropout 0.503 0.503 0.581 0.578
4 layers = neurons 0.503 0.596 0.599 0.596
4 layers = neurons 0.2 dropout 0.590 0.593 0.591 0.600
4 layers 100 neurons 0.591 0.588 0.593 0.593

↓ represents the number of neurons decreasing across layers.
= represents the number of neurons being kept constant across layers.

In addition, it is possible to perceive that simpler models leveraging attention mechanisms also per-

form well, particularly the 2 layers architectures. Furthermore, as a lot of computation is performed when

training this type of model, we can also observe that dropout has a key role.

Fig. 5.11 details the best performing LSTM with Attention architecture. This model is composed by 4

layers, each of the layers containing the same number of neurons as the number of input features. Ad-

ditionally, this model also makes use of a 0.2 dropout rate. The batch during training as aforementioned

explained is 0.1% of the training data. An LSTM model with additive attention achieves 59.8% accuracy

without sentiment features, and reaches 60.0% when those features are included.

Fig. 5.12 details the loss function performance and corresponding accuracy throughout training of

the highest accuracy achieving LSTM with Attention model detailed in Fig 5.11. Another model has also

attained the same accuracy result however, the detailed model achieved an higher MCC (0.199 versus

0.197). Therefore, being selected as the best performing model. This model also achieved an AUC of

50

LSTM

input: output:

(?,	10,	21) (?,	10,	21)

Dropout

input: output:

(?,	10,	21) (?,	10,	21)

LSTM

input: output:

(?,	10,	21) (?,	10,	21)

Dropout

input: output:

(?,	10,	21) (?,	10,	21)

Dense

input: output:

(?,	21) (?,1)

LSTM

input: output:

(?,	10,	21) (?,	10,	21)

Dropout

input: output:

(?,	10,	21) (?,	10,	21)

LSTM

input: output:

(?,	10,	21) [(?,	21),	(?,	21),	(?,	21)]

Dropout

input: output:

(?,	21) (?,	21)

AdditiveAttention

input: output:

[(?,	21),	(?,	21)] (?,	21)

Figure 5.11: Best LSTM with Attention architecture.

0.600, a Recall of 0.612, a Precision of 0.600, a F1Score of 0.606, a Specificity of 0.588 and a NPV of

0.600.

0 8 16 24 32 40 48 56 64 72
Epochs

0.7

0.8

0.9

1.0

1.1

Lo
ss

Training Loss
Validation Loss

0 10 20 30 40 50 60 70
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

Training Accuracy
Validation Accuracy

Figure 5.12: LSTM with Attention performance during training.

When compared to the best performing models without Attention, this LSTM can better identify down

trends (58.8% vs 52.2% of an RNN model). However, although having a much better general accuracy,

this model does not have such performance when dealing with up trends.

A final remark is that the best performing LSTM with Attention model outperforms any previous

discussed model regarding certainty on identifying both trends by at least 3.3%.

5.7 Bidirectional LSTM with Attention

As explained in the previous Section 5.7, the model detailed in this section also employs an Additive

Attention mechanism. However, making use of a bidirectional LSTM model instead. The purpose of this

particular experiment is to take advantage of three powerful features available: LSTM recurrent neurons,

bidirectional layers and Attention mechanisms.

Our intention is to use LSTM neurons to longer propagate information throughout the network, while

bidirectional layers analyze both directions most important events in the Time Series (TS). From past

51

to present and from present to past. And, after this process is finished and information is represented,

Attention mechanisms will highlight the more relevant parts in order to provide a more detailed repre-

sentation to achieve a more accurate prediction.

As in previous sections, we followed the same logic to test different architectural variations. We have

varied: the number of layers between 1, 2 and 4; the number of neurons between the number of input

features and 100; and employed dropout layers with 0.2 and 0.5 rates. This experiment endured for 6

days, the same time as the previous section experiment and we have tested 20 hyper-parameter and ar-

chitectural variations. In this model training, as in the previous model employing Attention mechanisms,

a memory constraint exists. Therefore, when training this model different architectures we solely used

training batches of 0.1%.

As can be observed in Table 5.7, the addition of bidirectional layers to the network improved accuracy,

having the best performing bidirectional LSTM with Attention outperformed models without Attention by

at least 5% and the LSTM with Attention model by 0.4%.

Table 5.7: Accuracy comparison of bidirectional LSTM models with Attention.

Market only Market + News Market + News Market + News
Bidirectional LSTM with Attention propagated balanced neutralized

1 layer 0.503 0.603 0.501 0.501
2 layers = neurons 0.2 dropout 0.594 0.595 0.599 0.604
4 layers ↓ neurons 0.506 0.602 0.602 0.596
4 layers ↓ neurons 0.2 dropout 0.503 0.574 0.590 0.556
4 layers = neurons 0.599 0.596 0.599 0.602
4 layers = neurons 0.2 dropout 0.600 0.542 0.590 0.574

↓ represents the number of neurons decreasing across layers.
= represents the number of neurons being kept constant across layers.

From observing this table is also perceptible that simpler models performed better. We can observe

that no model using layers with 200 neurons performed reasonable, otherwise it would be present in this

table. In our opinion, this is due to these models tendency to overfit, in which not even dropout help the

case. The only possible solution is to models with fewer neurons. Hence the best performing models

being the more simpler ones presented in Table 5.7. Therefore, the question posed in Section 5.4 can

be partly answered.

Fig. 5.13 details the best performing bidirectional LSTM with Attention architecture. This model

architecture contains 2 layers, both containing the same number of neurons as the number of input

features. The batch during training as aforementioned explained is 0.1% and this model makes use

of dropout layers with a 0.2 rate to help avoiding overfit. The bidirectional LSTM model achieved an

accuracy of 60.4%.

Fig. 5.14 details the loss function performance and corresponding accuracy throughout training of

the bidirectional LSTM with Attention model detailed in Fig 5.13. This model achieved an MCC of 0.208,

an AUC of 0.604, a Recall of 0.587, a Precision of 0.610, a F1Score of 0.598, a Specificity of 0.621 and

a NPV of 0.598.

When compared to all models, the bidirectional LSTM with Attention model has the best MCC, AUC,

Precision and Specificity overall. Which translates in the aforementioned model having the most accu-

52

Dropout

input: output:

(?,	10,	42) (?,	10,	42)

Bidirectional(LSTM)

input: output:

(?,	10,	42) [(?,42),	(?,21),	(?,21),	(?,21),	(?,21)]

Dropout

input: output:

(?,	42) (?,	42)

Concatenate

input: output:

[(?,21),	(?,21)] (?,	42)

Dense

input: output:

(?,	42) (?,1)

AdditiveAttention

input: output:

[(?,	42),	(?,	42)] (?,	42)

Bidirectional(LSTM)

input: output:

(?,	10,	21) (?,	10,	42)

Figure 5.13: Best bidirectional LSTM with Attention architecture.

0 10 20 30 40 50 60 70 80
Epochs

0.7

0.8

0.9

1.0

1.1

Lo
ss

Training Loss
Validation Loss

0 20 40 60 80
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Accuracy
Validation Accuracy

Figure 5.14: Bidirectional LSTM with Attention performance during training.

racy when identifying down trends and being the more certain when predicting up trends. However, a

drawback is that almost all models have a better accuracy when solely identifying up trends.

5.8 Transformer

In this section we will present the experimental results of a model relying solely on attention. As intro-

duced in Section 3.3, the Transformer model is a novelty because it does not involve any recurrence

mechanisms, hence allowing parallel computation. A difference to previous presented models where

the computation in order to learn patterns and dynamics from TS was performed sequentially.

In addition, due to solely relying on attention, this model does not require prior calculation of all hidden

states, therefore enabling to obtain results significantly faster and, consequently reducing training time.

This model was purposely created for Natural Language Processing (NLP) tasks, but we decided to

adapt it and employ it in our Time Series Prediction (TSP) task. The experiment is new, because to our

best knowledge this model was never applied to predict stock assets movement.

The structural modifications done in order to adapt the model to our task are detailed in Section 3.3

and Section 4.5. Throughout the experiments realized with the Transformer-like model we have varied

the number of stack N components between 2, 4, 6 and 8, and the number of attention heads present

53

in each component. The number of attention heads varied differently for the 3 datasets with sentiment

features and for the dataset without sentiment features. This was due to the datasets having a different

number of input features jointly with the constraint mentioned in Section 4.5 and presented in Eq. (4.1).

Market only dataset has 18 input features versus 21 input features for the other 3 datasets using senti-

ment features. Consequently, dmodel has to be modified in accordance.

For the dataset without sentiment features, we have varied the number of attention heads between

5, 6, 9 and 10 having in total 16 different architectural versions. When testing datasets using sentiment

features, we varied the number of attention heads between 5, 6, 7, 10 and 14 having a total of 20

different architectural versions. This experiment was realized throughout 4 days.

In Table 5.8 are presented the Transformer best hyper-parameter variations. As it can be observed,

the best model uses a stack of 6 components, as in the original paper. Each one of these components

containing a Multi-Head Attention mechanism with 5 attention heads, a FNN layer with 8000 neurons

and two Add & Norm layers. All layers were already previously detailed in Section 3.3.

Table 5.8: Accuracy comparison of Transformer models.

Market only Market + News Market + News Market + News
Transformer propagated balanced neutralized

5 Heads and 2 components 0.547 0.553 0.545 0.542
5 Heads and 6 components 0.543 0.547 0.557 0.550

6 Heads and 2 components 0.543 0.546 0.549 0.550

9 Heads and 4 components 0.556 NA NA NA
14 Heads and 2 components 0.550 0.545 0.544 0.543
14 Heads and 4 components NA 0.552 0.544 0.545

In alignment with ref. [222], the best Transformer-like architecture for our task has the same number

of components as the original model architecture for NLP tasks. Nonetheless, it should be noted that

architectures using 4 components also performed well.

Contrasting with the number of components in the architecture is the number of attention heads. To

our task, a decrease from the original 8 to 5 heads of attention was verified. Almost half the ones pre-

sented in ref. [222]. We attribute this to our datasets having significantly less features when comparing

with translation tasks, hence extra heads of attention would dramatically increase complexity and cause

the model to overfit.

Fig. 5.15 details the loss function performance and corresponding accuracy throughout training of

the Transformer-like model. This model achieved an MCC of 0.108, an AUC of 0.556, a Recall of 0.557,

Precision of 0.556, a F1Score of 0.557, a Specificity of 0.550 and NPV of 0.551.

The contribution of a model solely relying on Attention mechanisms is mainly two-fold. First, we

wanted to compare performance against models relying on recurrence mechanisms. Second, we wanted

to understand if the increasing of accuracy when adding attention to models with recurrence was due to

a particular combination of both mechanisms or if Attention alone was a more robust solution.

The conclusions from the results obtained are clear. Employing each mechanism individually results

in achieving similar accuracy (55.3% and 55.7%). Having recurrent models more accuracy when identi-

fying up trends and the Transformer-like model more accuracy when identifying down trends. The LSTM

54

0 2 4 6 8 10 12 14 16
Epochs

1.0

1.5

2.0

2.5

3.0
Lo

ss
Training Loss
Validation Loss

0 2 4 6 8 10 12 14 16
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Accuracy
Validation Accuracy

Figure 5.15: Transformer performance during training.

and bidirectional LSTM models have a Recall of 67.3% and 61.2% respectively, versus 55.7% from

the Transformer model. The Transformer-like model has 55.0% Specificity versus 43.3% and 49.5%,

correspondingly for LSTM and bidirectional LSTM models.

The main conclusion reached is that combining both mechanisms, attention and recurrence, defi-

nitely increases accuracy. Although Recall is lower when compared with recurrent models, Specificity

is 13% higher. Meaning that models using both attention and recurrence can significantly better predict

down trends.

5.9 Comparison and Discussion

The first experiment, with a simple FNN (Section 5.1), already provides an interesting conclusion: when

using this model, the sentiment features do not have any influence in the output predictions. In our view,

this is due to the fact that the FNN does not incorporate any information on past behavior. Both with and

without the sentiment features, this model scored a test accuracy of 53.3%.

Using a Convolutional Neural Network (CNN) (Section 5.2) with a 10 time-step window into the past

improved the prediction accuracy. However, the test accuracy was higher without the sentiment features

(55.1%) than with those features included (54.8%). We attribute this result to a prior assumption of

structure importance in a spatial domain of CNN convolutions, where closer features are prioritized.

Moreover, as the most accurate CNN model made use of a kernel with size 2, it lacked ability to better

capture the influence of the 3 existent sentiment categories. Additionally, dropout did not help to prevent

overfit in this case.

A simple RNN (Section 5.3) provided the same accuracy (55.2%) with and without sentiment features,

but a LSTM (Section 5.4) improved from 55.2% to 55.3% when the sentiment features were included.

We conclude that recurrence mechanisms are essential in order to leverage information from the past.

However, a bidirectional LSTM (Section 5.5) did not improve the results, which is understandable, since

the most recent history is probably more relevant for prediction than the distant past, so only the forward

direction is useful.

It is our opinion that the difference between RNN and LSTM models is not so noticeable due to the

55

fixed-length training window. If instead we have used an incremental training window, it is our belief that

the LSTM results would outperform more clearly the RNN.

The accuracy improves even further when attention mechanisms are employed. An LSTM model

with additive attention (Section 5.6) achieves 59.8% accuracy without sentiment features, and reaches

60.0% when those features are included. Moreover, a bidirectional LSTM with attention (Section. 5.7)

improves that result even further to 60.4%. Here, bidirectionality is definitely beneficial because it helps

the attention mechanism learn which time-steps are the most relevant for prediction. The results suggest

that attention mechanism can select the relevant features of an input and improve prediction. It also

implies that input features are not equally important, a consistent conclusion with our work review.

We have also experimented with a Transformer-like architecture, which relies on attention but not

recurrence. Here the results were inferior, with 55.6% accuracy without sentiment features, and an

increase to 55.7% when those features were included. This model achieved similar result as models

solely using recurrence when using sentiment features, and sightly better results when predicting without

sentiment features.

In our opinion, the Transformer model did not perform as expected. This type of attention performs

well when repeated inputs exist due to the usage of dot-product as alignment score function. Contrarily

to NLP tasks, Stock Prediction (SP) has similar trends but values rarely repeat. Therefore, we believe

this was the reason for under-performance.

Table 5.9 provides an overview of the overall results, where it becomes apparent that the inclusion

of sentiment features can account for an improvement of at most 0.6% in test accuracy, while the use

of recurrence and attention mechanisms can provide an improvement of 5.6% over a baseline CNN that

uses the same input data.

Table 5.9: Accuracy comparison of different models.

Market only Market + News Market + News Market + News
Models propagated balanced neutralized

FNN 0.533 0.532 0.533 0.533
CNN 0.551 0.543 0.543 0.548
RNN 0.552 0.547 0.552 0.550
LSTM 0.552 0.551 0.553 0.551
Bidirectional LSTM 0.543 0.548 0.547 0.549
LSTM with Attention 0.598 0.599 0.600 0.600
Bidirectional LSTM with Attention 0.600 0.603 0.602 0.604
Transformer 0.556 0.552 0.557 0.550

When comparing models, the Transformer-like model is far more complex than the remaining. This

model has almost 6,000,000 trainable parameters whereas most of the presented models do not even

reach 100,000 trainable parameters. Only the LSTM and bidirectional LSTM models, due to having

4 layers and 100 neurons per layer reach bigger values. Just over 300,000 and 800,000 trainable

parameters, respectively. We can conclude that a direct correlation does not exist between a more

complex model, i.e. a model with more trainable parameters, and its better performance.

Table 5.10 presents an overview of the additional measures introduced earlier in Section 4.6 to pro-

vide a more detailed explanation of the results of each model. It seems logical that the best performing

56

model in terms of accuracy also has the best score in almost every category. The only unexpected result

is the FNN model, that although having the best accuracy when identifying uptrends, scored the lowest

accuracy from all. We justify this due to the stock market being in a constant growth in recent years

combined with this model inability to capture market reversions, hence predicting more uptrends than

downtrends.

Table 5.10: Comparison of additional measures.

Models MCC AUC Recall Precision F1-score Specificity NPV

FNN 0.070 0.532 0.728 0.524 0.609 0.336 0.552
CNN 0.097 0.547 0.649 0.542 0.591 0.446 0.557
RNN 0.103 0.552 0.581 0.551 0.566 0.522 0.552
LSTM 0.109 0.553 0.673 0.545 0.603 0.433 0.567
Bidirectional LSTM 0.098 0.548 0.627 0.545 0.583 0.470 0.555
LSTM with Attention 0.199 0.600 0.612 0.600 0.606 0.588 0.600
Bidirectional LSTM with Attention 0.208 0.604 0.587 0.610 0.598 0.621 0.598
Transformer 0.108 0.556 0.557 0.556 0.557 0.550 0.551

Fig. 5.16 aggregates both training (top row) and validation (bottom row) losses of all the best per-

forming NN models. On the left, there is a zoom out comparison, of all models training. From the left part

of the figure, we can observe that RNN required by far the most quantity of epochs to be trained (∼ 330

epochs), whereas the Transformer-like model required the least (∼ 15 epochs), having the remaining

models all required between ∼ 40 and ∼ 90 epochs.

0 40 80 120 160 200 240 280 320
Epochs

1.0

1.5

2.0

2.5

3.0

Lo
ss

Training Loss
FNN Loss
CNN Loss
RNN Loss
LSTM Loss
Bi-LSTM Loss
LSTM + Att Loss
Bi-LSTM + Att Loss
Transformer Loss

0 10 20 30 40 50 60
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Training Loss Zoom In
FNN Loss
CNN Loss
RNN Loss
LSTM Loss
Bi-LSTM Loss
LSTM + Att Loss
Bi-LSTM + Att Loss
Transformer Loss

0 40 80 120 160 200 240 280 320
Epochs

0.8

1.0

1.2

1.4

Lo
ss

Validation Loss
FNN Loss
CNN Loss
RNN Loss
LSTM Loss
Bi-LSTM Loss
LSTM + Att Loss
Bi-LSTM + Att Loss
Transformer Loss

0 10 20 30 40 50 60
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Validation Loss Zoom In
FNN Loss
CNN Loss
RNN Loss
LSTM Loss
Bi-LSTM Loss
LSTM + Att Loss
Bi-LSTM + Att Loss
Transformer Loss

Figure 5.16: Training and Validation Loss during training.

57

As can be observed in Fig. 5.16, less steeper slopes belong to less complex models: a 2 layers

RNN and a 2 kernel size CNN. On the contrary, regarding noticeably larger slopes, a great majority of

the remaining models have a 4 layers architecture with 100 neurons in each layer. Therefore, we can

conclude, for this particular dataset, that the more complex a model is, i.e. the more trainable parameters

a model has, the faster it learns.

To reinforce the previous conclusion another observation can be added. It is possible to verify that the

Transformer-like model started with the highest loss. On that note, due to this model being the one with

less training epochs and all models having similar loss values at the end of training, it is possible to state

that the more complex model obtained the fastest loss decrease. Therefore, it can also be concluded that

for this particular dataset the most complex model can be considered the fastest learner. And although

not the highest accuracy scorer, the Transformer-like model achieved similar results to recurrent models

with significantly less training. Consequently, when solely comparing recurrent mechanisms against

attention, we can conclude that the latter learns faster.

In summary, according to our experiments and results performed on this particular dataset, we con-

clude that the incorporation of Sentiment Analysis (SA) in SP can account for at most a 0.6% improve-

ment in predicting the upward or downward movement of stocks, while the choice of model and the use

of more sophisticated learning mechanisms such as recurrence and attention can provide a significantly

larger improvement with respect to simpler baseline models.

58

Chapter 6

Conclusion

From the literature review presented in Chapter 2, we expected that Sentiment Analysis (SA) would

improve stock prediction. However, our results suggest that the improvement is rather modest compared

to our initial expectation.

On the other hand, our findings point to a possible avenue for the continued improvement of prediction

models and their accuracy. By making use of learning mechanisms such as recurrence and attention,

and others that may appear along the way, it is possible to keep improving the results. It is also apparent

that such mechanisms will work better in combination rather than in isolation; specifically, recurrence

with attention works better than either of those mechanisms alone.

In addition, we found that propagating sentiment by keeping past sentiment when there are no news

is not the best approach. In this respect, the market seems to forget past sentiment in a matter of days,

to the point that it is no longer possible to clearly determine the current sentiment as being positive,

negative, or neutral.

As an advantage, due to employing Deep Learning models, our approach can adapt to different

markets without any architectural modification. The only requisite is to train the model with specific data

from the corresponding market. In addition, it is our belief that this system can be employed to other

tasks rather than Stock Prediction (SP) directional movement such as price or volatility prediction. Out

of our scope, this system can possibly be employed to medical, life or car insurance calculation based

on the users statistics, history and social media posts.

Moreover, our approach can be considered a generic framework for modeling various non-linear

dynamical stock assets interactions. As manifested in our results section, this approach can model

multivariate Time Series (TS) for a 10 day time period with reasonable accuracy. However, the framework

proposed is extensible and can be easily adapted to model both univariate and/or different time lengths

into the future with minimum modifications.

To conclude, we want to directly answer the question we present in Section 1.3. The inclusion of

Sentiment Analysis over a pure Technical Analysis approach when doing Stock Prediction can account

for an improvement of at most 0.6% in our test accuracy. Nonetheless, the use of recurrence and

attention mechanisms can provide an improvement of 5.6% over a baseline using the same input data.

59

6.1 Main Contributions

In this work we provided a number of contributions, which can briefly summarized as follows:

• a review over the main techniques used for Stock Prediction;

• an overview, in the form of comprehensive tables, of the main sources of market data, the main

sources of news data, and the relationship between market and news sources;

• a review of different types of Neural Network (NN) models and their characteristics, with a view

towards their application to Stock Prediction;

• an introduction to Attention mechanisms, where we discuss how to modify a mechanism that was

purposely built for Natural Language Processing (NLP) tasks;

• a detailed approach on how to retrieve, preprocess and analyze information in order to build a SP

model;

• a detailed description on how to build a SP model, and the construction of several DL models for

SP;

• the construction of an innovative SP model solely based on Attention mechanisms and inspired by

the Transformer model;

• a methodology in order to measure the influence of Sentiment Analysis when doing Stock Predic-

tion;

• a comparison of the results obtained with different models, and an explanation for the performance

achieved with each model;

• a demonstration of the importance of both recurrence and attention mechanisms in SP;

• the quantification of how much SA and different types of NN mechanisms influence SP.

An interesting novelty of this work was the implementation of a Parallel Attention mechanism for SP.

Our results point to the fact that including only recurrence mechanisms or only attention mechanisms

produce a similar effect. However, combining both mechanisms improves performance significantly.

Some of the main contributions of this work are to be presented and published as a paper at the

Fifth Workshop on MIning DAta for financial applicationS (MIDAS 2020) at the European Conference

on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD

2020) which is due to take place in Ghent, Belgium, in September 2020.

6.2 Future Work

Despite the interesting results, there are many ideas to explore as future work. In this work, our predic-

tion target was binary, in the form of a directional movement. As limitation, our approach is only able

60

to predict assets price increasing and decreasing movements. Considering this fact, we do not know if

they are affordable and how much they are going to move. Given the time restrictions, it was impossible

for us to evaluate how well our project would do in the real world.

In future work, we plan to apply similar models for regression tasks such as predicting price and

volatility. In addition, the kind of evaluation that we provide here is by no means the end of the story;

to derive actual benefits in the real-world, other components, such as a trading strategy to enter and

exit the market, are necessary. Additionally, it can be added the determination of an optimal number of

stocks to buy or sell in order to maximize overall profits; to consider the risk of each asset bought having

also in mind its transaction costs and volume constraints.

61

62

Bibliography

[1] E. F. Fama. The Behavior of Stock-Market Prices. The Journal of Business, 38(1):34–105, Jan.

1965.

[2] R. N. Elliott. The Wave Principle. 1938.

[3] E. F. Fama. Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of

Finance, 25(2):383–417, May 1970.

[4] R. P. Schumaker and H. Chen. Textual Analysis of Stock Market Prediction Using Financial News

Articles. In Americas Conference On Information Systems, volume 3, pages 1422–1430, Dec.

2006.

[5] I. Maks and P. Vossen. A verb lexicon model for deep sentiment analysis and opinion mining

applications. Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and

Sentiment Analysis, pages 10–18, June 2011.

[6] V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen, and J. Allan. Mining of Concurrent

Text and Time Series. In Proceedings of the 6th ACM SIGKDD Int’l Conference on Knowledge

Discovery and Data Mining Workshop on Text Mining, pages 37–44, 2000.

[7] X. Ding, Y. Zhang, T. Liu, and J. Duan. Using Structured Events to Predict Stock Price Movement:

An Empirical Investigation. Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1415–1425, Oct. 2014.

[8] B. Weng, L. Lu, X. Wang, F. M. Megahed, and W. Martinez. Predicting short-term stock prices

using ensemble methods and online data sources. Expert Systems with Applications, 112:258–

273, Dec. 2018.

[9] R. Luss and A. D’Aspremont. Predicting abnormal returns from news usingtext classification.

Quantitative Finance, 15(6):999–1012, June 2015.

[10] T. Hollis, A. Viscardi, and S. E. Yi. A Comparison of LSTMs and Attention Mechanisms for Fore-

casting Financial Time Series. arXiv:1812.07699, Dec. 2018.

[11] A. K. Nassirtoussi, S. Aghabozorgi, T. Y. Wah, and D. Ngo. Text mining for market prediction: A

systematic review. Expert Systems with Applications, 41(16):7653–7670, nov 2014.

63

[12] A. K. Nassirtoussi, S. Aghabozorgi, T. Y. Wah, and D. C. L. Ngo. Text mining of news-headlines

for FOREX market prediction: A Multi-layer Dimension Reduction Algorithm with semantics and

sentiment. Expert Systems with Applications, 42(1):306–324, Jan. 2015.

[13] H. Markowitz. Portfolio Selection. The Journal of Finance, 7(1):77–91, Mar. 1952.

[14] B. LeBaron, W. B. Arthur, and R. Palmer. Time series properties of an artificial stock market.

Journal of Economic Dynamics and Control, 23(9-10):1487–1516, Sept. 1999.

[15] S. Emerson, R. Kennedy, L. O’Shea, and J. O’Brien. Trends and Applications of Machine Learning

in Quantitative Finance. In 8th International Conference on Economics and Finance Research

(ICEFR 2019), June 2019.

[16] A. J. Hussain, A. Knowles, P. J. G. Lisboa, and W. El-Deredy. Financial time series prediction

using polynomial pipelined neural networks. Expert Systems with Applications, 35(3):1186–1199,

Oct. 2008.

[17] J. C. B. Gamboa. Deep Learning for Time-Series Analysis. arXiv:1701.01887, Jan. 2017.

[18] B. Vanstone and G. Finnie. An empirical methodology for developing stock market trading systems

using artificial neural networks. Expert Systems with Applications, 36(3):6668–6680, Apr. 2009.

[19] W. Huang, Y. Nakamori, and S.-Y. Wang. Forecasting stock market movement direction with

support vector machine. Computers & Operations Research, 32(10):2513–2522, Oct. 2005.

[20] G. E. P. Box and G. Jenkins. Time Series Analysis, Forecasting and Control. Wiley, 5 edition,

1990.

[21] W. Long, Z. Lu, and L. Cui. Deep learning-based feature engineering for stock price movement

prediction. Knowledge-Based Systems, 164:163–173, Jan. 2019.

[22] M.-E. Wu, C.-H. Wang, and W.-H. Chung. Using trading mechanisms to investigate large futures

data and their implications to market trends. Soft Computing, 21(11):2821–2834, June 2017.

[23] R. Arévalo, J. Garcı́a, F. Guijarro, and A. Peris. A dynamic trading rule based on filtered flag

pattern recognition for stock market price forecasting. Expert Systems with Applications, 81:177–

192, Sept. 2017.

[24] J. M. Poterba and L. H. Summers. Mean reversion in stock prices: Evidence and Implications.

Journal of Financial Economics, 22(1):27–59, Oct. 1988.

[25] S.-H. Hsu, J. J. P.-A. Hsieh, T.-C. Chih, and K.-C. Hsu. A two-stage architecture for stock price

forecasting by integrating self-organizing map and support vector regression. Expert Systems with

Applications, 36(4):7947–7951, May 2009.

[26] W. L. Tung and C. Quek. Financial volatility trading using a self-organising neural-fuzzy semantic

network and option straddle-based approach. Expert Systems with Applications, 38(5):4668–

4688, May 2011.

64

[27] R. F. Engle. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of

United Kingdom Inflation. Econometrica: Journal of the Econometric Society, 50(4):987–1007,

July 1982.

[28] T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of econometrics,

31(3):307–327, Apr. 1986.

[29] J. Fang, B. Jacobsen, and Y. Qin. Predictability of the simple technical trading rules: An out-of-

sample test. Review of Financial Economics, 23(1):30–45, Jan. 2014.

[30] Y. Kara, M. A. Boyacioglu, and Ö. K. Baykan. Predicting direction of stock price index movement

using artificial neural networks and support vector machines: The sample of the Istanbul Stock

Exchange. Expert Systems with Applications, 38(5):5311–5319, May 2011.

[31] G. S. Atsalakis and K. P. Valavanis. Surveying stock market forecasting techniques–Part II: Soft

computing methods. Expert Systems with Applications, 36(3):5932–5941, Apr. 2009.

[32] J. Döpke, U. Fritsche, and C. Pierdzioch. Predicting recessions with boosted regression trees.

International Journal of Forecasting, 33(4):745–759, Oct. 2017.

[33] E. Kayacan, B. Ulutas, and O. Kaynak. Grey system theory-based models in time series prediction.

Expert Systems with Applications, 37(2):1784–1789, Mar. 2010.

[34] F. D. Paiva, R. T. N. Cardoso, G. P. Hanaoka, and W. M. Duarte. Decision-making for financial

trading: A fusion approach of machine learning and portfolio selection. Expert Systems with

Applications, 115:635–655, Jan. 2019.

[35] M. S. Lauretto, B. B. C. Silva, and P. M. Andrade. Evaluation of a Supervised Learning Approach

for Stock Market Operations. arXiv:1301.4944, Jan. 2013.

[36] L.-J. Cao and F. E. H. Tay. Support vector machine with adaptive parameters in financial time

series forecasting. IEEE Transactions on Neural Networks, 14(6):1506–1518, Nov. 2003.

[37] K. Kim. Financial time series forecasting using support vector machines. Neurocomputing, 55

(1-2):307–319, Sept. 2003.

[38] C.-J. Huang, D.-X. Yang, and Y.-T. Chuang. Application of wrapper approach and composite

classifier to the stock trend prediction. Expert Systems with Applications, 34(4):2870–2878, May

2008.

[39] J. Sen and T. D. Chaudhuri. Decomposition of Time Series Data of Stock Markets and its Im-

plications for Prediction – An Application for the Indian Auto Sector. In Proceedings of the 2nd

National Conference on Advances in Business Research and Management Practices (ABRMP

’2016), Kolkata, India, January 8-9, 2016., 01 2016.

65

[40] R. C. Cavalcante, R. C. Brasileiro, V. L. F. Souza, J. P. Nobrega, and A. L. I. Oliveira. Computa-

tional Intelligence and Financial Markets: A Survey and Future Directions. Expert Systems with

Applications, 55:194–211, Aug. 2016.

[41] G. Zhang, B. E. Patuwo, and M. Y. Hu. Forecasting with artificial neural networks: The state of the

art. International journal of forecasting, 14(1):35–62, Mar. 1998.

[42] E. Chong, C. Han, and F. C. Park. Deep learning networks for stock market analysis and prediction:

Methodology, data representations, and case studies. Expert Systems with Applications, 83:187–

205, Oct. 2017.

[43] B. Moews, J. M. Herrmann, and G. Ibikunle. Lagged correlation-based deep learning for directional

trend change prediction in financial time series. Expert Systems with Applications, 120:197–206,

Apr. 2019.

[44] N. Kohzadi, M. S. Boyd, B. Kermanshahi, and I. Kaastra. A comparison of artificial neural network

and time series models for forecasting commodity prices. Neurocomputing, 10(2):169–181, Mar.

1996.

[45] G. P. Zhang. Time series forecasting using a hybrid ARIMA and neural network model. Neuro-

computing, 50:159–175, Jan. 2003.

[46] S. P. Chatzis, V. Siakoulis, A. Petropoulos, E. Stavroulakis, and N. Vlachogiannakis. Forecasting

stock market crisis events using deep and statistical machine learning techniques. Expert Systems

with Applications, 112:353–371, Dec. 2018.

[47] C. Krauss, X. A. Do, and N. Huck. Deep neural networks, gradient-boosted trees, random forests:

Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2):689–702,

June 2017.

[48] J. G. D. Gooijer and R. J. Hyndman. 25 years of time series forecasting. International Journal of

Forecasting, 22(3):443–473, 2006.

[49] A. Arévalo, J. Nino, G. Hernandez, and J. Sandoval. High-Frequency Trading Strategy Based on

Deep Neural Networks. In Springer, editor, Lecture Notes in Computer Science, volume 9773,

pages 424–436, 08 2016.

[50] M. Dixon, D. Klabjan, and J. H. Bang. Classification-based financial markets prediction using deep

neural networks. Algorithmic Finance, 6(3-4):67–77, Jan. 2017.

[51] F. Zhou, H.-m. Zhou, Z. Yang, and L. Yang. EMD2FNN: A strategy combining empirical mode

decomposition and factorization machine based neural network for stock market trend prediction.

Expert Systems with Applications, 115:136–151, Jan. 2019.

[52] Y. Kim. Convolutional Neural Networks for Sentence Classification. arXiv:1408.5882, Oct. 2014.

66

[53] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. Muller. Deep learning for time series

classification: a review. Data Mining and Knowledge Discovery, 33(4):917–963, July 2019.

[54] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,

A. Senior, and K. Kavukcuoglu. WaveNet: A Generative Model for Raw Audio. In Arxiv, 2016.

URL https://arxiv.org/abs/1609.03499.

[55] C.-H. Cho, G.-Y. Lee, Y.-L. Tsai, and K.-C. Lan. Toward Stock Price Prediction Using Deep

Learning. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud

Computing Companion, UCC ’19 Companion, pages 133–135, New York, NY, USA, Dec. 2019.

Association for Computing Machinery. ISBN 9781450370448. doi: 10.1145/3368235.3369367.

[56] M. Hiransha, E. A. Gopalakrishnan, V. K. Menon, and K. P. Soman. NSE Stock Market Prediction

Using Deep-Learning Models. Procedia Computer Science, 132:1351–1362, 2018.

[57] E. Hoseinzade and S. Haratizadeh. CNNpred: CNN-based stock market prediction using a diverse

set of variables. Expert Systems with Applications, 129:273–285, Sept. 2019.

[58] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, and K. P. Soman. Stock price

prediction using LSTM, RNN and CNN-sliding window model. In International Conference on

Advances in Computing, Communications and Informatics, Sept. 2017.

[59] L. Di Persio and O. Honchar. Artificial neural networks architectures for stock price prediction:

Comparisons and applications. International Journal of Circuits, Systems and Signal Processing,

10:403–413, 2016.

[60] I. Sutskever, J. Martens, and G. E. Hinton. Generating Text with Recurrent Neural Networks. In

Proceedings of the 28th International Conference on Machine Learning, pages 1017–1024, 2011.

[61] M. R. Vargas, B. S. L. P. De Lima, and A. G. Evsukoff. Deep learning for stock market prediction

from financial news articles. In International Conference on Computational Intelligence and Virtual

Environments for Measurement Systems and Applications, pages 60–65, June 2017.

[62] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai. Deep Direct Reinforcement Learning for Finan-

cial Signal Representation and Trading. IEEE Transactions on Neural Networks and Learning

Systems, 28(3):653–664, Mar. 2017.

[63] Y. Bengio, P. Simard, and P. Frasconi. Learning Long-Term Dependencies with Gradient Descent

is Difficult. IEEE transactions on neural networks, 5(2):157–166, Mar. 1994.

[64] S. Hochreiter and J. Schmidhuber. Long Short Term Memory. Neural Computation, 9(8):1735–

1780, Nov. 1997.

[65] D. Nelson, A. Pereira, and R. de Oliveira. Stock market’s price movement prediction with LSTM

neural networks. International Joint Conference on Neural Networks, May 2017.

67

https://arxiv.org/abs/1609.03499

[66] H. Y. Kim and C. H. Won. Forecasting the volatility of stock price index: A hybrid model integrating

LSTM with multiple GARCH-type models. Expert Systems with Applications, 103:25–37, Aug.

2018.

[67] Y. Baek and H. Y. Kim. ModAugNet: A new forecasting framework for stock market index value

with an overfitting prevention LSTM module and a prediction LSTM module. Expert Systems with

Applications, 113:457–480, Dec. 2018.

[68] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio. Learn-

ing Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation.

arXiv:1406.1078, June 2014.

[69] S. Kim and M. Kang. Financial series prediction using Attention LSTM. arXiv:1902.10877, Feb.

2019.

[70] M. P. Austin, G. Bates, M. A. H. Dempster, V. Leemans, and S. N. Williams. Adaptive systems for

foreign exchange trading. Quantitative Finance, 4(4):37–45, Aug. 2004.

[71] R. T. F. Nazário, J. L. e Silva, V. A. Sobreiro, and H. Kimura. A literature review of technical analysis

on stock markets. The Quarterly Review of Economics and Finance, 66:115–126, Nov. 2017.

[72] F. Bertoluzzo and M. Corazza. Testing different Reinforcement Learning configurations for financial

trading: Introduction and applications. Procedia Economics and Finance, 3:68–77, Jan. 2012.

[73] P. C. Pendharkar and P. Cusatis. Trading financial indices with reinforcement learning agents.

Expert Systems with Applications, 103:1–13, Aug. 2018.

[74] S. Almahdi and S. Y. Yang. An adaptive portfolio trading system: A risk-return portfolio optimization

using recurrent reinforcement learning with expected maximum drawdown. Expert Systems with

Applications, 87:267–279, Nov. 2017.

[75] G. Jeong and H. Y. Kim. Improving financial trading decisions using deep Q-learning: Predicting

the number of shares, action strategies, and transfer learning. Expert Systems with Applications,

117:125–138, Mar. 2019.

[76] J. Si, A. Mukherjee, B. Liu, Q. Li, H. Li, and X. Deng. Exploiting Topic based Twitter Sentiment for

Stock Prediction. In Proceedings of the 51st Annual Meeting of the Association for Computational

Linguistics, volume 2, pages 24–29, Aug. 2013.

[77] J. Si, A. Mukherjee, B. Liu, S. J. Pan, Q. Li, and H. Li. Exploiting Social Relations and Sentiment

for Stock Prediction. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1139–1145, Oct. 2014.

[78] B. Dickinson and W. Hu. Sentiment Analysis of Investor Opinions on Twitter. Social Networking,

4(3):62–71, July 2015.

68

[79] A. Mittal and A. Goel. Stock Prediction Using Twitter Sentiment Analysis. Standford University,

CS229, 2012.

[80] T. Fischer and C. Krauss. Deep learning with long short-term memory networks for financial

market predictions. European Journal of Operational Research, 270(2):654–669, Oct. 2018.

[81] T. K. Lee, J. H. Cho, D. S. Kwon, and S. Y. Sohn. Global stock market investment strategies

based on financial network indicators using machine learning techniques. Expert Systems with

Applications, 117:228–242, Mar. 2019.

[82] E. Guresen, G. Kayakutlu, and T. U. Daim. Using artificial neural network models in stock market

index prediction. Expert Systems with Applications, 38(8):10389–10397, Aug. 2011.

[83] H. Wang, S. Lu, and J. Zhao. Aggregating multiple types of complex data in stock market predic-

tion: A model-independent framework. Knowledge-Based Systems, 164:193–204, Jan. 2019.

[84] T. H. Nguyen and K. Shirai. Topic Modeling based Sentiment Analysis on Social Media for Stock

Market Prediction. In Proceedings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Language Processing, volume 1,

pages 1354–1364, July 2015.

[85] L. S. Malagrino, N. T. Roman, and A. M. Monteiro. Forecasting stock market index daily direction:

A Bayesian Network approach. Expert Systems with Applications, 105:11–22, Sept. 2018.

[86] A. A. Nasseri, A. Tucker, and S. de Cesare. Quantifying StockTwits semantic terms’ trading be-

havior in financial markets: An effective application of decision tree algorithms. Expert Systems

with Applications, 42(23):9192–9210, Dec. 2015.

[87] S. Deng, T. Mitsubuchi, K. Shioda, T. Shimada, and A. Sakurai. Combining Technical Analysis with

Sentiment Analysis for Stock Price Prediction. In Ninth International Conference on Dependable,

Autonomic and Secure Computing, pages 800–807, Dec. 2011.

[88] X. Li, H. Xie, L. Chen, J. Wang, and X. Deng. News impact on stock price return via sentiment

analysis. Knowledge-Based Systems, 69:14–23, Oct. 2014.

[89] J. Li, H. Bu, and J. Wu. Sentiment-aware stock market prediction: A deep learning method. In

International Conference on Service Systems and Service Management, June 2017.

[90] R. Akita, A. Yoshihara, T. Matsubara, and K. Uehara. Deep learning for stock prediction using

numerical and textual information. 2016 IEEE/ACIS 15th International Conference on Computer

and Information Science (ICIS), 1:1–6, June 2016.

[91] J. Zhang, S. Cui, Y. Xu, Q. Li, and T. Li. A novel data-driven stock price trend prediction system.

Expert Systems with Applications, 97:60–69, May 2017.

69

[92] X. Ding, Y. Zhang, T. Liu, and J. Duan. Deep Learning for Event-Driven Stock Prediction. Pro-

ceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), pages

2327–2333, July 2015.

[93] J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock market. Journal of Computational

Science, 2(1):1–8, Mar. 2011.

[94] J. Prosky, X. Song, A. Tan, and M. Zhao. Sentiment Predictability for Stocks. arXiv:1712.05785,

Dec. 2017.

[95] M.-Y. Day and C.-C. Lee. Deep learning for financial sentiment analysis on finance news providers.

In International Conference on Advances in Social Networks Analysis and Mining (ASONAM),

pages 1127–1134, Aug. 2016.

[96] M. Mäntylä, D. Graziotin, and M. Kuutila. The evolution of sentiment analysis - A review of research

topics, venues, and top cited papers. Computer Science Review, 27:16–32, Feb. 2018.

[97] A. Devitt and K. Ahmad. Sentiment Polarity Identification in Financial News: A Cohesion-based

Approach. In Proceedings of the 45th Annual Meeting of the Association of Computational Lin-

guistics, pages 984–991, June 2007.

[98] S. Feuerriegel and H. Prendinger. News-based trading strategies. Decision Support Systems, 90:

65–74, Oct. 2016.

[99] L. M. Rojas-Barahona. Deep learning for sentiment analysis. Language and Linguistics Compass,

10(12):701–719, Dec. 2016.

[100] M. Melvin and X. Yin. Public Information Arrival, Exchange Rate Volatility, and Quote Frequency.

The Economic Journal, 110(465):644–661, July 2000.

[101] V. Sehgal and C. Song. SOPS: Stock Prediction Using Web Sentiment. In Proceedings of the 7th

IEEE International Conference on Data Mining, pages 21–26, Oct. 2007.

[102] J. R. Nofsinger. The impact of public information on investors. Journal of Banking & Finance, 25

(7):1339–1366, July 2001.

[103] L. Peng, G. Cui, M. Zhuang, and C. Li. What do seller manipulations of online product reviews

mean to consumers? HKIBS Working Paper Series 070-1314, Jan. 2014.

[104] W. Medhat, A. Hassan, and H. Korashy. Sentiment analysis algorithms and applications: A survey.

Ain Shams Engineering Journal, 5(4):1093–1113, Dec. 2014.

[105] E. D. Brown. Will Twitter Make You a Better Investor? A Look at Sentiment, User Reputation and

Their Effect on the Stock Market. Southern Association for Information Systems, pages 36–42,

Mar. 2012.

[106] E. Cambria, B. Schuller, Y. Xia, and C. Havasi. New Avenues in Opinion Mining and Sentiment

Analysis. IEEE Intelligent Systems, 28(2):15–21, Mar. 2013.

70

[107] N. O’Hare, M. Davy, A. Bermingham, P. Ferguson, P. Sheridan, C. Gurrin, and A. F. Smeaton.

Topic-Dependent Sentiment Analysis of Financial Blogs. In Proceedings of the 1st international

CIKM workshop on Topic-sentiment analysis for mass opinion, pages 9–16, Nov. 2009.

[108] K. Ravi and V. Ravi. A survey on opinion mining and sentiment analysis: Tasks, approaches and

applications. Knowledge-Based Systems, 89:14–46, Nov. 2015.

[109] R. Johnson and T. Zhang. Effective Use of Word Order for Text Categorization with Convolutional

Neural Networks. arXiv:1412.1058, Dec. 2014.

[110] T. Nasukawa and J. Yi. Sentiment analysis: capturing favorability using natural language process-

ing. In Proceedings of the 2nd international conference on Knowledge capture, pages 70–77, Oct.

2003.

[111] D. Davidov, O. Tsur, and A. Rappoport. Semi-Supervised Recognition of Sarcastic Sentences

in Twitter and Amazon. In Proceedings of the Fourteenth Conference on Computational Natural

Language Learning, pages 107–116, July 2010.

[112] R. Deepak and E. Hovy. Learning surface text patterns for a Question Answering system. In

Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL),

pages 41–47, July 2002.

[113] D. G. Maynard and M. A. Greenwood. Who cares about sarcastic tweets? Investigating the impact

of sarcasm on sentiment analysis. In Language Resources and Evaluation Conference, May 2014.

[114] R. Narayanan, B. Liu, and A. Choudhary. Sentiment analysis of conditional sentences. In Proceed-

ings of the 2009 Conference on Empirical Methods in Natural Language Processing, volume 1,

pages 180–189, Aug. 2009.

[115] E. Kontopoulos, C. Berberidis, T. Dergiades, and N. Bassiliades. Ontology-based sentiment anal-

ysis of twitter posts. Expert Systems with Applications, 40(10):4065–4074, Aug. 2013.

[116] X. Ding, B. Liu, and L. Zhang. Entity discovery and assignment for opinion mining applications.

In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 1125–1134, July 2009.

[117] A. Moreno-Ortiz and J. Fernández-Cruz. Identifying Polarity in Financial Texts for Sentiment Anal-

ysis: A Corpus-based Approach. Procedia-Social and Behavioral Sciences, 198:330–338, July

2015.

[118] J. Ruppenhofer, M. Ellsworth, M. Schwarzer-Petruck, C. R. Johnson, and J. Scheffczyk. FrameNet

II: Extended theory and practice. n.p., Sept. 2010.

[119] A. Esuli and F. Sebastiani. SentiWordNet: A Publicly Available Lexical Resource for Opinion

Mining. In International Conference on Language Resources and Evaluation, volume 6, pages

417–422, May 2006.

71

[120] E. C. Dragut, C. Yu, P. Sistla, and W. Meng. Construction of a sentimental word dictionary. In Pro-

ceedings of the 19th ACM International Conference on Information and Knowledge Management,

pages 1761–1764, Oct. 2010.

[121] W. Peng and D. H. Park. Generate Adjective Sentiment Dictionary for Social Media Sentiment

Analysis Using Constrained Nonnegative Matrix Factorization. In Fifth International AAAI Confer-

ence on Weblogs and Social Media, July 2011.

[122] V. Hatzivassiloglou and K. R. McKeown. Predicting the Semantic Orientation of Adjectives. In

Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and

8th Conference of the European Chapter of the Association for Computational Linguistics, pages

174–181, July 1997.

[123] S.-M. Kim and E. Hovy. Determining the Sentiment of Opinions. In Proceedings of the 20th In-

ternational Conference on Computational Linguistics, COLING ’04. Association for Computational

Linguistics, Aug. 2004.

[124] B. Li, K. Zhou, W. Gao, X. Han, and L. Zhou. Attention-based LSTM-CNNs for uncertainty identi-

fication on Chinese social media texts. In The 2017 International Conference on Security, Pattern

Analysis, and Cybernetics (SPAC), pages 609–614, Dec. 2017.

[125] R. P. Schumaker and H. Chen. A quantitative stock prediction system based on financial news.

Information Processing and Management, 45(5):571–583, May 2009.

[126] Y. Wang, M. Huang, and L. Zhao. Attention-based LSTM for Aspect-level Sentiment Classification.

In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,

pages 606–615, Nov. 2016.

[127] M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, and S. Manandhar.

SemEval-2014 Task 4: Aspect Based Sentiment Analysis. In Proceedings of the 8th International

Workshop on Semantic Evaluation (SemEvalval 2014), pages 27–35, Aug. 2014.

[128] S. Poria, E. Cambria, and A. Gelbukh. Aspect extraction for opinion mining with a deep convolu-

tional neural network. Knowledge-Based Systems, 108:42–49, Sept. 2016.

[129] C. Dos Santos and M. Gatti. Deep Convolutional Neural Networks for Sentiment Analysis of Short

Texts. In Proceedings of COLING 2014, the 25th International Conference on Computational

Linguistics: Technical Papers, pages 69–78, Aug. 2014.

[130] X. Glorot, A. Bordes, and Y. Bengio. Domain Adaptation for Large-Scale Sentiment Classification:

A Deep Learning Approach. In Proceedings of the 28th International Conference on International

Conference on Machine Learning, pages 513–520, 2011.

[131] X. Zhou, X. Wan, and J. Xiao. Attention-based LSTM Network for Cross-Lingual Sentiment Clas-

sification. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language

Processing, pages 247–256, Nov. 2016.

72

[132] K. Shuang, Z. Zhang, H. Guo, and J. Loo. A sentiment information Collector–Extractor architecture

based neural network for sentiment analysis. Information Sciences, 467:549–558, Oct. 2018.

[133] Y. Ma, H. Peng, and E. Cambria. Targeted Aspect-Based Sentiment Analysis via Embedding

Commonsense Knowledge into an Attentive LSTM. In Thirty-Second AAAI Conference on Artificial

Intelligence, pages 5876–5883, 2018.

[134] M. Pontiki, D. Galanis, H. Papageorgiou, S. Manandhar, and I. Androutsopoulos. SemEval-2015

Task 12: Aspect Based Sentiment Analysis. In Proceedings of the 9th International Workshop on

Semantic Evaluation (SemEval 2015), pages 486–495, June 2015.

[135] M. Saeidi, G. Bouchard, M. Liakata, and S. Riedel. SentiHood: Targeted Aspect Based Sentiment

Analysis Dataset for Urban Neighbourhoods. In Proceedings of COLING 2016, the 26th Interna-

tional Conference on Computational Linguistics: Technical Papers, pages 1546–1556, Dec. 2016.

[136] A. Severyn and A. Moschitti. Twitter Sentiment Analysis with Deep Convolutional Neural Networks.

In Proceedings of the 38th International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 959–962, Aug. 2015.

[137] S. Yoo, J. Song, and O. Jeong. Social media contents based sentiment analysis and prediction

system. Expert Systems with Applications, 105:102–111, Sept. 2018.

[138] C. Baziotis, N. Pelekis, and C. Doulkeridis. DataStories at SemEval-2017 Task 4: Deep LSTM

with Attention for Message-level and Topic-based Sentiment Analysis. In Proceedings of the 11th

International Workshop on Semantic Evaluation (SemEval-2017), pages 747–754, 2017.

[139] S. Rosenthal, N. Farra, and P. Nakov. SemEval-2017 Task 4: Sentiment Analysis in Twitter. In

Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages

502–518, Aug. 2017.

[140] V. Loia and S. Senatore. A fuzzy-oriented sentic analysis to capture the human emotion in Web-

based content. Knowledge-Based Systems, 58:75–85, Mar. 2014.

[141] L. Barbaglia, S. Consoli, and S. Manzan. Monitoring the business cycle with fine-grained, aspect-

based sentiment extraction from news. In Mining Data for Financial Applications, volume 11985

of LNAI, pages 101–106. Springer, 2020.

[142] O. Irsoy and C. Cardie. Opinion Mining with Deep Recurrent Neural Networks. In Proceedings

of the 2014 Conference on Empirical Methods in Natural Language Processing, pages 720–728,

Oct. 2014.

[143] P. Liu, S. Joty, and H. Meng. Fine-grained Opinion Mining with Recurrent Neural Networks and

Word Embeddings. In Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing, pages 1433–1443, Sept. 2015.

[144] E. Gilbert and K. G. Karahalios. Widespread worry and the stock market. In Proceedings of the

4th International AAAI Conference on Weblogs and Social Media, pages 58–65, May 2010.

73

[145] V. Niederhoffer. The Analysis of World Events and Stock Prices. The Journal of Business, 44(2):

193–219, Apr. 1971.

[146] B. Wuthrich, V. Cho, S. Leung, D. Permunetilleke, K. Sankaran, and J. Zhang. Daily stock market

forecast from textual web data. In International Conference on Systems, Man, and Cybernetics,

volume 3, pages 2720–2725, Oct. 1998.

[147] W. Antweiler and M. Z. Frank. Do Us Stock Markets Typically Overreact to Corporate News

Stories? SSRN Electronic Journal, 2006.

[148] R. P. Schumaker, Y. Zhang, C.-N. Huang, and H. Chen. Evaluating sentiment in financial news

articles. Decision Support Systems, 53(3):458–464, June 2012.

[149] Y. Gurin, T. Szymanski, and M. T. Keane. Discovering News Events That Move Markets. In

Intelligent Systems Conference, Sept. 2017.

[150] K. R. Ahern and D. Sosyura. Who Writes the News? Corporate Press Releases during Merger

Negotiations. The Journal of Finance, 69(1):241–291, Feb. 2014.

[151] C. Vega. Stock price reaction to public and private information. Journal of Financial Economics,

82(1):103–133, Oct. 2006.

[152] Y. Hu, K. Liu, X. Zhang, L. Su, E. W. T. Ngai, and M. Liu. Application of evolutionary computation

for rule discovery in stock algorithmic trading: A literature review. Applied Soft Computing, 36:

534–551, Nov. 2015.

[153] P. C. Tetlock. Giving Content to Investor Sentiment: The Role of Media in the Stock Market. The

Journal of finance, 62(3):1139–1168, June 2007.

[154] Y. Yu, W. Duan, and R. Cao. The impact of social and conventional media on firm equity value: A

sentiment analysis approach. Decision Support Systems, 55(4):919–926, Nov. 2013.

[155] J. Bukovina. Social media big data and capital markets—An overview. Journal of Behavioral and

Experimental Finance, 11:18–26, Sept. 2016.

[156] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. Recursive Deep

Models for Semantic Compositionality Over a Sentiment Treebank. In Proceedings of the 2013

Conference on Empirical Methods in Natural Language Processing, pages 1631–1642, Oct. 2013.

[157] Z. Da, J. Engelberg, and P. Gao. In Search of Attention. The Journal of Finance, 66(5):1461–1499,

Sept. 2011.

[158] B. Weng, M. A. Ahmed, and F. M. Megahed. Stock market one-day ahead movement prediction

using disparate data sources. Expert Systems with Applications: An International Journal, 79:

153–163, Aug. 2017.

[159] R. Xiong, E. P. Nichols, and Y. Shen. Deep Learning Stock Volatility with Google Domestic Trends.

arXiv:1512.04916, Dec. 2015.

74

[160] M. S. Drake, D. T. RoulStone, and J. R. Thornock. Investor Information Demand: Evidence from

Google Searches Around Earnings Announcements. Journal of Accounting Research, 50(4):

1001–1040, Sept. 2012.

[161] M. Makrehchi, S. Shah, and W. Liao. Stock Prediction Using Event-Based Sentiment Analysis.

In Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence

(WI) and Intelligent Agent Technologies (IAT), volume 01, pages 337–342, Nov. 2013.

[162] K. Cortis, A. Freitas, T. Daudert, M. Huerlimann, M. Zarrouk, S. Handschuh, and B. Davis.

SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs and News. In

Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages

519–535, 2017.

[163] T. O. Sprenger, A. Tumasjan, P. G. Sandner, and I. M. Welpe. Tweets and Trades: the Information

Content of Stock Microblogs. European Financial Management, 20(5):926–957, Nov. 2014.

[164] T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing Contextual Polarity in Phrase-level Senti-

ment Analysis. In Proceedings of the Conference on Human Language Technology and Empirical

Methods in Natural Language Processing, pages 347–354, Oct. 2005.

[165] C. Oh and O. Sheng. Investigating Predictive Power of Stock Micro Blog Sentiment in Forecasting

Future Stock Price Directional Movement. In International Conference on Information Systems,

volume 4, pages 2860–2877, Dec. 2011.

[166] B. Li, K. C. C. Chan, C. Ou, and S. Ruifeng. Discovering public sentiment in social media for

predicting stock movement of publicly listed companies. Information Systems, 69:81–92, Sept.

2017.

[167] O. Oh, M. Agrawal, and H. R. Rao. Community Intelligence and Social Media Services: A Rumor

Theoretic Analysis of Tweets During Social Crises. MIS Quarterly, 37(2):407–426, June 2013.

[168] N. Oliveira, P. Cortez, and N. Areal. On the Predictability of Stock Market Behavior Using Stock-

Twits Sentiment and Posting Volume. In Progress in Artificial Intelligence, pages 355–365, 2013.

[169] E. J. Ruiz, V. Hristidis, C. Castillo, A. Gionis, and A. Jaimes. Correlating Financial Time Series

with Micro-blogging Activity. In Proceedings of the Fifth ACM International Conference on Web

Search and Data Mining, pages 513–522, Feb. 2012.

[170] A. Bermingham, M. Conway, L. McInerney, N. O’Hare, and A. F. Smeaton. Combining Social

Network Analysis and Sentiment Analysis to Explore the Potential for Online Radicalisation. In

2009 International Conference on Advances in Social Network Analysis and Mining, pages 231–

236, July 2009.

[171] W. Yang, D. Lin, and Z. Yi. Impacts of the mass media effect on investor sentiment. Finance

Research Letters, 22:1–4, Aug. 2017.

75

[172] S. Agarwal, S. Kumar, and U. Goel. Stock market response to information diffusion through inter-

net sources: A literature review. International Journal of Information Management, 45:118–131,

Apr. 2019.

[173] T. Hollis. Deep Learning Algorithms Applied to Blockchain-Based Financial Time Series. Technical

report, University of Manchester, 2018.

[174] S. Kar, S. Maharjan, and T. Solorio. RiTUAL-UH at SemEval-2017 Task 5: Sentiment Analysis

on Financial Data Using Neural Networks. In Proceedings of the 11th International Workshop on

Semantic Evaluation (SemEval-2017), pages 877–882, Aug. 2017.

[175] T. Cabanski, J. Romberg, and S. Conrad. HHU at SemEval-2017 Task 5: Fine-Grained Senti-

ment Analysis on Financial Data using Machine Learning Methods. In Proceedings of the 11th

International Workshop on Semantic Evaluation (SemEval-2017), pages 832–836, Aug. 2017.

[176] G. Zhiqiang, W. Huaiqing, and L. Quan. Financial time series forecasting using LPP and SVM

optimized by PSO. Soft Computing, 17(5):805–818, May 2013.

[177] D. Ghosal, S. Bhatnagar, M. S. Akhtar, A. Ekbal, and P. Bhattacharyya. IITP at SemEval-2017 Task

5: An Ensemble of Deep Learning and Feature Based Models for Financial Sentiment Analysis. In

Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages

899–903, Aug. 2017.

[178] Y. Mansar, L. Gatti, S. Ferradans, M. Guerini, and J. Staiano. Fortia-FBK at SemEval-2017

Task 5: Bullish or Bearish? Inferring Sentiment towards Brands from Financial News Headlines.

arXiv:1704.00939, Apr. 2017.

[179] L. Pivovarova, L. Escoter, A. Klami, and R. Yangarber. HCS at SemEval-2017 Task 5: Sentiment

Detection in Business News Using Convolutional Neural Networks. In Proceedings of the 11th

International Workshop on Semantic Evaluation (SemEval-2017), pages 842–846, Aug. 2017.

[180] A. Moore and P. Rayson. Lancaster A at SemEval-2017 Task 5: Evaluation metrics matter: pre-

dicting sentiment from financial news headlines. arXiv:1705.00571, May 2017.

[181] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, May 2015.

[182] R. Sathya and A. Abraham. Comparison of Supervised and Unsupervised Learning Algorithms

for Pattern Classification. International Journal of Advanced Research in Artificial Intelligence, 2

(2):34–38, 02 2013.

[183] M. Längkvist, L. Karlsson, and A. Loutfi. A review of unsupervised feature learning and deep

learning for time-series modeling. Pattern Recognition Letters, 42:11–24, June 2014.

[184] R. Agrawal, T. Imieliński, and A. Swami. Mining Association Rules between Sets of Items in Large

Databases. Proceedings of the 1993 ACM SIGMOD international conference on Management of

data, 22(2):207–216, June 1993.

76

[185] P. Baldi. Autoencoders, Unsupervised Learning, and Deep Architectures. Proceedings of ICML

Workshop on Unsupervised and Transfer Learning, 27:37–50, July 2011.

[186] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Computing Surveys

(CSUR), 41(3), July 2009.

[187] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review. ACM computing surveys

(CSUR), 31(3):264–323, Sept. 1999.

[188] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement Learning: A Survey. Journal of

Artificial Intelligence Research, 4:237–285, May 1996.

[189] Y. Bengio, A. Courville, and P. Vincent. Representation Learning: A Review and New Perspectives.

IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, Mar. 2013.

[190] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Convolutional

Neural Networks. In Advances in Neural Information Processing Systems, pages 1097–1105,

2012.

[191] R. Collobert and J. Weston. A Unified Architecture for Natural Language Processing: Deep Neural

Networks with Multitask Learning. Proceedings of the 25th International Conference on Machine

Learning, pages 160–167, July 2008.

[192] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The

Bulletin of Mathematical Biophysics, 5(4):115–133, Dec 1943.

[193] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, Oct 2001.

[194] P. Cunningham and S. Delany. k-Nearest Neighbour Classifiers. Multiple Classifier Systems, 34

(8):1–17, Mar. 2007.

[195] S. Fine, Y. Singer, and N. Tishby. The Hierarchical Hidden Markov Model: Analysis and Applica-

tions. Machine Learning, 32(1):41–62, Jul 1998.

[196] T. Joachims. Text categorization with Support Vector Machines: Learning with many relevant

features. European Conference on Machine Learning (ECML), 1398:137–142, 1998.

[197] A. McCallum and K. Nigam. A Comparison of Event Models for Naive Bayes Text Classification.

In Learning for Text Categorization: Papers from the 1998 AAAI Workshop, volume 752, pages

41–48, July 1998.

[198] J. R. Quinlan. Induction of Decision Trees. Machine Learning, 1(1):81–106, Mar 1986.

[199] I. A. Basheer and M. Hajmeer. Artificial neural networks: fundamentals, computing, design, and

application. Journal of Microbiological Methods, 43(1):3–31, Dec. 2000.

[200] F. Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage and Organization in

The Brain. Psychological Review, 65(6):386–408, 1958.

77

[201] D. Svozil, V. Kvasnicka, and J. Pospichal. Introduction to multi-layer feed-forward neural networks.

Chemometrics and Intelligent Laboratory Systems, 39(1):43–62, Nov. 1997.

[202] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A Convolutional Neural Network for Modelling

Sentences. arXiv:1404.2188, Apr. 2014.

[203] G. Tolias, R. Sicre, and H. Jégou. Particular object retrieval with integral max-pooling of CNN

activations. International Conference on Learning Representations, 2015.

[204] M. Boden. A guide to recurrent neural networks and backpropagation. the Dallas project, 2002.

[205] P. J. Werbos. Backpropagation Through Time: What It Does and How to Do It. Proceedings of the

IEEE, 78(10):1550–1560, 1990.

[206] S. Hochreiter. The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Prob-

lem Solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6

(2):107–116, Apr. 1998.

[207] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. Pro-

ceedings of the 30th International Conference on International Conference on Machine Learning,

28:1310–1318, June 2013.

[208] R. Pascanu, T. Mikolov, and Y. Bengio. Understanding the exploding gradient problem.

arXiv:1211.5063, Nov. 2012.

[209] J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, Mar. 1990.

[210] M. I. Jordan. Serial Order: A Parallel Distributed Processing Approach. In Advances in Psychol-

ogy, volume 121, pages 471–495. Elsevier, Jan. 1997.

[211] A. Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks. https://www.

bibsonomy.org/bibtex/236c6041ff8f00e4d94b521b3c5ebf032/andreashdez, May 2015. URL

http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

[212] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber. LSTM: A Search

Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10):2222–

2232, July 2017.

[213] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning with Neural Networks. In

Advances in Neural Information Processing Systems, pages 3104–3112, 2014.

[214] O. Vinyals and Q. V. Le. A Neural Conversational Model. arXiv:1506.05869, June 2015.

[215] D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly Learning to Align and

Translate. arXiv:1409.0473, 2014.

[216] O. Firat, K. Cho, and Y. Bengio. Multi-Way, Multilingual Neural Machine Translation with a Shared

Attention Mechanism. arXiv:1601.01073, 2016.

78

https://www.bibsonomy.org/bibtex/236c6041ff8f00e4d94b521b3c5ebf032/andreashdez
https://www.bibsonomy.org/bibtex/236c6041ff8f00e4d94b521b3c5ebf032/andreashdez
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

[217] M.-T. Luong, H. Pham, and C. D. Manning. Effective Approaches to Attention-based Neural Ma-

chine Translation. arXiv:1508.04025, Aug. 2015.

[218] R. Nallapati, B. Zhou, C. dos Santos, Ç. GuÌ‡lçehre, and B. Xiang. Abstractive Text Summa-

rization using Sequence-to-sequence RNNs and Beyond. In The 20th SIGNLL Conference on

Computational Natural Language Learning (CoNLL), pages 280–290, Aug. 2016.

[219] A. M. Rush, S. Chopra, and J. Weston. A Neural Attention Model for Abstractive Sentence Sum-

marization. arXiv:1509.00685, Sept. 2015.

[220] S. Hochreiter. Recurrent Neural Net Learning and Vanishing Gradient. International Journal Of

Uncertainity, Fuzziness and Knowledge-Based Systems, 6(2):107–116, 1998.

[221] A. Graves, G. Wayne, and I. Danihelka. Neural Turing Machines. arXiv:1410.5401, Oct. 2014.

[222] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-

sukhin. Attention is All You Need. In Proceedings of the 31st International Conference on Neural

Information Processing Systems, pages 6000–6010, Dec. 2017.

[223] Z. Lin, M. Feng, C. N. dos Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio. A Structured

Self-attentive Sentence Embedding. International Conference on Learning Representations, Mar.

2017.

[224] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. arXiv:1607.06450, 2016.

[225] G. Letarte, F. Paradis, P. Giguère, and F. Laviolette. Importance of Self-Attention for Sentiment

Analysis. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting

Neural Networks for NLP, pages 267–275, 2018.

[226] S. van der Walt, S. C. Colbert, and G. Varoquaux. The NumPy Array: A Structure for Efficient

Numerical Computation. Computing in Science and Engineering, 13(2):22–30, Mar. 2011.

[227] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,

and E. Duchesnay. Scikit-learn: Machine Learning in Python. The Journal of Machine Learning

Research, 12:2825–2830, Nov. 2011.

[228] W. Mckinney. pandas: a Foundational Python Library for Data Analysis and Statistics. Python

High Performance Science Computer, 01 2011.

[229] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):

1929–1958, 2014.

79

80

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Predictability of the Stock Market
	Media Influence on the Stock Market
	Main Goals of this Work
	Document Structure

	Components of Stock Prediction
	Time Series Prediction
	Sentiment Analysis
	Sentiment Analysis for Time Series Prediction
	Summary

	Deep Learning for Stock Prediction
	Fundamentals of Deep Learning
	Neural Network Models
	Attention Mechanisms
	Summary

	Case Study and Approach
	Data Source
	Data Description
	Data Preprocessing
	Model Input
	Model Architecture
	Evaluation Metrics

	Experimental Results
	Feed-Forward Neural Network
	Convolutional Neural Network
	Recurrent Neural Network
	Long Short-Term Memory
	Bidirectional LSTM
	LSTM with Attention
	Bidirectional LSTM with Attention
	Transformer
	Comparison and Discussion

	Conclusion
	Main Contributions
	Future Work

	Bibliography

