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Resumo

Atualmente, uma ampla coleção de satélites está a ser usada para observar o planeta Terra,

monitorizando os seus sistemas naturais e estruturas humanas ao medir um conjunto de variáveis

em diferentes intervalos de tempo consistentes e resoluções espaciais. Dado este grande influxo

de dados, a necessidade de métodos para o processamento automático dos mesmos tem vindo a

aumentar, originando um aumento de popularidade dos métodos de aprendizagem automática.

Este tipo de dados contêm uma mistura de dependências espaciais e temporais, indicando como

diferentes localizações exibem padrões relacionados e como as variáveis observadas evoluem ao

longo do tempo. Além disso, devido à natureza estocástica das variáveis subjacentes, modelos

de previsão devem ser capazes de capturar padrões complexos e não lineares. Esta dissertação

foca-se na previsão de dados espaço-temporais, apresentando uma arquitetura derivada de um

modelo anterior, estendendo-o com um componente recorrente juntamente com a ideia de de-

codificação feed-backward, permitindo a reutilização dos pesos das camadas convolucionais no

codificador, ao gerar as previsões a partir de representações intermédias. Além disso, um con-

junto de técnicas diferentes são testadas juntamente com a arquitetura proposta, nomeadamente

(a) novas operações de normalização-ativação, (b) um método de aumento de dados para re-

duzir o overfitting, e (c) o uso de inputs e pesos locais aprendidos em paralelo, permitindo que

diferentes localizações sejam guiadas pelas suas próprias caracteŕısticas locais intŕınsecas. Os

modelos foram avaliados através de um conjunto de experiências, usando dois conjuntos de da-

dos provenientes de estudos anteriores, em duas tarefas distintas: previsão de medições futuras

e reconstrução de dados em falta.





Abstract

Nowadays, a widespread collection of satellites are being used to monitor the Earth’s natural

systems and man-made structures, measuring a variety of variables at consistent time intervals

and spatial resolutions. Given this massive influx of remote sensing data, the necessity of

adequate methods for automatic satellite data processing has risen, leading to an increase in

popularity for machine learning methods in a variety of practical applications. This type of data

often contain a mixture of spatial and temporal dependencies, indicating how different spatial

locations exhibit related patterns and how the observed variables evolve over time. Furthermore,

due to the stochastic nature of the underlying variables, prediction models must be capable of

capturing complex and non-linear patterns. This dissertation focuses on spatio-temporal data

forecasting, presenting a novel architecture derived from a previous model, extending it with a

recurrent component backbone together with the idea of feed-backward decoding, specifically by

re-using the weights of the convolution layers in the encoder, when generating the predictions

from intermediate representations. Furthermore, a variety of different techniques are jointly used

with the aforementioned architecture, namely (a) novel normalization-activation operations, (b)

a data augmentation method to reduce overfitting and improve intermediate representations,

and (c) the use of learnable local inputs and weights to allow different locations to be guided

by their own intrinsic local features. The models were evaluated through several experiments

using two datasets from previous studies, on two different tasks pertaining to the forecasting of

future measurements and the reconstruction of missing time-steps.
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1Introduction
A widespread collection of satellites are nowadays being used to observe the Earth, monitor-

ing natural systems and man-made structures by measuring a variety of variables at consistent

time intervals and spatial resolutions. Given this influx of remote sensing data, machine learn-

ing approaches are becoming commonplace for various practical applications. This dissertation

focuses on forecasting tasks, consisting on the prediction of particular time-steps in a series of

gridded remote sensing data (e.g., forecasting future values conditioned by past observations, or

reconstructing missing time-steps). Common examples of applications for these methods include

forecasting meteorological variables, such as precipitation, air temperature, wind speed, among

many others, or reconstructing missing data, e.g. due to cloud coverage, for environmental

indices such as NDVI. This type of data often contain a mixture of spatial and temporal depen-

dencies, indicating how different spatial locations exhibit related patterns (in particular, spatial

neighbours tend to be related) and how the observed variables evolve over time. The major

contribution of this work is the proposal of a novel deep learning architecture for forecasting

spatio-temporal data, exploiting a variety of recent ideas from the literature. The architec-

ture and extensions were evaluated through experiments on datasets describing meteorological

variables alongside state-of-the-art and well known deep learning baselines.

1.1 Motivation

Due to the stochastic nature of the underlying captured variables, prediction models must

be capable of capturing complex and non-linear patterns, while simultaneously leveraging the

aforementioned spatial and temporal dependencies in order to obtain accurate results. For these

reasons, neural network models for predicting gridded values of remote sensing observations

are currently gaining increased popularity. These include approaches such as the widely pop-

ular ConvLSTM (Shi et al., 2015), capable of capturing both spatial and temporal contexts

by combining ideas from Recurrent Neural Network (RNN) architectures with the convolution

operation typically seen in Convolutional Neural Networks (CNNs) for image processing. Given

these properties, ConvLSTM units have become a basic building block for a variety of neural



architectures proposed in recent studies dealing with forecasting from gridded spatio-temporal

data (Wang et al., 2017; Jang et al., 2018; Zhao et al., 2018).

More recently, Nascimento et al. (Nascimento et al., 2019) studied effective and compu-

tationally efficient alternatives to capture both spatial and temporal patterns using exclusively

convolutional structures, proposing an encoder-decoder model named Spatio-Temporal Convo-

lutional Sequence to Sequence Network (STConvS2S), comprised of sequential convolutional

blocks with factorized filters. Each convolutional 3D filter is factorized into separate 2D and 1D

filters, with the encoder using the former to model the spatial context, and the decoder using

the latter to model the temporal context.

1.2 Thesis Proposal

This dissertation explores alternative solutions for the simultaneous capture of spatial and

temporal dependencies in the data in order to improve results. More specifically, the central

architecture was derived as an extension of the STConvS2S architecture (Nascimento et al.,

2019), incorporating instead a recurrent component to process temporal dependencies, which

is a natural fit for sequential data, together with a technique that allows weights to be shared

between the encoder and decoder. Several extensions are afterwards proposed and evaluated,

leveraging recent techniques in the literature, in order to better capture spatial and temporal

dependencies and further improve achieved results.

1.3 Contributions

In brief, the main contributions of this thesis are as follows:

• Replace the decoding component from STConvS2S, based on dilated temporal convolutions

in order to capture temporal dependencies, with a recurrent component that leverages

feed-backward decoding (Wang et al., 2019), an idea recently proposed in the context

of semantic segmentation models for images, in which weights from the 2D convolutions

used in encoder layers of the model are used in the reverse direction to form the decoder,

reducing the total number of model parameters required for processing.

• Complement the network inputs with learnable local inputs and weights, as originally sug-

gested by Uselis et al. (2020), allowing the model to explore local characteristics together

with global (i.e., translation invariant) ones.
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• Extend the GridMask data augmentation method, originally proposed by Chen et al.

(2020), a computationally efficient method for structured information removal to avoid

over-fitting and increase model robustness, for pixel-wise forecasting tasks that involve

sequences of observations.

• Evaluation and extension of several recent universal techniques in the literature applied

to pixel-wise forecasting tasks, such as replacing the traditional normalization-activation

layers of STConvS2S with an adapted version of the batch-based evolving normalization-

activation layer from Liu et al. (2020) and replacing the RMSProp training optimizer with

the more recent AdaMod (Ding et al., 2019) optimizer.

Part of the work reported on this dissertation was also presented on an short paper entitled

Spatio-Temporal Forecasting With Gridded Remote Sensing Data Using Feed-Backward Decod-

ing, that was submitted to the ACM SigSpatial 2020 conference. The paper reports on a variety

of spatio-temporal forecasting experiments within two distinct tasks, namely the prediction of

future time-steps and the reconstruction of an input sequence with a time-step missing. The

two datasets used in this paper, also used in the study by Nascimento et al. (2019), describe me-

teorological variables, namely land and ocean air temperature and precipitation measurements,

in the South American region. The deep learning architectures presented consisted on a novel

hybrid CNN and RNN model leveraging the feed-backward decoding technique, together with

the novel evolving normalization-activation layers. These extensions were evaluated alongside a

ConvLSTM (Shi et al., 2015) and STConvS2S (Nascimento et al., 2019) baselines.

1.4 Structure of the Document

The remainder of this document is organized as follows. Chapter 2 introduces fundamental

concepts and seminal deep learning techniques, as well as important related work regarding the

application of deep learning for spatio-temporal data forecasting. Then, Chapter 3 provides

an overview of the considered deep learning approach, detailing the different techniques used.

Chapter 4 presents the evaluation methodology, detailing the datasets used and the obtained

results. Finally, Chapter 5 concludes this document by summarizing the main findings of this

work, and highlighting possible directions for future research.

3
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2Fundamental Concepts

and Related Work

This chapter presents fundamental concepts and related work on deep learning and spatio-

temporal data forecasting. First, an overview on seminal methods is provided in Section 2.1. This

overview reviews pivotal concepts for learning with neural networks, presenting the perceptron

and multilayer perceptron in Section 2.1.1, and extensions of these architectures for specialized

domains, including convolutional neural networks and recurrent neural networks, in Section

2.1.2. Finally, Section 2.2 covers relevant related work regarding deep learning applied for

forecasting different types of spatio-temporal data.

2.1 Fundamental Concepts

Neural networks were originally proposed as a computational approach to automatically

make inferences from data, taking inspiration on the biological brain. In general, neural networks

can be seen as nested composite functions that transform the input, and whose parameters can

be directly learned to minimize a given loss function computed over the expected result and

network output.

2.1.1 Supervised Learning with Neural Networks

The perceptron model is the precursor to modern neural network algorithms. It was first

introduced by Frank Rosenblatt (1958) as an electronic system capable of learning to recognize

similarities between patterns of information, in a way that closely resembles a biological brain.

The perceptron model, illustrated in Figure 2.1, is a binary classifier that receives a set of

input values and outputs zero or one. To compute the output, Rosenblatt introduced weights, i.e.

real numbers that represent the importance of the respective inputs to the output. The output

is one if the weighted sum of the inputs is above a threshold value, and zero otherwise. The

function computed by the model is defined by the weight values. A positive weight represents

an excitatory effect while a negative weight an inhibitory effect for the corresponding unit.



Mathematically, the perceptron can be seen as an implementation of the following equation:

f(x) = ŷ = φ

(
n∑

i=1

xi × wi + b

)
(2.1)

In the previous expression, f(x) represents the output prediction, x ∈ Rn is a vector of input

values, w ∈ Rn is the vector of weights associated with the inputs, b represents a bias term,

and φ represents an activation function. The bias term is the negation of the aforementioned

threshold value. The activation function used for the standard perceptron is the unit step

function, although later proposals suggested different alternatives (e.g., the logistic perceptron,

using a differentiable activation function corresponding to a logistic sigmoid).

Given a set of examples x accompanied by the corresponding labels y ≈ f*(x), training the

perceptron model corresponds to adapting all the weights and bias values to best approximate

the optimal values. The function with the optimal parameters is denoted as f*(x). During model

training from a set of example instances that are visited in sequence, given a miss-classification

of a positive or negative example, the weights of the active inputs are increased or decreased

respectively. This is known as the perceptron learning rule and it can be written as follows:

wt+1 = wt + η · (y − ŷt) · x (2.2)

In the previous expression, η is a hyperparameter known as the learning rate. We will

explore this parameter in more detail shortly.

Training a perceptron can prove to be difficult since a small change in the weights (or bias)

can drastically modify the output (e.g., from 0 to 1). For this reason it is common nowadays

to use variations with differentiable non-linear activation functions, such as the aforementioned

logistic sigmoid or the hyperbolic tangent, which enable the use of gradient descent.

Regarding further extensions to the perceptron model, we have that non-linearly separable

patterns can be learned by layers of interconnected neurons. A concrete architecture based

on this idea corresponds to MultiLayer Perceptrons (MLPs), also known as feedforward neural

networks. In brief, MLPs are computing systems that consist of several simple computing nodes

(i.e., perceptrons) interconnected by links. These nodes are split into layers where each unit in

the nth layer is connected to every unit in the (n+ 1)th layer, as seen in Figure 2.1.

MLP networks are known as feedforward since information flows through the network from

the input to the intermediate hidden layers, and finally to the output layer. There are no connec-

6



Figure 2.1: The perceptron model (left) and a multilayer perceptron with three layers (right).

tions in which the outputs of the model are fed back into itself. When feedback connections are

included, the models are called recurrent neural networks. This approach is detailed in Section

2.1.2.2.

A basic MLP consists of L layers, each containing N hidden nodes. Given an input x =

(x1, x2, ...., xn), the first layer calculates a weighted sum of the input values, in the form:

net1i =

n∑
j=1

w1
i,j × xj + b1i , for i = 1, 2, ..., N1 (2.3)

In the previous expression, W 1 ∈ RN1×n represents a matrix with the weight vectors w1
i of

the first layer, and b1i represents the corresponding bias term. Each of the i computed values

from net1i are then fed into a non-linear differentiable activation function φ, resulting in:

f1i = φ(net1i ), for i = 1, 2, ..., N1 (2.4)

The remaining hidden layers receive as input the computed outputs of the previous layer f l−1

and compute f l as shown next:

f li = φ

N l−1∑
j=0

wl
i,j × f l−1j + bli

 , for i = 1, 2, ..., N l (2.5)

In the output layer l = L, the network computes the approximation of the optimal function

f∗(x) in the form:

f(x) = φ

NL−1∑
j=0

wL
j × fL−1j + bL

 (2.6)

During training, the network is driven to match f(x) to f∗(x). Each example x is associated

to a label y ≈ f*(x). This data directly indicates what the output layer should produce at each

7



point x. The training examples do not directly specify the behaviour of the remaining layers.

Instead, the model decides on how to use them to best approximate f*(x).

Neural networks are usually trained using iterative gradient-based optimizers that lead a

loss function to a very low value. A loss function provides a measure of success for the task

at hand, and it can be minimized by moving the parameters in the opposite direction of its

derivative. This technique is called gradient descent. Since deep learning frequently involves

complex non-convex functions with multidimensional inputs, finding the global minimum can

be a difficult task. Therefore, we usually settle for a value that is very low, but not necessarily

minimal.

There are several variations of gradient descent with varying data requirements. We often

perform a trade-off between the quality of the parameter updates and the time required to

compute the gradient. For instance, batch gradient descent utilizes the entire training dataset

to calculate the gradient of the loss function J with respect to the parameters θ given a learning

rate η.

θt+1 = θt − η · ∇θJ(θt) (2.7)

Since each parameter update requires computing the gradient of the whole dataset, this

variation is intractable for neural networks dealing with large datasets. Conversely, batch gradi-

ent descent guarantees convergence to a global minimum for convex loss function surfaces, and

to a local minima for non-convex loss function surfaces.

Mini-batch gradient descent approximates the gradient utilizing a smaller set of samples b

of examples xi and corresponding labels yi.

θt+1 = θt − η · ∇θJ(x(i:i+b);y(i:i+b);θt) (2.8)

On each parameter update, we sample a mini-batch of examples b uniformly from the train-

ing dataset. The mini-batch size is usually between one and a few hundred and it is held fixed

even as the training dataset grows. This variation offers a middle ground between computational

efficiency and oscillations towards the minimum.

Stochastic gradient descent calculates the gradient for each individual training example xi

and corresponding label yi, as shown next:

θt+1 = θt − η · ∇θJ(x(i); y(i);θt) (2.9)

8



Stochastic gradient descent can be seen as a mini-batch gradient descent with a batch size

of one. It provides the highest computational efficiency but suffers the most from fluctuations

in the cost function due to high-variance updates. This variation has the same convergence

guarantees as batch gradient descent, provided the learning rate is low.

The algorithm used to apply gradient descent to the training of neural networks is called

back-propagation (Rumelhart et al., 1986). In a first phase, usually known as forward propa-

gation, the input propagates through the network to produce an output ŷ, with the algorithm

maintaining a stack of function calls and their computed parameters. The second phase, known

as back-propagation, allows the information from the cost to propagate back through the net-

work. This is made possible by applying the chain rule of calculus, which is used to compute

the derivatives of composite functions. Back-propagation starts with the loss value and flows

backwards from the final layers to the initial layers, applying the chain rule to the computations

of gradient values in order to estimate the contribution each parameter had in the final loss

value.

Selecting an appropriate value for the learning rate is a crucial task since this has a significant

impact on the model performance (Ruder, 2016). Small learning rate values lead to longer

training and, depending on parameter initialization, may cause the model to get stuck in a local

minimum. On the other hand, large learning rate values lead to larger jumps in the gradient

direction, causing the model to follow an oscillatory path and possibly missing minima. Several

approaches have been proposed to address these challenges. For instance, momentum methods

were designed to overcome the aforementioned problems and accelerate learning. The parameters

are updated based not only on the current gradient value, but also on the previous parameter

updates. To achieve this, momentum methods introduce a component that accumulates an

exponentially moving average of past gradients, called velocity v.

vt = α · vt−1 − η · ∇θJ(θ) (2.10)

In the previous expression, α is a parameter that controls the effect that previous gradients

have on current calculations. The parameters are then updated as follows:

θ = θ + vt (2.11)

Nesterov momentum adds a correction factor to the standard momentum method. In this

variation, the gradient is calculated after the current velocity is applied. Intuitively, this can be

9



seen as taking a step towards the momentum direction, and calculating the gradient from that

intermediate position as opposed to calculating it from the starting position. This allows the

gradient to be corrected based on the momentum direction in the same update. Mathematically,

Nesterov momentum is defined as follows:

vt = α · vt−1 − η · ∇θJ(θ + αvt−1)

θ = θ + vt

(2.12)

AdaGrad (Duchi et al., 2011) corresponds to another popular variation, which individually

attributes dynamic learning rates to all parameters in the model. The dynamic learning rates

grow proportionally to the inverse of the L2 norm of all previous gradients given the parameters.

As such, large gradients have smaller learning rates and small gradients have larger learning

rates. Due to the continuous accumulation of squared gradients, the learning rates continue to

decrease during training which may result in aggressive premature decreases. The update rule

for AdaGrad is defined as follows:

∆θt = − η√∑t
i=1 g

2
i + δ

� gt (2.13)

In the previous expression, gt is the gradient at time-step t, � denotes an element-wise

product, δ is a small predefined value to inhibit divisions by zero in the overall expression, and

η is a global learning rate shared by all model parameters.

RMSProp and AdaDelta build upon AdaGrad to overcome the diminishing rates problem.

RMSProp replaces the gradient accumulation with an exponentially weighted moving average,

which allows it to discard history from the distant past. AdaDelta (Zeiler, 2012) restricts the

window of accumulated past gradients to a predefined value. In both variants, the sum of

gradients is recursively defined as an exponentially decaying average of past squared gradients.

A more recent proposal that is nowadays commonly used, known as Adam (Kingma and

Ba, 2017), can be seen as a combination of RMSProp and momentum. Similarly to RMSProp

and AdaDelta, Adam stores an exponentially decaying average of past squared gradients, rep-

resented as r. It also maintains an exponentially decaying average of past gradients s, similar

to momentum methods.

st = ρ1 · st−1 + (1− ρ1) · gt

rt = ρ2 · rt−1 + (1− ρ2) · g2
t

(2.14)
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In the previous equations, the parameters st and rt are estimates of the mean and variance

of the gradients, respectively. Adam also performs bias corrections on these estimates due to

their initialization at the origin, according to:

ŝt =
st

1− ρt1
r̂t =

rt
1− ρt2

(2.15)

These values are then used to perform the parameter updates:

θt+1 = θt − η ·
ŝt√
r̂t + δ

(2.16)

One of the central challenges in machine learning consists on developing models that perform

well on previously unseen inputs, and not just on those the model was trained on. In other

words, we want to minimize both the training and test errors. Underfitting occurs when a

model cannot obtain sufficiently low values on the training error, while overfitting occurs when

the gap between the two errors is large. An overfit model often learns misleading or irrelevant

patterns found in the training data. The process of fighting overfitting by modifying the learning

algorithms in order to reduce generalization error, while maintaining the training error, is known

as regularization. Many techniques exist that fit under the regularization umbrella, and a

common approach is to add penalties to the cost function, defined by a regularization function

R. This technique is known as parameter norm penalty, and is formally defined as follows:

Jr (x, y, θ) = J (x, y, θ) + λ · R (θ) (2.17)

In the previous equation, Jr represents the regularized cost function and λ is a hyperpa-

rameter that controls the effect of the regularization function on the regularized cost function.

Utilizing this technique, we can establish preferences towards specific solutions belonging to the

hypothesis space. Many different definitions of the regularization function R() exist, although

the most commonly used functions include the L1 and L2 regularization, defined as follows:

L1 (θ) =
∑
i

|wi|

L2 (θ) =
∑
i

w2
i

(2.18)

Both L1 and L2 regularization penalize larger weights, causing the network to be constrained
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to small, more regular weight values. Typically, only the weights w are penalized, since the biases

tend to achieve an accurate fit with less data.

Another commonly used regularization technique, particularly in the context of neural net-

works, is called dropout (Srivastava et al., 2014). This technique consists of randomly setting

the outputs of specific units to zero. On each training iteration, input and hidden units are

zeroed with a fixed probability value p. At test time, all units remain active but the layer’s

output values are scaled down by a factor equal to p. By temporarily removing units from the

network, any unit is prevented from over-relying on specific outputs from previous units, instead

being forced to learn to work with a randomly chosen sample of other units. As such, units

tend to become more robust, creating more meaningful representations without heavily relying

on specific units.

2.1.2 Neural Networks for Processing Sequential Data

This section presents common neural network architectures used for processing structured

inputs (e.g., time series data), building on the concepts introduced in the previous section.

Convolutional neural networks are presented first, followed by recurrent neural networks.

2.1.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialized type of neural networks for pro-

cessing structured data having a sequential (i.e., 1D) or grid-like (i.e., 2D or 3D) structure.

Instead of general matrix multiplications, CNNs use a special type of linear operation called

convolution in at least one of their layers. These layers are known as convolutional layers.

Traditional neural networks such as MLPs feature very dense interactions, where every

output unit interacts with every input unit. Convolutional networks instead typically have

sparse interactions, as illustrated in Figure 2.2. This is achieved by utilizing a kernel smaller

than the input, allowing for convolutional layers to learn local patterns utilizing small but

meaningful features. Another key difference is parameter sharing. In traditional approaches,

each element of the weight matrix is multiplied by a single element of the input and never reused.

In a convolutional network, each member of the kernel is usually used at every position of the

input, again as shown in Figure 2.2. These two ideas provide some key properties, namely the

ability to learn translation invariant patterns (i.e., being able to recognize a pattern in different

positions of the input) and the ability to learn spatial hierarchies of patterns (i.e., subsequent

layers learn larger, more complex patterns made from those recognized in the previous layers).
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Figure 2.2: Examples illustrating 1D convolution and pooling operations applied over a sequence
(left), adapted from Goldberg (2017), and sparse interactions in a convolutional network with
two convolutional layers and a 2-element kernel (right). The highlighted units in the right part
of the figure are those that affect u2. These units are known as the receptive field of u2.

Mathematically, a discrete convolution of two one-dimensional signals x and w is defined

as:

(x ∗w)(i) =

∞∑
j=−∞

x(j)× w(i− j) (2.19)

In the previous expression, ∗ denotes the convolution operation, x is the input, w is referred

to as the kernel, i defines the location where the convolution is calculated and j is a value that

dictates which input and kernel elements will be multiplied. The output is frequently referred

to as a feature map. To apply a convolution, some parameters have to be specified, namely

the kernel size, the number of kernels to be applied, the stride size (i.e., how much we slide at

each step), and how to deal with non-existent samples. Non-existent samples in the input can

be defined to have values of zero, known as zero padding, or by computing the product only

on points where samples exist in both the input and the kernel. By utilizing zero padding and

different stride sizes, we can adjust the feature map size in relation to the input.

In each convolutional layer, the convolution operation is applied between the input and the

Figure 2.3: Convolution operation on a 5x5 input with a 3x3 kernel of binary values, without
zero padding (left) versus with zero padding (right). The example shows how zero padding can
be applied to produce a feature map that maintains the input size.
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kernel to produce a feature map. In other words, the kernel slides over the input, stopping at

every possible location, and computes the dot product between the input and the kernel, as

shown in Figure 2.3 for the case of 2D input data. Multiple convolutions are usually performed

on an input, each utilizing a different kernel and resulting in a different feature map. The output

of a convolutional layer is a stack of all these feature maps.

Convolutional layers are often used together with a non-linear activation function, providing

some non-linearity to the network. Most often, the ReLU function is used, which converts

all negative values to zero, keeping the positive values. Other recent alternatives include the

Swish (Ramachandran et al., 2017) and the Mish (Misra, 2019) activation functions, respectively

corresponding to the following two equations:

f(x) = x · σ (β · x) (2.20)

f(x) = x · tanh (ς(x)) (2.21)

In Equation 2.20, σ corresponds to the sigmoid activation function, and β is a constant

or trainable parameter. In Equation 2.21, ς is defined as log (1 + ex). The stack of feature

maps that a layer outputs are the results of applying the convolution operation, followed by the

activation function in each position.

Convolutional neural networks often consist of multiple layers, combining several convolu-

tional layers and pooling layers. Pooling layers apply a function to the input in order to reduce

the number of parameters to process, and to assist in making the representation invariant to

small translations. This is achieved by downsampling the input’s spatial dimensions (i.e., width

and height), while maintaining the depth dimension. The most common pooling function is

perhaps max pooling, which outputs the maximum value within the pooling window, although

more advanced alternatives are also possible (Deng et al., 2019). Other frequently used pooling

functions include average pooling, where the output is the average value of the pooling window,

and weighted average pooling, where weights are attributed, for instance with basis on the dis-

tance to the central value. When processing sequential data with convolutional neural networks,

it is common to use a pooling layer (e.g., max- or average-pooling over time) that aggregates

all the feature maps produced at the different time-steps of the sequential input, into an overall

encompassing vector.

In a CNN, the final computed stack of feature maps is usually flattened (e.g., through a

pooling-over-time operation in the case of sequential data, or instead just by considering a vector
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Figure 2.4: Representation of the LeNet5 architecture, adapted from LeCun et al. (1998).

with all the individual values) and fed as input to one or more fully-connected layers, that return

the final classification. A loss over this classification output is then used to train the network

with the back-propagation algorithm, described in Section 2.1.1.

Figure 2.2 illustrates how CNNs can be applied to sequential data (i.e., series of vectors

encoding the relevant information at each time step). In this example, a convolution and an

activation function are applied to each window over the input vectors, resulting in seven 3-

dimensional feature maps. Afterwards, max-pooling over time is applied, taking the maximum

value along each dimension, resulting in the final 3-dimensional pooled vector.

The LeNet5 architecture, introduced by Yann LeCun et al. (1998) and depicted in Figure

2.4, was one of the first successful applications of CNNs for image recognition. The architecture

was built in order to recognize hand-written digits. In LeNet5, convolutions are performed

utilizing 5x5 kernels with a stride of one, and average pooling is applied with a 2x2 window and

a stride of two.

2.1.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are variations of neural networks specifically designed

for processing sequential data (i.e., while CNNs can also be used for processing 1D inputs, they

are more commonly used in the processing of 2D and 3D data). As opposed to previously

seen approaches that process inputs independently, with no state kept between inputs, RNNs

maintain a state containing information in regard to what the model has seen thus far.

In a traditional MLP, the network receives one input and produces one output. RNNs

instead receive as input an ordered sequence of variable length vectors x1,x2, ...,xn, compute

a set of internal hidden states h1,h2, ...,hn, and produce as output an ordered sequence of

variable length vectors y1,y2, ...,ym. This allows for more flexibility in the types of data the
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Figure 2.5: Graphical representation of a many-to-many RNN, with a recursive representation
on the left, and the corresponding unrolled computational graph representation on the right.

model can process, enabling additional input-output relationships such as one-to-many (e.g.,

generation of sequences from a single input), many-to-many (e.g., sequence transduction), and

many-to-one (e.g., sequence classification). Each state ht can be thought of as an encoding of

the input sequence seen so far.

Figure 2.5 illustrates a typical many-to-many RNN architecture where at each time-step t

the network reads an input xt, updates its hidden state ht, and produces an output yt given

that updated state. Note how the parameters θ are shared across every time-step.

Consider a function f() that, given some parameters θ, the previous state vector ht−1 and

the current input xt, produces an updated state vector ht. At each time-step, the same function

f() and set of parameters θ are used. There are several implementations of the abstract RNN

architecture, each providing different definitions for the function f() and for how the output is

calculated. The simplest implementation, known as vanilla recurrent neural network, is defined

as follows:

ht = f (Whh · ht−1 +Wxh · xt + b)

yt = Why · ht + c
(2.22)

In the previous equations, Wij are weight matrices for i-to-j connections (e.g., input-to-

hidden state connections are parametrized by Wxh), while b and c are the bias vectors.

The back-propagation algorithm applied to the unrolled computational graph of an RNN

is called back-propagation through time (BPTT). Since in practice it is common to have very

large sequences, going backwards through an entire sequence on each backward pass can be

computationally expensive and cause the model to never converge. Because of this, it is common

to use a variation of BPTT called truncated back-propagation through time, which performs

the forward and backwards propagation in chunks of the sequence with a predefined size, as
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opposed to considering the entire input sequences in each step.

During training, when performing the backwards pass and computing the gradients, each

RNN cell receives ∂Cost
∂ht

and needs to compute ∂Cost
∂ht−1

. To achieve this, it is necessary to back-

propagate through an activation function and multiply by the respective weight matrix. This

causes problems when training over a long sequence since computing the gradient of the cost

with respect to one of the first hidden states requires successive multiplications by the same

weight matrix. This can cause the gradients to either explode (i.e., if the largest singular value

of the matrix is larger than one) or vanish (i.e., if the largest singular value of the matrix is less

than one). To deal with these problems, different RNN architectures, inspired by the vanilla

version, have been proposed.

Long Short-Term Memory (LSTM) architectures attempt to tackle the gradient problems by

optimizing gradient flow. To achieve this, LSTM networks have cells that maintain an additional

state c, called cell state, defined by an internal recurrence relation, as shown in Figure 2.6.

Each cell receives as input the previous hidden state ht−1 and the current input xt, and

outputs the updated hidden state ht. The hidden state is now defined as part of the cell state.

To manipulate information flow, LSTM cells have a gating system of four gates, each with the

same dimensions as the hidden state. The input gate i controls what information of the proposed

update should be written, the gate g controls how much of the proposed update is written, the

forget gate f controls what information of the previous cell state should be kept, and the output

gate o decides how much of the cell state is exposed to update the hidden state. Leveraging the

aforementioned ideas, LSTM cells can be formally defined as follows:

i = σ (Whi · ht−1 +Wxi · xt + bi)

f = σ (Whf · ht−1 +Wxf · xt + bf )

o = σ (Who · ht−1 +Wxo · xt + bo)

g = tanh (Whg · ht−1 +Wxg · xt + bg)

ct = f � ct−1 + i� g

ht = o� tanh (ct)

(2.23)

Note that the gates i, f and o all use the sigmoid activation function, returning values in

[0, 1] with most values near the borders. When performing an element-wise product, indices in

the second vector corresponding to near-zero values are blocked, while those corresponding to

near-one values are allowed to pass. The gate g uses the hyperbolic tangent activation function,
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Figure 2.6: Simplified graphical representation of an LSTM cell (left), together with a simplified
graphical representation of a GRU cell (right).

which returns values in [−1, 1]. The value returned by the model is the candidate value that is

considered to be written to each element of the cell state at each time-step.

Analyzing Figure 2.6, we can see the optimized gradient flow while calculating the gradient of

the cell state. The upstream gradient follows a horizontal path from ct to ct−1, back-propagating

through an addition operation and an element-wise product operation, denoted as �. As such,

back-propagating through the cell state only induces an element-wise multiplication between the

upstream gradient and the forget gate f , which is different every time-step and always between

[0, 1]. In the vanilla RNN, back-propagation causes a full matrix multiplication with the same

weight matrix several times. The gradient properties of the cell state allows a model to have

an almost uninterrupted gradient pathway between LSTM units, this way quickly distributing

gradients. These properties allow LSTMs to frequently avoid the exploding/vanishing gradient

problems.

Gated Recurrent Units (GRUs) feature a gating system similar to LSTMs, although with

fewer gates and without a separate memory component. The first gate, i.e. the reset gate r,

controls which parts of the previous hidden state ht−1 are used to compute the next proposed

hidden state h̃t. The second gate, i.e. the update gate u, controls which information of the

previous hidden state ht−1 should be forgotten by applying an interpolation between the previous

hidden state ht−1 and the proposed update h̃t. GRUs can be defined as follows:
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r = σ (Whr · ht−1 +Wxr · xt + br)

u = σ (Whz · ht−1 +Wxz · xt + bz)

h̃t = tanh (Whh · (rt � ht−1) +Wxh · xt + bh)

ht = ut � ht−1 + (1− ut)� h̃t

(2.24)

2.2 Related Work

Conventional Recurrent Neural Network (RNN) architectures, e.g., based on Long Short-

Term Memory (LSTM) units (Hochreiter and Schmidhuber, 1997), are commonly employed on

forecasting tasks involving time-series data. However, these models consider the input data as se-

quences of vectors, thus not exploiting the spatial context present in spatio-temporal structures

(e.g., raster representations for remote sensing data, consisting of patches with neighbouring

cells) provided as input. To address this limitation, Shi et al. (2015) combined convolution op-

erations with LSTMs, simultaneously exploiting the abilities of Convolutional Neural Networks

(CNNs) and RNNs to effectively model spatial and temporal information, respectively. In the

proposed Convolutional LSTM (ConvLSTM) approach, all input data structures are 3D tensors,

with the first dimension corresponding to either the number of measurements or the number

of feature maps, and the last two dimensions representing the spatial dimensions (i.e., width

and height). By replacing the product operation in the original LSTM with the convolution

operation, denoted as ∗ in the equations shown next, the future states of a certain cell are now

defined as a function of the inputs and past states of its local neighbours. Consider that I, F ,

O, and G denote the four standard LSTM gates/operations, t represents a time-step, � denotes

an element-wise product, H and C represent the hidden state and cell state, respectively, and

that X represents the input. The ConvLSTM is formally defined as follows.

It = σ (Whi ∗Ht−1 +Wxi ∗Xt +Wci � Ct−1 + bi)

Ft = σ (Whf ∗Ht−1 +Wxf ∗Xt +Wcf � Ct−1 + bf )

Ot = σ (Who ∗Ht−1 +Wxo ∗Xt +Wco � Ct + bo)

Gt = tanh (Whg ∗Ht−1 +Wxg ∗Xt + bg)

Ct = Ft � Ct−1 + It �Gt

Ht = Ot � tanh(Ct)

(2.25)

A variety of complex architectures can be built using ConvLSTM building blocks (Hong
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et al., 2017; Alléon et al., 2020; Wang et al., 2017; Jang et al., 2018; Zhao et al., 2018). In the

original study, the authors developed a typical encoder-decoder structure comprised of multiple

stacked ConvLSTM layers, with each decoder layer initializing its hidden states from the output

of the corresponding encoder layer. Final predictions are given by the concatenation of the

hidden states from the decoder network, followed by a 1× 1 convolution.

The architecture was evaluated on two datasets and compared alongside the fully connected

LSTM (FC-LSTM) architecture (i.e., a multivariate version of the original LSTM which does

not consider spatial correlations). The first set of experiments was conducted on a synthetic

dataset where each time-step contained two or three handwritten digits from the MNIST dataset

bouncing inside a 64×64 grid. The digits were initially placed at random and assigned a velocity

with a direction randomly chosen by a uniform distribution and amplitude randomly chosen

between 3 and 5. The digits bounced off the edges and occluded each other upon reaching the

same position. The evaluation metrics used were the Cross-Entropy (CE) per sequence and the

number of parameters. A variety of ConvLSTM architectures were tested, varying the kernel

sizes, number of hidden states and number of layers. Every ConvLSTM variant significantly

outperformed the FC-LSTM, while containing significantly less parameters. Next, the authors

assess the generalization ability of the ConvLSTM by testing the best performing variant on out-

of-domain inputs, namely sequences with three digits. The results showed that the ConvLSTM

was able to distinguish the overlapping digits and predict the overall motion, although predicting

notably blurry digits.

The second set of experiments were conducted on a radar echo dataset for precipitation

nowcasting, considering the task of predicting the next 5 time-steps, given the previous 5. The

radar data described 12, 222 sequences of 20 frames, 5 for the input and 15 for the prediction,

sampled every 6 minutes. Each frame was a 100 × 100 grid of gray-scale intensity values. The

data was split into 8148 sequences for training, 2037 sequences for validation and 2037 sequences

for testing. The evaluation metrics used were the Rainfall Mean Squared Error (Rainfall-MSE),

Critical Success Index (CSI), False Alarm Rate (FAR), Probability of Detection (POD) and

correlation values. The ConvLSTM was evaluated alongside the FC-LSTM and previous state-of-

the-art algorithm for precipitation nowcasting, ROVER. Although the predictions were blurrier

than those from ROVER, the ConvLSTM model clearly outperformed every other model under

comparison, reacting better to sudden changes (i.e., more extreme values) in the inputs, and

overall achieving more accurate results.

Inspired by the aforementioned ConvLSTM architecture, Wang et al. (2017) proposed an-

other recurrent model named PredRNN, which captures spatial and temporal features in a
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Figure 2.7: Representation of a typical ConvLSTM with four layers (left) and the PredRNN
architecture (right), adapted from Wang et al. (2017). The orange arrows denote the flow of the
spatio-temporal memory cell M l

t .

unified memory pool. In PredRNN, the states of an adapted LSTM cell can travel along both

vertically between layers and horizontally across states. The authors introduced a new cell

state in each LSTM unit, i.e. the spatio-temporal memory cell state Mt, that flows in a zigzag

direction, first upwards across layers and then forwards over time, as illustrated in Figure 2.7.

This extension to standard LSTM units, called Spatio-Temporal Long Short-Term Memory (ST-

LSTM) and illustrated in the left side of Figure 2.8, allows simultaneous flow of both spatial

and temporal memory, enabled by the state Mt, and the standard temporal memory, enabled

by the state Ct, present in traditional ConvLSTMs. In order to maintain both memory cell

states, a new set of gates was constructed to manage the information flow for Mt, in addition

to the original gates that handle Ct. Let C l
t denote the standard temporal cell state at layer l,

delivered from the previous unit at t − 1, and let M l
t denote the spatio-temporal memory cell

state, delivered vertically from the l − 1 layer at time-step t. The ST-LSTM cells are formally

Figure 2.8: Simplified representation of the ST-LSTM (left), adapted from Wang et al. (2017),
versus a simplified representation of the causal LSTM, adapted from Wang et al. (2018). The
orange coloured elements represent the differences compared with the typical ConvLSTM.
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defined as follows.

It = σ
(
Whi ∗H l

t−1 +Wxi ∗Xt + bi

)
Ft = σ

(
Whf ∗H l

t−1 +Wxf ∗Xt + bf

)
Gt = tanh

(
Whg ∗H l

t−1 +Wxg ∗Xt + bg

)
C l
t = Ft � C l

t−1 + It �Gt

I
′
t = σ

(
Wmi ∗M l−1

t +W
′
xi ∗Xt + b

′
i

)
F
′
t = σ

(
Wmf ∗M l−1

t +W
′
xf ∗Xt + b

′
f

)
G
′
t = tanh

(
Wmg ∗M l−1

t +W
′
xg ∗Xt + b

′
g

)
M l

t = F
′
t �M l−1

t + I
′
t �G

′
t

Ot = σ
(
Who ∗H l

t−1 +Wxo ∗Xt +Wco ∗ C l
t +Wmo ∗M l

t + bo

)
H l

t = Ot � tanh(W1×1 ∗ [C l
t,M

l
t ])

(2.26)

The final hidden states are defined as the concatenation of each memory state derived from

different directions, represented as [C l
t,M

l
t ], followed by a 1× 1 convolution to ensure consistent

dimensionality between states. The authors defined the PredRNN as a multi-layer architecture

employing ST-LSTMs, having tasked the model with predicting 10 future observations from three

distinct datasets, given the previous 10 observations. The first experiment was conducted on the

synthetic Moving-MNIST dataset described above, following the same methodology. In order to

assess the generalization ability of PredRNN, the model trained with two digits was tested on

another dataset of three digits. The metrics utilized were the Mean Squared Error (MSE) and

Cross-Entropy (CE) per time-step, averaged across the dataset. Results showed that PredRNN

utilizing the ST-LSTM architecture significantly outperformed every other baseline, including

previous state-of-the-art models. In general the proposed model was able to more accurately

predict the trajectories and digits, particularly in sequences that displayed overlapping sections,

when compared to the baseline models.

A second experiment was performed on the KTH action dataset, which contains six types

of human movements (i.e., boxing, hand waving, hand clapping, jogging, running and walking)

performed several times by 25 individuals in four scenarios (i.e., indoors, outdoors, outdoors with

scale variations and outdoors with different clothing). Each time-step was resized into 128×128

pixels and the sequences were divided with respect to the individuals. The training set contained

108, 717 sequences of the first 16 individuals, and the test set contained 4, 086 sequences of the

remaining 9 individuals. During testing, the model was required to predict the subsequent 20
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time-steps, as opposed to the subsequent 10 time-steps during training. The metrics used to

evaluate the prediction results were the Peak Signal to Noise Ratio (PSNR) and the Structural

Similarity Index Measure (SSIM). The PredRNN approach consistently outperformed other

models, most of which displaying quick result deterioration for long-term prediction. In contrast,

the proposed model displayed the ability to memorize detailed visual appearances and long-term

motions, allowing it to perform better predictions both spatially and temporally.

A final experiment utilized a radar echo dataset consisting of 10, 000 consecutive radar

observations sampled every 6 minutes in Guangzhou, China. The radar intensities were rep-

resented as 100 × 100 gray-scale images. The 9, 600 sequences were split into a training set of

7, 800 sequences and a test set of 1, 800 sequences. The evaluation metric used in this test was

the average per time-step Mean Squared Error (MSE). The authors also compared the training

time required for 100 batches and the overall memory usage. Results showed that the previous

state-of-the-art model, although providing more accurate forecasts for the near future, rapidly

deteriorated for long-term forecasts. On the other hand, the PredRNN did not suffer from the

same deterioration, causing the model to outperform the other baselines while simultaneously

providing comparable or better time and memory efficiency.

Following their work on the PredRNN model, and in order to lessen the occurrence of

the vanishing gradient problem, Wang et al. (2018) proposed the PredRNN++ architecture,

leveraging recent advances in gradient flow optimization. The authors noted that increasingly

deep-in-time networks, while providing higher modeling capabilities, suffer from more difficul-

ties in gradient propagation. To address this problem, the PredRNN++ architecture features

adaptive connections that provide both longer and shorter routes simultaneously between input

time-steps and the output future prediction. In more detail, the PredRNN++ architecture,

depicted in Figure 2.9, has two key components. The first component, illustrated in Figure

2.8, is a novel spatiotemporal memory mechanism called the causal LSTM that, similarly to

the previously mentioned ST-LSTM, simultaneously manages two states, namely the temporal

memory state C l
t and the spatial memory state M l

t . The causal LSTM allowed authors to effi-

ciently increase recurrence depth between time-steps, causing each pixel on the output time-step

to have a larger receptive field at each time-step, which in turn augments the model with more

powerful modeling capabilities to stronger spatial correlations and short-term dynamics. The

current temporal memory state C l
t depends directly on the previous state C l

t−1 and is controlled

through the set of gates F , I and G. The current memory state M l
t depends on the memory

state of the previous hidden layer M l−1
t . For the bottom layer, the assigned memory state cor-

responds to the memory state at the top hidden layer of the previous time-step. As opposed
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Figure 2.9: Simplified representation of the GHU (left) and the PredRNN++ architecture
(right), adapted from Wang et al. (2018). The red coloured elements represent the deep transi-
tion pathway, while the blue coloured elements represent the gradient highway.

to ST-LSTMs, the spatial memory state M l
t is updated as a function of the temporal memory

state C l
t via a different set of gates, i.e. F

′
, I
′

and G
′
. Formally, a causal LSTM is defined as

follows:
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(2.27)

In the previous set of equations, W1:5 are the convolutional kernels, with W3 and W5 being

1× 1 convolutional kernels, and the other ones corresponding to k × k convolutions, where k is

a tunable parameter. The remaining variables and operations have the same meaning as in the

set of Equations numbered as 31. The final LSTM hidden state H l
t is defined by both memory

states C l
t and M l

t .
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The second key component, inspired by the success of highway networks (Srivastava et al.,

2015) and illustrated on Figure 2.9, is a new spatio-temporal recurrent structure named Gradient

Highway Unit (GHU), introduced in order to mitigate long-term gradient back-propagation

challenges. In particular, the introduction of causal LSTMs tends to cause the temporal memory

C l
t to forget older time-steps due to the increased recurrence depth. The GHU maintains an

additional hidden state Zt, defined by the previous GHU hidden state Zt−1 and the current

LSTM hidden state H l
t . In the PredRNN++ architecture, the GHUs are injected between the

1st and 2nd causal LSTMs and, as such, receive as input H1
t and Zt−1. Updating the hidden

state Zt is enabled by the use of two gates, namely P which controls the proposed update and S

which controls the information that should be written. Formally, the GHU is defined as follows:

Pt = tanh
(
Wph ∗H l

t +Wpz ∗ Zt−1

)
St = σ

(
Wsh ∗H l

t +Wsz ∗ Zt−1

)
Zt = St � Pt + (1− St)� Zt−1

(2.28)

From the previous set of equations, we can see that when St takes the extreme values of 0 or

1, the previous hidden state Zt−1 is directly passed along or completely overwritten. Controlling

the proportions of the hidden state Zt with St enables an adaptive learning of three different

information streams: the long-term features in the gradient highway, the short-term features in

the deep transition path, as well as the spatial features obtained from the current input time-

step. With the use of GHUs, the model provides an alternative pathway from the first to the last

time-step, represented as the blue line in Figure 2.9, along which information can flow without

attenuation.

The PredRNN++ architecture was also evaluated on the Moving MNIST and KTH Ac-

tion datasets, with the pre-processing and sequence generation being performed as previously

described. The first experiment used the Moving MNIST dataset, containing 10, 000 sequences

for the training set, 3, 000 sequences for the validation set, and 5, 000 sequences for the test set.

Besides the usual task of predicting the 10 future time-steps given the previous 10 time-steps,

the model was also challenged with predicting 30 future time-steps given the previous 10. This

was done in order to evaluate the model’s ability to perform long-range predictions. The con-

sidered evaluation metrics were the per-time-step SSIM and the MSE. The PredRNN++ was

able to outperform all other baselines models, including the aforementioned PredRNN architec-

ture, regardless of the considered prediction time horizon. The authors noted that utilizing a

30 time-step prediction horizon, the generated images appeared increasingly blurry, which was
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attributed to the inherent uncertainty of the future. Results also showed that the model was

capable of maintaining the shape of the digits after occlusion, showcasing its ability to diminish

vanishing gradients and learn from long-range contexts.

The second experiment used the KTH action dataset, under the same methodology as

previously described, considering a training set of 108, 717 sequences and a test set of 4, 086

sequences. The considered metrics were the PSNR and the SSIM, averaged over the 20 generated

time-steps for each sequence. On both metrics, the PredRNN++ consistently outperformed the

other baselines and state-of-the-art approaches, generating less blurry frames and more accurate

predictions regarding the human trajectory and motions. The authors also noted a slow decrease

of the metric curves from the 10th to the 20th time-step for the PredRNN++, in opposition with

the consistent steeper decrease for the other models under consideration. This showcases a

reduction of future uncertainty, indicating the model is able to remember repeated motions and

trajectories.

Das and Ghosh (2016) proposed an architecture inspired by the Deep Stacking Network

(DSN) from Deng and Yu (2014), adapting the original idea for spatio-temporal forecasting.

The proposed model, called Deep-STEP and illustrated in Figure 2.10, is comprised of T stacked

modules, where T corresponds to the number of time-steps in the data. The input data for each

module is first prepared, so that each instance represents a cell in terms of its spatio-temporal

features (i.e., in terms of the values for spatio-temporally neighbouring cells, from previous time-

steps and nearby locations). The first module receives as input the raw cell representations,

whereas the subsequent modules process a concatenation of the cell representations plus the

results from the previous module. Each module is a Multi-Layer Perceptron (MLP) with a

single hidden layer and two weight matrices, W and U , representing a lower-layer weight matrix

connecting the input and the hidden layer, and an upper-layer weight matrix connecting the

hidden layer and the output, respectively. The output Y of each module is thus defined as

follows.

Y = σ
(
σ
(
X ·W T

)
· UT

)
(2.29)

The sigmoid functions ensure the output values are contained within the range [0, 1]. At

each module, to ensure consistency between the outputs and the raw cell representations, the

resulting merged input tensor X is normalized prior to being processed by the module. The

normalization is defined as follows.
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Figure 2.10: Illustration depicting the Deep-STEP architecture, adapted from Das and Ghosh
(2016).

norm xij =
(xij −min(X))

(max(X)−min(X))
(2.30)

The final module outputs each cell’s prediction for the desired time-step, as a value within

the range [0, 1] which is then mapped to the original scale, resulting in the final predictions.

The Deep-STEP architecture was evaluated in comparison against a traditional MLP, the

original DSN (Deng and Yu, 2014), and the NARNET model (i.e., the nonlinear autoregressive

neural network model that is provided by MATLAB), on a task related to predicting the Nor-

malized Difference Vegetation Index (NDVI) for four different zones in Kharagpur, India. The

data was sampled yearly from 2004 to 2011 and the model was task with predicting the year

2011, given past observed NDVI measurements for 2004-2010. The four different zones were as-

sociated to increasingly larger areas, with the first zone having a 3km×3km area (10, 000 pixels

in total), the second and fourth zone having a 10km× 10km area (around 100, 000 pixels each),

and the third zone having a 30km × 30km area (1, 000, 000 pixels in total). During training,

the images from 2004 − 2009 were used to prepare the feature set supporting a prediction for

the year of 2010. In turn, during testing, the images from 2004 − 2010 were used to prepare

the feature set supporting predictions for the year of 2011. The evaluation metrics used were

the Root Mean Squared Error (RMSE) and Mean Average Error (MAE). The obtained results

showed that Deep-STEP produced lower errors for each of the different zones at competitive

values for the execution time, clearly outperforming the original DSN architecture Deng and Yu

(2014).

In subsequent work, Das et al. (2020) proposed a self-adaptive architecture capable of dy-

namically adjusting the network structure based on the input data. The architecture features

three modules, capturing temporal and spatial features in parallel. The first module computes a
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Figure 2.11: Illustration depicting the SARDINE component along with hidden unit pruning
and hidden unit/hidden layer growing mechanisms, adapted from Das et al. (2020). The green
coloured elements denote the addition of a new hidden unit, while the red coloured elements
denote the removal of a hidden unit.

representation for each cell based on its neighbouring values, and the results are then arranged

as inputs to the subsequent modules. The second module, illustrated in Figure 2.11, corresponds

to a self-adaptive RNN variant named SARDINE that relies on teacher forcing and on the ReLU

activation function in the hidden layers, captures temporal dependencies in the results from the

first module, processing the cell representations for each timestamp. In turn, the third module

captures spatial dependencies in neighbouring cells.

Contrarily to a standard RNN, SARDINE can dynamically change the number of hidden

layers and units, by assessing the module’s ability to generalize with a Network Significance

(NS) method (Das et al., 2019), defined as the sum between the variance and squared bias of

the predictions at each time-step. A high NS value indicates over-fitting, and the module reacts

by pruning the least significant hidden unit of the top-most hidden layer. In turn, a low NS value

indicates under-fitting, to which the module reacts by growing new hidden units at the top-most

hidden layer. Besides pruning/growing hidden units, SARDINE is also capable of growing new

layers, allowing for more complex functions to be learned. Whenever a drift in spatial context is

detected, through an adapted version of Hoeffding’s error bound technique (Fŕıas-Blanco et al.,

2014), a new layer is added on top of the current top-most hidden layer, with the same number

of hidden units, enhancing the network’s ability to react to sudden spatial changes. The weight

matrix between the new layer and the output layer is initialized with the same values as the

weights between the previous layer and the output layer. In turn, the weights between the new
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layer and previous layer are initialized with an identity matrix.

The third module captures spatial dependencies (i.e., how neighbouring locations affect

each cell). It receives the spatial information from a given neighbourhood for each target cell

at a specific time-step, and outputs the predicted value for the cell. The module corresponds

to a standard MLP, with the hidden layer containing half the units of the input layer, and

the output layer containing a single unit that outputs the final predicted value for each cell.

The final prediction for the desired time-step is afterwards given by feeding the corresponding

predicted spatial features generated by the second module through the parallelly learned third

module.

The model was evaluated on three randomly selected areas from two datasets of annual

NDVI time series imagery. The first dataset described annual NDVI imagery, pertaining to

the state of West Bengal, India, from 2004 to 2011 and at a spatial resolution of 30 meters.

The authors randomly selected two zones from this dataset, which belonged to the district of

Bardhaman. Training was performed with the data from 2004 to 2010 and testing was performed

with the data for 2011. The second dataset consisted of annual NDVI imagery pertaining to the

northern part of Brazil, South America, from 2012 to 2019 and at a spatial resolution of 500

meters. The authors randomly sampled a region, resulting in a zone belonging to the state of

Para. Similarly to the first dataset, training was performed with the data from 2012 to 2018

and testing was performed with the data from 2019.

The proposed architecture was compared alongside eight baselines, including the traditional

MLP, a mixed CNN-RNN architecture, and the aforementioned NARNET, DSN and Deep-STEP

architectures. The evaluation metrics used were the Normalized Root Mean Square Deviation

(NRMSD), the MAE, the execution time, the PSNR, and the Mean Structural Similarity Index

Measure (MSSIM). The former two metrics provide an estimate over prediction error (i.e., lower

values denote better results, with 0 denoting the best possible result), while the latter two

metrics assess the prediction quality (i.e., higher values denote better results). Results showed

that the proposed model outperformed baselines in almost all scenarios, with previous state-of-

the-art models achieving comparable results, but with a considerably larger parameter count.

Furthermore, the proposed architecture was found to be considerably faster than CNN/LSTM

baselines (including previous state-of-the-art models leveraging Gaussian Process (GP) layers),

while slower than models based on MLPs (i.e., MLP, DSN and Deep-STEP). The authors note

that although the proposed model was seemingly slower than some of the baseline models,

these models required several executions to determine the best network structure that were not

considered for this evaluation. SARDINE on the other hand, automatically adjusts the network
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structure to fit the data, requiring only a single execution. The authors hypothesize that if all

empirical executions were considered, the execution time of SARDINE would be considerably

lower.

Zhang et al. (2016a) proposed a deep learning model based on residual connections to predict

the traffic flow of crowds. The model takes as input sequences of 2-channel matrices, with each

cell being associated to a geo-spatial region, and the two channels corresponding, respectively,

to crowd inflow and outflow (i.e., traffic entering or leaving the region, respectively). The

input is sliced into three chronologically ordered subsets of data, denoting distant history, near

history, and recent time. The proposed neural architecture, named ST-ResNet and illustrated

in Figure 2.12, leverages 2D convolutions and is comprised of four components, respectively

modeling temporally close information, information from a longer period, trends, and influence

from external factors, with the former three components sharing a network structure. The three

subsets of data are fed into a respective component, with the trends component receiving the

distant history, the period component receiving the near history, and the closeness component

receiving the remaining subset. These three components are comprised of two convolutional

blocks, with a sequence of residual units between them. The first convolutional block processes a

tensor corresponding to the concatenation of the input patches for the different time-steps. Each

residual unit combines multiple convolution operations together with ReLU activation functions

and batch normalization operations, featuring also a skip connection that adds the input of

the unit to the result of the last convolution. The residual units allow for the construction of a

deeper network, better modeling spatially distant dependencies (i.e., each cell in the final feature

map depends on all cells of the input grid). The final convolutional block produces an output

patch for the component, with a number of channels corresponding to the prediction objective.

The outputs from the closeness, period, and trend components are combined through learn-

able weight matrices that assign different degrees of influence to each aspect. These interactions

are formally defined as follows:

Xcombined = Wc �Xc +Wp �Xp +Wtr �Xtr (2.31)

In the previous equation, Xc, Xp and Xtr correspond, respectively, to the outputs of the

closeness, period and trend components, and Wc, Wp and Wtr are the respective weight matrices.

The external influence component models potentially useful information from external datasets

(e.g., meteorological conditions, patterns associated to holidays or specific days of the week, etc.),

with basis on a two-layer MLP. The output of this component is added to the aforementioned
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Figure 2.12: Illustration depicting the ST-ResNet architecture, adapted from Zhang et al.
(2016a)

combined output, followed by a hyperbolic tangent function, resulting in the predictions for the

respective time-step (i.e., the model can be applied sequentially, in order to produce predictions

for multiple time-steps from past observations).

ST-ResNet was evaluated on two datasets, each containing information regarding trajecto-

ries and external conditions (i.e., meteorological data and holidays). The first dataset contained

taxi trajectories in Beijing, considering four different time intervals from 2013− 2016. In turn,

the second dataset contained bike trajectories in New York City from April to September 2014.

Comparisons were made against traditional approaches such as ARIMA, SARIMA, and VAR

models, and against neural models corresponding to a MLP or to a previous state-of-the-art

approach for crowd flows prediction, named DeepST (Zhang et al., 2016b). The authors also

evaluated different configurations for ST-ResNet, varying the external information and the num-

ber and/or internal structure of the residual units. Results showed that the ST-ResNet model

outperformed all the baselines, with the best versions obtaining significant improvements over

the previous best model for each dataset.

Recently, Nascimento et al. (2019) proposed an encoder-decoder model for spatio-temporal

forecasting that is comprised exclusively of convolutional layers, which are suited to capture spa-

tial features by design. In STConvS2S, illustrated in Figure 2.13, convolutions are performed
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Figure 2.13: Illustration depicting the STConvS2S architecture, adapted from Nascimento et al.
(2019). The yellow elements represent the factorized 3D kernel, T represents the number of
time-steps, and Cl is the number of channels.

with factorized 3D kernels K = t×d×d, where t is the size of the temporal kernel and d is the size

of the spatial kernel. The encoder processes the input sequence by performing convolutions using

just the spatial kernel (i.e., 1×d×d, with d = 5 in the best configuration reported by Nascimento

et al.), creating a sequence of meaningful spatial representations. These spatial representations

are received as input by the decoder, which applies temporal convolutions with the temporal

kernel (i.e., t× 1× 1) in order to learn the temporal features, resulting in the predicted future

sequence. Both the encoder and the decoder are comprised of successive convolutional blocks

with batch normalization (Ioffe and Szegedy, 2015) and followed by a ReLU activation function,

with the decoder utilizing temporal convolutions (Oord et al., 2016) to maintain temporal co-

herency during prediction (i.e., predictions for a time-step t make no use of future information

from time-steps t + 1 onward). Given that standard temporal convolution operations output

either a shorter sequence or a sequence of the same size as the input, the authors introduce a

transposed convolution operation before the final convolutional layer, allowing for predictions

that exceed the sequence length of the input. A transposed convolution operation, also known

as deconvolution, decomposes the input feature map into several intermediate feature maps

Figure 2.14: Illustration of a 2D transposed convolution, where the original input is upsampled
to 8× 8. The figure was adapted from Gao et al. (2019).
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generated by different kernels, which are afterwards shuffled and combined to produce a final,

upsampled, feature map. These interactions are illustrated in Figure 2.14.

Experiments were performed with two datasets describing metereological variables in a

subset of the South American region. The first dataset, named CFSR (Saha et al., 2014),

describes 54, 041 sequences of land and ocean air temperature measurements, for the spatial

regions with latitudes between 8◦N and 54◦S and longitudes between 80◦W and 25◦W). Data

was collected from 1979 to 2015, measuring temperature every 6 hours at a spatial resolution

of 0.5◦. The second dataset, named CHIRPS (Funk et al., 2014), describes 13, 960 sequences

of precipitation measurements, for the spatial regions with latitudes between 10◦N and 39◦S

and longitudes between 84◦W and 35◦W. Data was collected from 1981 to 2019, measuring

daily precipitation at a spatial resolution of 0.05◦, and the original data was interpolated to a

resolution of 1◦ per cell. The data was afterwards split 60%−20%−20% for training, validation

and test respectively. The considered evaluation metrics were the RMSE and the MAE. Results

showed that STConvS2S outperformed the other baseline models in all datasets, prediction

horizons, and metrics, while simultaneously requiring less time to train. Notably, the model

displayed an improvement of 20% in RMSE and was 2.5× faster with a prediction horizon of 5

for the CFSR data, in comparison to the ConvLSTM model that was previously presented.
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3
The Deep Learning

Approach for

Spatio-Temporal Data

Forecasting

This chapter details the proposed deep learning approach. First, Section 3.1 presents all the

techniques studied and how they were incorporated in the developed architectures, followed by

Section 3.2 which overviews the contents of this chapter.

3.1 The Proposed Extensions

This section details the main extensions proposed over the STConvS2S architecture, first

presenting the novel decoding strategy based on combining a LSTM with feed-backward decoding

in Section 3.1.1, followed by a description of the strategies for (a) novel normalization-activation

layers in Section 3.1.2, (b) GridMask data augmentation in Section 3.1.3, and (c) complementing

the inputs with learnable local features and weights in Section 3.1.4.

3.1.1 Feed-Backward Decoding

When using an encoder-decoder model for tasks involving spatial structures (e.g., tasks

such as semantic segmentation of image inputs), it is common to have the encoder comprised of

CNNs that process the input, progressively creating increasingly compact representations that

capture meaningful features, which are afterwards sent as input to the decoder. In situations

where retaining the spatial dimensions of the original input is crucial, such as spatio-temporal

forecasting or semantic segmentation, the decoder typically applies transposed convolutions or

some other interpolation technique to upscale the intermediate representations (e.g., bi-linear

up-sampling followed by a traditional convolution operation).

Wang et al. (2019) proposed a novel technique to maintain the original spatial dimensions,

by using an encoder in the opposite direction to decode (i.e., feed-backward decoding). Dur-

ing decoding, the existing convolutional layers and filters of the encoder are re-used, allowing

learned features to be mapped from smaller dimensions to larger dimensions, without additional

parameters. To apply this technique, a couple of considerations need to be taken into account.

For instance, any pooling operations used in the encoder need to be replaced by interpolation
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Figure 3.1: Illustration for how the dimensions of a filter can be permuted to transform the
channel dimension. The cells with dotted borders correspond to zero-padding, and ∗ denotes
a standard convolution with a stride of one. The middle row illustrates the normal versus
permuted convolution filters.

operations (e.g., bi-linear interpolation) during decoding. Also, if the channel dimension of the

input has its size altered in a convolutional layer L, the weights used during decoding are the

weights from L with the input and output channel dimensions permuted. Figure 3.1 illustrates

the feed-backward decoding procedure, showing on the top part of the figure a typical convo-

lution between a zero-padded input X with 2 channels and spatial dimensions of 4 × 4, and

a set of 3, 3 × 3 filters with 2 channels each (i.e., a filter tensor with 2 input channels and 3

output channels). The result is a tensor Y with 3 channels and the same spatial dimensions as

the input. During the decoding phase, the input-output flow is reversed, and the convolution is

now performed over an input with the same dimensions as the output of the original convolu-

tion (plus zero-padding to guarantee consistent spatial dimensions). The same set of filters are

re-utilized by swapping the input and output channel dimensions, yielding a set of 2, 3×3 filters

with 3 channels each. With this technique, the network learns to both capture spatial features

during encoding and also reverse its effect back to the original representation during decoding,

with the regrouping of the filters dictating the behaviour.

Leveraging the idea of feed-backward decoding, we propose two variations of the STConvS2S

model, denoted throughout this dissertation as ST-FD and ST-RFD. The first variation sim-

ply incorporates this technique with the original STConvS2S model, maintaining the encoder-

decoder structure, but passing the outputs provided by the decoder back through the encoder in
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Figure 3.2: The ST-RFD model leveraging feed-backward decoding with L + 1 convolutional
layers. The boxes labeled as B03D correspond to normalization-activation operations for the
encoder and decoder. The orange circles indicate weight-sharing, with π corresponding to a
permutation of dimensions.

the opposite direction, sharing convolutional weights through a permutation of dimensions. The

final convolution operation is now performed at the end, following all computations. The second

variation, illustrated in Figure 3.2, expands upon the first variation by replacing the decoder

component with a recurrent component to capture temporal patterns. This alternative allows

us to exploit different recurrent approaches for capturing temporal features, without incurring

in an additional increase of learnable parameters through separate convolutions in the encoder

and decoder parts.

In particular, given that the encoder is now also used for decoding, ST-RFD no longer

captures temporal features through factorized temporal filters. Instead, an additional recurrent

component is included, consisting of an LSTM unit that, at each time-step, receives a flattened

representation of the learned spatial features, and outputs a representation for the prediction

of the next time-step(s). During decoding, a component that shares its parameters with the

encoder receives the predicted flattened representations and outputs the final predictions, with

the information flowing from the last layer to the first layer. The recurrent component trivi-
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alizes the prediction of sequences with a length differing from that of the input sequence, and

the transposed convolutional layer from the STConvS2S architecture is not used. Besides the

aforementioned changes, the original encoder structure from STConvS2S, relying on multiple

5 × 5 convolution operations, can be maintained, with the addition of a 1 × 1 convolutional

layer at the end to reduce the dimensionality of the representations passed to the LSTM (i.e., I

considered a final channel dimensionality of one while still preserving the spatial dimensions).

3.1.2 Novel Normalization-Activation Layers

In both the encoding and decoding parts of the ST-RFD architecture, novel normalization-

activation layers are located after every convolution operation (i.e., after the 5 × 5 convolu-

tions), except for the final convolutional layers along each direction (i.e., encoding or decoding).

These novel normalization-activation operations are derived from the recently proposed Evolved

Normalization-Activation (EvoNorm) layers, proposed in the study by Liu et al. (2020). The

chosen operation is an adapted version of the EvoNorm B0 layer, which was the best performing

batch-based version reported by Liu et al. (2020). Let v1, γ and β denote learnable parameter

vectors, and let sb,h,w and sh,w represent the variance of a mini-batch and the variance of a single

instance, respectively. EvoNorm B0 uses the following computation over inputs x.

B0 =
x

max
(√

s2b,w,h (x) + ε, v1 · x+
√
s2w,h (x) + ε

) · γ + β (3.1)

The proposed extension to EvoNorm B0 explicitly models spatio-temporal scenarios, con-

sidering sequences d of two-dimensional inputs when calculating both the batch and instance

variance (i.e., the values associated to each time-step in the input sequence are considered sep-

arately when computing the variance). This extension, denoted here as B03D, is defined as

follows.

B03D =
x

max
(√

s2b,d,w,h (x) + ε, v1 · x+
√
s2d,w,h (x) + ε

) · γ + β (3.2)

3.1.3 GridMask Data Augmentation

Information removal methods are a subset of data augmentation techniques that seek to

reduce overfitting and improve the feature extraction of CNNs, by deleting chunks of the input
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Figure 3.3: Example for the application of the GridMask technique over an input sequence with
5 observations from the CFSR dataset. The black boxes on the different steps represent deleted
regions in each of the observations. The diagram on the top part of the figure visually illustrates
the different parameters involved in the application of the GridMask technique. The blue colored
dotted square represents one mask unit.

data in a randomized or structured manner. The main difficulties associated with these tech-

niques relate to balancing the amount of information to remove, avoiding the excessive removal

of meaningful data or the over-reservation of large continuous regions on the input. Seeking to

mitigate these challenges, Chen et al. (2020) proposed a structured information removal method

called GridMask that provides control over the density and size of the deleted regions, making

it suitable for a variety of tasks.

GridMask applies a grid mask over the input defined by four parameters, namely r, d, δx

and δy. The parameter d defines the length of a single unit on a mask, while the parameter

r controls the ratio of input data maintained within each unit. The parameter r also defines

the keep ratio of an image k (i.e. the percentage of information maintained from the original

image), defined as follows:

k = 2 · r − r2 (3.3)

The parameters δx and δy correspond, respectively, to the horizontal and vertical distance

between the boundary of the image and the first intact portion, allowing the mask to be shifted

both vertically and horizontally. Similarly to the original study, we define d as a random value

between two tunable limits, and δx and δy as random values between 0 and d− 1.

I also propose to extend the GridMask method to 3D input data (i.e., sequences of obser-
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vations) for pixel-wise tasks (e.g., forecasting future sequences or reconstructing missing time-

steps), by sampling the parameter d for the whole sequence, and randomizing the parameters δx

and δy for each individual observation, as shown in Figure 3.3. This corresponds to formulating

the same mask with randomized vertical and horizontal translations for each observation. Cou-

pled with setting the unit length d to a range of small values, these extensions help motivate the

use of spatially nearby locations when predicting a value for the current location. The masks are

applied with a fixed probability value p for each batch of sequences during all training epochs,

with different masks being generated for each sequence within the batch. Through initial exper-

iments, we found that this approach obtained superior results when compared to progressively

increasing the masking probability at each training epoch.

3.1.4 Local Weights and Learnable Inputs

Another technique considered was the extension of the input data with learnable local fea-

tures and weights, as originally proposed by Uselis et al. (2020). In the original study, the

authors studied techniques to incorporate learnable features, intrinsic to each spatial location,

within CNN models, seeking to improve spatio-temporal forecasting by combining both (i) global

location-invariant features, and (ii) location-specific features. Typical CNNs are mostly trans-

lation invariant (i.e., translating an input x and convolving with a filter k is likely to yield the

same result as translating the feature map resulting from a convolution between x and k), treat-

ing each spatial location equally and thus learning global patterns. This is often insufficient in

many spatio-temporal forecasting scenarios, where the behaviour in specific locations should be

guided by their own intrinsic local features. To allow the learning of such features, the authors

propose two complementary techniques, namely Learnable Inputs (LI) and Local Weights (LW).

The LIs correspond to a set of n trainable parameters with the same spatial dimensions as the

original input, concatenated with the input before processing with a convolutional layer. These

parameters allow the network to learn local features regarding every spatial location, which can

complement the learned global patterns or be ignored by the convolutional filters in situations

where they are not beneficial. The LWs further reinforce the individualized learning of different

spatial locations, through a locally-connected layer (i.e., a convolutional layer with a different

filter at each input region, allowing different spatial locations to be weighed according to their

relevance) of weights over the input, resulting in m trainable weights with the same spatial

dimensions as the input. Similar to LIs, these weights are afterwards concatenated with the

original input. Both LIs and LWs can be used individually or together, and the concatenations

with the input can be done before any convolutional layer, making that layer sensitive to local
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Input Output

Local Weights Weighted Input Learnable Input

Duplicate

Figure 3.4: Illustration for the use of Local Weights and Learnable Inputs, adapted from Uselis
et al. (2020). The values C, LI and LW represent the number of channels, learnable inputs
and local weights, respectively, while T represents the number of time-steps and ⊗ represents a
locally-connected convolution.

features.

In my experiments, the LIs and LWs are concatenated with the inputs (sharing the LIs

across the different input time-steps and using different LWs in each time-step), prior to every

convolutional layer – see the representation in Figure 3.4. Furthermore, the simultaneous use of

both techniques has proven to result in significant performance gains compared to using only a

single technique. Similarly to the original study from Uselis et al. (2020) LIs are implemented

with a locally connected layer that receives as input a constant unitary tensor with the same

spatial dimensions as the original input, and the LWs are implemented with a separate locally

connected layer that receives the original tensor as input. Both LIs and LWs are afterwards

concatenated with the input tensor on the channel dimension, causing the convolutional lay-

ers to receive an input with a number of channels increased by the number of LIs and LWs.

During the decoding phase, the feed-backward strategy employed also produces an output with

additional channels, but we can ignore the channels corresponding to the LIs and LWs (i.e., the

predictions are obtained by slicing the output tensor on the dimensions matching the original

dataset channels).

3.2 Overview

This chapter presented the novel approach for spatio-temporal data forecasting that was

considered in this dissertation. Concretely, it first presented the main architecture as an ex-
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tension of the STConvS2S architecture leveraging a recurrent component and the feedbackward

decoding technique. Finally, the chapter presented the different techniques that were tested

in conjunction with the aforementioned architecture and baselines, namely the novel evolving

normalization-activation layers, the GridMask data augmentation method and learnable inputs

and local weights.
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4Experimental Evaluation

This chapter presents the experimental evaluation of the proposed extensions, which involved

tests with two datasets describing meteorological variables. The general evaluation methodology

is presented first, detailing the evaluation metrics and datasets used (Section 4.1). Next, the

results for the future time-steps forecasting scenario are presented and discussed (Section 4.2),

followed by the results for an additional task pertaining to the reconstruction of a missing

time-step from an input sequence (Section 4.3).

4.1 Methodology and Evaluation Metrics

The proposed extensions were evaluated against baselines corresponding to the ConvLSTM

and the original STConvS2S models, on the two datasets that were also used in the study by

Nascimento et al. (2019), namely the CFSR air temperature dataset and the CHIRPS precip-

itation dataset. The different models were evaluated in two different scenarios, with the first

task corresponding to predicting a future sequence up to a fixed horizon ∆, given the previous

sequence of 5 time-steps. In our experiments, we considered ∆ = 1 and ∆ = 5, i.e., predicting

image patches corresponding to the next time-step and next 5 time-steps, respectively. The

second task corresponds to reconstructing a sequence with missing information. Specifically, we

randomly remove an entire time-step from an input sequence of 10 time-steps, and the models

are required to output the entire sequence without incomplete information.

The CHIRPS (Funk et al., 2014) dataset describes 13, 960 sequences of 10 instances for

precipitation measurements on a 50 × 50 grid, each corresponding to a subset of the South

American region (latitudes between 10◦N and 39◦S and longitudes between 84◦W and 35◦W).

Data was collected from 1981 to 2019, measuring daily precipitation at a spatial resolution of

0.05◦, and the original data was interpolated to a resolution of 1◦ per cell. In turn, the CFSR

dataset (Saha et al., 2014) describes 54, 047 sequences for air temperature measurements in a

32× 32 grid, pertaining to a similar region as the previous dataset (latitudes between 8◦N and

54◦S and longitudes between 80◦W and 25◦W). Data was collected from 1979 to 2015, measuring

temperature every 6 hours at a spatial resolution of 0.5◦. For both datasets, and similarly to



Nascimento et al. (2019), we adopted a splitting strategy involving 60% - 20% - 20% of the data

respectively for training, validation and testing, in chronological order.

In the tests with the STConvS2S baseline architecture, we used the best performing version

reported (Nascimento et al., 2019), consisting of 3 convolutional layers on both the encoder

and decoder (plus the final 1 × 1 convolution), each containing 32 filters of dimensionality

5× 5. Similarly, the ConvLSTM baseline consists of 3 layers with 32 hidden states and filters of

dimensionality 5× 5.

In terms of hyper-parameter choices, in all experiments over the CHIRPS dataset, dropout

is applied with a probability value of 0.8 for the ConvLSTM model, and 0.2 for the remaining

models. With the CFSR dataset, dropout was not applied. Both baseline models (i.e., Con-

vLSTM and STConvS2S) and ST-FD use the RMSProp optimizer for training, as reported by

Nascimento et al. (2019), while the other proposed extensions use the AdaMod (Ding et al., 2019)

optimizer. AdaMod is a recently proposed training optimizer based on the Adam (Kingma and

Ba, 2017) optimizer that restricts the adaptive learning rates through momental upper bounds,

mitigating a problem exhibited by Adam where extremely large learning rates are produced

at the beginning of training. All models also use either the traditional batch normalization

operation together with the ReLU activation function (ConvLSTM, STConvS2S, ST-FD and

ST-RFD), or the evolved normalization-activation layers explained in Section 3.2, denoted by

either the B0 or B03D subscripts (STConvS2SB0, STConvS2SB03D, ST-RFDB0, ST-RFDB03D).

In all scenarios, learning rate is set to 0.01 and the batch size to 25, using the root mean squared

error as the loss function. An early stopping procedure is applied to all models, terminating the

training when the validation loss function stops decreasing with a patience threshold of 5. Model

training for the recurrent feed-backward decoding extension, in all the tests with ∆ = 5 (i.e.,

when predicting the next 5 time-steps), used the outputs from the last time-step t− 1 as input

for the recurrent unit at the current time-step t (i.e., training did not rely on a teacher-forcing

strategy).

The GridMask parameters were tuned for optimal performance in the validation sets for

both CHIRPS and CFSR, varying r ∈ {0.4, 0.6, 0.8} and p ∈ {0.3, 0.5, 0.7, 1.0}. The parameters

were finally set as r = 0.4 and p = 1 (i.e., masks applied every sequence) for the CHIRPS

dataset, and r = 0.8 and p = 0.3 for the CFSR dataset. The parameter d was, for both datasets,

defined between 3 and 40% of the width/height of the input, resulting in d ∈ [3, 20] for the

CHIRPS dataset and d ∈ [3, 12] for the CFSR dataset. Experiments involving the CHIRPS

dataset favoured more aggressive masking strategies (i.e., the frequent removal of larger units

contributed to the attenuation of model over-fitting), while tests involving the CFSR dataset
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favoured more subtle masking strategies.

Regarding Local Inputs and Learnable Weights, we varied the filter size k of the LWs between

1×1×T , 2×2×T and 1×1×1 (i..e, in this last case, considering a direct element-wise weighing

unique to each spatial location and time-step in the input sequence), where T corresponds to

the number of time-steps in the input sequence. Furthermore, we varied the number of LIs and

LWs n ∈ {1, 2, 3}. The parameters were finally set as k = 1× 1× 1 and n = 2.

Results were measured in terms of the Root Mean Square Error (RMSE) and the Mean Ab-

solute Error (MAE) between estimated and observed values, and also in terms of the coefficient

of determination R2. The corresponding formulas are as follows.

RMSE =

√∑n
i=1(ŷi − yi)2

n
(4.1)

MAE =

∑n
i=1 |ŷi − yi|

n
(4.2)

R2 = 1−
∑n

i=1(ŷi − yi)2∑n
i=1(yi − ȳ)2

(4.3)

In Equations 4.1, 4.2 and 4.3, ŷi corresponds to a predicted value, yi corresponds to a true

observed value, ȳ is the mean of the observed values, and n is the number of predictions (i.e., we

sum across all cells in the raster representations for the regions under analysis). While the MAE

gives the same weight to all errors, the RMSE penalizes models with a higher variance, as it gives

errors with larger absolute values more weight than errors with smaller absolute values. The

coefficient of determination R2 measures the proportion of total variation in the observations

that is explained by the model, assigning a value of one to a model whose predictions exactly

match the observed values, a value of zero to a model that always predicts the average value,

and a negative value to a model worse than the baseline corresponding to the average.

4.2 Forecasting Future Time-Steps

The RMSE, MAE and R2 results for each model over the test sets, for both prediction

horizons, are shown in Tables 4.2 and 4.1, respectively for the CFSR and CHIRPS datasets.

The results show that the proposed extensions consistently outperform the baselines. Notably,

the recurrent feed-backward decoding extension (ST-RFD) outperforms the ConvLSTM and

STConvS2S models in every setting, with the most significant performance gains occurring

when considering a prediction horizon of 1. This further attests to the recurrent component’s
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CHIRPS

∆ = 1 ∆ = 5

RMSE MAE R2 RMSE MAE R2

ConvLSTM 6.4999 2.4065 0.1341 6.3874 2.3694 0.1628

STConvS2S 6.3769 2.3443 0.1701 6.3311 2.3421 0.1800

STConvS2SB0 6.3301 2.3544 0.1759 6.3255 2.3419 0.1745

STConvS2SB03D 6.3319 2.3445 0.1772 6.3424 2.3517 0.1734

STConvS2SB03D + GM 6.3259 2.3660 0.1753 6.3335 2.3567 0.1738

STConvS2SB03D + GM + LILW 6.1910 2.2910 0.2080 6.2340 2.3251 0.2026

ST-FD 6.3633 2.3375 0.1740 6.3148 2.3419 0.1814

ST-RFD 5.9357 2.2346 0.2638 6.1870 2.3205 0.2120

ST-RFD + GM 5.9312 2.2305 0.2717 6.1809 2.3195 0.2136

ST-RFDB0 5.9280 2.2269 0.2721 6.1773 2.3227 0.2076

ST-RFDB03D 5.9205 2.2253 0.2706 6.1682 2.3182 0.2149

ST-RFDB03D + GM 5.9054 2.2204 0.2756 6.1626 2.3110 0.2166

ST-RFDB03D + GM + LILW 5.9008 2.2110 0.2795 6.1733 2.3027 0.2084

Table 4.1: Results for the different models under consideration, on the CHIRPS dataset for
the tasks related to predicting future time-steps. The subscripts B0, B03D, GM respectively
correspond to the EvoNormB0, EvoNormB03D and GridMask extensions and LILW indicates
the use of local inputs and learnable weights together with the inputs. The bold values indicate
the best performing model for each prediction horizon and evaluation metric.

ability to capture temporal features in the short-term, while simultaneously showcasing increased

difficulty in maintaining temporal features in longer sequences.

Although the ST-RFD model has many more parameters in comparison to the highly efficient

STConvS2S architecture (i.e., mostly due to the dimensionality of the representations passed

to the LSTM layer), training can still be made easily with standard GPU hardware and with

reasonably-sized mini-batches of instances. Tests with the STConvS2S, ST-FD and ST-RFD

took similar amounts of time for training and inference, and significantly less than the tests

with the ConvLSTM architecture.

Besides feed-backward decoding, the novel normalization functions, GridMask augmenta-

tion, and learnable local features/weights all contribute to even larger performance improve-

ments over the baselines, particularly on the CHIRPS dataset and with some mixed results on

the CFSR dataset. Changing the normalization operations to either EvoNorm B0 or EvoNorm

B03D results in considerable performance gains in the CHIRPS dataset, while still being a com-

petitive option in the CFSR dataset. In almost all scenarios, EvoNorm B03D outperforms the
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CFSR

∆ = 1 ∆ = 5

RMSE MAE R2 RMSE MAE R2

ConvLSTM 2.4206 1.6836 0.9060 2.2369 1.5171 0.9217

STConvS2S 1.4172 0.9904 0.9684 1.5896 1.0491 0.9603

STConvS2SB0 1.4183 0.9762 0.9683 1.5141 1.0543 0.9639

STConvS2SB03D 1.3846 0.9520 0.9699 1.4603 1.0289 0.9665

STConvS2SB03D + GM 1.3915 0.9802 0.9696 1.4626 1.0073 0.9664

STConvS2SB03D + GM + LILW 1.1940 0.7923 0.9779 1.4221 0.9730 0.9683

ST-FD 1.3742 1.0080 0.9703 1.5652 1.1130 0.9615

ST-RFD 1.0994 0.7893 0.9815 1.4877 1.0301 0.9652

ST-RFD + GM 1.0964 0.7631 0.9816 1.4710 1.0146 0.9661

ST-RFDB0 1.0837 0.7809 0.9820 1.4708 1.0259 0.9660

ST-RFDB03D 1.0461 0.7278 0.9824 1.4582 1.0279 0.9666

ST-RFDB03D + GM 1.0431 0.7262 0.9833 1.4734 1.0275 0.9658

ST-RFDB03D + GM + LILW 1.0792 0.7228 0.9820 1.4216 0.9676 0.9684

Table 4.2: Results for the different models under consideration, on the CFSR dataset for the tasks
related to predicting future time-steps. The subscripts B0, B03D, GM respectively correspond
to the EvoNormB0, EvoNormB03D and GridMask extensions and LILW indicates the use of
local inputs and learnable weights together with the inputs. The bold values indicate the best
performing model for each prediction horizon and evaluation metric.

original EvoNorm B0. Using the GridMask data augmentation technique together with learn-

able local features/weights further improves the results, achieving the best performance in most

settings. Most notably, extending the STConvS2S architecture with these techniques, particu-

larly with learnable local inputs/weights, severely outperforms the base model, achieving results

comparable to the best reported version of ST-RFD on the 5-step ahead forecast.

Figure 4.1 provides an illustration for the results from the best reported model on average

(ST-RFDB03D + GM + LILW), over both the CHIRPS (top) and CFSR (bottom) datasets. A

consistent colour scale was used in all the images from each dataset. The six images shown in

each row correspond to the last 3 time-steps used to inform the prediction of the next time-step,

together with (a) the ground-truth patches for the next time-step, (b) the predicted patches,

and (c) the absolute error between the ground-truth and the predictions (shown in shades of

red). The images further attest to the proposed model’s ability of making accurate predictions,

although also exhibiting some over-smoothing issues. It is interesting to notice that result quality

when predicting the next 5 time-steps is generally worse than when predicting the immediate

next time-step, although not by much – see again Tables 4.1 and 4.2. Particularly on the
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Figure 4.1: Illustration of the results obtained with the ST-RFDB03D + GM + LILW model
over the two datasets, considering a prediction horizon of one.

CHIRPS dataset, and more evidently with the STConvS2S model, the errors concentrate on the

cells that are originally associated to more extreme values (and thus the impact of the errors on

the averaged metrics is less severe when we consider a larger number of time-steps).

Figure 4.2 presents scatter plots with residuals on the y axis and fitted values (i.e., predic-

tions) on the x axis, for 3 distinct models (i.e., STConvS2S, ST-RFD, and ST-RFDB03D + GM

+ LILW) and on the scenario of one time-step ahead forecasts over both datasets. On the CFSR

dataset, the residuals roughly form a horizontal band around the value of zero in the y axis,

although some outliers are visible and the spread of the residuals is slighly increasing as the

fitted values change (i.e., we see some heteroskedasticity problems, slighly worse on the case of

the STConvS2S model). On the CHIRPS dataset, the residuals are close to zero when the fitted

value is small, and increasingly more negative when the fitted value is large, with some outliers

also clearly visible. The spread of the residuals is approximately constant, but the conditional

mean is not, showing that the models tend to predict higher values when compared to the true

observations. The patterns on the fitted versus residual plots show that there is still room for

improvement in the forecasting models.
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Figure 4.2: Analysis of fitted versus residual values for the STConvS2S (top), ST-RFD (middle),
and ST-RFDB03D+GM+LILW (bottom) models, for one time-step ahead forecasts on the CFSR
(left) and CHIRPS (right) datasets.
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4.3 Missing Data Completion

For this scenario, input sequences of 10 time-steps were created by concatenating the 5 input

time-steps and the 5 ground-truth time-steps from the forecasting task detailed in the previous

section, followed by the removal of a random time-step from the sequence. The architectures

integrating a recurrent component are extended to consider a bi-directional LSTM, allowing

for the representations at each time-step to use both future and past information. All the ST-

RFD variations, as well as the ConvLSTM baseline, involve bi-directional LSTM units, with

the resulting representation at each step being defined as the mean between the forward and

backward states. The 1D convolutions in the decoder from the STConvS2S architecture are also

allowed to use both future and past information (i.e., causal convolutions were not used in this

scenario).

Two different loss function configurations were tested, varying how the model is penalized.

In a first configuration, denoted as Loss1, the model is penalized exclusively based on the missing

time-step. In the second configuration, denoted as Loss2, the model is penalized based on the

entire output sequence of 10 time-steps, with the loss value associated with the missing time-

step being weighed by 0.9 (i.e., the missing time-step loss corresponds to 90% of the total

sequence loss), and the remaining 9 time-step predictions being weighed by 0.1
9 each. This

second configuration explores the intuition that reconstructing the entire sequence of co-related

time-steps, based on the input representations, can be beneficial for more accurate missing data

completion.

The RMSE, MAE and R2 results for each model over the test sets, for both loss configura-

tions, are shown in Table 4.4 and Table 4.3 for the CFSR and CHIRPS datasets, respectively.

Regardless of the loss configuration being used, the reported values are calculated entirely with

respect to the missing time-step. As opposed to the forecasting scenario, the ST-RFD model

and extensions do not provide significant improvements over the baselines. Instead, the ST-

RFD models achieve worse results on average than both baselines in both datasets. The ST-FD

extension, however, achieves comparable results to the STConvS2S baseline, outperforming it in

the experiments over the CHIRPS dataset. For this reason, I focused on improving the results

of the ST-FD extension with the proposed optimizations, as opposed to the ST-RFD extension.

I hypothesize that the worse results with ST-RFD are due to the fact that the output at each

step, in a bi-directional recurrent component, is calculated based on the entire sequence, whereas

in a convolutional component each step is only affected by its closest neighbours, depending on

the filter size (i.e., with a filter size of 5, each step is affected by the two closest past and fu-
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CHIRPS

Loss1 Loss2

RMSE MAE R2 RMSE MAE R2

ConvLSTM 5.6809 2.4968 0.3144 5.6558 2.4678 0.3206

STConvS2S 5.7150 2.4975 0.3044 5.8041 2.5865 0.2779

STConvS2SB0 5.6855 2.4495 0.3126 5.7019 2.4788 0.3102

STConvS2SB03D 5.6767 2.4466 0.3172 5.6955 2.4573 0.3119

STConvS2SB03D + GM 5.7110 2.5115 0.3074 5.7296 2.5358 0.3030

STConvS2SB03D + GM + LILW 5.6538 2.4750 0.3208 5.6733 2.4853 0.3151

ST-RFD 5.8307 2.5168 0.2698 5.8213 2.4687 0.2708

ST-FD 5.6727 2.4610 0.3122 5.8032 2.6677 0.2808

ST-FD + GM 5.6855 2.4208 0.3147 5.7293 2.4915 0.3032

ST-FDB0 5.6508 2.4442 0.3205 5.6602 2.4659 0.3159

ST-FDB03D 5.6393 2.3909 0.3256 5.6598 2.4437 0.3184

ST-FDB03D + GM 5.6891 2.5147 0.3106 5.7177 2.5503 0.3047

ST-FDB03D + GM + LILW 5.6111 2.4214 0.3279 5.6170 2.4245 0.3271

Table 4.3: Results for the different models under consideration, on the CHIRPS dataset for the
tasks related to reconstructing a missing time-step. The subscripts B0, B03D, GM respectively
correspond to the EvoNormB0, EvoNormB03D and GridMask extensions and LILW indicates
the use of local inputs and learnable weights together with the inputs. The bold values indicate
the best performing model for each evaluation metric.

ture steps). This property is especially well-suited to this scenario, since the missing values are

typically much more co-related with the closest future/past observations, and the co-relations

become progressively less relevant the farther an observation is. The superior results achieved

by ST-FD compared to ST-RFD further corroborate this hypothesis.

Changing the normalization and activation operations in ST-FD and STConvS2S to

EvoNormB0 or the proposed EvoNormB03D, further improves the results in every setting, with

the latter always outperforming the former. Using the GridMask augmentation technique leads

to mixed results, and is generally considered detrimental. This could be because this recon-

struction task appears to be easier (i.e., error values are consistently lower than in the future

forecasting scenario) and, as such, the use of techniques to combat overfitting may not be the

most adequate, particularly for models with a highly optimized and reduced parameter set such

as fully convolutional models. Conversely, the use of learnable local features/weights significantly

improves the results for all baselines, frequently resulting in the best performing architectures

for both datasets.
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CFSR

Loss1 Loss2

RMSE MAE R2 RMSE MAE R2

ConvLSTM 1.0465 0.7716 0.9822 0.9240 0.6814 0.9861

STConvS2S 0.8578 0.6054 0.9879 0.8757 0.6202 0.9874

STConvS2SB0 0.8293 0.5752 0.9888 0.8142 0.5612 0.9892

STConvS2SB03D 0.7865 0.5354 0.9899 0.7903 0.5410 0.9898

STConvS2SB03D + GM 0.7938 0.5376 0.9897 0.8454 0.5828 0.9884

STConvS2SB03D + GM + LILW 0.7616 0.5144 0.9906 0.7800 0.5315 0.9901

ST-RFD 0.9671 0.6922 0.9849 0.9528 0.6793 0.9853

ST-FD 0.8922 0.6405 0.9870 0.9071 0.6467 0.9867

ST-FD + GM 0.8676 0.6093 0.9878 0.9355 0.6842 0.9849

ST-FDB0 0.8481 0.5952 0.9883 0.9110 0.6549 0.9864

ST-FDB03D 0.7948 0.5461 0.9897 0.8225 0.5717 0.9890

ST-FDB03D + GM 0.8056 0.5563 0.9894 0.8482 0.5850 0.9883

ST-FDB03D + GM + LILW 0.7800 0.5343 0.9901 0.7861 0.5409 0.9899

Table 4.4: Results for the different models under consideration, on the CFSR dataset for the
tasks related to reconstructing a missing time-step. The subscripts B0, B03D, GM respectively
correspond to the EvoNormB0, EvoNormB03D and GridMask extensions and LILW indicates
the use of local inputs and learnable weights together with the inputs. The bold values indicate
the best performing model for each evaluation metric.

The bi-directional ConvLSTM baseline performs exceptionally well in experiments over the

CHIRPS dataset, outperforming almost every other model, with results deteriorating when

considering experiments on the CFSR dataset. In every setting, the models containing a recur-

rent component (i.e., ConvLSTM and ST-RFD) improve results when considering the second

loss configuration, while the results for fully convolutional models (i.e., STConvS2S, ST-FD)

worsen.

Finally, Figure 4.3 provides illustrations for a time-step reconstruction for the ConvLSTM

(left), STConvS2S (middle) and ST-FDB03D + GM + LILW (right) models, on both the CHIRPS

(top) and CFSR (bottom) datasets. A consistent colour scale was used in all the images from

each dataset and model. For each dataset, the eight images shown in each row correspond to

the ground-truth missing time-step, followed by the respective model prediction and absolute

error between the two (shown in shades of red), for each model. Analyzing the images, we can

verify that all models are capable of generating accurate reconstructions, although once again

exhibiting some over-smoothing. For both datasets, and particularly on the CHIRPS dataset,
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ConvLSTM STConvS2S ST-FD B03D + GM + LILW

CHIRPS

CFSR

Ground-Truth

Figure 4.3: Illustration of the results obtained with the ConvLSTM, STConvS2S, and ST-
FDB03D + GM + LILW models over the two datasets, considering the second loss configuration.

the errors on all predictions are concentrated on regions associated with extreme values.
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5Conclusions and Future

Work

This dissertation presented novel deep learning approaches for spatio-temporal data fore-

casting, specifically on tasks pertaining to forecasting future time-steps and completing missing

data. This chapter overviews the main contributions, and highlights possible directions for

future work, specifically regarding the task of forecasting spatio-temporal data.

5.1 Overview on the Contributions

The most important contributions of my M.Sc. dissertation are as follows:

• A novel hybrid deep learning architecture: Inspired by the STConvS2S architecture

(Nascimento et al., 2019), I proposed a novel architecture that leverages the feed-backward

decoding (Wang et al., 2019) technique, allowing the encoder to simultaneously be used to

decode, with convolutional weights shared between both phases through a permutation of

dimensions. With this technique, the network concurrently learns to capture meaningful

spatial features, as well as reverse the intermediate representations to obtain the final

predictions. Furthermore, instead of performing convolutions along the time dimension

to extract temporal patterns, I employ a recurrent component (i.e., an LSTM), which is

specifically designed for processing sequential data, in order to extract temporal patterns.

• Extension of several recently proposed techniques: Besides the novel hybrid model,

I apply several ancillary techniques derived from recent proposals in the literature, in or-

der to further improve results. The first of these techniques is an extension of the best

reported evolving normalization-activation layer (Liu et al., 2020), which takes into ac-

count the time dimension, calculating the variances with respect to each time-step. The

second technique employed was an extension to the GridMask (Chen et al., 2020) data

augmentation technique, where the same mask is shifted random distances both vertically

and horizontally between the different time-steps in a sequence. The GridMask data aug-

mentation technique improves the model’s generalization ability by reducing overfitting,

and as such, causes the model to learn more descriminative representations. The final



technique applied was the use of learnable inputs and local weights (Uselis et al., 2020) in

conjunction with the inputs prior to each convolutional layer. This technique complements

the global location-invariant patterns learned by the network with local features intrinsic

to each specific location.

• A detailed evaluation of the procedure: I conducted detailed experiments on two

different tasks and datasets, using the proposed extensions alongside previous state-of-

the-art baselines ConvLSTM (Shi et al., 2015) and STConvS2S (Nascimento et al., 2019).

Results were reported through three different evaluation metrics, and further elucidated

through the use of fitted vs residuals scatter plots (Figure 4.2) and forecasting examples

(Figures 4.1 and 4.3). On the first task the proposed novel architecture outperformed all

other baselines, while on the second task the baselines outperformed the novel proposal.

In both tasks, the use of the aforementioned ancillary techniques significantly improved

both ST-RFD and STConvS2S.

5.2 Future Work

There are many ideas for future work to improve forecasting quality. For instance, the

use of deeper convolution blocks could be explored, e.g. using recently proposed enhanced

pooling methods (Hou et al., 2020; Deng et al., 2019; Wei et al., 2019) or using squeeze-and-

excitation optimizations (Roy et al., 2018) to extract more informative spatial features. Another

interesting direction could be to experiment with different missing data completion tasks, such

as the prediction of missing values associated with partial regions due to cloud coverage (Gerber

et al., 2018; Zhang et al., 2018; Siabi et al., 2020).

As previously mentioned, the proposed architecture uses a recurrent component comprised

of either a single LSTM or bi-directional LSTM to capture temporal dependencies. Another

possible direction for future work would involve experimenting with different recurrent archi-

tectures, as the component is only limited to sequence-to-sequence recurrent architectures. In

particular, the recurrent component could be replaced with recurrent architectures optimized

for maintaining information across long sequences of input (Voelker et al., 2019; Meng et al.,

2019; Xue et al., 2019). Higher-order generalizations of recurrent components (i.e., components

which explicitly incorporate more previous states in each update) is another possible beneficial

direction to explore, enabling parameter updates to be influenced by a longer history, thus facil-

itating the capture of long-range temporal dependencies. These interactions lead to a significant
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increase in the complexity of the transition function, although some solutions based on tensor

decomposition have shown promising results (Yu et al., 2019; Su et al., 2020).

It is interesting to notice that convolution operations are equivariant to translations by

design (i.e., translating an input x and convolving with a filter k yields the same result as trans-

lating the feature map resulting from a convolution between x and k), but are not equivariant

to other transformations. Previous studies have proposed group convolutions as extensions to

traditional convolution operations (Cohen and Welling, 2016; Romero et al., 2020), designed to

achieve equivariance to other types of affine transformations (e.g., rotation, reflection, or scaling)

and compositions of affine transformations (e.g., roto-translation). Similar ideias can also be

used as extentions to the proposed model, under the intuition that equivariance to rotations or

changes in the scale of the patterns are particularly interesting when processing gridded remote

sensing data.
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