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Abstract—The widespread presence of smartphones in daily
life has changed the experience and expectations of end-users.
Mobile apps are routinely able to determine their location and
present it to the users, but this information is vulnerable to
location spoofing attacks. One of the approaches to thwart loca-
tion spoofing is to collect unique sensor readings at the location
in a specific time slot and then, later, respond to verification
challenges and compare with readings made by crowd-sourced,
ad-hoc witnesses. This work proposes a witness privacy protection
to the SureThing location certification system. SureThing uses
a combination of Wi-Fi, Bluetooth and other sources of signal,
and ad-hoc witnesses at the same time and location, to produce a
verifiable proof of location. The work was evaluated with detailed
simulations for a use case, ticketless public transport, using a data
set collected on actual public transports in a city. The simulation
results show that the system is feasible and allows proofs to be
successfully issued and verified with adequate privacy protection
on 70% of requests made on a full bus.

I. INTRODUCTION

The widespread presence of smartphones in daily life has
changed the experience and expectations of end-users. Mobile
apps are routinely able to determine their location and present
it to the users, for applications such as ride-hailing, food
delivery, parking meters and many forms of social networking.
More and more applications rely on these location-based ser-
vices [1] but the location information is vulnerable to spoofing
attacks, as it is usually collected in a best-effort approach,
using unauthenticated GPS, Wi-Fi or Bluetooth signals. In
typical location spoofing attacks [2], the spoofer transmits a
signal to the the receivers to deceive them. This deception
can occur when the legitimate transmitter stops transmitting
the signal. The spoofer can also transmit the deceiving signal
with higher power to the receiver. Then, the receiver would
accept the spoofing signal instead of the legitimate signal from
the transmitter. In a specific example [3], GPS signals sent
by the satellites for aircrafts and Unmanned Aerial Vehicles
(UAVs) is not secure. A malicious transmitter can spoof the
GPS signal by emitting similar signals with a higher power.
The aircraft would accept the spoofed signal instead of the
authentic signals and could be misdirected to an unwanted
location.

Location spoofing attacks can have a severe impact on
location-based services. One of the approaches to thwart
location spoofing is to collect unique sensor readings at the
location in a specific time slot and then, later, respond to
verification challenges and compare with readings made by ad-
hoc witnesses. This is the approach followed by the SureThing
system [4]. Witnesses are other users that happen to be at

the same location at the same time. These witnesses act as
crowd-sourcing for a location certification system. They have
the incentive to act as witnesses because they later need their
own location proofs. However, for the system to be trusted and
used by the witnesses it needs to be transparent about data use
and include privacy protections. In other words, there must be
a witness protection program in place.

This paper presents an extension of SureThing to make
it a privacy-preserving location proof system for mobile de-
vices that addresses attacks against the privacy of users and
witnesses, and the reliability of the system. The privacy of
the witnesses is protected by using a geo-indistinguishability
mechanism adapted from the differential privacy mechanism
for geo-location systems. It injects noise/error in the reported
locations and the number of proof responses is limited to a
threshold.

A. Use case

There many examples of use cases for location certifica-
tion systems, such as ride-hailing, food delivery and vehicle
navigation. For example, the well known Uber ridesharing app
allows a user to request a ride and pay with a credit/debit card.
This app uses two-way LBS technology so the driver knows
where to pick up the user, and the user is able to see a live
view of the driver’s location on a map. Our system can add
more credibility to the pick up location of the user by proving
its claimed location with the help of other users in nearby. For
food delivery is the same idea, this system can help the user
to prove its delivery location with the help of other users in
nearby locations.

For the evaluation of the privacy mechanism for SureThing,
we used a Ticketless urban mobility scenario, for public trans-
portation using provable location to enable efficient boarding
and accurate billing. The user does not need to explicitly
present a ticket at entry or exit. The user just needs to carry a
mobile phone and the entries and exits from public transports,
like buses, are detected and the user is billed accordingly. The
system was simulated with a discrete event simulator tool1

with source data collected from actual experiments in a bus
network on a city with 500 000 inhabitants.

B. Outline

The remainder of the document is structured as follows.
In Section 2, we present the background and related work.

1AnyLogic simulation software.
Available: https://www.anylogic.com/downloads/

1



In Section 3, we explain the high-level approach. In Section
4, we describe the system architecture. In Section 5, we
present the Ticketless transports scenario and, in Section 6,
we evaluate our system from the previous scenario. Finally,
in Section 7, we conclude the paper and we discuss future
work.

II. BACKGROUND AND RELATED WORK

In this section, we introduce location proofs and
the SureThing system, then we present privacy mech-
anisms, namely, the Differential Privacy and the Geo-
Indistinguishability. We also introduce existing privacy-
preserving location systems.

A. Location Proof

A location proof (LP) is a claim of the presence of someone
at a specific time and place, and with digital evidence that
allows the verification of the claim. The location proof con-
tains the prover location and identifier, the witness location and
identifier, a random number or timestamp to ensure freshness,
and a digital signature to assure the authenticity of data. A
location proof system allows proving the location of untrusted
mobile devices and a history of locations visited by the user
to third-parties applications and services [5].

B. Location Proof Systems

There are several systems that provide locations proofs.
We highlight APPLAUS, CREPUSCOLO, and SureThing.

1) APPLAUS: (A Privacy-Preserving LocAtion proof Up-
dating System) allows a device to prove its location by
requesting location proofs from nearby mobile devices using
Bluetooth. The location proofs are then updated to an untrusted
Location Proof Server that verifies the trustworthiness level
of each location proof [6]. APPLAUS preserves the privacy
of the source location information of mobile devices from
each other and the untrusted location proof server by using
pseudonyms for the Prover and Witnesses. Every mobile
device is registered with the Certificate Authority (CA) that
generates a public/private key pair. The public key is used as
the pseudonym of the mobile device, and the private key is
used to digitally sign messages. The digital certificate validates
the authenticity of the keys used for the signatures. The privacy
knowledge is separated: the Location Proof Server only knows
the pseudonyms and locations, the Verifier only knows the
real identity and its authorized locations. The CA only knows
the mapping between the real entity and its pseudonyms
(public keys) and makes a connection between the Verifier and
Location Proof Server. For the attackers to learn the location
information of a user, they have to integrate all these sources
of information.

APPLAUS includes a user-centric location privacy model
with the purpose of each user evaluating their location
privacy levels in real-time and then deciding if a location
proof exchange request is accepted based on their location

privacy levels. When one of the nodes generates a fake
location proof, and then colludes with another node, this
is called a Collusion attack. These attacks can be detected
by using a threshold-based solution or by looking into the
location traces. A downside of APPLAUS is that is vulnerable
to the wormhole attack. This attack consists of an attacker to
record a packet at one location and then tunnels the packet to
another location and replays it there.

2) CREPUSCULO: (Collusion resistant and privacy-
preserving location verification system collects location proofs
from co-located mobile devices) is a system that uses a token
from a trusted Token Provider [7]. Token Providers (TPs) are
trusted entities, which issue tokens to mobile devices. Having
these tokens combined with location proofs will prove that
a determined mobile device is at a determined location at
that time, to provide resiliency against collusion attacks. All
entities in the system have to register with the CA, similar to
the one available in APPLAUS, which provides authentication
and authorization services. Every entity registered in the
system has assigned a pseudonym, and only the CA can link
a pseudonym to identity.

The operation of CREPUSCOLO consists of two phases:
the acquisition phase and the verification phase. In the
location-proof acquisition phase, the mobile devices collect
location-proofs and store them in the Location Server (LS).
LS is a non-trusted device that provides services to mobile
entities, storage their location-proofs and tokens. In the
location-proof verification phase, the Verifier (V) uses the
information stored in the LS to check if the Prover (P) is at
a certain location or a certain historical trace of locations.
CREPUSCOLO protects the source location privacy by using
pseudonyms and changing them periodically. The mechanism
of changing pseudonyms has the pseudonym unlinkability
characteristic, which prevents the attackers to identify a set
of pseudonyms as belonging to the same identity. For the
attackers to learn how to link pseudonyms to their associated
identity, they have to compromise the CA, however, the CA
is assumed to be trusted.

3) SureThing: is a location proof system for mobile devices
which can provide evidence of the presence of a user at a
given location relying on witnesses using location estimation
techniques, including GPS coordinates, Wi-Fi fingerprinting
and Bluetooth beacons [4].

The SureThing system follows the design of APPLAUS and
CREPUSCOLO, and has four entities: the Prover that needs to
prove its location and asks location proofs from witnesses; The
Witness is the entity that agrees to give a location proof to the
Prover. There are three types of witnesses, the master, mobile
and the self witness. The master is a certified witness that can
be trusted by the Verifier. The mobile witness is an untrusted
random witness. If there is no witnesses available, the prover
can act as a self witness and generates a weak location proof.
The Verifier validates the proof of the Prover and informs it.
It is up to the Verifier to define the acceptance criteria of a
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proof, depending on the application needs and required trust
level for location data.

The CA in SureThing is assumed to be trustful and is
responsible for generating a public key certificate for each
user. We assume that each user of the system has to have a
unique identifier and it has its own public and private keys.

When a location proof is requested, SureThing operates
in the following way: the Prover asks to the Verifier how it
should obtain a location proof; the Verifier replies with a Proof
Demand that specifies how the Prover and the Witness should
obtain their location evidence; afterwards, the Prover sends a
Proof Request to the witnesses nearby, this request contains
the identification of the Prover and the demand previously
received; the Witness generates the location proof and returns
to the Prover; this location proof is signed with the private key
of the Witness; then, the Prover forwards the location proof
to the Verifier to be verified; the location proof contains a
prover identifier and location, witness identifier and location,
a signature from CA for authenticity of the proof, and a token
(i.e., random number and/or timestamp) to ensure freshness;
the Verifier needs to check the signature in the location proof,
so it requests to the CA the public key of the Witness; after
verifying the location proof, the Verifier decides to accept or
reject it.

SureThing uses witness redundancy and decay mechanisms
to avoid collusion attacks. For the system to ensure redundancy
protection, the location proofs have to be collected from
multiple witnesses instead of one. Also, the same witnesses
cannot be used too many times. This is achieved by decreasing
the value of the proofs from the same witnesses. If an attacker
wants to deceive the system, he will have to collude with
many false witnesses. Given this reliance on many and fresh
witnesses, SureThing is most effective for crowded locations,
where a user can obtain location proofs with a diversity of
witnesses. In its earlier versions, SureThing lacked privacy
protection for its witnesses.

C. Differential Privacy

Differential Privacy is a privacy protection mechanism.
Its principle is to quantify and limit the maximum possible
information gain by the attacker, as a way to reduce the risk
of the privacy being compromised [8]. Differential Privacy
consists of analyzing and sharing information with individual
privacy protection according to the existing policy or legal
requirements for disclosure limitation or de-identification. This
mechanism guarantees that anyone observing a set of differ-
ential private analyses will make the same inference about
any private information of the individual, whether or not that
private information of the individual is included in the input
to the analysis.

The private information is limited and quantified by a
privacy loss parameter, usually designated epsilon ε. This
parameter quantifies the maximum possible information gain
by the attacker and determines how much noise needs to be
introduced during the differential private computation. Using

a smaller value of ε results in stronger privacy protection but
less accuracy due to the deviation between the real analysis
and each approximation output computed scenario.

Differential Privacy protects against a wide range of poten-
tial privacy attacks, including unknown attacks at the time of
deployment. In a set of individuals, their data will be differ-
ential private even when multiple analyses are performed on
that data, as long as each of the analyses satisfies differential
privacy. Releasing too many accurate statistics will result in a
considerable privacy loss. To avoid this, the number of analysis
performed on a specific dataset is limited while providing an
acceptable guarantee of privacy. An example supposes that
differential private data was given to Alice and Bob. The
privacy loss parameter of 1ε is used every time. If Alice and
Bob decide to collude, the resulting data is still protected, only
the privacy will be weaker, i.e., the privacy loss parameter will
become 2ε. They will gain some data, but you still quantify
how much information they can get, this is a property of the
composition. The composition is a method to stay in control of
the level of risk as new use cases appear and processes evolve.
The more the information is intended to be queried, the more
noise has to be introduced in order to minimize the privacy
leakage. Once the data has been leaked, it will no longer keep
the information of the users private, this means that there can
be limits on the number of queries answered by a user.

Differential privacy techniques can be applied to geographic
location data.

D. Geo-Indistinguishability

The application of Differential Privacy to geographic lo-
cation data is called Geo-Indistinguishability. It is a user-
centric Location Privacy-Preserving Mechanism (LPPM) that
limits and quantifies the information gain by the attacker
observing the reports with location data between users. Geo-
Indistinguishability protects the location of the users reporting
their location and guarantees that any two locations within a
given radius around the user are statistically indistinguishable.

Cunha et al. [9] propose a new mechanism that can be used
to report location data, sporadically or continuously, called
Clustering Geo Indistinguishability. This mechanism considers
two important factors, the frequency of updates and the dis-
tance between the reported locations. It generates obfuscation
clusters for closer locations, and the same obfuscated point
is reported to nearby locations. The frequency of reported
locations can compromise the privacy of the user, since
the attackers can correlate the information of the reports to
attack. Clustering Geo-Indistinguishability is based on Planar
Laplace (PL) Geo Indistinguishability mechanism for sporadic
scenarios and Adaptive Geo Indistinguishability mechanism
for continuous scenarios. PL geo-indistinguishability consists
of adding 2-dimensional Laplacian noise centered at the exact
user location x and reporting it as an obfuscated location.
Adaptive geo-indistinguishability is a combination of PL and a
computed variable ε correlated between the past locations and
the new location. With this variable ε, the adaptive mechanism
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can adjust the amount of noise necessary to obfuscate the exact
user location.

The correlation ε is the error between the exact location and
an estimation obtained with a simple linear regression. If the
correlation between reports is low, the mechanism increases
the privacy level, this means the attacker observing the report
of the location will have less probability of knowing the real
location. And if the correlation between the reports is high,
the mechanism decreases the privacy level.

E. Privacy-preserving location systems

We have presented some location proof systems and privacy
mechanisms for location data. In this section we present
systems that use location and protect the user privacy: Icelus,
MATRIX and Olteanu’s framework.

1) Icelus: is a privacy-preserving location proof system that
allows estimating the user location and modeling the user
movement by combining multiple observations from multiple
devices [10]. The user can spoof its location by using only
their smartphone to prove its location, Icelus takes leverage
of the increasing number of Internet of Things (IoT) devices
used by users and those smart environments to locate them.
The Icelus system organizes the IoT devices in a hierarchy. On
top of the hierarchy is the hub, which hosts the Icelus service.
The Hub receives information from different sources to avoid
the data be seen by third-parties, considering that only the user
controls the Hub. Those different sources that send information
to the Hub are smartphones and smartwatches, and Beacons,
i.e. third-party devices that observe devices of the users. The
attacks that Icelus is designed to prevent are the attempts to
bypass user authentication with physical devices and terminals
to gain unauthorized access to locations, properties of the user
or from third-parties. These types of attacks can compromise
passwords, biometrics, or security tokens, such as smart cards
and swipe cards. Icelus do not assume that devices of the users
have not been compromised, but that they can be physically
stolen, tampered or even remotely compromised.

Using the Hub to get all geolocation information can bring
privacy concerns for the users or third-parties. For Icelus to
resolve this issue, the Hub and the Site can only learn the
distances between the reported locations, and not the precise
coordinates. Sites are entities that query the Hub about the
possibility of the user to be physically present at a location.
Icelus relies on proofs indicating that the user is not at a
determined location. Instead of operating with the precise
location of devices, it operates on their distances.

All the location reports arrive at the Hub are encrypted.
Icelus uses Homomorphic Encryption (HE) to determine the
distances without knowing the precise location of the devices.
HE is a method of encryption that allows any data to remain
encrypted while it is being processed and manipulated. This
type of encryption is suitable for arithmetic computations,
more specific, for Euclidean distances. To calculate their
relative positions, the Hub needs to have a pairwise distance

between three points.

2) MATRIX: Narai [11] proposes a system, called
MATRIX, to allow end-users to control visibility of location
and sensor accesses by mobile applications. This system
implements a PrivoScope service with an user interface
that verifies all locations and sensor accesses by mobile
applications and gives real-time notifications, helping the
users to make privacy aware decisions for the installed apps.
And it uses a Synthetic Location service for users to provide
obfuscated or synthetic location trajectories or sensor traces to
mobile applications. Also, MATRIX implements a Location
Provider that generates realistic privacy-preserving synthetic
identities and trajectories for users by using traffic information
from historical data of Google Maps Directions API, and
accelerations from user driving experiments. A synthetic
identity is a unique virtual identity for each mobile device
user, and each one has a unique movement pattern. A synthetic
identity does not have any specific attributes of the user
location. These trajectories ensure location privacy because
they are independent of users real locations, although, if the
adversary detects that the trajectories are fake, the service
is denied. The adversary is a mobile application that uses
the location information of the user. The MATRIX protects
against tracing attacks. To guarantee that the adversary
does not detect that the trajectories are synthetic, they must
emulate real movements by using routines of the users,
their schedules, traffic information and driving behavior.
These synthetic trajectories are important because they
permit to reduce the privacy leaks and to understand how the
user’s location information is exploited by mobile applications.

3) Olteanu’s co-location privacy framework: Most of the
online social network providers, such as Facebook, give to the
users the functionality of sharing their location jointly with
their photos and posts. They also provide the ability to mention
other users, to tag them on photos or in posts. In such cases,
that information indicates that the users mentioned in a post
or photo are co-located. Sharing this information brings social
benefits but also location privacy concerns, for both the user
who shared the information and for the tagged user.

Olteanu et al. [12] propose a framework to allow two
users to make decisions about posting co-location information.
Co-location information is location information that involves
information from other users, i.e., there is a dependence be-
tween the users. This framework models the direct and indirect
benefits, and the privacy concerns of location and co-location
sharing, and permits the analysis of behaviour of users of
sharing the location and co-location. This is important because
can compromise the privacy of the users, the co-location infor-
mation is related with all involved users. At any moment, an
adversary, such as the service provider or the friends of these
two users, has access to reported locations and co-locations.
This framework is based on game theory and conjoint analysis.
Game theory allows us to model and formalize the sharing
behaviour of the users preferences. Conjoint analysis allows
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Fig. 1: Ticketless transport mobile application screen design.

us to determine the benefits of sharing location and co-location
information, and the associated location privacy concerns.

The authors conclude that because of conflicting
preferences, one of the users can be forced into a situation that
it does not desire, and also sharing co-location information
can additionally encourage users to over-share their locations.

F. Summary

In this section we presented location proof systems, privacy
mechanisms and their use. The discussed works are relevant
for the privacy protections added to the SureThing system.
Icelus illustrates how the use of distance instead of coordinates
can still provide relative location. MATRIX shows the value
of synthesized location and trajectory data to protect user’s
privacy. Olteanu’s work shows that co-location, such as the
one that happens when a witness testifies for a location proof,
must be a core concern.

III. HIGH-LEVEL APPROACH

Our system extends a previous version of SureThing with
important mechanisms to address the location privacy protec-
tion of the users. It allows the users to protect their privacy
when they are helping other users, with their location data,
to prove its claimed location. The system has two main
functionalities to ensure the privacy of the location of the
users. The geo-indistinguishability mechanism to inject noise
in the location data of the user when is shared with other
users to obfuscate its real location. The other functionality is
to limit the number of replies to location proof requests from
other users, this helps to limit the information shared because
of the Differential Privacy principle, the more information is
shared, the more noise needs to be injected. Also, if the witness
is in the same area, it can respond to other users with a static
position, to avoid to send other location of the same area. This
functionality can reduce the leak of location information of the
witness.

In terms of security, we want to secure the privacy of the
users and specially the witnesses that help other users. For a
malicious user interested in attacking the location privacy of

other users, it has to be a user registered in the system. We
consider an attacker, a malicious prover that requests location
proofs from other users, i.e., witnesses to collect accurate
location information of them. This attack can be proof stealing,
i.e., stealing and using location proofs from other users. The
malicious prover could want to obtain the identity of the
witnesses by requesting location proofs to the witnesses. Also,
we consider an external attacker from the system with the
goal to break the anonymity of the users in the system. This
attacker can intercept the communications between the prover
and witnesses.

This system should reduce the leakage of location infor-
mation of the witnesses by injecting noise in the location
data and limiting the number of location proof responses. We
assume that the communications between users are encrypted
and the external attackers cannot break the encryption. Also,
we assume that every user has a certificate and there is
validation of the certificate using the CA, however to simplify
the implementation and testing of this work, we do not use
the certificates. In this work, we focus only in the location
privacy protection, but the protection of the identity of the
users is planned for future work.

In our system, the noise and the limit of replies, are
presented to the users as the configuration of the level of
privacy. They have the willingness to share resources and a
risk appetite. This allows us to quantify how much noise they
want to put in their location proofs and how many locations
proofs they want to report to other users. The user does
not have detailed control in the parameters, but can choose
one of the available levels of privacy. Figure 1 illustrates
the prototype of the ticketless transport mobile application,
based on SureThing. This prototype have all the functionalities
mentioned before. The user as a witness can activate or not the
privacy mechanisms. It can activate or not the static position.
And it can decide the number of location proof responses and
the privacy range average distance. Pressing the blue button,
it will request a location proof. In this case, the user location
is at “Marques” bus stop.

The system has a fundamental trade-off between the levels
of privacy protection and usability and accuracy of this system.
We want a system capable of protecting the privacy of the
users and at the same time, keep the system accurate and
usable. Also, we want to evaluate the trade-off between few
witnesses without privacy protection and more witnesses but
less accurate due to privacy protection. This is meaningful for
different use cases, where there can be a variable number of
witnesses.

IV. ARCHITECTURE

Figure 2 presents the main classes that are used by both
the Prover and the Witness. Starting from the top, the Proof
class is abstract to represent the Location Proof. A Geo Proof
contains two Geo Location objects. One is for the location of
the Witness and the other is for the Prover. Each Geo Location
is defined by geographical coordinates, such as latitude and
longitude, and accuracy. With this information, the area is
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Fig. 2: Class diagram with the main classes used by both
Prover and Witness.

divided in circles and the Verifier can check if the Prover
and the Witness are inside of the same area. The Manager
class is responsible for collecting geo location data. And it is
divided in two because Prover and Witness will collect location
data for different goals. The Prover Manager is to inform the
Witness about the location of the Prover. so the Witness can
add it to the proof. The Witness Manager obtain the location
data and it will create a proof to send to the Prover. They share
the same Manager because the process to obtain the location
is the same. We extended SureThing with privacy protection
for the location of the witnesses.

We created a new module called Privacy in the mobile
application, we implement the geo-indistinguishability
mechanism to increase the privacy of the location of the
witnesses when reporting location proofs to other users. The
geo-indistinguishability class is highlighted in Figure 2. The
epsilon is the noise parameter that controls the quantity of
noise is introduce in the location data. The function that
introduces noise, it uses the Planar Laplace mechanism on
the mobile application in order to report to the Prover the
obfuscated location of the Witness rather than its real location.

A. Prover
In the beginning of the process of proving the user location,
the prover will send a Proof Demand request to the Verifier
to know what type of proof that the Verifier wants to be
generated. Then, it will receive the Proof Demand with the
following information: the witness model that is going to
be used when gathering proofs; the proof technique that is
going to be used by the Prover and Witness when collecting
proofs, in our system it will be Geo proofs; a nonce to avoid
replay attacks; and the number of witnesses for the collusion
avoidance mechanism. With this information, the Prover
starts the witness discovery process [13]. After a witness is
detected, the Prover will send to it a Proof Request, that
contains the proof technique and the nonce from the Proof
Demand, and the identifier and the location data of the Prover.
Then, the Prover will receive the location proofs necessary

and it will send all at the same time to the Verifier.

B. Witness
When a Witness receives a location proof request from
the Prover, the Witness can accept or reject the request
according to the limit number of location proof responses
sent to other users. If accepts it, the Witness will determine
its location data, by using the proof technique in the proof
request received from the Prover, in our system will be
only the Geo technique. This technique collects geographic
location information from the GPS receiver. Then, the
Witness to protect its location privacy, it can define how
much noise wants to inject in the location data. Then, the
Witness signs the location proof with his private key to
guarantee integrity and non-repudiation in the exchange of
the proof. The proof is replied by the Witness to the Prover
with the Prover ID, Witness ID, location data of the Prover,
location data of the Witness, nonce and signature of the proof.

C. Verifier
To validate the proof of the Prover, the Verifier has to perform
the validation of the digital signature of the proof made by the
Witness, and must check if the nonce in the proof is the same
that was sent to the Prover. After this, the Verifier will check
the type of proof technique used to create the location proof.
The location proofs were obtained by the Geo technique,
the Verifier will make a comparison between the prover and
witnesses locations to determine if their distance is smaller
than the threshold defined by the developer, this threshold
is the maximum valid distance between the prover and the
witness. Then, the Verifier has to calculate the midpoint of all
the location proofs of the witnesses, since the coordinates are
close to each other, we can treat the Earth as being locally
flat and simply find midpoint as thought they were planar
coordinates. So, the Verifier calculates the average of the
latitudes and the average of the longitudes to find the latitude
and longitude of the midpoint. After the calculation of the
midpoint, the Verifier will check if the midpoint is in the area
previously defined, it will accept the proof, otherwise, will
reject it. The threshold of that area should be adapted for
the specific use. For wide areas, a high threshold would be
acceptable, because the user is probably still inside that area.
For small areas, the threshold should be lower.

V. TICKETLESS TRANSPORTS USE CASE

In the last years, the population in urban areas has been
increasing and it has tendency to increase more sharply.
Consequently, the number of users of public transports has
been increasing too. According to an International Association
of Public Transport - UITP, currently 64% of the trips done
in the world happened in urban areas. It is assumed that
until 2050, the number of people moving per kilometer in
urban environment triples [14]. A system of transport have an
important paper in the large metropolitan areas, therefore is
necessary to guarantee the best conditions of this service to
offer better experience to the users.
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The ticket services, consequently, have to be updated in
order to speed up the process of acquiring and validating
of tickets, reducing the waiting lines and saving time to the
passengers. Initially, the tickets were made of paper, through
the years, was evolving to systems with electronic support.
Nowadays, there are proximity cards for electronic tickets,
allows to save the tickets and offers guarantees of security
to the operator as well to the users, and the users can acquire
more than one ticket and save them in the same card. However,
to acquire the tickets is necessary to go to a ticket office or to
an automatic ticket machine and can cause waiting lines for
the users.

Paradela [15] proposed a public transport system using a
smartphone with NFC in smartphones to replace the proximity
cards, in order to simplify the process of selling tickets. In
this scenario, the smartphones are used to buy tickets through
a mobile application, to save the ticket and to access the
public transport service. In the validation, the smartphone
works similar to the proximity cards, to validate the ticket
it is necessary to approximate the smartphone to the validator.
This is one example of the trend to use personal devices, like
the smartphone, as the ticket for the public transport.

Considering these systems and the different ticket services,
we propose a new system for public transports, a Ticket-
less transport system for public transportation using provable
location to enable efficient boarding and accurate billing.
The operator with this system encourage spontaneous use of
transportation without being necessary to approximate from a
validator, and can dematerialize the tickets, instead its used
virtual tickets.

Most of the works are focused on the operator perspective to
have a better system with reduced costs, and in this work we
are focused on the user perspective and its use of location
proofs. The user community is very important in a crowd
sensing system, according to the survey results [16]. Crowd
sensing is a data collection and sharing performed by a large
number of regular users [17]. Calado [16] defines the user
as a person that uses its Internet-connected smartphone to
capture and share information, and defines community as a
group of people that have a shared goal and that join together
to share information related with the goal. This a cross-
checking system, to make it more transparent, and involve the
community to share location information with the user that
pretends to prove its location.

The idea of this system is to allow public transport users to
do small trips, without being necessary to pay a monthly pass
or a bus ticket. Using a mobile application, the user can travel
and the service charges only the route that it traveled. When
the system detects the entry of the user in the bus, it starts to
determine the route of the user that is doing through location
proofs with witnesses near to the user. When the user leaves
the bus, the system stop detecting the user and charges price
of the trip. In the perspective of the user, it has interest in this
system, it gives a flexible tariff in the public transports, there is
no need for buying tickets in physical places, eliminating the
waiting lines. And the user with the collected location proofs

Fig. 3: The simulation route of the bus from Anylogic.

from the community can use it as complaint mechanism, in
case the operator charges the user more than it should or for
other possible scenarios.

VI. EVALUATION

Now, that we understand the system, how it works and what
is the motivation, we have to evaluate the system to know if it
is feasible and practical. For this purpose, we use the ticketless
transport use case. Regarding the privacy concerns of the users,
what is the proof acceptance rate considering that the users are
using privacy protection on their location. And what type of
attacks or adversaries this system can protect against the users.

We have a dataset of real GPS coordinates of smartphones
during a bus trip between the Marquês de Pombal stop and the
Campo Grande stop in Lisbon, collected in previous work by
Santos [18]. We evaluate our system by simulating and analyz-
ing the users using the Ticketless transport system in different
experimental scenarios. The simulation was developed using
AnyLogic software with a creation of a model to represent the
real system. This model considers only the important details,
therefore the model will be less complex than the original
system. Anylogic is a multi-method simulation modeling, it
develops simulation models using discrete events, agent-based
and system dynamics. We choose Anylogic because it has GIS
maps integration, i.e., it provides GIS maps in the simulation
models. The elements of the simulation model can be placed
on the map and can move from one point to another through
existing roads and routes based on real spatial data. Anylogic
has a built-in search, similar to Google Maps, that allows us
to easily locate streets, roads, shops, and bus stops. This helps
us to simulate a real route with GPS coordinates.

In our simulation, we create a model that represent the route
of a public bus in the center of the city of Lisbon in Portugal.
The route of the bus has four bus stops, it starts at the bus
stop of Marquês de Pombal, and then goes to bus stop of Av.
Fontes Pereira de Melo, Picoas and it ends at the bus stop
of Saldanha. Figure 3 presents the route map of the bus, we
decide this route because of the dataset available from Santos
[18]. In the beginning of the simulation, the bus starts to do
the route and the users will start appearing in the bus stops
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Fig. 4: Acceptance rate of proofs during the best case
scenario.

waiting for the bus to pick them up. When the user enters
the bus, it validates the beginning of the trip by proving it
through location proofs. Then, when the user leaves the bus,
it validates the end of the trip through location proofs.

In this simulator, the users to prove their location and to
reply to location proof requests, they execute the adapted code
from the SureThing project to simulate the system. For the
privacy mechanism, we imported the Privacy module of the
SureThing code, the Geo-indistinguishability class that permits
to inject noise in the GPS coordinates of the witness. The
location proof in the simulator is adapted from the SureThing
code and only has the necessary information, it has witness
location, prover location and the timestamp.

A. Simulation setup

For all the experiments that we are going to evaluate,
we have to define parameters to setup the simulator. Each
experiment has the duration of one hour due to the personal
learning edition of Anylogic that allows only one hour of
simulation. We define the capacity of the bus as the same
number of a regular public bus, that is approximately 80
users. Every user has a unique name and surname to easily
identify, and a Boolean parameter to know if the user has the
mobile application or not to participate in the system. When
the user goes to one of the stops of the route to wait for
the bus, the user have a parameter for the destination stop
determined by the probability of one of the stops. To verify
in which bus stop the user is, we defined the threshold of
the bus stops to 100 (one hundred) meters. It is high enough
to be accurate to prove that is in that bus stop and not in
other bus stop, since the distances between the bus stops is
higher than 250 (two hundred and fifty) meters. The speed
parameter of the bus is 30 (thirty) kilometers per hour, and
the time that the bus waits in each stop it is between 1 (one)
minute to 3 (three) minutes.

B. Best-case scenario

First, we evaluate the best case scenario, where all the
users have this mobile application and none of them is using
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Fig. 5: Acceptance rate of proofs with different noise
parameters.

privacy protection. None of the users is using any privacy
mechanism in this scenario, all the witnesses are sending their
real location. This scenario evaluates if the system is feasible
and practical for the users. These measures were obtained after
30 experiments. The average of users using the bus during one
hour in each experiment is 290 users. Figure 4 represents the
acceptance rate of proofs of the users during the entry and exit
of the bus. We can observe that most of the claimed locations
were approved during the experiments at the entry and at the
exit of the bus. This is the best scenario possible, however,
there were claimed locations denied, specially at the entry of
the bus. Also, a significant number of claimed locations were
not able to prove their location. A possible reason for these
numbers is because of the simulator, when the users enter
the bus to prove their location, they do it one at a time, the
simulator cannot do multi-threading in this process.

C. Geo-indistinguishability

For the second experiment, we studied the effect of geo-
indistinguishability error in the location of the witnesses to
evaluate the proof acceptance rate. The witnesses will use
different values of error to protect their location privacy.

We tested the following noise parameters: 1, 0.5, 0.1, 0.05,
0.01, 0.005 and 0.001, and for each noise parameter we ran 10
experiments and all the users have the same noise parameter.
We wanted to compare if, by using more noise, we could have
better location privacy for the witnesses while the system is
usable. Our results are presented in the Figure 5. The noise
parameter can variate between 0 and 1, and we can observe
that when the noise parameter tends to 0, the location is more
private. Setting the noise parameter to 1, it means there is no
noise in the location data, that is why there is a high percentage
of approved proofs. It is expected that decreasing the noise
parameter, the percentage of approved proofs will decrease
too. All the noise parameters that are equal and higher than
0.01 have high percentage of approved proofs, because the
average distance between the bus stop and the witness location
is smaller than threshold of the bus stop. Table I presents
the average distance between the bus stop location and the
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noise parameter average distance (meters)
1 3.80

0.5 4.89
0.1 5.12

0.05 9.99
0.01 35.44

0.005 66.89
0.001 253.90

TABLE I: The noise parameters and the corresponding average
distances between the witness and the bus stop.

witness position with the respective noise parameter. We can
observe that the number of denied proofs start to increase when
the average distance between the bus stop and the witness
location gets closer to the threshold of the bus stop. Using
the noise parameter 0.005, the percentage of denied proofs is
19% because the average distance is 66.89 meters that is very
closer of the 100 meters of the threshold of the bus. Reducing
the noise parameter to 0.001, the percentage of denied proofs
is higher than the percentage of approved proofs because the
average distance between the witness and the bus stop is
higher than the threshold of the bus stop. Using this noise
parameter will protect more the privacy of the witness but
becomes useless for the system to verify the claimed location
of the prover. So, if a witness wants to protect its privacy as
maximum as possible, it should use lower values for the noise
parameter. But if a witness wants to help other users and at
the same time wants to protect its privacy, it should use values
close to 0.005. The witness has full control of their privacy.

D. Response throttling

After studying the effect of geo-indistinguishability error,
we studied the effect of response count, i.e., the number of
replies to ad-hoc witness requests. We will use the noise
parameter 0.005 tested in the previous simulation because
it gives some relevant level of privacy and it has a good
percentage of accepted proofs. Every user in this simulation
will use the same noise parameter and the same limit of proof
responses. During the previous simulations, we recorded the
number of proof responses of all witnesses, and the average
number of proof responses is 76 per each witness. The limit of
proof responses will change in each experiment, first we will
test the average number of proof responses and then, we will
increase and decrease 50% of the average number to see the
results of that effect. For each limit value of proof responses
we will run 10 experiments for added statistical confidence in
the results.

Figure 6 presents the results of testing different limits of
proof responses from the witnesses and the effect on the accep-
tance rate of claimed proofs. We can observe that between the
different limits of proof responses, there is a small variation
of the acceptance rate of the claimed locations. The result
shows that limiting the number of proof responses from the
witnesses, it will decrease the percentage of approved proofs,
but it will reduce the leakage of location data of the witness.
Reducing 50% of the average number of proof responses, the
difference of the results was 5% less of approved claimed
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Fig. 6: Acceptance rate of proofs with different proof
response limits.

locations, which has not big impact on the acceptance rate but
has a good impact in protecting the privacy of the witnesses.
Increasing 50% of the average number of proof responses,
the percentage of approved claimed locations increased 7%,
but the witnesses have more exposure of their location data.
Also, we can observe from Table II that using the same noise
parameter, and reducing the maximum of proof responses from
the witnesses, it will result on a bigger distance between the
witnesses and the bus stop, with less witnesses available it is
less accurate to prove the claimed location.

limit of proof responses average distance (meters)
38 76.85
76 76.40

114 68.52

TABLE II: The limit of proof responses and the corresponding
average distances between the witnesses and the bus stop.

E. Attack resistance

We evaluate the defenses of the system against a malicious
prover that intends to obtain the real location of a witness. The
witnesses have privacy protection using the noise parameter
0.005 and a limit of 76 location proof responses, this values
ensure a good privacy protection and, at the same time,
the usability of the system. We create an attacker, i.e., a
malicious prover, a user that is in the bus trying to collect
the maximum possible information about the real location of
the witnesses. The attacker will not leave the bus during the
simulation, and it will try to gather location proofs from the
witnesses. In this simulation, we assume that the attacker has
prior knowledge about user’s location. Because of the publicly
available transportation information and road networks, the
attacker knows there is a high probability that the target user
is on the bus and it will try to know the path of the target
user through the location proofs. We define the target users of
the attacker, the users that entry on the bus in the first station
and leave the bus in the last station. We decided the longest
distance to evaluate how much information knows about the
path of the target user.
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Our results are presented in Figures 7, 8 and 9. We can
observe that the attacker could collect location information
about the target users. In the figure 7, the attacker collected
a high number of location proofs from the target user, which
allows it to trace a significant path of the user. In this situation,
the bus was almost empty and the target user had high
availability to respond location proofs. In the figure 8, the
attacker collected less number of location proofs compared to
the previous one, because the bus had more users traveling and
requesting location proofs, which reduce the availability of the
target user to respond location proofs to the attacker. With the
bus almost full, the target user had a very low availability to
respond location proofs to the attacker, for this reason, the
number of location proofs collected by the attacker is very
low, the result is presented in the figure 9.

VII. CONCLUSION

In this paper we presented a privacy-preserving extension
of SureThing for witness protection by using privacy mecha-
nisms to protect the location data of the witnesses. The Geo-
Indistinguishability mechanism protects the location privacy of
the witness by injecting noise in the location data quantified by
the noise parameter. We also proposed response throttling to
limit the number of location proof responses by the witnesses.
The witnesses have willingness to share resources and some
risk appetite, so they can select a personal privacy setting in
their mobile application that will quantify how much noise
they want to put in their location proofs and how many
locations proofs they want to report to other users. Our
system has shown, through simulations, that it is practical for
ticketless transport in a city, with a 70% proof acceptance rate,
as long the noise parameter of each user is 0.005 and the limit
of number of location proof responses is 76.
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