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Abstract—Relational databases provide a strong foundation for
constructing applications due to their ACID properties, which
come at the cost of synchronization. Modern distributed applica-
tions reached such a scale, both in terms of the amount of data
and the number of concurrent clients, that traditional databases
cannot sustain it, resulting in performance degradation. Other
distributed storage solutions appeared that scaled horizontally by
employing optimistic replication protocols that only guaranteed
eventual consistency. Besides offering weaker consistency, many
modern key-value stores have difficulty maintaining their guar-
antees at a large scale, with higher latency and dynamism of the
membership. These systems offer better performance but provide
a less stable foundation to build applications, as they allow for
concurrent data updates whose conflicts need to be resolved by
the application developers.

In this thesis, we propose SconeKV: a distributed key-value
storage system with strong consistency guarantees for large scale
deployments. SconeKV offers serializable, distributed transac-
tions. It leverages a membership layer with strong probabilistic
guarantees and a design based on horizontal partitioning, reduc-
ing the synchronization required between nodes, while still em-
ploying consistent replication protocols and thus providing strong
consistency to clients. Experimental results show that SconeKV
performs better than CockroachDB in write heavy workloads
whilst being competitive with Cassandra in all workloads.

I. INTRODUCTION

Distributed systems began at a much smaller scale than
today. Initially, these systems were comprised of a few nodes
connected to a centralized database for storage. Relational
databases provide applications with a strong foundation, of-
fering transactional support and strong consistency on client
operations. Today the paradigm has changed. Users demand
that systems are always available, leading to a shift to cloud
computing. Traditional relational databases are able to scale
vertically, but now systems require databases that scale hori-
zontally, are always available and with low latency, anywhere
in the world.

Previous to this, an initial approach to distributed scalable
storage were peer-to-peer distributed hash tables [1]–[3] which
provided the location of objects at a large scale, with data
replication and fault tolerance but no consistency guarantees.
Traditional DHTs employ only partial views, meaning that
each node only knows a subset of the system, and because
of that located objects in O(log n) hops. Modern key-value
stores, namely Dynamo [4] and Cassandra [5], base themselves
in some of the same principles as DHTs but with more
robust guarantees. These systems combine high availability
and reliability with low latency for requests across the globe.

However, these properties come at the cost of optimistic
replication protocols and weaker consistency guarantees when
compared with relational databases. Moreover, the member-
ship solutions employed by these systems do not maintain
the same guarantees with the higher node turnover or churn.
Concretely, Cassandra has an open ticket since 2015 [6] report-
ing difficulties in maintaining consistency guarantees during
membership changes. These shortcomings are emphasized
with the dynamism of large scale deployments.

Today, applications once again require strong consistency in
data storage, but now at a global scale while still being highly
available. Distributed relational databases rely on classical
consensus, imposing a high complexity in the synchronization
between nodes. To achieve strong consistency at a high scale,
systems need to be designed in such a way that reduces the
synchronization requirements.

The purpose of our work is to develop a distributed storage
system with strong consistency guarantees at a large scale. The
goal is to combine the scale of peer-to-peer and eventually
consistent key-value stores, with the strong consistency and
ACID properties of relational databases. To achieve this, a
system should not rely on optimistic replication nor employ a
weakly consistent membership solution, as these approaches
scale well but at the cost of the overall consistency guarantees
that the resulting solution is able to provide to target applica-
tions. In this thesis, we present SconeKV: a transactional key-
value store with strong consistency guarantees even in large
scale deployments. The main objectives behind the design are
to: maintain a total view of the system with strong consistency
guarantees, guarantee strong consistency on all operations,
provide multi-object distributed transactions, guarantee the
replication factor, and tolerate membership changes. We em-
ployed a scalable membership solution with strong probabilis-
tic guarantees, horizontal partitioning, consistent replication
and a two-phase agreement protocol, all while guaranteeing
tolerance to membership changes. The system was evaluated in
comparison with two state-of-the-art systems: Cassandra [5],
a highly scalable, eventually consistent distributed key-value
store; and CockroachDB [7], a distributed SQL database
with ACID properties built on top of a transactional and
strongly consistent key-value store. Experimental results show
that SconeKV performs better than CockroachDB in write
heavy workloads whilst being competitive with Cassandra in
all workloads, proving that SconeKV scales whilst providing
serializable distributed transactions.
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II. BACKGROUND AND RELATED WORK

In this section, we present a bottom-up view of a distributed
storage system. Most distributed applications require the no-
tion of a view, a list of correct nodes belonging to the system.
This view can either be partial or total. Partial views can
either be structured [1]–[3] (imposing specific linkage between
nodes) or unstructured, as is the case of Peer Sampling
Services (PSS) [8]–[10]. Total views imply that every node
knows every other node in the system. Distributed solutions
to this problem trade-off scalability and performance for view
consistency, some offering weak consistency guarantees [11],
[12] and others strong [13], [14]. PRIME [15] offers strong
probabilistic guarantees at a large scale, leveraging EpTO [16],
a total order communication algorithm based on gossip.

Replication protocols provide a similar trade-off between
consistency and scalability. Solutions based on classical con-
sensus [17] provide strong consistency but exhibit poor scala-
bility. State Machine Replication [18]–[20] can offer better
scalability if paired with horizontal partitioning (sharding).
Many distributed storage systems opt to weaken their con-
sistency guarantees in order to scale, employing optimistic
replication protocols, as is the case with Dynamo [4] and
Cassandra [5]. Google Spanner [21] is a highly scalable SQL
database that shards data across many Paxos [17], [22] state
machines, relying on GPS and atomic clocks to order trans-
actions. It provides strong consistency at scale but requires
specialized hardware to do so.

III. SCONEKV

In this section we present SconeKV, a distributed key-value
store designed to provide strong consistency guarantees at a
large scale.

A. Overview

SconeKV is a complete system, with a fully modular
architecture, constituted by four different layers, each one pro-
viding the required properties to the ones above. The bottom
layer is a PSS (CYCLON [8]), followed by a Total Order
Group Communication layer (EpTO [16]) and a Membership
Manager (PRIME [15]). The top layer is the main focus of
our work: a distributed key-value store with strong consistency
guarantees, fit for large scale deployments.

SconeKV uses an identifier ring, dividing it into sections
called buckets - horizontal partitioning. Both nodes and items
are then assigned to buckets (rather than points in the space)
using consistent hashing. This approach allows for reconfigu-
ration of the system, for example, resizing buckets in order to
better distribute data or request processing load. Each data item
is present in a single bucket and is managed and replicated
by the set of nodes that constitute that bucket. Each bucket
works as in primary-backup, one node is the master whilst
the remaining nodes are replicas. As the membership layer
provides a consistent view of the system to all participants,
there is no need for a leader election or another consensus

variant to determine the master, it simply requires a determin-
istic function using the bucket members as input (for example,
the node with the lowest identifier).

B. Protocol

SconeKV offers three different operations: read(key)
returns the current value for that key, write(key, value)
updates the key with the given value and delete(key)
removes the key-value pair from the store. Values are arrays
of bytes, opaque to the system, and each consequent write to
the same key overwrites the value written by the previous one.

Each key-value pair is also associated with a version. Ver-
sions are returned by all operations and represent the moment
in that object’s life cycle where a given operation should be
performed. A key’s version is initially 0 and incremented by
one with each write operation on that key.

Each operation corresponds to a request to a SconeKV
node (master or replica, depending on the client configuration)
inside the bucket corresponding to the key accessed in the
operation, receiving the current version, and in the case of a
read also the current value of the key. The client must perform
operations inside a transaction, while the library maintains the
read/write set with the versions observed for each key.

To externalize the operations, the client issues commit
on a given transaction. This operation will be successful or
unsuccessful, depending if the versions seen by the transaction
(those in the read/write set) match the actual current versions
for each key in the system at the time of the commit.

C. Distributed Transactions

Depending on the keys accessed and the system configura-
tion, a transaction can span multiple buckets. Buckets function
according to primary-backup, thus each transaction is agreed
on by the masters of the buckets accessed. This agreement is
achieved using a two-phase commit protocol led by the master
with the lowest identifier - the transaction coordinator.

Figure 1 provides an example for the messages exchanged
during a transaction spanning multiple buckets. At commit
time, the client sends each master involved in the transaction
a subset of the read/write set containing only the keys assigned
to each bucket, and also a list of all buckets involved. Once
the commit request is received, each master makes a local
decision based on the versions required by each operation in
a transaction, acquiring the required locks and replicating the
potential writes (if the transaction was locally accepted) and
the local decision. Once replicated, the local decision is com-
municated to the transaction coordinator, which corresponds
to the first phase of the protocol (indicated in Figure 1).

When all masters communicate their local decisions to the
transaction coordinator, they reach a global decision - the
second phase of the protocol (also indicated in Figure 1).
Following that, the global decision is replicated, the potential
writes are committed or aborted, and all locks are released.
According to the two-phase commit protocol, a transaction
is only committed if all participants accept the transaction
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Fig. 1: Messages exchanged during a transaction involving 2
buckets. Master 1 is the transaction coordinator, both masters
accept the transaction locally and thus it is committed. For
simplicity, the replicas for each bucket are represented as a
single entity each. The first phase of the protocol is defined
in Algorithm 1, the second phase was omitted due to space
constraints.

locally, whilst it takes a single local rejection to abort the
entire transaction.

The 2PC protocol has a weak liveness property. We counter-
act that by having a membership layer with strong consistency
guarantees. This means that it will detect a node failure and
consistently inform all participants. We also replicate the state
inside each bucket (explained further in Section III-E) so that
any master may be replaced by a replica to complete the
protocol.

Figure 2 exemplifies a numbered sequence of events that are
triggered when the client attempts to commit a transaction, in
order for SconeKV nodes to decide the transaction outcome.
Once the client issues commit, the first phase of the protocol
begins with each involved master receiving the request and
triggering MAKELOCALDECISION (Algorithm 1, lines 1-23,
some of the auxiliary functions are omitted due to space
constraints). This verifies if the versions accessed are valid
(lines 34-42), meaning the transaction is still serializable. It
will then determine if it can acquire locks for all accessed keys
(lines 4 and 5), queuing them all if any of them was already
acquired by another transaction. Assuming it successfully
acquired the locks, the local decision is propagated to the
replicas for fault tolerance (the SMR portion of Figure 2)
and, once it is consistently replicated, the local decision is
communicated to the transaction coordinator (lines 25-32),
finishing the first phase of the protocol.

Once the transaction coordinator receives local decision
responses from all participating buckets (or at least one abort
decision), it starts the second phase of the protocol, broad-
casting the global decision to all participants. Every master

involved will then receive it, replicated inside its bucket, and
act accordingly, committing or aborting and responding to
the client in the case of the transaction coordinator. In either
case, the locks are released and MAKELOCALDECISION is
triggered for the next transactions in the queues of the released
locks.

D. Avoiding Distributed Deadlocks

The design presented thus far was simplified and may lead
to distributed deadlocks. Assume that two transactions, TA and

Algorithm 1 Local Decision - First Phase
1: upon event 〈master, MakeLocalDecision| txID〉 do
2: if txs[txID].state 6= aborted then
3: if CheckValidTransaction(txID) then . validate the

versions used in the tx
4: owners← GetLockOwners(txID)
5: if owners = ∅ then
6: AcquireLocks(txID)
7: txs[txID].state← prepare-commit
8: trigger 〈Prepare|txs[txID]〉
9: else

10: QueueLocks(txID)
11: if txID < Min(owners) then . if

txID as a lower identifier than all current lock owners, it should
be executed first to avoid a distributed deadlock

12: for each t ∈ owners do
13: otherCoord← GetCoord(txs[t].nodes)
14: send 〈RequestRevertLocalDecision| oth-

erTxID〉 to otherCoord
15: end for
16: end if
17: end if
18: else
19: txs[txID].state← prepare-abort
20: trigger 〈Prepare|txs[txID]〉
21: end if
22: end if
23: end event
24:
25: upon event 〈master, SendLocalDecision| txID〉 do
26: txCoord← GetCoord(txs[txID].nodes)
27: if txs[txID].status = prepare-commit then
28: send 〈LocalDecisionResponse|txID,commit〉 to txCoord
29: else
30: send 〈LocalDecisionResponse|txID,abort〉 to txCoord
31: end if
32: end event
33:
34: function CheckValidTransaction(txID)
35: for each (key,_, version,_) ∈ txs[txID].rwSet do
36: currentV ersion← GetVersion(key)
37: if currentV ersion 6= version then
38: return False
39: end if
40: end for
41: return True
42: end function
43:
44: function GetLockOwners(txID)
45: owners← ∅
46: for each (key,_,_,_) ∈ txs[txID].rwSet do
47: lockOwner ← GetLocker(key)
48: if lockOwner 6= NULL ∧ lockOwner /∈ owners then
49: owners← owners ∪ lockOwner
50: end if
51: end for
52: return owners
53: end function
54:
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Fig. 2: Diagram showing the sequence of events to commit a transaction in the general case. The red arrows represent that the
next event was triggered in a remote node.

TB , perform writes on keys x and y, which belong to buckets
B1 and B2 respectively. If the two transactions attempt to
commit concurrently, it is possible that the master of B2 (M2)
receives TA first, whilst the master of B2 (M1) receives T2

first. In that case, M1 would lock a for TA and add TB to
the queue, while M2 would lock b for TB and add TA to the
queue. This would generate a distributed deadlock, as neither
TA nor TB would achieve a global decision, each requiring
another local decision.

This is a simple example, in this case one of the transactions
would need to abort as they are conflicting. Nevertheless, there
are other, more complex examples where both transactions
could commit and respect serializability if ordered correctly.
Figure 3 exemplifies how SconeKV avoids such a scenario,
giving priority to the transaction with the lowest identifier. As
such, a master that locally accepted a transaction TB may ask
the transaction coordinator to revert its local decision in order
for another transaction TA with a lower identifier to acquire
the required locks. This will be granted if and only if TB has
not yet been agreed on by all its participants.

The protocol is triggered during MAKELOCALDECISION,
back in Algorithm 1. If a transaction fails to acquire the
locks, it queues them and determines if it should be processed
before all the transactions currently owning any of those
locks (Algorithm 1, lines 11-17). Assuming it should, the
coordinators for the reverted transactions will confirm that
those have not reached a global decision yet, accepting the
request if that is the case. The requesting node would then
propagate the reversion of the decision to the rest of the
bucket and, once it is consistently replicated, release the locks,
eventually processing MAKELOCALDECISION once more for
the transaction that triggered the protocol.
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Fig. 3: Messages exchanged during two concurrent transac-
tions that need to acquire locks for the same objects. (1)
Master 2 begins by locking object y for transaction TB , (2)
later receives transaction TA (which also requires the lock for
y and has a lower identifier) and thus asks to revert the first
decision, in order to release the lock. The request is accepted
(3) and both transactions end up being committed. Replication
was omitted for simplicity.
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E. Replication

In this section, we address our penultimate objective: guar-
anteeing the replication factor. As stated earlier, inside each
bucket, the system works according to a primary-backup
scheme. Requests that change the state of the system - commits
- are routed through the master and persisted to the replicas
for fault tolerance and durability. Masters serialize transactions
and thus client operations that observe and/or modify the
system state are consistent and their results deterministic.
With this behaviour, the system has the properties of a state
machine.

The solution was then to apply a state machine replication
algorithm inside each bucket, guaranteeing not only that the
replication factor is maintained but also that it is done in a
consistent manner. Our replication protocol is a concretization
of Viewstamped Replication [18], [19]. In summary, entries
flow from the master to the replicas. To replicate a log
entry, the master issues PREPARE. Once received, each replica
processes the entry if and only if it has processed all previous
entries, issuing PREPAREOK. When the master receives f
PREPAREOK’s, the entry is consistently propagated and can
be committed.

This protocol assures reliability and availability inside each
bucket if no more than f nodes are faulty at any given moment,
provided that each bucket has at least 2f +1 nodes. Note that
replication does not guarantee the preservation of data in the
case of catastrophic failures, such as all replicas crashing at the
same time. In Section IV we discuss how SconeKV provides
durability guarantees.

F. View Changes

To conclude the system design, we address our final objec-
tive of tolerating membership changes. The membership layer
- PRIME - monitors nodes and updates the view accordingly,
consistently across all correct members. This by itself does
not guarantee that our system exhibits correct behaviour in
the presence of faults. For example, if the master of a bucket
participating in a transaction fails before communicating its
local decision, all other master will wait indefinitely for its
response without reaching a global decision nor releasing the
locks they acquired. To address this, we once more adapted
the Viewstamped replication [18], [19] view-change algorithm
to work in this scenario.

First, view-changes implicate buckets independently, mean-
ing if a node n was added or removed from bucket i in a
membership update, this does not affect any bucket j, where
j 6= i.

Next, as we have a dedicated membership layer, we can
remove that behaviour from the state machine replication
component. Moreover, as this membership layer provides
consistent views across all members, we do not need a leader
election to determine the master of the bucket, we simply
require a deterministic function such that any entity (a node
from inside or outside the bucket or a client) can determine the
master of a bucket simply by knowing its participants. This
eliminates the need for another agreement between the nodes

and facilitates the communication with the client: we maintain
one hop access without the need for extra synchronization
between client and cluster. Clients are not part of the cluster
membership, thus when a client starts it requests a view from
any node in the system. This view is only updated in case
of a timeout contacting a node (resulting in a request of a
new view from another node) or if the client sends a request
to an incorrect node (wrong bucket and/or incorrect master),
in which case the node proactively responds with an updated
view of the cluster.

Finally, inside of a specific bucket, a view change can either
maintain or change the current master. If the master remains
the same and a replica left, the system continues working
normally (always with the assumption that there are f + 1
correct nodes in the bucket). If the master remains and a
new node joins, then this new node is a replica and there
needs to be a state exchange to bring it up to date. This
occurs once a node receives a PREPARE with an opNumber
MAXOPNUMBERHOLE entries after its current most recent
entry in the log. Now if the current master changes, either
because the previous one failed or our function determines
that a new node is the master, then we run the view change
algorithm (omitted due to space constraints) to guarantee that
the next master is consistently chosen and has the most up-to-
date log, continuing to provide strongly consistent operations
inside that bucket. During the view change, a bucket can be
temporarily unavailable, since to guarantee the serializability
of transactions it is required to be working in stable conditions.

IV. IMPLEMENTATION

SconeKV was implemented using Java 13. It depends on a
Java implementation of PRIME [15] and Kotlin implementa-
tions of EpTO [16] and CYCLON [8]. To closely emulate the
behaviour presented in III, SconeKV nodes are implemented
using an even-based architecture. Every time an event is
triggered, it is added to an event queue and processed by one of
a configurable number of worker threads. The communication
is done via TCP using ØMQ1 for an asynchronous message
queue abstraction and Cap’N Proto2 for message serialization.
Durability is provided in case of catastrophic failures. Updates
are batched and persisted to disk using RocksDB3 and a
configurable period, using a similar approach to [4], [5].

SconeKV provides a client library with a simple API,
exemplified in Listing 1.

A. Optimizations

a) Fast Aborts: The algorithm presented in Section III-C
can lead to long lock queues on frequently accessed keys,
especially when running skewed workloads. All transactions
on the queue for a specific key expect the current version to be
the latest. Thus, if a write occurs, increasing the version of that
key, all transactions waiting in the queue can be immediately
aborted.

1https://zeromq.org
2https://capnproto.org
3https://rocksdb.org
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b) Read-Write Locks: Once more addressing the issue
of long lock queues for popular keys, the introduction of
read-write locks allows for greater parallelism in read-heavy
workloads.

c) Client Request Modes: The SconeKV API allows for
configuration of the request mode: clients can select which
nodes they which to connect to. Commit requests need to
be routed through the masters of the buckets accessed, while
read, write, and delete requests can target the master, replicas,
or completely randomize their selection. Targeting replicas
provides a much better load balance but can increase the per-
centage of aborted transactions, depending on the workload,
as they can be slightly outdated regarding the versions of the
keys (in comparison with the master that always has the most
up-to-date version of all keys).

d) Garbage Collection: After transactions are committed
and the key-value store is updated accordingly, the transaction
data becomes mostly superfluous. Data of completed transac-
tions is thus garbage collected in a configurable interval and
according to an also configurable transaction TTL.

// Initiate the client
SconeClient client = new SconeClient();
// Creating a transaction
Transaction tx = client.newTransaction();
try {

// Reading a key ’x’ and obtaining its
// value ’valueX’
byte[] valueX = tx.read(x);
// Writing a value ’valueY’ on key ’y’
tx.write(y, valueY);
// Deleting key ’z’
tx.delete(z);
// Attempting to commit the transaction
tx.commit();

catch (CommitFailedException e) {
// In case the transaction aborted,
// manage it accordingly
(...)

}

Listing 1: Usage example of the SconeKV client API

V. EVALUATION

We evaluated SconeKV and compared it with two other
state-of-the-art distributed storage systems, Cassandra and
CockroachDB, one at each end of the consistency spectrum.
Cassandra [5] represents the weaker end of the consistency
spectrum. It is a highly available and highly scalable dis-
tributed key-value store with eventual consistency. It scales
both in terms of cluster size and the number of concurrent
clients. To make the comparison fairer with the other systems,
it was configured to use quorums on both reads and writes,
although this change is not enough to consider it strongly
consistent given its optimistic replication protocol.

CockroachDB [7] represents the stronger side of the con-
sistency spectrum. It is a distributed SQL database with
ACID properties, built on top of a transactional and strongly-
consistent key-value store.

The evaluation considered the following metrics:

• Throughput - the number of operations processed per
second; the main metric to access the scalability of data
stores.

• Goodput - because SconeKV and CockroachDB are
transactional, not all operations are guaranteed to commit.
Goodput represents the number of committed operations
per second.

• Consistency - derived from the design and guarantees
provided by the three systems.

• Resource usage - CPU, memory, network, and disk
utilization.

A. Experimental Setup

The system’s experimental evaluation was performed using
Docker 4 containers running on a 6 physical machine cluster,
with one machine dedicated to running the client benchmark
and the others dedicated to the servers. The machines were
equipped with 40GB of RAM and 8 Core Intel Xeon E5506
2.13GHz processors.

The systems were deployed in 20 node clusters with a
replication factor of 4, representing 5 buckets of 4 nodes in
the case of SconeKV. Both the nodes and the client ran in
Docker containers for ease of deployment and communication.
It is also worth noting that, SconeKV was deployed using all
optimizations presented in Section IV-A.

YCSB [23] was selected as the benchmark for our exper-
iments as it is a standard for cloud based data store com-
parison. We extending it to provide support for transactions
(of 5 operations) in the case of SconeKV and Cockroach.
The workloads were selected from part of the YCSB core
workloads: A (50% read, 50% write), B (95% read, 5% write),
C (100% read) and F (read-modify-write). All workloads were
run using a skewed distribution - zipfian - leading to 80%
of the operations being performed on the hotset (20% of
the population), as this is more representative of real world
workloads [23]. Each experiment (combination of workload
and number of concurrent clients) was ran three times, with a
duration of 300 seconds.

B. Throughput and Goodput

a) Workload A: This is an update heavy workload, the
throughput and goodput of the systems are shown in Figure 4
and Figure 5, respectively. SconeKV performs in between the
baselines, as expected. Cockroach demonstrates that it does
not handle well write heavy workloads, which is explained
by their design based on classical consensus. A closer look
comparing throughput and goodput of SconeKV shows a sig-
nificant transaction abort rate, around 40% at its highest (256
concurrent clients). This is justified by the distribution of the
requests, as it is highly skewed and leads to an extremely high
number of concurrent updates on the same keys, which cannot
be serialized. Interestingly, Cockroach reaches an abort rate of
22% with 256 concurrent clients, but by only committing 254
operations per second, thus further illustrating that consensus-
based systems scale poorly. To further study this, we ran an

4https://www.docker.com
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additional workload with an uniform distribution (writes and
reads are evenly distributed across all keys). The results are
depicted in Figure 6. As it is possible to observe in this
configuration, throughput and goodput are almost identical,
due to the lower write contention that leads to fewer aborts.

b) Workload B: This is a read heavy workload. The
results displayed in Figure 7 and Figure 8 show that SconeKV
still scales, although at a lower rate than Cassandra. This can
be explained, as SconeKV does not differentiate writes from
reads, applying the same protocol to decide the transaction
outcome. It is noteworthy that Cockroach stagnates when
reaching hundreds of concurrent clients, demonstrating that
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Fig. 7: Throughput for the three systems using YCSB Work-
load B.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

16 32 64 128 256

G
o
o
�
�
�
�  

(o
�
�
��
s
�
�

Number of client threads

Cassandra

SconeKV

CockroachDB

Workload B

Fig. 8: Goodput for the three systems using YCSB Workload
B.

even a 5% update rate is enough to reduce its scalability.
The abort rate with this workload is severely lower for either
system in comparison with the previous workload, as can be
observed in Figure 8. This is expected, due to the low rate of
concurrent updates.

c) Workload C: This is a read only workload. For that
reason, we only present the goodput of the three systems
(Figure 5), as it is identical to the throughput, given there are
no updates to keys. SconeKV does not achieve the same raw
performance as its baselines, but still shows constant growth,
demonstrating its scalability. Recall that this is only a proto-
type and thus is less optimized than its competitors. Cockroach
exhibits even better performance than Cassandra, although not
as scalable. This can be explained in two ways: the fact that the
read operations do not acquire locks, according to Cockroach’s
design; and the fact that Cassandra was configured to use a
quorum of reads instead of a single read, to provide better
consistency guarantees.

d) Workload F: This workload selects keys according
to the distribution of requests, reads, modifies the value, and
writes to the same key. Once more, we demonstrate that Cock-
roach does not scale with update heavy workloads. SconeKV
displays even better performance than Cassandra in terms of
throughput (Figure 10), however, Figure 11 once more shows
that update heavy workloads with a highly skewed distribution
result in a high transaction abort rate. The raw throughput
can be explained as follows: SconeKV is a transactional data
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Fig. 9: Goodput for the three systems using YCSB Workload
C.

store and thus, if inside the same transaction a client performs
multiple operations on the same key, only the first operation
will result in an external request to retrieve the version (all
others will be handled by the client library, without the need
for extra RTTs).
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Fig. 10: Throughput for the three systems using YCSB Work-
load F.
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Fig. 11: Goodput for the three systems using YCSB Workload
F.

C. Resource Usage

In this section, we analyze the the resource usage of the
three systems, namely, CPU, memory, network, and disk. Ev-
ery metric will be presented during an update-heavy workload
(YCSB Workload A) and a read-only workload (YCSB Work-
load C). These metrics were captured using dstat in each of
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Fig. 12: CPU usage during update heavy Workload A.
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Fig. 13: CPU usage during read-only Workload C.

the 5 physical machines running the containers for the storage
nodes, to minimize the impact of these measurements. The
results displayed represent the percentiles for those metrics.

a) CPU Usage: Figure 12 and Figure 13 depict CPU
usage over time inside each physical machine for benchmarks
of 16, 32, 64, 128, and 256 clients. We used stacked bars
with decaying shades of gray to represent the distribution
using a set of percentiles. For example, the medium shade
gives the median value, while the lighter shade gives the 90th

percentile, meaning 90% of the time nodes have a lower CPU
utilization. Despite Cassandra utilizing more CPU time than
the others, none of the three systems exhausted their CPU
resources. These results are acceptable given that this is a
primary service and thus, in most cases, is deployed in its
own dedicated machines. We can also conclude that the CPU
will not represent a bottleneck in the scalability of SconeKV.

b) Memory Usage: Figure 14 and Figure 15 show the
memory usage over time in the physical machines in the form
of stacked bars representing the percentiles. We can conclude
that Cassandra requires much more memory than the other
two systems. Cassandra is implemented in Java which helps
to explain the high memory requirements. Cockroach uses
less memory than SconeKV or Cassandra in the update heavy
workload, but it also provides much less throughput (shown in
Figure 4). With a read heavy workload (in which it surpassed
the other two systems in terms of throughput) it required more
memory than SconeKV but still less than Cassandra. This
can be justified by its implementation being in Go, which is
typically less demanding than Java in terms of memory.
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Fig. 14: Memory usage during update heavy Workload A.
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Fig. 15: Memory usage during read-only Workload C.

c) Bandwidth Usage: For this metric, we measured the
bytes sent and received over time in the physical machines,
once again constructing percentile graphs. Figure 16 and
Figure 17 depict the bandwidth usage in terms of upload,
while Figure 18 and Figure 19 show it in terms of download.
We can conclude that SconeKV’s bandwidth usage is on par
with Cassandra’s, for both upload and download. Cockroach
exhibits less median usage for both upload and download for
the update heavy workload, which is understandable given
it is responding to much fewer requests per second. In the
read-heavy workload it uses much more bandwidth than its
competitors, both in terms of upload and download, for similar
reasons. It is also important to note that classic consensus-
based protocols have quadratic complexity, leading to a higher
number of messages exchanged between nodes.

d) Disk Usage: Regarding disk I/O, we only display
measurements for disk writes because, since the keyspace fits
entirely into memory, disk reads are negligible. Figure 20
helps explain the poor performance of Cockroach in write
heavy workloads when compared to SconeKV and Cassandra.
It is important to note that these values, of KB/s written to
disk, were captured while the system failed to achieve 1000
operations per second. In the case of SconeKV, it only writes
to disk for durability in case of catastrophic failures, and it
uses RocksDB which is highly optimized. These writes are
based on a configurable period (10sec for these experiments),
and thus the impact is negligible. For read heavy workloads
(Figure 21) Cockroach still writes much more to disk than
the alternatives, but an order of magnitude less than in the
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Fig. 16: Bandwidth usage during update heavy Workload A,
upload.

 0

 2000

 4000

 6000

 8000

 10000

U
p
�o
�
�

 (
K
B
/s
)

Nu���� of cli�e� �t���	


5th
25th
50th
75th
90th

C
a
�
�
a
�

�a

S
�
�
�
�
�
V

C
�
�
�
��
a
�
�
�
�

256128643216

Fig. 17: Bandwidth usage during read-only Workload C,
upload.
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Fig. 18: Bandwidth usage during update heavy Workload A,
download.
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Fig. 19: Bandwidth usage during read-only Workload C,
download.
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Fig. 20: Disk write usage during update heavy Workload A.
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Fig. 21: Disk write usage during read-only Workload C.

update heavy workload and provides much more throughput.
The high variance of the measurements of Cockroach can be
explained with the distribution of requests. This leads some
ranges (hot-spots) to have more entries in the log and thus the
nodes in charge of those ranges have more data to persist to
disk.

VI. CONCLUSION

This work describes SconeKV: a scalable, strongly consis-
tent key-value store with support for distributed transactions.
The system employs horizontal partitioning and an agreement
protocol based on 2PC to provide serializable, multi key,
distributed transactions at scale. It guarantees the replication
factor using state machine replication, providing consistency
and fault tolerance. It leverages a scalable membership layer
with strong probabilistic consistency guarantees - PRIME. The
experimental results show that SconeKV performs better than
CockroachDB in write heavy workloads whilst being compet-
itive with Cassandra in all workloads. This opens a new space
in the spectrum of solutions with promising results: SconeKV
scales whilst providing serializable distributed transactions.
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