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Abstract

Postoperative complications of cancer surgery are still hard
to predict, although there are risk scores intended to make
such predictions. They vary with regards to their outcome,
surgical cohort, or type of predictive model. The differences
among studies, contribute for the creation of highly special-
ized tools, with poor reusability in foreign contexts. Adapt-
ability to different surgical domains and populations can add
to larger errors, since often these studies are developed in
carefully selected surgical cohorts.

This thesis aims to study and predict postoperative com-
plications risk for cancer patients, offering two major con-
tributions. First, to develop a risk calculator, specif for the
Portuguese population, using machine learning models, with
4 outcomes of interest: i) existence of postoperative compli-
cations, ii) severity level of said complications, iii) death
probability within 1 year, and iv) number of days spent in
the intermediate care unit (ICU). Second, to support the study
of this disease with relevant findings and improve the inter-
pretability of predictive models, especially associative mod-
els by extending tree representations to capture measures of
generalization ability.

In order to achieve these objectives, we provide a set of
models with reliable guarantees of predictive performance
and offer new perspectives and insights into the decision
process. Postoperative complications can be predicted with
68% accuracy, complications’ severity can be predicted with
a MAE = 1.56, the days in the ICU can be predicted with
MAE = 1.04, and 1 year death can be predicted with 75%
accuracy. The proposed predictive models yield statistically
significant improvements against their respective baseline
models (p-value < 0.01).

Keywords: postoperative complications, risk prediction, can-
cer, machine learning, clinical data modeling

1 Introduction

There are at least two battlefronts in trying to reduce deaths
associated to cancer, which can be a result from direct con-
sequences of the disease, or occur due to operative and post-
operative complications resulting from surgery for cancer
treatment. These complications contribute to lower survival
probability and, in certain types of cancer, to aggravate the
recurrence rate [1, 7, 23, 24]. The outcome of such surgeries is

still widely unpredictable due to the huge number of factors
involved. Postoperative risk assessment tools are available,
not only for cancer patients but for surgery in general, with
the aim of reducing mortality and morbidity rates [33].

With the advancements of technology and areas like data
science, new techniques and better resources are available,
while big clinical data is also growing. In the recent years
there has been an increasing amount of studies aimed at iden-
tifying the main factors for postoperative complications and,
considering these factors, developing risk assessment calcu-
lators [33]. The predictions given by these tools help doctors
and patients in surgery decision-making. From a clinical
perspective, the risk scores are determinant in choosing the
course of actions, such as additional testing, prehabilitation
or supportive measures, to be taken during the preoperative,
intraoperative and postoperative periods [33].

The main objective of this project is to develop a risk score
that is able to predict 4 outcomes: i) existence of postopera-
tive complications, ii) the severity of said complications, iii)
the number of days spent in the ICU and the iv) probabil-
ity of death within 1 year after surgery, in cancer patients.
Secondly, this project also aims to support the study of this
disease and surgical prognostication, either by finding rel-
evant variables, or improving the interpretability of these
models. Being a typical data science project, the dataset in
use becomes the centerpiece of all work. For this purpose,
a clinical dataset with more than 800 patients and 100 at-
tributes is available.

This document presents the related work review, the pro-
posed methodology for the project, a summarized results
discussion, finishing with some concluding remarks, along
with limitations and future work.

2 Related Work

Prognostication tools are in constant improvement. The first
studies date back to the 1940’s and since then many publica-
tions have been made. In this section, we’ll be focusing on
two main predictions of interest in order to get prognostic
information.

2.1 Traditional Statistical Studies

Being able to predict postoperative complications is of cru-
cial importance to assess treatment viability or chances of



survival. Creating opportunity for the consideration of alter-
native therapies or procedures, adequate intensive care, or
even assisted life ending options.

Most of these clinically adopted scores, indexes and cal-
culators are based on statistical methods, which so far have
been reliable and don’t suffer of the same degree of distrust
that machine learning methods are still struggling with even
today, due to the unfamiliarity and difficult interpretability.

Cohort-outcome relationship - The monitored popula-
tion is a determinant factor of each conducted study. The
cohort is many times associated to the context of creation of
the score and should be closely tied with the outcome pre-
dictions. For example, the POSSUM score was created from
a general surgery cohort [12]. As such, it is very broad and it
is highly acceptable that the model is well capable of roughly
predicting mortality risk in a general surgery context. In the
same line of thought, the CARE score was developed in a car-
diac surgery cohort [16]. Being more specific, it makes sense
that its predictions for in-hospital death and morbidity are
also more adequate to be applied in patients from the same
context. Although extrapolation is possible, further general-
ization capacity testing of the results would be advised. Often,
the focused outcome is a requirement, but it is also strongly
related to the dataset used to develop the score models. There
are studies which rely on immense datasets contemplating
millions of people from different medical cohorts and mul-
tiple hospitals, like the ACS NSQIP, which makes use of
data collected from 393 American hospitals, totaling almost
1,500,000 patients [4]. Studies with such extensive datasets
are able not only to have more accurate results, since the
models have more samples of similar cases, but also to have
more than one prediction target like ACS. On the other hand,
there are scores using datasets no larger than a few hundreds
of records, which seem oddly common. The Surgical Apgar
Score used only 303 patients for the training phase of the
model [19]. It’s important to note that, at the same time, the
study only considers 3 variables to make the predictions.
There is a ratio of 100 records for each variable. So how can
the results stay relevant in smaller studies? Apparently, as
long as the number of records is enough for the dimensional-
ity of the dataset in hands and the output classes are actually
well represented, there should be no performance difference
in the validation set. All this goes to show that the surgical
cohort available at the time of research and development
is a crucial factor, that can limit the final outcome. Broad
datasets contribute for a larger populational applicability
and for a greater number of possible predictions. Not only
the extension of the dataset should be analyzed but also the
sparsity within the cases in record. There should be enough
cases of the sort to predict, for relevant and reliable results.

Data type - The data throughout the vast majority of the
reviewed traditional statistical studies is limited to clinical or
clinicopathological data. Very seldom did the studies include
socioeconomic or demographic data, important variables

that could make the international applicability of each study
much broader. One of the few is the ACS NSQIP Surgical
Risk Calculator [4], which accounts for demographic data,
collected from over 393 hospitals all across America, having
a solid and proven national applicability.

Point systems - There are models ranging from simple
scoring point systems, based on a number of factors, to
slightly more elegant regression models. Charlson Comor-
bidity Index ([9]) or the Surgical Apgar Score ([19]), used to
classify disease severity and also predict in-hospital death,
are good examples of point systems that sum the results or
apply the points in some formula in order to get the out-
put. This kind of methods are somewhat basic, lacking the
adaptability and complex modeling capabilities that machine
learning models can easily attain nowadays.

Statistical models - Other scores in the list make use of
more complex models to make their prediction, in fact, this
is the case with the majority of the reviewed scores. The dif-
ference between regression and point systems or weighted
indexes, in practice is very small, and resides solely on the
way in which the weights of each factor are approximated
to fit the data. The most used model is multivariate logistic
regression which seems to be a real work horse among the
rest of the tools under analysis. Logistic regression is a spe-
cial case of linear regression, generally used when the target
variable is of binary nature. This type of regression is essen-
tially obtained by the application of a sigmoid function to
linear regression. The linear approach is estimated through
a distance minimizing approximation method, called Ordi-
nary Least Squares, while logistic regression uses Maximum
Likelyhood Estimation, a function that determines the pa-
rameters that are most likely to produce the observed data

(5]-

2.2 Machine Learning Studies

More recently, machine learning has stepped into the field,
and the studies using this type of models, specifically for the
prediction of postoperative complications, have also been
increasing. In a primary analysis these studies bring new pre-
diction models to the table, with high dimensional modeling
capabilities, each having its own advantages.

From statistics to machine learning - A key aspect of
machine learning studies is the fact that their application is
more recent when compared with traditional statistics stud-
ies. The median publication year of the traditional statistics
studies in review corresponds to the year 2001, while ML
studies correspond to the year 2015. In these fourteen years
technology has evolved, and now, more than ever, the avail-
able hardware allows for feasible application of very complex
methods. Big clinical data is also a growing phenomenon.
ML models are making use of genomics, biological, physi-
ological, radiomics, demographic and socio-economic data.
Another characteristic differentiating ML and traditional
statistic studies is that ML approaches seem less connected



to the professional medical setting, partly because the devel-
opment of such algorithms is held by artificial intelligence
researchers at an experimental level.

k-Nearest Neighbors - The kNN algorithm is one of the
most intuitive and simple methods available, due to its dis-
tance based approach. In the studies reviewed it is used only
once by Wang et al. [32]. In the context of that study, the
kNN model was chosen to take part in a group of relevant ML
techniques tested to find the ones which suited the problem
better.

Naive Bayes - Naive Bayes models are also suggested in
situations where lightweight and simplistic solutions are
enough to respond to the challenge. This method is applied
in assuming that all the attributes are conditionally indepen-
dent. According to Danjuma [14], this method is capable of
improved prognostic compared with logistic regression. In
Parmar et al. [26], in spite of the fact that it wasn’t the best,
the results were competitive with that of SVM, NN and RF.

Decision Trees - A DT is a non-parametric supervised
learning algorithm used to model non-linear relations be-
tween variables and outcomes, suited for mixed data types,
numerical and categorical. DTs are popular due to their
shorter learning curve and high interpretability, based on
a tree like representation. Danjuma [14] used a DT to pre-
dict mortality within 1 year. The results were good, only
surpassed by the MLP, a particular type of artificial neural
network.

Support Vector Machines - SVMs are another ML model
which is frequently used among clinical predictors. SVMs
are not as understandable and explicable as other methods
like DTs or kNN [3]. Chang et al. [8] used a linear kernel
SVM to make the predictions about 3-year mortality. The
results were not very good, but no further investigation was
held. One could assume the problem could not be modeled
by a linear kernel, meaning that the data was not linearly
separable. Although not competitive, the results were good
enough to match the performance of Logistic Regression.
Soguero-Ruiz et al. [28] tested linear and non-linear kernel
SVMs. Various sets of variables were in use, free-text from
clinical records, blood tests and vital signs. The three sets
were tested in different combinations to assess what would
yield the best results. The non-linear kernels were doing
better when heterogeneous types of data were in use, while
the linear kernel was better for free-text resulting from the
clinical records of patients. In the end, the linear kernel
results were still not as good when compared to the non-
linear approach. Thottakkara et al. [30] also used an SVM as
one of the options in study. The results were conclusive, a
linear SVM was the best model in the study, surpassing the
traditional logistic regression. The trade-off identified was
the computational complexity, which in an SVM can go as
far as O(n?) for a kernel SVM, compared to O(n) for logistic
regression. Lastly, Wang et al. [32] used a polynomial kernel
SVM model to predict 5-year mortality. The best model in

test was a NN type of model. The SVM model had slightly
inferior performance, with its sensitivity being lower than
its specificity, unlike other models in study.

Neural networks - NNs seem to be one of the most pop-
ular models currently. Allied with various feature selection
methods Parmar et al. [26] tried to predict 3-year mortality
on a small dataset of 101 patients, with high dimensionality,
containing 404 features. Chang et al. [8] used two different
types of NNs in its study. First, a multi-layered feed forward
neural network, which is the most common type of NN. The
other network was a fuzzy classifier, a paradigm contrasting
with crisp classification. The overall best method was the lat-
ter and the overall worst was the normal NN. Danjuma [14]
is another publication using NN, specifically a Multilayer
Perceptron using back-propagation to adjust the weights dur-
ing training. Unfortunately, no further explanation about the
MLP structure was disclosed, but the results outperformed
the other two methods in study, DT and NB.

Ensemble Learning - Ensemble models in machine learn-
ing combine the decisions from multiple models to improve
the overall performance. By combining the predictive perfor-
mance of several weak predictors to form a voting system,
ensemble methods are able to improve the overall perfor-
mance, [6]. Zikeba et al. [34] proposed a boosted SVM model
to solve inner and between-class imbalanced data problems,
by proposing weighted error function with different misclas-
sification costs, for positive and negative examples respec-
tively. The boosting algorithm used is AdaBoost. The results
revealed good performance from the ensemble method, and
proved the ability to overcome imbalance induced bias.

Random Forests are a result of the combination of multiple
DTs. Each of the trees classifies one instance and they all
contribute to the final result by voting what should be the
result. Parmar et al. [26] used a RF model among their models
set. This model has a competitive performance, but above
everything else it proved to be much more stable across tests.
Parikh et al. [25] used a Random Forest model (RF) and also
Gradient Boosting (GB), both tree based ensemble models.
Both models showed good results with a positive predictive
value superior to that of traditional statistical values.

2.3 Data Preprocessing

Before the learning step, an important phase consists on
treating the available data to make it proper for the model
application. This process is inherent to every study under
analysis in this article, but is scarcely documented. Out of
all the 26 publications analyzed for this review only 10 ac-
tually referred the strategies used to tackle preprocessing
challenges.

Missing Values - Missing Values are the result of un-
available data at the time of registry and can sometimes be
a product of human error. Some predictive models cannot
handle missing values, so they have to be either eliminated
or replaced by some other meaningful value. In some cases,



it’s possible to just drop all the records containing missing
values, provided that losing the data of one patient won’t
have a huge input on the model training. However, there are
several strategies to perform what’s known as imputation of
missing values, resorting to the use of the mean, median or
mode of a numeric variable, or by creating a new class like
“missing" for categorical variables, as in Thottakkara et al.
[30] and Van Stiphout et al. [31]. Another solution consists
on using methods which create less of a biased impact. If
needed, a model like kNN could be used to predict the value
with which to impute the missing one, by taking into account
the most similar records, maintaining, in theory, a higher fi-
delity to the real value when compared to previous proposals,
as in Bilimoria et al. [4] (using a regression method).

Outcome Class Imbalance - Class imbalance is a com-
mon problem in medical decision problems [34]. Due to this
inevitable fact, depending on the model used, the predictions
can be biased towards the majority class. This situation is
potentially dangerous since the minority class is commonly
the class representing negative effects like death or some
morbidity factor which cannot be neglected. This problem
is frequently addressed by simple methods like resampling.
The reduction is the simplest method, but information is pre-
cious, and these studies are not making use of very extensive
datasets to start with. Oversampling through the creation of
new synthetic entries belonging to the minority class might
solve the bias issue maintaining all of the original data at
the cost of some error which might be introduced through
the synthetic generation of records. This preprocessing issue
might also be addressed out of the preprocessing stage, by
selecting models somewhat immune to the effect of imbal-
anced data. Zikeba et al. [34] used various ensemble methods
based on SVMs which proved to be efficient at dealing with
data imbalance.

High Dimensionality - As mentioned previously, one
of the problems that can be faced when dealing with high
dimensional data, containing an elevated number of features,
is lacking the amount of records to go with the variables end-
ing up in the “dimensionality curse" [2]. This issue is usually
associated to overfitting, when the results from the test set
are worse than the results obtained in training. To tackle this
problem, one possible solution is to use a feature selection
technique, in order to pick the most relevant variables for
model construction, as in Chang et al. [8], Parmar et al. [26]
or Parikh et al. [25]. Another less simplistic alternative con-
sists on applying feature extraction techniques. The latter is
different from feature selection in the sense that it doesn’t
deliberately drop variables used for training. The principle
behind feature extraction is to project data into a smaller
space, reducing the dimensionality, but it makes sure to keep
all the original variables, they are just transformed. One
particular example is Principle Component Analysis [27],
which, as the name says, computes the principle components
in data. The components are represented by vectors which

are linearly uncorrelated. The objective is to choose the com-
ponents that have the most variance, as in Thottakkara et al.
[30].

2.4 Validation

Problems related to poor world wide applicability have been
reported in studies [10, 17, 18, 20]. The common conclu-
sions seem to point out that further validation with foreign
datasets would be crucial to obtain better reusability. Out of
all the studies, only five out of twenty six do not refer any
validation means. Perhaps because of low data availability
or highly experimental character. The ones that indeed use
some type of validation, use one of the aforementioned meth-
ods, cross validation or an independent validation set. The
latter is the most common among the reviewed studies, with
only 5 studies not using a separate dataset as their validation
means, resorting to cross-validation [8, 14, 28, 30, 32].

3 Methodology

This project resembles a classical data science problem, with
a tabular dataset. Common issues like missing values, manual
text input and other types of inconsistencies are relatively
common in this dataset. The aim of this study is to predict 4
outcomes of interest: existence of postoperative complica-
tions, severity level of said complications, death probability
within 1 year and a prediction for the number of days spent
in the ICU for a specific patient.

The dataset has 130 variables for approximately 850 pa-
tients (observations), allied with very sparse data, in the
sense that there are several different types of cancer and
surgical procedures, results in imbalanced data problems
and underrepresented groups. The presence of missing val-
ues, imbalanced data, hidden variable dependencies and an
overall heterogeneous population, makes the preprocessing
phase harder and presents new challenges in the develop-
ment and application of the prediction models.

3.1 The Dataset

A retrospective dataset was provided by courtesy of the Por-
tuguese Institute of Oncology, Porto, Portugal (IPO-Porto).
The data derives from a prospective cohort study of cancer
patients that have undertaken surgery at IPO-Porto, and
were monitored from 2016 to 2018. It is essentially composed
of clinical data, containing approximately 850 entries, of dif-
ferent patients that went through a cancer related surgeries,
and is already anonymized. For each patient there are about
130 variables registered. There are 79 categorical variables,
out of which 33 are binary, 44 numeric, 4 in date format, and
9 pure text variables.

The dataset attributes are mainly categorical, each number
or textual key is used as a mapping to some type of meaning.
Largely due to the fact that the scores used by IPO-Porto
already do a good job standardizing input variables. The



rest of the dataset consists mainly of numeric data, requir-
ing eventual imputation and/or normalization. Only a few
attributes are in text format, requiring special treatment.

3.2 Preprocessing

Missing Values - To make the model application possible,
high missing value rated features were left out. Among all
the registries, there were still random missing values that
would raise future problems. The solution in such cases,
where the meaning of the missing data was not clear or
the data was actually missing, was to impute the values.
Two types of imputation processes were considered, one
using substitution by mean value of the variable and another
that is more complex but might offer better results. The
alternative consists of using informed methods to make the
substitution. The k-Nearest Neighbors algorithm can be used
as a lightweight informed imputer, that helps to reduce the
error introduced when dealing with missing values.

Categorical Variable Encoding - Categorical variables
are commonly represented through a numeric encoding,
which may or may not have some type of order implied
in the numeric correspondence. This quantitative or ordinal
relationship might undesirably slip into the analysis. There
are many possible solutions to this problem, but often the
simplest way is to use a One-Hot encoder. This solution is
fairly simple, it consists on turning the categorical variable
into a series of binary ones. One for each value the original
variable might take. In the context of this project, there are
83 total usable variables. After encoding the categorical data
this number rises to 371.

Resampling - In clinical data, an imbalance between the
positive and the negative class is common, with the posi-
tive class often being severely underrepresented. One of the
techniques to deal with this problem, and avoid the bias of
the classifiers towards the majority class, is resampling. In
this project, a mixed strategy is used combining synthetic
oversampling with k-Nearest Neighbors informed undersam-
pling, as proposed by He and Garcia [21].

Feature Scaling - Numeric data is often available in a
wide variety of magnitudes and ranges. Given this undeni-
able fact, there are algorithms, specially distance based ones,
that might give more importance to a variable with values in
the ranges of millions than in range of mere decimals. This
uneven importance, might end up accounting to neglect vari-
ables that could otherwise be critical to the outcome in study.
For that reason,our methodology proposes to normalize or
standardize data.

Feature Selection - Not all variables might be relevant
for a certain prediction, therefore it’s common to select a
restricted number of variables that will actually be used to
build the prediction models. Filter methods offer a p-value
representing the probability that a variable is not correlated
to an outcome. The Chi-Squared test is used to measure cor-
relation for categorical variables, when the output is also

categorical. The ANOVA correlation coefficient is used to
measure the correlation between categorical and numeric
variables (it is not relevant which one is the dependent vari-
able). And Pearson’s correlation coeflicient is used when
both the independent and the dependent variables were nu-
meric. Embedded methods are mechanisms intrinsic to the
models. Our methods also explore this technique, especially

using associative models.
Input
Variable

Output
Variable

Categorical

Output
Variable

[Numerical] {Categorical} [Numerical] [Categorical]

ANOVA Chi-Squared

Figure 1. Feature selection process

3.3 Predictive Models

There are plenty of different models and respective varia-
tions, and there is certainly not one model that outperforms
all the other options. It depends on a number of factors,
and since the dataset available for this project is unique so
should be the strategy used to create or choose the prediction
model. Therefore, the choice is not obvious, various models
will have to be tested for each one of the 4 outcomes. Using
a group of state-of-the-art algorithms, the following were
the options chosen to make the predictions, distinguishing
between classification and regression models:

e Classifier algorithms: Naive Bayes, K-Nearest Neigh-
bours, Decision Trees, Random Forests, Support Vector
Machines, Logistic Regression, Multilayer Perceptron,
XGBoost Classifier;

e Regression algorithms: Linear Regression, Ridge Re-
gression, Lasso Regression, SVM Regressor, Elastic Re-
gression, k-Nearest Neighbours Regressor, Decision
Tree Regressor, Random Forest Regressor, XGBoost Re-
gressor, Partial Least Squares Regression, Multilayer
Perceptron Regressor.

3.4 Prediction Outcomes

As a first challenge, one broad question could be asked: Is a
patient going to have postoperative complications? Since
the outcome is binary, “yes" or “no" (1 or 0, respectively),
this can be approached as a typical classification problem,
with a discrete and well defined set of labels to attribute to a
certain patient.

The Clavien-Dindo Classification [15] is a scale used to
standardize in 8 grades the type of therapy needed after a



certain surgery, and is used as the second output of interest:
the severity of complications. There are two approaches
that will be followed in our methodology. This challenge can
be seen as a classification problem, or it could be seen as
a regression problem, using a continuous model that could
predict numeric values. Since no clear approach was best at
this point, both had to be tested.

The prediction of the probability of death is a relevant
indicator to estimate the existence of future complications,
and also the viability of surgery for a certain patient. In this
case, death might not be the result of postoperative compli-
cations exclusively, but rather a combination of factors. This
problem could be treated as a classification problem with the
objective of deciding if the patient was going to die within 1
year or not. Some classifiers are able to give an output with
a probability associated to the result. Differently from classi-
fication, a continuous model could also be used to obtain a
value between 0 and 1. Typically this would be solved by a
regression model. In this case, a regression approach would
probably not be fit for the task, since the outcome values in
the dataset are binary.

The number of days spent in the ICU represents impor-
tant information for medical and also hospital management
reasons. Since the dependent variable is continuous (time),
this prediction is better solved by a regression model.

3.5 Model Tuning: Hyperparameter Optimization

In a primary study, the models were applied with their de-
fault hyperparameters. These parameters are external to the
model and the values cannot be estimated from data. Com-
monly, they are set by the developers to work generically
across a range of scenarios. But in many cases these parame-
ters might be far from ideal, requiring customization and tun-
ing to extract the best possible results. Hyperparametrization
is the process of tuning the parameters used by the models
before the learning process begins. In this project, informed
search models are employed. Bayesian optimization [22] as-
sociates a probability distribution to the hyperparameters
tested, making the search faster than exhaustive approaches.
In the case of our models, there are 2 different objective
functions:

e Regression models are optimized in order to minimize
their mean absolute error (MAE);

e Classification models are optimized to maximize their
recall ( the sensitivity calculated for each target class,
and then averaged in a non-weighted formula).

3.6 Evaluation Metrics

Classification Evaluation Metrics - The discrete nature
of classifiers allows for simple evaluation, like checking the
number of times the classification was correct or not. But
the validation cannot be left at the analysis of the accu-
racy. Accuracy can be misleading in situations where the

data is imbalanced. In order to overcome the weaknesses
of the accuracy metric, others are used to complement it.
Like recall/sensitivity, which traduces the positive predictive
capacity that the model has for a certain class.

The Receiver Operating Characteristic (ROC) curve can
also be used to assess the model performance specifically as
a measure of class separability. This curve consists of the
plot of TPR against the FPR where TPR is on y-axis and FPR
is on the x-axis. It is most commonly used in binary outcome
settings but can also be used for categorical outcomes with
more than two possibilities. In this last case, the AUC (Area
Under the Curve) is more suited, summarizing the results.

Another metric that is used is the Cohen’s Kappa [11],
which is a chance corrected standardized measure of agree-
ment between two categorical outputs produced by two
raters. In simpler terms, it is a way of comparing the results
of two raters also accounting for a chance factor.

Regression Evaluation Metrics - While using regression
models the results are not on a black and white spectrum
like classification. There is a plethora of different metrics to
use in order to assess model fitment and error. The vastness
is explained by the fact that these metrics are very specific
in how they put their measures into perspective, on what
they measure and how they penalize certain situations. Root
mean squared error is a quadratic scoring rule that also mea-
sures the average magnitude of the error. Since the errors
are squared before they are averaged RMSE gives a larger
weight to larger errors. This characteristic can also be rele-
vant when MAE is used, since RMSE can work as an upper
and lower bound to MAE. Mean absolute error measures the
average magnitude of the errors on a set of predictions with-
out considering their direction. All the individual differences
have equal weight. An advantage of using MAE is that it
should be more stable than RMSE when the test samples are
of different size which is often the case in the real world.

Apart from checking the absolute fitment of the model,
the Coefficient of Determination, or R?, is used to check
the relative fitment of a model. This coefficient traduces the
percentage variation for the dependent variable explained
by the independent variables, being a strong indicator of the
goodness-of-fit.

3.7 Model Validation

Cross-fold validation offers the possibility to perform a statis-
tical analysis of the results on k folds of the dataset, assessing
the ability of the target predictive models to generalize into
unseen data. These techniques are used to guarantee that the
model isn’t overfitting and that it has potential to perform
positively when applied in a new validation set or in a real
context. The process consists on splitting the dataset into
training and test set, not only once but a k number of times,
trying to maintain the test set mutually exclusive between all
the splits. Allowing the testing of the model to be performed
in simulated independent test sets.



3.8 Model Comparison

Student’s t-test [29] is used for model comparison. The null
hypothesis is that the pairwise difference between the two
test sets is equal. If it proves to be different with a relevant
significance level than it is enough to reject the null hypoth-
esis and declare that one is better than the other. This test
can be used to compare the performance of different mod-
els, against a baseline or even the improvement between
development stages.

Due to the high number of comparisons, and in order to
present a suggestive set of models as the best performing
ones in the end, there had to be a system to empirically
make these decisions. Reciprocal Rank Fusion (RRF) [13] is
recognized as reliable systems to rank instances according a
group of metrics. The formula uses the sum of the inverse
of the rank obtained for each of the metrics in use. The
rank is affected by a constant, k, to mitigate the effect of
performance estimates associated with higher ranks.

RRFscore(d) = Z m (1)

4 Results & Discussion

This section analyzes some aspects about the results. Since a
full display would not be possible, the complete set of results
can be consulted in this project’s GitHub'.

The development process was done over 6 steps. The steps
details are shown in the schema, Fig. 2. In the case of regres-
sion problems, there are only 5 stages, since resampling was
not applied.

STEP 1 STEP 2 STEP 3
Default Models
Default Models +
Default Models +
Resampling +
Normalization
STEP 6 STEP § STEP 4

Hyper-parameter Hyper-parameter

Optlmlzatlon Optlmlzatlon Hyper-parameter
Feature Selection Feature Selection Opnmlzahon
(p-value+= 0.0001) (p-valuf =0.1) Resampling

Resampling Resampling *

Normalization

+ +
Normalization Normalization

Figure 2. Schema with the main steps to create the models

In this section, the best models will also be highlighted.
The choice process is not trivial here, due to the number of
factors influencing the decision, and also the subjectivity
associated. For these reasons, the models in highlight are
merely suggestive, chosen empirically through a Rank Fusion
[13] method, as indicated in section 3.8.

Ihttps://github.com/danielmg97/master-thesis-iposcore

4.1 Existence of Postoperative Complications

Starting with postoperative complications, the objective of
all the optimizations was the model’s sensitivity to both of
the output classes (positive and negative), here represented
by recall. The best results were achieved on the 4th and
5th stage, where hyperparameters optimization was applied,
allied with feature selection, with p-value = 0.1, on the 5th.
For all the metrics there are two excelling algorithms, SVM
and LR. The reasons for the success of this prediction are
precisely the amount of patients available for each output
class (i.e. patients with and without complications). Table 1
shows the best 5 models, according to the RRF score.

Table 1. Best 5 models - existence of complications

prediction
Model  Kappa Recall AUC Accuracy RRF
SVM-5 0.37£0.14 0.68+0.07 0.73%£0.08 0.69+0.07 0.36
LR-5 0.36%0.18 0.68+0.09 0.73+0.08 0.69+0.09 0.33
SVM-4 0.35£0.12 0.68+£0.06 0.72+£0.07 0.68+0.06 0.30
LR-4 0.33+0.13 0.67+0.06 0.72+0.07 0.67+£0.06 0.28
MLP-5 0.35+0.14 0.67+0.07 0.70+0.08 0.68+0.07 0.26

4.2 Severity of Complications

Classification Approach - The complications’ severity was
the second outcome of interest. For this prediction, two
strategies could be applied, classification or regression. The
output is a discrete scale, called Clavien-Dindo, ranging from
1 to 8, but it could be modeled continuously. This challenge,
in specific, revealed to be the hardest outcome to predict
out of the 4 initially proposed. Even after applying the SMO-
TEENN resampling technique to mitigate the imbalance prob-
lems, the results remained poor due to the reduced number
of samples for some of the Clavien-Dindo scale degrees. The
5 best models for the complications’ severity prediction are
shown in Table 2. NB model, scored an accuracy of about
40%, a recall score of 0.23, an AUC of 0.65 and a kappa statis-
tic of 0.15, which is still relevant performance, considering
the values are still above the performance level of a random
classifier (chance level of 1/8).

Table 2. Best 5 models - complication’s severity

(classification)
Model  Kappa Recall AUC  Accuracy RRF
NB-6 0.15+0.05 0.23+0.08 0.65+0.03 0.40+0.08 0.29
XGB-4 0.09+0.04 0.24+0.06 0.61+0.07 0.25+0.04 0.25
NB-5 0.11+0.07 0.18+0.05 0.63+0.05 0.41+0.08 0.25
LR-5 0.04£0.03 0.25%£0.08 0.66£0.07 0.10+0.07 0.25
XGB-5 0.04+0.03 0.26%0.06 0.66+0.06 0.10+0.03 0.24




Regression Approach - After testing the discrete approach,
a continuous strategy was employed. There is a slight de-
crease of the prediction error overall but the goodness of
fit metric, R? shows that the models are only slightly better
fitted than a model making predictions based on the average
output value. The best models are able to predict the output
with an error inferior to 1.2 units, in a severity scale of 1 to 8.
In order to be able to make comparisons later, the predictions
made were rounded in order to obtain scores for accuracy,
recall and kappa statistic.

The 5 best regression model setups are shown in the Table
3. For this ranking, only the MAE, RMSE and R? were consid-
ered, excluding the metrics used to compare this approach
with the discrete one. The best model is the MLP, a fact that
might support the higher complexity problem theory.

Table 3. Best 5 models - complication’s severity (regression)

Model MAE RMSE R? RRF
MLP-4 1.26+0.14 1.62+0.19 0.26+0.13 0.23
Ridge-4 1.27£0.13 1.62+0.19 0.25+0.12 0.21
PLS-3  1.27+0.14 1.63+0.22 0.25+0.14 0.19
Ridge-3 1.28£0.14 1.63+0.21 0.25+0.12 0.19
PLS-4 1.27+0.13 1.63+0.20 0.24+0.13 0.18

Approach Comparison - In order for the comparison
to be possible, the results from the regression model were
rounded to the closest integer value. This way, apart from
the normal regression evaluation metrics, it was possible to
extract the accuracy, recall score and kappa statistic from the
model. The last three discrete metrics can be compared to the
ones obtained from the classification approach, allowing for
a direct predictive performance comparison. Table 4 shows
the best 5 algorithms in order to more accurately assess the
best solution. The results seem to point to regression as the
best strategy to solve this problem, since only 1 out of the
top 5 models are classifiers.

Table 4. Best 5 models - severity prediction

Model Kappa Recall  Accuracy RRF
DT-Regr-4  0.20+£0.07 0.21£0.02 0.50+0.04 0.19
DT-Regr-3  0.19+£0.07 0.18+0.04 0.52+0.04 0.17
DT-Regr-5 0.18+0.05 0.17£0.05 0.52+0.04 0.16
NB-Class-6  0.15+0.05 0.23+0.08 0.40+0.08 0.15

SVM-Regr-3 0.16£0.08 0.16£0.06 0.47+0.06 0.14

4.3 Days Spent in the ICU

The prediction of days spent in the ICU is a difficult task
given the typical short stays of 1 or 2 days. Within the small
improvements made, the algorithms decreased their error to

a MAE of approximately 1 day. The result is that models will
be trying to fit about 350 points with the output 1.0 days and
250 points for 2.0 days. The remaining 200 records will be
split between patients that spend 3.0 or 4.0 days, and also
patients that spend less than 1 day. Overall, it is difficult
to have a real perception of model performance due to the
imbalanced setting, which is confirmed by low R? values,
meaning that the models perform similarly to a model based
on average values.

Once more, the 5 best models are presented in the table
5. The success of Ridge Regression over other regression
models might be a sign that not all independent variables
are as important to the outcome prediction, since this is a
model that applies penalties in order to reduce the impact of
certain variables.

Table 5. Best 5 models - days in the ICU prediction

Model MAE RMSE R? RRF
Ridge-3 1.04+0.16 1.72+0.41 0.06+0.08 0.21
Ridge-5 1.04+0.14 1.71£0.40 0.06+0.09 0.21
kNN-5 1.01+0.15 1.72+0.43 0.06£0.05 0.19
Ridge-4 1.04+0.15 1.72+0.40 0.05+0.11 0.18
kNN-4 1.00£0.14 1.73%£0.43 0.05+0.07 0.17

4.4 Death Probability Within 1 Year

This outcome was predicted using a classification approach
since the available data was simply a binary variable stating
whether the patient had died or not, within a 1 year period
after surgery. The development efforts soon revealed the
severe imbalance of 1:8, towards the negative result for 1 year
death. However, this imbalance was not critical since there
were still close to 100 patients representing the minority
class. Allied to this number of factor, the quality of the data
available, contributed greatly for the prediction of death. In
fact, the vast majority of the variables selected as the most
relevant set for this outcome were results of scores already
in use at IPO-Porto. This fact is not a validation of those
scores alone, but rather a confirmation that they do a good
job standardizing input data and giving rough indications
for the patients prognostic.

The models met their peak performance in the 4th and
5th stages as expected. Showing that the restriction of infor-
mation from step 5 to 6 impacts performance, a reduction
of close to 50% of the input data (from 33 to 16 input vari-
ables). This outcome shows particularly good results when
predicted by tree-based models, as shown in Table 6.



Table 6. Best 5 models - 1 year death prediction

Model  Kappa Recall AUC Accuracy RRF
XGB-4 0.31+0.09 0.68+0.06 0.76+0.09 0.75%£0.04 0.32
XGB-5 0.31+0.07 0.69+0.08 0.74+0.05 0.74%0.05 0.31
RF-5 0.26+0.0.1 0.70+0.07 0.76+0.08 0.67£0.06 0.30
RF-4  0.27+0.08 0.69+£0.06 0.75+0.09 0.70+0.04 0.28
LR-5 0.24+0.08 0.70+0.0.7 0.75+0.08 0.62+0.11 0.25

4.5 Associative Model Study

Graphical Representation - As an extension to the results
obtained from this study, it was possible to explore and im-
prove the traditional visualization associated with tree-based
algorithms. The test set error is calculated for each node indi-
vidually and displayed. Additionally, leaf nodes are colored,
traducing the error degree associated to the validation pro-
cess. This specific type of visualization, is an unmatched
novelty that can be further extended. Allowing for a quick
assessment of the decision process, improving interpretabil-
ity and confidence. A suggestive graphical representation is
presented in Fig. 3, based on a Decision Tree used to predict
the existence of complications.

Serious Complications (%) <= 0.249
gini=0.5
samples = 162
value = [79, 83]
class =1

TnV Yilse

Death (%) <= 0.008

class =0

F\CS - Internment Days Prediction <= 0.353

gini =0.216 gini=0.178
samples = 81 samples = 81
value =[71, 10] value =[8, 73]

class = 1

"gini = 0.037
samples =53
value =[52, 1]

class = 0"
leaf_accuracy =0.71

"gini = 0.4
samples = 29
value = [8, 21]

class = 1"

leaf_accuracy = 0.47

Figure 3. Example Decision Tree - Complication Prediction

5 Conclusion

In this work several supervised learning algorithms were
developed and compared, which allowed the prediction of
four main outcomes, with the goal of increasing the accuracy
of previous risk score tools used by the doctors at IPO-Porto.
The 4 outcomes of interest for this study were: the existence
of postoperative complications, the severity of the complica-
tions, number of days the patient will spend in the ICU, and
the probability of death within 1 year. Offering the possibility
to Portuguese cancer hospitals, more specifically IPO-Porto,
to have specialized tools, better suited to their needs and
practices. These models introduce the capability of learning
from previous data, recycling the good standardization and
more or less accurate prediction work already made by older
prognostication tools and risk scores. Model interpretabil-
ity is also covered, by offering new visualization options to

tree-based ML models, in order to support medical decision
processes. Additionally, information about relevant variables
for the outcomes prediction is provided, contributing to more
efficient data acquisition processes.

6 Limitations and Future Work

This study was developed aiming to predict only 4 outcomes
out of many present in the same dataset, such as the total of
days a patient will spend in the hospital, or the amount of
work a patient will require from nurses. Being a study in the
surgical oncology area, it also could be relevant to predict the
same, or a different, set of outcomes, but using more specific
surgical profiles. For instance, the dataset offers information
about the area of the body which is affected by the cancer.

In order to help the study being more inline with hospital
interests, it would also be good to have information about
the collection effort for each of the input variables. This way,
the studies could be directed towards the use of low effort
collection variables. Easing the burden of data acquisition,
that could contribute to the creation of more meaningful and
complete datasets in the future.

One of the limitations of this work, is the fact that there
is not enough metadata on the dataset, covering acquisition,
insertion and other aspects. This aspect makes it extremely
difficult to decide without external help what values should
be imputed, and what should not. For that reason, some
of the variables in this study might have been incorrectly
imputed, making the learning process more difficult.

In the future, IPO-Porto will also be releasing new datasets
and extensions to already existing ones, which could impact
the knowledge fed to the models improving them, especially
in outcomes with severe imbalance problems.

The "final" models resulting from this study offer relevant
predictive performance. With this in mind, the hypothesis of
creating ensemble methods using the algorithms developed
is still in the open.

Lastly, an external validation process could not be con-
ducted at the time this project was developed, since it re-
quires the availability of an independent unseen dataset.
This step should be crucial to verify the true generalization
capabilities of the ML models.

Acknowledgments

This work was supported by FCT, through IDMEC, under
LAETA, project UIDB/50022/2020 and project IPOscore
DSAIPA/DS/0042/2018, and INESC-ID pluriannual
(UIDB/50021/2020). We thank IPO-Porto (Dr. Lucio L. Santos)
for providing the dataset.

References

[1] Amin Andalib, Agnihotram V Ramana-Kumar, Gillian Bartlett, Ed-
uardo L Franco, and Lorenzo E Ferri. 2013. Influence of postoperative
infectious complications on long-term survival of lung cancer patients:



(10]

(11]

(12]

(13]

(14]

[15]

a population-based cohort study. Journal of thoracic oncology 8, 5
(2013), 554-561.

Richard E Bellman. 1961. Adaptive control processes: a guided tour.
Princeton university press.

Adrien Bibal and Benoit Frénay. 2016. Interpretability of machine
learning models and representations: an introduction. In ESANN pro-
ceedings.

Karl Y Bilimoria, Yaoming Liu, Jennifer L Paruch, Lynn Zhou, Thomas E
Kmiecik, Clifford Y Ko, and Mark E Cohen. 2013. Development and
evaluation of the universal ACS NSQIP surgical risk calculator: a
decision aid and informed consent tool for patients and surgeons.
Journal of the American College of Surgeons 217, 5 (2013), 833-842.
Christopher M Bishop. 2006. Pattern recognition and machine learning.
springer.

Leo Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996),
123-140.

A Breugom, E Bastiaannet, CB van den Broek, JWT Dekker, LG van der
Geest, C Puylaert, W-H Steup, CJ van de Velde, G-J Liefers, and JE
Portielje. 2013. Colon cancer patients with postoperative complications
have higher risk of recurrences. Journal of geriatric oncology 4 (2013),
542.

Siow-Wee Chang, Sameem Abdul-Kareem, Amir Feisal Merican, and
Rosnah Binti Zain. 2013. Oral cancer prognosis based on clinicopatho-
logic and genomic markers using a hybrid of feature selection and
machine learning methods. BMC bioinformatics 14, 1 (2013), 170.
Mary E Charlson, Peter Pompei, Kathy L Ales, and C Ronald MacKen-
zie. 1987. A new method of classifying prognostic comorbidity in
longitudinal studies: development and validation. Journal of chronic
diseases 40, 5 (1987), 373-383.

Chee Tang Chin, T Chua, and S LIM. 2010. Risk assessment models in
acute coronary syndromes and their applicability in Singapore. Ann
Acad Med Singapore 39, 3 (2010), 216-220.

Jacob Cohen. 1960. A coefficient of agreement for nominal scales.
Educational and psychological measurement 20, 1 (1960), 37-46.

GP Copeland, D Jones, and MPOSSUM Walters. 1991. POSSUM: a
scoring system for surgical audit. British Journal of Surgery 78, 3
(1991), 355-360.

Gordon V. Cormack, Charles L A Clarke, and Stefan Buettcher. 2009.
Reciprocal Rank Fusion Outperforms Condorcet and Individual Rank
Learning Methods. In Proceedings of the 32nd International ACM SI-
GIR Conference on Research and Development in Information Retrieval
(Boston, MA, USA) (SIGIR °09). Association for Computing Machinery,
New York, NY, USA, 758-759. https://doi.org/10.1145/1571941.1572114
Kwetishe Joro Danjuma. 2015. Performance evaluation of machine
learning algorithms in post-operative life expectancy in the lung cancer
patients. arXiv preprint arXiv:1504.04646 (2015).

Daniel Dindo, Nicolas Demartines, and Pierre-Alain Clavien. 2004.
Classification of surgical complications: a new proposal with evalu-
ation in a cohort of 6336 patients and results of a survey. Annals of
surgery 240, 2 (2004), 205.

[16] Jean-Yves Dupuis, Feng Wang, Howard Nathan, Miu Lam, Scott Grimes,

(17]

(18]

and Michael Bourke. 2001. The Cardiac Anesthesia Risk Evaluation
ScoreA Clinically Useful Predictor of Mortality and Morbidity after
Cardiac Surgery. Anesthesiology: The Journal of the American Society
of Anesthesiologists 94, 2 (2001), 194-204.

Francesc Formiga, Joan Masip, David Chivite, and Xavier Corbella.
2017. Applicability of the heart failure Readmission Risk score: A
first European study. International journal of cardiology 236 (2017),
304-309.

Silvia Bueno Garofallo, Daniel Pinheiro Machado, Clarissa Garcia
Rodrigues, Odemir Bordim Jr, Renato AK Kalil, and Vera Lucia Portal.
2014. Applicability of two international risk scores in cardiac surgery
in a reference center in Brazil. Arquivos brasileiros de cardiologia 102,
6 (2014), 539-548.

10

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

Atul A Gawande, Mary R Kwaan, Scott E Regenbogen, Stuart A Lipsitz,
and Michael ] Zinner. 2007. An Apgar score for surgery. Journal of
the American College of Surgeons 204, 2 (2007), 201-208.

Louise GH Goh, Satvinder S Dhaliwal, Timothy A Welborn, Peter L
Thompson, Bruce R Maycock, Deborah A Kerr, Andy H Lee, Dean
Bertolatti, Karin M Clark, Rakhshanda Naheed, et al. 2014. Cardiovascu-
lar disease risk score prediction models for women and its applicability
to Asians. International journal of women’s health 6 (2014), 259.
Haibo He and Edwardo A Garcia. 2009. Learning from imbalanced
data. IEEE Transactions on knowledge and data engineering 21, 9 (2009),
1263-1284.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. 2019. Automated
Machine Learning-Methods, Systems, Challenges.

Wai Lun Law, Hok Kwok Choi, Yee Man Lee, and Judy WC Ho. 2007.
The impact of postoperative complications on long-term outcomes
following curative resection for colorectal cancer. Annals of surgical
oncology 14, 9 (2007), 2559-2566.

Michal Nowakowski, Magdalena Pisarska, Mateusz Rubinkiewicz,
Grzegorz Torbicz, Natalia Gajewska, Magdalena Mizera, Piotr Ma-
jor, Pawel Potocki, Dorota Radkowiak, and Michal Pedziwiatr. 2018.
Postoperative complications are associated with worse survival af-
ter laparoscopic surgery for non-metastatic colorectal cancer—interim
analysis of 3-year overall survival. Videosurgery and Other Miniinvasive
Techniques 13, 3 (2018), 326.

Ravi B Parikh, Christopher Manz, Corey Chivers, Susan Harkness Regli,
Jennifer Braun, Michael E Draugelis, Lynn M Schuchter, Lawrence N
Shulman, Amol S Navathe, Mitesh S Patel, et al. 2019. Machine Learn-
ing Approaches to Predict 6-Month Mortality Among Patients With
Cancer. JAMA network open 2, 10 (2019), €1915997-e1915997.
Chintan Parmar, Patrick Grossmann, Derek Rietveld, Michelle M Ri-
etbergen, Philippe Lambin, and Hugo JWL Aerts. 2015. Radiomic
machine-learning classifiers for prognostic biomarkers of head and
neck cancer. Frontiers in oncology 5 (2015), 272.

Karl Pearson. 1901. LIII. On lines and planes of closest fit to systems
of points in space. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 2, 11 (1901), 559-572.

Cristina Soguero-Ruiz, Kristian Hindberg, Inmaculada Mora-Jiménez,
José Luis Rojo-Alvarez, Stein Olav Skrevseth, Fred Godtliebsen, Kim
Mortensen, Arthur Revhaug, Rolv-Ole Lindsetmo, Knut Magne Auges-
tad, et al. 2016. Predicting colorectal surgical complications using
heterogeneous clinical data and kernel methods. Journal of biomedical
informatics 61 (2016), 87-96.

Student. 1908. The probable error of a mean. Biometrika (1908), 1-25.
Paul Thottakkara, Tezcan Ozrazgat-Baslanti, Bradley B Hupf, Parisa
Rashidi, Panos Pardalos, Petar Momcilovic, and Azra Bihorac. 2016. Ap-
plication of machine learning techniques to high-dimensional clinical
data to forecast postoperative complications. PloS one 11, 5 (2016).
RGPM Van Stiphout, EO Postma, V Valentini, and P Lambin. 2010.
The contribution of machine learning to predicting cancer outcome.
Artificial Intelligence 350 (2010), 400.

Guanjin Wang, Kin-Man Lam, Zhaohong Deng, and Kup-Sze Choi.
2015. Prediction of mortality after radical cystectomy for bladder
cancer by machine learning techniques. Computers in biology and
medicine 63 (2015), 124-132.

Duminda N Wijeysundera. 2016. Predicting outcomes: Is there util-
ity in risk scores? Canadian Journal of Anesthesia/Journal canadien
d’anesthésie 63, 2 (2016), 148-158.

Maciej Zikeba, Jakub M Tomczak, Marek Lubicz, and Jerzy Swikatek.
2014. Boosted SVM for extracting rules from imbalanced data in
application to prediction of the post-operative life expectancy in the
lung cancer patients. Applied soft computing 14 (2014), 99-108.


https://doi.org/10.1145/1571941.1572114

	Abstract
	1 Introduction
	2 Related Work
	2.1 Traditional Statistical Studies
	2.2 Machine Learning Studies
	2.3 Data Preprocessing
	2.4 Validation

	3 Methodology
	3.1 The Dataset
	3.2 Preprocessing
	3.3 Predictive Models
	3.4 Prediction Outcomes
	3.5 Model Tuning: Hyperparameter Optimization
	3.6 Evaluation Metrics
	3.7 Model Validation
	3.8 Model Comparison

	4 Results & Discussion
	4.1 Existence of Postoperative Complications
	4.2 Severity of Complications
	4.3 Days Spent in the ICU
	4.4 Death Probability Within 1 Year
	4.5 Associative Model Study

	5 Conclusion
	6 Limitations and Future Work
	Acknowledgments
	References

