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Abstract—As a result of an always-online modern world, large
amounts of data are being collected every second. However,
some of that data is dirty and needs to be cleaned by a data
cleaning tool. Therefore, data cleaning tools need to be able to
process large amounts of data with a good performance and
effectiveness. Maintaining the performance and effectiveness for
large amounts of data is difficult because these tools rely on
complex algorithms to perform data cleaning tasks. For example,
the naı̈ve implementation of the approximate duplicate detection
task has a quadratic complexity - unfeasible when there are
millions of records. We propose to implement an optimizer to be
incorporated in CLEENEX, a data cleaning research prototype.
The optimizer will choose the best-suited algorithms to perform
each data operation. The algorithm is selected based on the best
trade-off between performance and quality of results.

I. INTRODUCTION

In the modern always-online world, data about each individ-
ual is being collected every second. Companies such as Google
and Facebook store in their database data that gives them
access to relevant information, such as the users’ interests, lo-
cation at a given time and day, and more information that meet
the companies’ interests. However, the capability of extracting
interesting and useful information is directly correlated to the
quality of the data stored in those databases. Data quality
can be affected by errors, missing values, duplicates, and
inconsistencies. Moreover, data may not be in a format that is
proper for consumption, thus needing some transformations.
Data cleaning is the process that aims at purifying raw data,
and producing data of good quality.

Although there are several software tools that enable to
effectively perform data cleaning (e.g., Trifacta1, Informat-
ica2 (commercial tools), CLEENEX [1] and BigDansing [2]
(research prototypes), most of them they fail at efficiently
perform that task when handling large amounts of data.
Typically, data cleaning tools rely on complex algorithms to
perform data cleaning tasks such as deduplication (i.e., the
process of detecting and eliminating approximate duplicates).

Naı̈ve algorithms for deduplication have quadratic complex-
ity, since they perform a Cartesian product to compare every
pair of records in a given input dataset. Therefore, Cartesian
product should be avoided because it has a significant impact
in the deduplication performance. Some techniques have been
proposed to avoid the Cartesian product by limiting the
comparisons performed. However, these techniques may not
be able to correctly identify all true duplicates. Therefore,
there is the need to find a good trade-off between performance

1https://www.trifacta.com
2https://www.informatica.com

(efficiency) and the capability of finding the approximate
duplicates (effectiveness).

Data cleaning tools are typically rule-based or
transformation-based. In rule-based tools, the user defines a
set of rules that data of good quality must satisfy. Each time
an entry on a dataset does not satisfy a given rule, there is
a violation that needs to be repaired. One or more repairs
are defined by the user for each violation. Data repairs are
typically selected from the set of possible data repairs using
heuristics. In transformation-based tools, we define a graph
of transformations that the input data must go through. These
transformations are performed by data cleaning operators,
that transform dirty data in clean data.

In CLEENEX, there is a clear division between the logical
operators, declared through an extension of the SQL language
or a Graphical-User Interface (GUI), and the physical opera-
tors, that define the algorithms that implement those logical
operators. This separation allows us to focus on optimizing
physical operators to enhance their performance. This sep-
aration resembles the architecture of a Relational Database
Management System (RDBMS). Moreover, CLEENEX en-
ables user intervention during the data cleaning process as well
as data debugging to analyze the source of potential problems
affecting data quality. A data cleaning process is represented
by a graph of transformations that the user defines. A data
transformation is a node of that graph.

CLEENEX does not have an automatic optimizer, thus, it is
not able to choose the most efficient graph of transformations
to perform a data cleaning process. Moreover, when faced with
large amounts of data, CLEENEX may be unable to execute
a data cleaning process, especially if it involves expensive
transformations such as approximate duplicate detection. This
problem occurs, in part, because CLEENEX is unable to
automatically optimize a data cleaning operation, i.e., choose
the best algorithm to execute a data operation.

This manuscript is organized as follows. Section II provides
background about relational optimization and data cleaning
concepts. In Section III, we detail techniques to scale-up the
approximate duplicate detection, describe research prototypes
that distribute the matching execution, and explain some data
cleaning research prototypes concerned with the performance
of a data cleaning process. The proposed solution is detailed
in Section IV. In Section V we evaluate the proposed solution.
Finally, Section VI presents the conclusions.

II. BACKGROUND

Query optimization is a problem common to all Relational
Database Management Systems (RDBMS) in the sense that
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they all aim at efficiently executing a user’s query.
As mentioned in Section I, the problem pursued in this work

consists on optimizing the data cleaning process and its tasks
over relational data. The optimizer will be integrated in the
CLEENEX prototype. In CLEENEX, there is a separation be-
tween the logical and physical layers. RDBMS follow a similar
approach, therefore, optimizations proposed for RDBMS can
also be applied in the optimizer that we will create.

A. Relational Query Optimization

When a user requests a query to be performed by a RDBMS,
that query goes through several steps before returning the
desired output, as depicted in Figure 1. This process is known
as query processing. First, the user issues a SQL query that is
parsed and translated into a relational algebra expression, and
then further mapped into a tree-based structure, by the parser
and translator module.

Fig. 1: Relational database query processing steps

Every plan must identify the algorithm and indices that
each tree node (a.k.a., operation) must use. The process of
identifying the algorithm and indices to use in each node
is known as annotation. An annotated node is called an
evaluation primitive. An annotated tree (i.e., whose nodes are
all annotated), also known as query-evaluation plan or query-
execution plan, is what the execution engine accepts as input
to compute the results of the submitted query.

The optimizer receives as input a relational algebra ex-
pression further mapped to a tree-based structure and creates
several equivalent execution plans based on it. Among those
plans, one of them is the most efficient in terms of resource
consumption (e.g., CPU, memory, I/O) and this is the one
delivered to the execution engine.

Relational optimizers are typically classified as either rule-
based, cost-based, or a mix of these two. Rule-based opti-
mizers use a set of rules to transform a given execution plan
into another possibly more efficient execution plan. Cost-based
optimizers annotate the trees with different algorithms and
indices, and manipulate the join order, to obtain a different
query-evaluation plan. The most efficient plan is then selected.
Most recent optimizers are a combination of both rule-based
and cost-based optimizers. These optimizers use first a set of
rules to produce an equivalent but cheaper plan and then the

optimizer produces exhaustively all equivalent plans using an
dynamic programming algorithm.

The query-evaluation plan performance is measured by its
cost3. The cost of a plan is given by the sum of the cost of
each node operation.

B. Data Cleaning

Maintaining a database clean over the years is a difficult
task. In fact, several people may insert data in a different
fashion, leading to inconsistencies, and possibly, duplicates.
For example, a user may enter misspellings, have different
assumptions while inserting data (e.g., inserting ”J. Peralta”
instead of ”Jake Peralta”), or she may ignore some business
rules (e.g., sell a ticket to an underage). These data quality
problems occur with a greater probability when there is no
underlying schema (e.g., some schemes have an attribute for
the first and last name, others only for the whole name, etc).

Data quality problems are usually solved, or at least mini-
mized, by a data cleaning tool (examples of commercial data
cleaning tools are Trifacta4, Informatica5, etc). Data cleaning
tools can be divided in two categories: (i) transformation-
based, or (ii) rule-based. In (i), we have a graph of data
transformations that are performed over dirty data. These data
transformations are implemented by data cleaning operators,
whose execution cleans data. Examples of transformation-
based data cleaning tools are: the research prototype CleanM
[3] , and the commercials Trifacta and Informatica. In (ii), we
define a set of rules (aka, quality rules) that the data must
satisfy to be considered of good quality. If those rules are not
satisfied, there is a violation. Violations must be repaired by a
suitable data repair, usually, chosen between a set of heuristics.
BigDansing [2] is an example of a rule-based data cleaning
tool.

Approximate Duplicate detection is the problem of detecting
that two tuples represent the same real entity, being one of the
most expensive data cleaning tasks, since it demands every
tuple to be compared with all existing tuples in a table (aka,
Cartesian product), thus having a quadratic complexity. When
we have several millions of tuples, performing a quadratic
algorithm is undesirable, and in certain cases, unfeasible.

III. RELATED WORK

A. Scaling Up Approximate Duplicate Detection

Some techniques to improve approximate duplicate detec-
tion performance when faced with large amounts of data
were proposed. Most of these techniques aim at creating
clusters/blocks of records, limiting the pair comparisons only
to those records inside the same block. These techniques are
known as indexing techniques or blocking techniques [4]. Each
record is associated to a blocking key. Records with the same
(or, for some algorithms, similar) key value go to the same
block and are compared. In this case, the key generation is a

3Only cost-based optimizers have the notion of a query cost.
4https://www.trifacta.com
5https://www.informatica.com
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crucial step. It is the user’s responsibility to define how the
key is generated.

1) Traditional Blocking: Traditional blocking [5] uses a
user-defined key to put records that have exactly the same
key value in the same block. The key is based on one or more
attributes (e.g., the concatenation of the first two characters
of every field). Once the blocks are created, the algorithm
proceeds to the comparison phase. A Cartesian product is
performed to generate all possible pairs of records found in a
block. Then, the algorithm performs record matching to verify
if a pair is a true match or not.

2) Sorted Neighborhood Join: Sorted Neighborhood Join
(SNJ) [6] uses a different approach when compared to Tradi-
tional Blocking. SNJ does not create blocks of records, instead,
all records are sorted by a predefined key and maintained
in their original table (i.e., a single block). SNJ does not
create blocks of records, instead, all records are sorted by
the blocking key values and maintained in their original table
(i.e., a single block).

To mimic the underlying idea behind the blocks (i.e.,
limit the comparisons to records inside the same block), SNJ
iterates through the records within a sliding window. A sliding
window is a window with a fixed size w defined by the user.
In the algorithm’s first iteration, the window starts at the
beginning of the table, and covers w records. At each iteration,
record matching among the w records inside the window is
performed. To proceed to a new iteration, the sliding window
goes down one record (i.e., at iteration one, starts at record
one, at iteration two, starts at record two, and so on). The
algorithm finishes when the sliding window reaches the end
of the table, that is, when the wth record of the window is the
last record of the table. SNJ does not guarantee that all true
matches are captured, mainly because of the limitation of a
fixed size sliding window6.

Several alternatives to the SNJ were proposed to improve
its effectiveness and efficiency. The Inverted Index Based
approach [6] enables the comparison between records with
similar keys by generating an inverted index whose index key
is the unique blocking key values. Then, the index key values
are sorted and the sliding window moves through the index
key values rather than the blocking key values. The Adaptive
Sorted Neighborhood [7] overcomes the problem of having
a fixed window size. For example, consider that we have a
window size of 3 and we have 5 records in a row that are
similar. The first and last two records will not be compared
since the window size does not allow it. The adaptive sorted
neighborhood solves this problem by dynamically changing
the window size w depending on the key’s values. We start by
creating a window at the beginning of the sorted table, then,
the size of the window keeps increasing as long as sequential
keys (which represent their records) are similar, according
to a string similarity function. A window covers all records
whose keys have a similarity between each other greater than a

6If two true matches are separated by more records than the window size,
then they will never be compared, thus they are never considered as matches.

predefined threshold. A new window starts when two adjacent
records have keys whose similarity is below that threshold.

3) Canopy Clustering: The Canopy Clustering technique
[8] [9] groups the records into overlapping clusters, also
known as canopies. As in the previous techniques, the com-
parisons are exclusively intra-canopy. The canopy clustering
method uses two similarity measures, one to map records into
the canopies, and another to compare the records inside each
canopy.

In a first phase, we create a list with one or more tokens
for each key value. A token can be a word, a character, or a
q-gram. Then, for each unique token, we create an entry in
an inverted index table, indicating which records contain that
token.

In the second phase, using the inverted index table, we
create the canopies and associate their corresponding records.
There are two approaches to perform this second phase: (i)
the Threshold Based Approach [8] [9], and (ii) the Nearest
Neighborhood Based Approach [8] [9]. We explain the first,
since it is the most commonly used.

B. Parallel and Distributed Data Matching

The Achilles tendon of the approximate duplicate detection
task is the fact that it demands a Cartesian product when using
a naı̈ve approach. Even with the improvements in efficiency
that blocking techniques achieve, there is the need to perform
millions of comparisons when there is large amounts of data.
Most of these comparisons do not have dependencies among
each other, i.e., to compare record r1 with r2, we do not
need to know the result of any other comparison. Therefore, a
solution to parallelize and distribute the approximate duplicate
detection task, or at least, its most resource demanding sub-
task, the Cartesian product, is needed.

Figure 2 shows a typical workflow of an approximate dupli-
cate detection program. In the matching phase we perform the
Cartesian product, in the similarity computation we compute
the similarity value for each pair of records, and in the match
classification, we decide if we consider a pair a match or not.

Fig. 2: Approximate duplicate detection task workflow

1) Dedoop: Dedoop [10] is a tool to perform efficient
deduplication with Hadoop. The underlying idea is to increase
performance, since Dedoop implements those techniques in a
distributed setting, using the a framework based on the Map-
Reduce (MR) paradigm [11], Hadoop. Hadoop uses a cluster
of nodes to perform its map and reduce tasks.

A Dedoop workflow is composed by the following three
jobs: (i) the Classifier Training job, (ii) the Data Analysis job,
and (iii) the Blocking-based Matching job. The output of the
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first job is the input of the second one and analogously for the
second and third jobs. Among these three jobs, only the latter
is mandatory.

The Classifier Training job supports a machine learning-
based match classification, i.e., instead of relying on users to
define the matching rules, it uses a machine-learning algorithm
to create the rules for a given dataset. Dedoop schedules a MR
job to train a classifier based on previously labeled examples.
The label in these examples is the similarity score between
each training pair. The resulting classifiers are then saved in
every node using the Hadoop’s distributed cache mechanism.

The Data Analysis job exists to support load balancing
strategies that Dedoop provides. The load balancing strategies
are very important since data skew may exist, i.e., some
blocking keys repeat much more than others, causing some
blocks to have many more records than others. Due to this
problem, sometimes the execution time is dominated by a
single or few reduce tasks.

The Blocking-based Matching job is divided into three main
steps: (i) blocking, using the Traditional Blocking and Sorted
Neighborhood Join techniques, (ii) similarity computation,
using string matching algorithms such as Levenshtein Distance
and TF/IDF, and (iii) matching, where the matching rules are
applied to make a decision.

2) Parallel Set-Similarity Joins: Instead of focusing in the
deduplication task as a whole, we can also focus in distributing
and parallelizing the most expensive part of the approxi-
mate deduplication task, the Cartesian product. A solution to
efficiently perform parallel set-similarity7 joins using Map-
Reduce (MR) was proposed by R. Vernica et al. [12].

The algorithm starts by using the Basic Token Ordering
(BTO) [12] algorithm to extract the signatures from the records
and compute their occurrence frequency, in relation to the
whole dataset. The signatures, also known as partitioning keys,
is a value that is created base on the blocking key value (e.g.,
from blocking key value ”This is very funny” to a signature
where the two first words are used, i.e., ”this is”). The output
of this stage is an ordered list of tokens, ordered from the
least used to the most used (e.g., for a dataset with records
(1, ABC) and (2, BC), the output is [B,C,A]). This output, in
conjunction with the original dataset is given as input to the
second stage, known as Indexed Kernel. This stage uses an
algorithm called PPJoin+ Kernel (PK) [12], [13] to perform
the comparison between records. The comparisons are not
performed among all records. Instead, each signature of each
record is assigned to a group represented by a synthetic key
(e.g.: for record (2,BC), the algorithm may assign key value X
to signature B and key value Y to signature C). Only records
with the same synthetic key are compared. To avoid data skew,
these synthetic keys are assigned in a round-robin fashion (i.e.,
there is a predefined set of synthetic keys that are assigned to
signatures). In the third stage, the record join is performed
using the Basic Record Join (BRJ) [12] algorithm. The output

7Set-similarity join refers to the task of finding all pairs of records from
two relations whose pair similarity score is higher than a given threshold.

of this final stage is the concatenation of those records whose
similarity score (computed in the second stage) is greater than
a threshold.

C. Data Cleaning Research Prototypes

1) CLEENEX: CLEENEX [1] is an extension of the data
cleaning tool AJAX [14]. CLEENEX incorporates user feed-
back into a data cleaning process, introducing the notion
of Quality Constraints and Manual Data Repairs. It is a
transformation-based data cleaning tool that provides a spec-
ification language, that is an extension of the SQL language,
for describing data transformations.

CLEENEX introduces the notion of a Data Cleaning Graph
(DCG) to represent a data cleaning program, i.e., the workflow
of data transformations to be applied to a dataset. A DCG is
a Directed Acyclic Graph (DAG) whose nodes represent the
transformations that shall be performed, or the relations that
serve as input for those transformations. The edges connect
relations to data transformations. Each transformation can be
specified through one of the five logical operators supported
by CLEENEX: (i) mapping which takes a single relation as
input and outputs one or more relations, (ii) view, an operator
that represents a simple SQL query augmented with some
integrity checking over the output relation, (iii) matching,
which applies an approximate join to two input relations
to detect approximate duplicate records, (iv) clustering, that
takes a single input relation and groups its records according
to a given clustering algorithm (e.g., transitive closure), and
(v) merging, which groups the input records according to
some grouping attributes and collapses each group into a
single tuple using a user-defined aggregation function. To com-
plement these operators, CLEENEX supports User Defined
Functions (UDFs), implemented in Java, enabling them to be
invoked within operators. These UDFs must be registered in
the CLEENEX functions/algorithms library. All the relations
involved in a DCG (input and intermediate relations generated
by the graph) are stored in a RDBMS.

As mentioned earlier, CLEENEX introduces Quality Con-
straints (QCs) and Manual Data Repairs (MDRs). These QCs
and MDRs are defined over the set of input and output rela-
tions that compose the DCG. Each relation can be associated
to a set of QCs that its records must satisfy (e.g., the QC
qc1 : salary > 600 defines that the salary attribute value
must be higher than 600). A QC is a mechanism to call the
user’s attention for tuples that do not satisfy certain conditions.
A blamed tuple is a record that does not satisfy a QC. Every
QC has a table for its blamed tuples. A MDR may be defined
over any relation of the DCG consisting in a updatable view
and an action. The view defines the set of tuples that the user
sees when an MDR is executed. An action can be an update,
insertion or removal. When a QC is defined over a relation,
an MDR can also be defined over the same relation to provide
a way for incorporating a user action to manually correct the
blamed tuples.

2) CleanM: CleanM [3] is a recently proposed data clean-
ing tool that aims at unifying the most popular data cleaning
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operations into a single tool. CleanM allows the users to
express several data cleaning tasks such as denial constraints,
deduplication, data transformations (e.g., merging columns of
a dataset), and term validations. Furthermore, it supports an
extension of the SQL language that enables to specify those
cleaning tasks. Data cleaning operations are firstly optimized,
and then deployed in a scale-out fashion, using frameworks
such as Spark.

CleanM proposes a three-level optimization for a given data
cleaning programFirst, the Parser transforms the data cleaning
program into an Abstract Syntax Tree (AST), as in an RDBMS.
The AST is further mapped by the Monoid Rewriter into an
optimizable and inherently parallelizable calculus, the monoid
comprehension calculus [15]. This calculus is able to represent
complex operations between different data collection types
(e.g., JSON, relational, etc) in a unified way, thus enabling
to optimize the task as a whole. Then, at the second-level
optimization, the comprehensions generated are translated into
an intermediate algebra, the nested relational algebra [15], by
the Monoid Optimizer module. This intermediate algebra has
three major benefits: (i) it defines a set of rules, removing any
query nestings, which in data cleaning programs, constitutes
a major concern, (ii) independently of the data source, or
the desired operation(s), all monoids are translated into the
algebra, enabling the detection of intra- and inter-operator
optimizations (e.g., work/data sharing between operators, i.e.,
if task A performed operation X, and task B also performs
operation X but with different parameters, then the tasks are
merged - this is known as coalescing operators), (iii) since
the comprehensions are being translated into an algebraic
form, optimization techniques vastly studied in the context of
relational algebra can be used. Finally, the third-level of opti-
mization is the mapping of the algebraic operators to a physical
plan, which is able to deal with common problems such as data
skew. This third-level of optimization is performed by the Plan
Rewriter module. Independently of the complexity of a data
cleaning task and the data sources, CleanM treats the whole
task as a single query, optimizing it as a whole. Completing
the optimization steps, the physical plan is translated into code
by the Code Generator in order to execute the data cleaning
program in a distributed execution engine (e.g.: Spark).

3) BigDansing: BigDansing [2] is a Big Data Cleansing
tool that tackles the problem of efficiency and scalability.
BigDansing is a rule-based tool. First, detects which pairs
of records violate a set of predefined rules. Then, either
automatically or by asking for user’s assistance, fixes the
detected violations8.

The BigDansing system architecture is illustrated in Figure
3. It is possible to distinguish two big modules (the ones
in blue). The left-most is the Rule Engine module. It re-
ceives as input a dirty dataset and a BigDansing job, i.e.,
a rule expressed declaratively or procedurally (i.e., through
the definition of UDF-based operators). Then, it outputs a set

8Sometimes a violation cannot be fixed, however we consider a dataset as
cleaned if it does not have violations, or if it has only violations that cannot
be repaired.

Fig. 3: BigDansing architecture.

of violations and possible repairs. A BigDansing job defines
which operations must be performed, and their order. The Rule
Engine module is divided in three layers: (i) logical layer, (ii)
physical layer, and (iii) execution layer. The logical layer is
where we define a rule, independently if it is expressed declar-
atively or procedurally. At the physical layer, the logical plan
with logical operators, built in the previous layer, is converted
to physical operators and the whole plan is optimized. Finally,
at the execution layer, the physical operators are mapped to
the operators of the framework to be used (e.g., Spark, DBMS,
Map-Reduce based, etc). The remaining module is the Repair
Algorithm, which repairs the detected violations using the
Equivalence Class algorithm [16], [17].

A BigDansing job can be defined using five logical opera-
tors: (i) Scope, that reduces the quantity of data to be treated,
i.e., acts as a filter, (ii) Block, which groups records by a given
key, (iii) Iterate, that enumerates all possible combinations of
records in each block, i.e., performs the Cartesian product
inside each block, (iv) Detect, which verifies if there is a
violation for each pair, and (v) Repair, also known as GenFix,
that retrieves possible solutions for the violation that was
found. If it is a procedural rule, then it is up to the user to
define the order by which operators are executed. If it is a
declarative rule, then the Rule Parser module automatically
translates it to a BigDansing job using the aforementioned
logical operators.

The logical plan created in the logical layer, that represents
the BigDansing job to be executed, is optimized and translated
into a physical plan composed of physical operators. There are
two types of physical operators: a wrapper, which performs the
operation demanded by a logical operator (PScope, PDetect,
PGenFix, etc), adding physical details such as the input
dataset, and an enhancer, that replaces a wrapper whenever
there is an optimization opportunity. The enhancer is an
optimized physical operator.

4) RHEEM: RHEEM [18] is a cross-platform data process-
ing tool. It has a different purpose from the other research data
cleaning tools presented in this section. In fact, it does not
execute a data cleaning program itself. Instead, it uses external
platforms to perform the transformations that compose a data
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cleaning program, i.e., it plays the role of a middleware
between applications and platforms.

RHEEM represents a data cleaning program as a graph
composed by data transformations. For each data transforma-
tion, RHEEM chooses the best platform to perform it, cost-
wise (e.g., the platform that has the best execution time or
the less monetary-cost). However, choosing the best platform
for each data transformation may result in a suboptimal data
cleaning program, as the cost to perform the transformations
and move data between platforms may be higher than running
the transformations in a single platform. To create the most
efficient data cleaning program, RHEEM has a cost-based
cross-platform optimizer that: (i) is able to deal with the
intricacies of each data cleaning platform, taking that burden
from the users, (ii) takes data movement into account, and (iii)
is able to deal with bad cardinality estimates, re-optimizing
the execution of a data cleaning program while it is already
executing.

IV. PROPOSED SOLUTION

As stated in Section I, the goal of this thesis is to implement
an optimizer to be integrated in the data cleaning research pro-
totype CLEENEX. This optimizer only deals with relational
data, since CLEENEX accepts this type of data.

A. Optimizer Component Architecture

The CLEENEX component architecture is represented in
Figure 4. It is composed of nine components, including the
optimizer.

Fig. 4: CLEENEX component architecture

A Data Cleaning Program (DCP) in CLEENEX is defined
through a declarative language in the CLEENEX GUI. The
DCP is firstly parsed by the Parser module. The Parser creates
all necessary data structures to support CLEENEX execution.
Among these structures are the Data Cleaning Graph (DCG)
and the catalog. The catalog gathers all information about a
DCP, being through it that the modules can access the DCG.
The Catalog Manager (CM) acts as an intermediary between
all modules, making available to all of them the catalog
instance. The catalog instance is one of the dependencies of the
renovated Optimizer. Note that the optimizer module already

existed in CLEENEX. The difference to the new one is that
it was not automatic, as it was dependent on the hints given
by the user. Moreover, whereas the old had no output, the
new one outputs an executable graph of transformations. This
graph of transformations is delivered to the Scheduler so that
the DCP declared in the CLEENEX GUI may be executed.

B. Optimizer Workflow

The design and implementation of an optimizer in
CLEENEX is the main goal of this thesis. The optimizer is
responsible for the following tasks: (i) receiving the DCG
and translate it into an execution plan, an executable graph
of transformations that lists which physical operators and
physical algorithms should be used, (ii) generate equivalent
execution plans, (iii) select the least costly execution plan,
and (iv) save the cheapest execution plan for a given DCG so
that it can be reused.

The DCG represents the logical plan in CLEENEX. In
order to represent the physical plan, we designed another
data structure, the Execution Plan (EP). Both DCG and EP
represent a graph. However, whereas the DCG graph nodes
are logical operators, the EP nodes are physical operators. A
physical operator gathers all necessary information to execute
a logical operator but does not execute it. Instead, it uses
a physical algorithm. A physical algorithm is what enables
the execution of a logical operator. Note that a physical
operator may have several physical algorithms that are able
to execute it. For example, the Matching physical operator
has six physical algorithms.

The execution workflow of the optimizer is represented in
Figure 5. The CLEENEX Executor represents the execution
flow started by the HTTP request made by the user once he
requests the DCP execution through CLEENEX GUI. Some-
where in the execution, the optimizer is requested to provide
the cheapest execution plan for a given DCG. The optimizer
starts by converting the DCG into an empty execution plan
(Plan Converter). We consider an empty execution plan one
that does not have any physical algorithm associated with
its physical operators. Then, it checks if there is already
an execution plan with the same characteristics in the Plan
Cache module. If there is, then the cached execution plan is
retrieved. Otherwise, the workflow proceeds, and from that
empty execution plan, the Equivalent Plans Generator module
creates, if possible, equivalent execution plans. It is expected
that this module always outputs at least one execution plan,
the one that uses the default physical algorithms of each
physical operator. When a physical operator defines only one
physical algorithm, that algorithm is considered the default
for that physical operator. For the matching physical operator,
the default physical algorithm is the Cartesian Product. Then,
the cost of the plans is estimated by the Plan Cost Estimator
module using a cost model. Once the cheapest plan is found,
it is saved in the cache and is returned, and the CLEENEX
Executor proceeds its execution.
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Fig. 5: Optimizer execution workflow

C. Cost Model

The Cost Model enables to measure the cost of an execution
plan. First, we need to take into account that a plan is
composed by a set of physical operators. In a given exe-
cution plan, each physical operator has only one execution
algorithm. This execution algorithm is selected among the list
of supported physical algorithms for that physical operator.
The plan cost is affected by the cost of the physical algorithms
that are executed, i.e., it is not possible to define the cost
for a physical operator since it can be executed by different
physical algorithms (e.g., the Matching can be executed by
six different algorithms). Therefore, the cost model needs to
be created on an physical algorithm-basis. This cost model is
divided into three main sections: (i) the output size estimation,
whose formulas for each physical algorithm are shown in Table
I(ii) the CPU cost measurement, i.e., the cost of a physical
algorithm, which allows us to evaluate how much CPU effort
is needed to execute the physical algorithm, and (iii) the I/O
cost measurement, measured in the number of pages read from
disk, allowing to measure the I/O effort needed to retrieve
all data required to perform the algorithm. The formulas to
perform the measurements of the two last sections are available
in Table II.

The cost of a physical algorithm is given by the sum
of its estimated I/O and CPU cost multiplied by a penal-
ization factor, i.e., the physical algorithm’s cost formula is
(CPU Cost + I/O Cost) × Penalization Factor. The
penalization factor is a percentage that can vary between 50%
and 200%. The factor’s goal is to penalize algorithms that are
good performers at the cost of having bad quality results, as
occurs with the non-default matching algorithms.

This factor is mainly used in the matching physical algo-
rithms, since we needed a way to penalize non-default match-
ing physical algorithm is influenced by the quality of its results
(effectiveness) and its performance when compared against the
matching default physical algorithm, the Cartesian product.
The penalization factor and cost formula for each physical
algorithm is shown in Table III. The Final Penalization Factor
column shows the physical algorithm penalization factor. The
penalization factor of a physical algorithm is the average
between two factors: (i) the output factor, that takes into
account the algorithm effectiveness, and (ii) the performance
factor, that evaluates the performance gain achieved by using
a given physical algorithm when compared to the default
physical operator algorithm. Finally, the column Cost Formula
shows the final cost formula that takes into account the CPU

cost, I/O cost and the penalization factor.
To obtain the estimated cost of an execution plan, we need

to sum the cost of each of its physical algorithms.

D. Execution Optimization

Some design choices make working on CLEENEX very
hard and some make it difficult to scale. These design choices
are: (i) the generation of code in runtime, and (ii) how the
matching physical algorithms were implemented.

Generating code in runtime makes debugging very chal-
lenging since the code does not exist previously to the data
cleaning program execution. Also, it does not allow us to
decouple an algorithm from the CLEENEX platform, thus not
allowing us to test it individually. Moreover, the introduction
of new features is very time-consuming and error-prone.

Another CLEENEX bottleneck is its matching physical
algorithms. Although the other physical algorithms also have
problems, the matching algorithms’ implementation had de-
sign choices that impacted severely their performance. Most of
the algorithms relied on a List structure to store the generated
candidate record pairs. However, this data structure has a
search CPU cost of O(N). To decrease significantly the CPU
cost, we switched that data structure with a Map, which has
O(1) searches.

V. EVALUATION

The experiments enable to validate the solution proposed
and described in Section IV. The goal is to evaluate the ca-
pability of the optimizer to choose the best execution plan for
a given data cleaning program. This experimental validation
allows us to see if the optimizer is creating the expected
plans and selecting the cheapest one. Also we will evaluate
the performance gain achieved with the introduction of the
optimizer.

A. Experimental Setup

We compare the performance gain in CLEENEX before
and after the introduction of the optimizer. For this, we use
multiple variations of the same dataset, the CIDS Publication.
This dataset is based in the gold standard dataset CORA 9.
However, the CIDS Publication only contains a subset of
CORA dataset, it does not have the gold standard.

The CIDS publication dataset originally contains 481
records. To perform the experiments that allow us to evaluate
our solution we generated from the CIDS publication dataset
other six datasets with 500, 1,000, 5,000, 25,000, 100,000, and
250,000 input records.

The experiments were executed in a Macbook Pro 2017
having 4 cores with 2.8GHz and 16 GB of main memory
(RAM) of 2133 MHz LPDDR3. The operative system is
macOS Catalina version 10.15.6.

The DCP used in our evaluation receives as input one of
the datasets that were generated from the CIDS Publication
dataset. Then, it has two mapping logical operators, the
AuthorsByPublication, and the PubAuthorNames. They are

9https://hpi.de/naumann/projects/repeatability/datasets/cora-dataset.html
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Physical Operator Physical Algorithm Estimated Output Size Expected Maximum
Output Size

View - NR ?
Mapping - NR ≥ NR

Merging Sorting
V (attrR) NRHashing

Clustering Transitive Closure NR 2NR

Matching

Cartesian product NR ×NS NR ×NS

Traditional Blocking NR×NS(∑V (BKVR∪BKVS)

i=1
× 1

i

)2 ×∑V (BKVR∪BKVS)

i=1
× 1

i2
[19] NR ×NS

Canopy Clustering
NR×NS×n2

l

n2
t

[19] NR ×NS

Sorted Neighborhood Join (SNJ) (w2 + 2(NR +NS − w)(w − 1)) [19] NR ×NS

Inverted Index SNJ NR×NS
V (BKVR∪BKVS)2

(w2 + (V (BKVR ∪BKVS)− w)(2w − 1)) [19] NR ×NS

Adaptive SNJ NR×NS(∑V (BKVR∪BKVS)

i=1
× 1

i

)2 ×∑V (BKVR∪BKVS)

i=1
× 1

i2
NR ×NS

TABLE I: CLEENEX output size estimation. NR refers to the number of records of a relation R, and NS to the number of
records of a relation S, V (attrR) is the number of distinct values for a given attribute attr of relation R, and w is the window
size in the Sorted Neighborhood physical algorithms. We use NR∪S to refer the size of the union between relations R and S,
and BKVR ∪BKVS is the total number of blocking key values from both input relations R and S.

Logical Operator Physical Operator CPU Cost (Big O Notation) I/O Cost (Pages)
Mapping - O(NR) 2bR

Merging Sorting O(NRlog(NR)) bR(2dlogM−1(
bR
M

)e+ 1)
Hashing O(NR) 3(bR) + 4NR

Clustering Transitive Closure O(NR) bR(2dlogM−1(
bR
M

)e+ 8) + 4NR

Matching

Cartesian Product O(N2
R∪S) bR ∗ bS + bR

Traditional Blocking O(N2
R∪S × log(NR∪S)) bR + bS

Canopy Clustering O(N2
R∪S × log(NR∪S)) bR + bS

Sorted Neighborhood Join (SNJ) O(NR∪S × log(NR∪S) + w) bR + bS
Inverted Index SNJ O(NR∪S + log(NR∪S)× w) bR + bS
Adaptive SNJ O(NR∪S × log(NR∪S) + w) bR + bS

TABLE II: CPU and I/O cost analysis of CLEENEX physical operators. NR refers to the number of records of a relation R, bR
to the number of blocks needed to store all the records from relation R, and w to the window size in the Sorted Neighborhood
algorithms. Finally, M is the number of pages the memory can accommodate. When there is a second relation, i.e., in the
matching operator, we refer to another relation S. To refer the size of the union between relations R and S we use NR∪S

followed by a matching logical operator that receives as input
the last mapping logical operator output, PubAuthorNames.
The matching is a self-matching, i.e., the input table is read
twice. Then, the DCP finished with a clustering logical oper-
ator, ClusterAuthors, followed by a merging logical operator,
CleanAuthors.

B. Metrics

To evaluate the developed cost model, we used the the
error rate metric, which enables to evaluate the difference
between the real output size and the estimated output size.
The error rate has two variants, one for non-matching physical
algorithms (Equation 1), and other for matching physical al-
gorithms (Equation 2). The reason why the matching physical
algorithms have different formulas is because the cost model
for those algorithms measures the number of candidate pairs
generated instead of the matching physical operator output,
which includes the filtering phase, i.e., the application of the
WHERE clause defined in the matching logical operator.
For both variants, an error rate less than 1.0 means that the
estimated value is higher than the real output, greater than 1.0

the estimated value is smaller than the real output, and when
the error rate is 1.0 the estimated value and real output are the
same.

Error Rate =
Physical Operator Real Output

Estimated Output
(1)

Error RateMatching =
Candidate Pairs Generated

Estimated Pairs Generated
(2)

C. Cost Model

The Cost Model affects the overall execution of a data clean-
ing program since it is essential to choose which execution
plan should be used. In the cost model, for each operator,
we estimate the algorithmic cost, that is, the CPU cost, the
I/O cost, and the estimated output size. In this evaluation,
we focused on the output size estimation since both the CPU
and I/O cost are computed based on it. More precisely, in
this document we cover the cost model results for matching
operator. The mapping physical operators that precede the
matching, have an error rate of 3.37. Therefore, for 1000 input
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Data Operator Algorithm Output Factor Performance Factor Penalization Factor Cost Formula
View Default - - 100% CPU + I/O × 100%
Mapping Default - - 100% CPU + I/O × 100%
Merging Default - - 100% CPU + I/O × 100%
Clustering Default - - 100% CPU + I/O × 100%

Matching

Cartesian Product - - 100% CPU + I/O × 100%
Sorted Neighborhood Join 199,96% 0,01% → 50,00% 124,98% CPU + I/O × 124, 98%
Traditional Blocking 194,39% 0,35% → 50,00% 122,20% CPU + I/O × 122, 20%
Adaptive SNJ 194,39% 8,47% → 50,00% 122,20% CPU + I/O × 122, 20%
Inverted Index SNJ 185,61% 5013,83 → 200,00% 192,81% CPU + I/O × 192, 81%
Canopy Clustering 187,67% 1619,64% → 200,00% 193,84% CPU + I/O × 193, 84%

TABLE III: Algorithm’s cost formulas with penalization factor

records, the cost model estimates that there are 1000 output
records, but instead, there were 3389.

The corresponding matching physical operator can be ex-
ecuted by six different physical algorithms. We analyzed the
cost model for each one. Note that the estimated output refers
to the estimated number of candidate pairs.

For the Sorted Neighborhood Join, Figure 6 shows that
the cost model is consistently accurate across the various
input sizes tested. As shown in Table IV, the estimated pairs
generated is not far from the effective number of candidate
pairs generated, i.e., the number of candidate record pairs
output by the physical algorithm. The cost model achieves
an error rate of 0.83, i.e., for every 100 estimated candidate
record pairs, the physical algorithm, in reality, outputs 83.

Fig. 6: Cost model results for SimilarAuthors (Matching) with
Sorted Neighborhood Join

The Inverted Index SNJ physical algorithm has a similar
CPU cost to SNJ. However, it can detect more pairs than
that algorithm. In fact, only the Cartesian Product gener-
ates more candidate record pairs. Although producing more
candidate record pairs does not mean that more duplicates
are detected, it does increase the chances of finding more
duplicates, since more records are compared. In what concerns
the cost model, as Figure 7 shows, the number of estimated
candidate record pairs is approximately 2,469% smaller than
the actual generated candidate record pairs. This corresponds
to an error rate of 24.69, as seen in Table V. Therefore, the
formula for the output size estimation, extracted from [19],
is not able to precisely estimate for the Inverted Index SNJ.
Alternatively, the authors of [19] propose a formula using the
Zipf distribution, instead of the one that our cost model is

using, normal distribution. However, for the Inverted Index
SNJ, to compute the estimations using the Zipf distribution, we
would have an approximate CPU cost of O(2N2+N3). Such a
high CPU cost, even for small input datasets, is undesirable. To
avoid such a high computation cost, we preferred to maintain
the normal distribution high error rate.

Fig. 7: Cost model results for Similar Authors (Matching) with
Inverted Index SNJ

The cost model results for the Adaptive SNJ are illustrated
in Figure 8. In that figure, it is possible to draw two con-
clusions: (i) the estimated output is undesirably far from the
candidate pairs, and (ii) the candidate pairs are surprisingly
near the real output, meaning that there is no much filtration
happening, which contrasts with the SNJ behavior. As Table
VI shows, the real output is, on average, 91% of the generated
pairs, whereas the generated pairs are 284% more than the
estimation.

The cost model results for the Adaptive SNJ, represented
in Figure 8, show that the estimated candidate record pairs
are still far from the real number of generated candidate
record pairs. Curiously, the Adaptive SNJ candidate record
pairs are very near to the matching physical algorithm output,
i.e., after applying the filtering phase defined in the logi-
cal operator WHERE clause. A possible justification for
this phenomenon is that to create the dynamic window, the
Adaptive SNJ uses a similarity function to filter every pair
of records. The dynamic window keeps increasing while the
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500 1,000 5,000 25,000 100,000 250,000
Estimated Pairs Generated 3,997 7,997 39,997 199,997 792,005 2,001,869
Candidate Pairs Generated 3,355 6,775 33,749 170,445 670,639 1,691,459
Matching Real Output 1,493 3,086 15,720 79,826 313,550 791,020
Error Rate 0.84 0.85 0.84 0.85 0.85 0.84

TABLE IV: Cost model results summary for SimilarAuthors (Matching) with Sorted Neighborhood Join

500
Estimated Pairs Generated 16,434
Candidate Pairs Generated 405,751
Matching Real Output 306,094
Error Rate 24.69

TABLE V: Cost model results summary for SimilarAuthors
(Matching) with Inverted Index SNJ

similarity value between two adjacent records is above a given
threshold. The filtering phase defined in the logical operator
through the WHERE clause in the matching logical operator,
performs similar filtering to that of the Adaptive SNJ, i.e.,
it uses a similarity function to test every pair of records.
According to Table VI, the real output is, on average, 91%
of the generated candidate record pairs, whereas the generated
pairs are 284% more than the estimated ones, i.e., the average
error rate is 2.84.

Fig. 8: Cost model results for SimilarAuthors (Matching) with
Adaptive SNJ

500 1,000
Estimated Pairs Generated 65,357 235,650
Candidate Pairs Generated 174,675 709,940
Matching Real Output 158,198 644,494
Error Rate 2.67 3.01

TABLE VI: Cost model results summary for SimilarAuthors
(Matching) with Adaptive SNJ

Both Adaptive SNJ and Traditional Blocking share their
output estimation formulas. Moreover, these formulas assume
that the input dataset uses a Zipf Distribution [20]. The Zipf
distribution assumes that in a list of words ordered by their

frequencies, the word at position p has a relative frequency
of 1/p. The results presented in Figure 8 and Table VI
use the Zipf distribution. With the normal distribution, the
number of generated candidate record pairs for an input dataset
of 500 records would be 833 pairs, which compares with
the estimated 65,357 with the Zipf distribution. The results
with the normal distribution for the Adaptive SNJ are shown
in Figure 9. On average, the error rate with the normal
distribution is 317.91, i.e., almost 112 times bigger than with
the Zipf distribution.

Fig. 9: Cost model results for Similar Authors (Matching) with
Adaptive SNJ using Normal Distribution

The results for the Traditional Blocking’s cost model are
identical to the Adaptive SNJ’s, reported in Table VI. The
only difference is that for 1,000 input records, Traditional
Blocking produced less 2,782 pairs than the Adaptive SNJ, as
can be seen in Figure 10. However, both estimations and real
matching output, i.e., after the filtering phase, are identical,
thus supporting the choice of sharing the cost model between
them. Moreover, both have the same error rate, as reported in
Table VII.

500 1,000
Estimated Pairs Generated 65,357 235,650
Candidate Pairs Generated 174,675 707,158
Matching Real Output 158,198 644,494
Error Rate 2.67 3.01

TABLE VII: Cost model results summary for SimilarAuthors
(Matching) with Traditional Blocking

The Cartesian Product is the operator with the highest output
size estimation. This algorithm compares all records against
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Fig. 10: Cost model results for SimilarAuthors (Matching) with
Traditional Blocking

each other. It does not perform any optimization, i.e., does not
filter pairs, as the remaining matching physical algorithms. For
example, the other matching algorithms, for records A and
B, only create the pair that appears first, either A − B or
B−A, whereas the Cartesian Product creates both. Although
the Cartesian Product behavior is the most predictable from
all the matching physical algorithms, as shown in Figure 11,
the estimation of generated candidate record pairs is not 100%
accurate. As Table VIII shows, the average error rate is 11.38.
The reason for this lack of accuracy is due to the estimation er-
ror made in the previous mapping physical algorithms. Recall
that the mapping physical operator that precedes the matching,
PubAuthorNames, for an input dataset of 1,000 records, has
an estimated output of 1,000 records. However, the real output
size, and therefore, the real input size of the matching physical
operator and its algorithms, is 3,389 records, which is the real
output size of the preceding matching physical operator. If
there were no errors in the previous estimations, the Cartesian
Product, for an input dataset of 1,000 input records would
estimate 11,485,321 candidate record pairs, having an error
rate of 1.0, i.e., the estimations and real values are identical,
meaning that the cost model is accurate.

Fig. 11: Cost model results for SimilarAuthors (Matching) with
Cartesian Product

500 1,000
Estimated Pairs Generated 250,000 1,000,000
Candidate Pairs Generated 2,819,041 11,485,321
Matching Real Output 335,548 1,354,016
Error Rate 11.27 11.48

TABLE VIII: Cost model results summary for SimilarAuthors
(Matching) with Cartesian Product

The results achieved for the Canopy Clustering cost model
are satisfactory, since as shown in Figure 12, the estimations
made are only 1.63 times smaller than the real values, i.e., the
error rate, as reported in Table IX, is just 1.63.

Fig. 12: Cost model results for SimilarAuthors (Matching) with
Canopy Clustering

500
Estimated Pairs Generated 219,726
Candidate Pairs Generated 357,527
Matching Real Output 316,264
Error Rate 1.63

TABLE IX: Cost model results summary for SimilarAuthors
(Matching) with Canopy Clustering

VI. CONCLUSION

In this document, we detailed the design and integration of
an automatic optimizer in CLEENEX. This optimizer is able
to automatically decide, for any Data Cleaning Program (DCP)
what is the set of physical algorithms that guarantees the best
trade-off between effectiveness, i.e., the quality of the results,
and performance, i.e., the execution time.

We focused mainly on the optimization of the matching
physical operator. We detailed several matching physical al-
gorithms that enable the scaling up of the default matching
algorithm, the Cartesian Product, and discussed the advantages
and disadvantages of each one. Some of these matching algo-
rithms achieve better performance by creating less candidate
record pairs. However, by doing that, these algorithms may
not be able to detect as many approximate duplicates as one
that generates more pairs. Moreover, more at an infrastructure
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level, we described a paradigm change in how a developer can
execute and create a matching physical algorithm. Moreover,
the optimizations performed in the Traditional Blocking, the
Sorted Neighborhood Join, and Adaptive SNJ physical algo-
rithms achieved execution times that are, on average, 1,430.87
faster than the execution times previous to the optimizations.
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