Prioritizing Facebook’s Infer Static Analysis Tool
Warnings

Joao Francisco Roberto Martins*
Instituto Superior Técnico, Universidade de Lisboa
joaofrmartins @tecnico.ulisboa.pt

Abstract—Infer is a Static Analysis tool that analyses code
statically and returns warnings on the errors and possible bugs.
Infer reports these warnings to the developers without a specific
order and without an assigned priority. In this work, we focus
on the problem concerning the fact that a significant number of
these warnings can turn out to be False Positives. It is important
to keep control of false positives since they negatively impact
users of this kind of tools, making them lose confidence on the
tool they are using and wasting time looking at issues that are
not real errors. In this work, we perform a review of state-of-
the-art Static Analysis tools warning classifying techniques and
develop a Neural Language Model based on LSTM networks,
capable of successfully modelling Infer’s symbolic execution thus
allowing the discovery of patterns that lead to the creation of
false positive warnings. We evaluate the model on two different
case scenarios and evaluate different data preparation routines
for the use of LSTM networks, showing that these routines have
a substantial impact in classification accuracy. The experimental
results show a warning classification accuracy of approximately
86 % when analysing the same program over time, which is Infer’s
most common application scenario. Overall, our study shows
that the proposed model is capable of correctly identifying false
positive Infer warnings and consequently improve the usability
and effectiveness of Infer Static Analysis tool by prioritizing true
positives over false positives warnings.

Index Terms—Infer; Static Analysis; False Positive Classifica-
tion; Output Prioritization; Machine Learning.

I. INTRODUCTION

Nowadays, the majority of software development companies
take advantage of automated bug finding tools to ensure that
their products achieve a certain level of quality. However,
given the size of real-world systems and its complexity, the
number of errors identified can grow too large to properly be
considered and addressed by the developers.

Infer is a Static Analysis tool that analyses code statically
and returns warnings on the errors and possible bugs [1].
This tool is one the most relevant and exciting automated
bug finding tools of today. It grew out of academic work on
Separation Logic [2], [3], which aimed to scale algorithms for
reasoning about memory safety of programs that manipulate
pointers. It arrived at Facebook with the acquisition of the
program proof startup Monoidics in 2013, and its deployment
has resulted in tens of thousands of bugs being fixed by
Facebook’s developers before they reach production. It is open
source [1] and is currently used in several major companies
including Amazon, Spotify, and Mozilla.

Infer returns the generated error reports to the developers
without a specific order and also without assigning to each

report a level of priority. This can turn out to be problematic
since developers are expected to judge the importance of each
error report on their own, having only their experience and
some context of the system to make a decision. Many times
this is insufficient, leading to a waste of time looking at
issues that will not be materialized in true errors or are not as
important as others.

One of the most critical challenges faced regarding this
matter involves the accuracy of the reported warnings. Since
static program analysis is performed without executing the
software under analysis, static analysis tools must speculate
on what the actual program behaviour will be, often resulting
in a over-estimation of possible program behaviours. This
leads to spurious warnings called False Positives, that do not
correspond to true defects. This also happens because these
kind of tools rely on approximations and assumptions that help
their analyses scale to large and complex software systems.
The trade-off is that analysis results become imprecise, leading
to false positives. For example, Kremenek et al. reported
that at least 30% of the warnings reported by sophisticated
static analysis tools are false positives [4]. This is an issue
to developers since they will waste their time analysing and
evaluating false positives while trying to find the real errors
that affect the system. In some cases developers stop inspecting
the tool’s output since it is not reliable.

A. Work Objectives

The main objectives of this work are to improve the reli-
ability of Infer and increase its performance by dealing with
false positive warnings presents in the output.

To address these objectives, we develop a Neural Language
Model, based on Long Short-term Memory (LSTM) networks,
capable of successfully modeling Infer’s symbolic execution
thus allowing the discovery of false positive patterns that lead
to spurious warnings. This solution involves the analysis of
the symbolic execution performed by Infer while analyzing a
program. The reasoning behind this idea is to look out for
patterns in the code that would correspond to a false positive
warning. We decided to specifically use LSTM networks to
perform neural language modeling. This is because LSTM net-
works are better suited to model longer sequences than other
similar machine learning techniques, e.g., Recurrent Neural
Networks, being able to capture much longer dependencies
which are common in source code. In this work we study the
use of this kind of networks applied to our context and find out

the optimal network parameters for our specific problem. We
create a benchmark of more than 500 Infer reports manually
labeled as false/true positives in order to train and test our
model. We discuss a set of transformations to be applied
to Infer’s intermediate language with its respective symbolic
execution, and evaluate the impact each one of them has in
the performance of the machine learning model. As well as
that, we study two different application scenarios where this
model could be applied.

Our experimental results provide understanding into the ap-
plicability and performance of the developed models as well as
the impact of each data preparations in two distinct application
scenarios. First, we concluded that the data preparation for the
LSTM networks has a significant impact on the performance
of the model and that more detailed data preparations leads
to better performance. Second, with the two application sce-
narios studied, we demonstrated that the abstraction aspect
is key when dealing with cross-project warning classification,
so that the generalizability of the model allows the correct
classification of samples original from programs never seen
before. Lastly, our model is able to correctly classify Infer
output warnings, especially when dealing with within-project
warning classification, which is the most common use case for
Infer. This translates to a significant improvement in Infer’s
usability and effectiveness.

In summary, in this work we explore how neural language
models can be used to prioritize bug reports produced by
Facebook’s Infer. In particular, we propose to address the
following research questions:

o RQ1: What is the overall performance of the model in

classifying Infer Static Analysis Tool warnings?

In this first research question, we are interested in mea-
suring the accuracy of the model when classifying Infer
Static Analysis Tool and make a comparison with existent
techniques.

« RQ2: What is the effect of different data preparations on

performance?

In this research question, our objective is to assess the
impact each data preparation had in the performance of
the model.

¢ RQ3: What is the variability in the results?

In this research question, we analyse the variance in the
Accuracy, Recall and Precision measures of the different
model variations.

« RQ4: How do different application scenarios impact the

performance of the model?

Finally, in this last research question we compare the
overall performance of the model in the two studied
case scenarios: one where static analysis tools analyse
the same program over time and the other where a static
analysis tool analyses a new subject program.

II. BACKGROUND

A. Static Analysis and False Positives

Static Analysis (SA) is the process of analyzing a program’s
source code to find flaws without executing it. Usually it is

performed by automated tools that assist programmers and
developers in carrying out static analysis. These tools are
programs that examine source code, executables, or even
documentation, to find problems before they happen (i.e,
without actually running the code [5]). The process provides an
understanding of the code structure and helps ensuring that the
code complies to modern-day industry standards. The software
will analyse all code in a project checking for vulnerabilities
while validating the code.

A true positive is a report of a potential bug that can
happen in a run of the program in question (whether or
not it will happen in practice) and a false positive is one
that is impossible to happen with the current state of the
program. A common knowledge in static analysis is that it is
important to keep control of the false positives because they
can negatively impact engineers who use the tools, as they
tend to lead to apathy towards reported alarms. This has been
emphasized in previous Communications of the ACM articles
on industrial static analysis [6], [7]. However, the false positive
rate is challenging to measure for a large and rapidly changing
codebase since it would be extremely time consuming for
humans to judge all reports as false or true as the code is
changing [8].

B. Infer Static Analysis Tool

Infer is a static analysis tool developed by Facebook that
can be applied to Java, Objective C, and C++ source code
[1]. It started as a specialized analysis based on Separation
Logic [2] [3] that targeted memory issues, but has evolved
into an analysis framework supporting a variety of sub-
analyses. It reports errors related to memory safety [9], to
concurrency [10], to security (information flow), and many
more specialized errors.

Infer’s main deployment model is based on fast incremental
analysis of code changes [8]. Facebook practices continu-
ous software development where a codebase is altered by
thousands of programmers submitting code modifications, i.e.
‘diffs’. A programmer prepares a diff (a code change) and
submits it to code review. When a diff is submitted an instance
of Infer is run in Facebook’s internal Continuous Integration
system (Sandcastle). Infer does not have the need of processing
the entire code base in order to analyse a diff, and for this
reason it is fast. Infer will take 10min-15min to run on a diff
on average. In contrast, when Infer is run in whole-program
mode it can take more than an hour (depending on the app
being analysed).

Workflow: There are always two phases of an Infer run,
regardless of the input language (Java, Objective-C, or C).
In the Capture phase the compilation commands are captured
by Infer to translate the files that are to be analysed into
Infer’s own internal intermediate language. This translation
is similar to compilation, Infer takes information from the
compilation process to perform its own translation. What
happens is that the files get compiled as usual, and they also
get translated by Infer to be analysed in the second phase. If
no file gets compiled, also no file will be analysed. Infer stores

the intermediate files in the results directory which by default
is created in the folder where the Infer command is invoked,
called infer-out/. In the Analysis phase the files present
in infer-out/ are analysed by Infer. Infer analyses each
function and method separately. If Infer encounters an error
when analyzing a method or function, it stops there for that
method or function, but will continue the analysis of other
methods and functions. So, a possible workflow would be to
run Infer on the code, fix the errors generated, and run it again
to find possibly more errors or to check that all the errors have
been fixed. The errors will then be displayed in the standard
output and also in a file infer-out/bugs.txt.

C. Neural Language Models

The state-of-the-art in Natural Language Processing is made
of Neural Language Models [11]. A Neural Language Model
is a language model based on Neural Networks, and exploits
their ability of learning distributed representations to reduce
the impact of the curse of dimensionality. In the context of
learning algorithms, the curse of dimensionality refers to the
need for huge numbers of training examples when learning
highly complex functions. When the number of input variables
increases, the number of required examples can grow exponen-
tially. The curse of dimensionality arises when a huge number
of different combinations of values of the input variables must
be differentiated from each other, and the learning algorithm
needs at least one example per relevant combination of values.
In the context of language models, the problem arises from the
huge number of possible sequences of words.

A distributed representation of a word is a vector of features
which characterize the meaning of the word and are not mutu-
ally exclusive. The advantage of this distributed representation
approach is that it allows the model to generalize well to
sequences that are not in the set of training word sequences,
but that are similar in terms of their distributed representation.
Because neural networks tend to map nearby inputs to nearby
outputs, the predictions corresponding to word sequences with
similar features are mapped to similar predictions. Because
many different combinations of feature values are possible,
a very large set of possible meanings can be represented
compactly, allowing a model with a comparatively small
number of parameters to fit a large training set.

D. Long Short-term Memory Networks

For text classification Recurrent Neural Networks (RNNs)
[12], [13] have emerged as a strong alternative approach that
views text as a sequence of words, with arbitrary-length, and
automatically learns vector representations for each word in
the sequence [14]. Even though RNNs can be successfully
used to model sequences, they are not quite efficient when
applied to relatively long sequences. This can be explained
by the vanishing gradient problem [15] that prevents standard
RNNs from learning long-term dependencies.

Long Short-term Memory (LSTM) networks were first
proposed in 1997 by Sepp Hochreiter and Jiirgen Schmidhuber
[16], and are among the most widely used models in Deep

Learning for Natural Language Processing today. The main
advantage of LSTM networks relies on the fact that they do not
suffer from problems such as gradient vanishing or exploding,
thus making these type of networks capable of modeling long
sequences as well as making the training phase much easier.

Is for this reason that in this work use LSTM networks to
build our Language Model.

E. False Positive filtering using Machine Learning

Research efforts have successfully applied machine learning
techniques to filter out the false positive error reports from
other Static Analysis tools. In this section we present some of
these works.

Kremenek and Engler [4] proposed z-ranking, a technique to
rank error reports emitted by static program checking analysis
tools. It employs a simple statistical model to rank those error
messages most likely to be true errors over those that are
least likely. Yiiksel and Sozer [17] evaluated the application of
machine learning techniques to classify alerts based on a set
of artifact characteristics. The study was made in the context
of an industrial case study to classify the alerts generated
for a digital TV software. Tripp et al. [18] efforts focused
on the false positive problems within static security checkers
and address this problem by introducing a general technique
to refine their output. The main idea was to apply statistical
learning to the warnings output by the analysis based on user
feedback on a small set of warnings. This leads to an interac-
tive solution, whereby the user classifies a small fragment of
the issues reported by the analysis, and the learning algorithm
then classifies the remaining warnings automatically. Ruthruff,
Joseph R., et al. [19] reports automated support using logistic
regression models that predicts the foregoing types of warnings
from signals in the warnings and implicated code. The empir-
ical evaluation indicates that these models can achieve high
accuracy in predicting accurate and actionable static analysis
warnings, and suggests that the models are competitive with
alternative models built without screening. It was proposed by
Koc et al. [20] , a process whose goal is to discover program
structures that cause a given static code analysis tool to emit
false error reports, and then to use this information to predict
whether a new error report is likely to be a false positive
as well. Later in 2019 a study by the same authors [21] was
conducted with the objective of empirically assessing machine
learning approaches for triaging reports of a java static analysis
tool. They describe a systematic, comparative study of multiple
machine learning approaches for classifying static analysis
results. Their experimental results provide significant insights
into the performance and applicability of the ML algorithms
and data preparation techniques. It was observed in this study
that the recurrent neural networks perform better compared
to the other approaches. And that with more precise data
preparation, large performance improvements over the state
of the art could be achieved.

In this work we try to apply some of these techniques to
Infer’s output.

III. INFER WARNING PRIORITIZATION
A. Infer intermediate language

In this work we decided not to analyse the source code
present in the input program’s, or bytecode as similar works
do in order to track false positive warnings. This is motivated
by the fact that Infer bases its analysis in the self-generated
intermediate language. It was mentioned before while ex-
plaining Infer’s workflow in Section II-B, that in the capture
phase Infer translates the files that are to be analysed into
Infer’s own internal intermediate language. This translation
is similar to compilation, Infer then takes information from
the compilation process to perform its own translation. Infer,
therefore, does not directly analyse input source code or even
bytecode, it analyses the files translated to its own intermediate
language. Therefore in this work we analyse and model Infer’s
intermediate language and subsequent symbolic execution.
An example of this language and its respective symbolic
execution, can be seen in Figure 1.

Failure of symbolic execution: NULL DEREFERENCE [Bl] object "loc’
Can't find field edu.ucla.cs.compilers.avrora.cck.text.CharUtil.HE
Precondition:

(@ < wvals9); $RET java.util.Iterator.next():java.lang.Object|abd
$RET_java.util.Iterator.next():java.lang.0Object|abducedRetvar = va
val$ld|->{edu.ucla.cs.compilers.avrora.avrora.monitors.TripTimeMon
SIL INSTR:
n$29=*&this:edu.ucla.cs.compilers.avrora.avrora.monitors.TripTimeM
_=*n$29:edu.ucla.cs.compilers.avrora.avrora.monitors.TripTimeMonit
n$3l=*&cntr:int [line 236];
n$32=*&loc:edu.ucla.cs.compilers.avrora.avrora.core.SourceMapping$
n$33=*n$32.edu.ucla.cs.compilers.avrora.avrora.core.SourceMapping$
n$34=_fun_void TripTimeMonitor$PointToPointMon.addPair(int,int)(n$
EXIT SCOPE(,n$29,n$31,n$32,n$33,n$34); [line 236];

. After Symbolic Execution

Fig. 1. Infer intermediate language example

This decision can have a major impact in the accuracy
score of the model, since the code analysed does not depend
on different programmers and styles of coding. As all the
information that is generated by Infer it has the same style
independent of the program it is analyzing, only differing in
some program specific words. This property makes it easier for
the machine learning model to pick up false positive patterns
and to more accurately model the language. This also has an
impact in the way the information is preprocessed as reported
in Section III-B.

B. Data Processing

Differently from many other Static Analysis tools that di-
rectly analyse the source code or bytecode that is generated in
compilation time, Infer analysis falls on their own intermediate
language.

In this section we present and discuss a set of modeling
choices for source code vocabulary that we implemented in
this work. All these transformations were studied in the past
and applied in the context of false positive report classification
[21]. In this work we decided to apply this set of transforma-
tions to our dataset with some changes. The first one is that we
only abstract program-specific words after extracting english
words from identifiers and not the other way around. We do

this for the simple reason that when we extract english words
from the identifiers we are reducing the vocabulary. If we
abstracted program-specific words before applying this trans-
formation to the dataset many identifiers would be eliminated
and the information present on those identifiers would be lost.
The second change we applied, was to split literals in order
to reduce vocabulary. This transformation was studied in a
recent work [22] and works particularly well in our case since
the intermediate language generated by Infer contains literals
on almost all of its identifiers. Lastly, we do not apply the
same program slicing techniques used in the work mentioned
above [21], which include computing backward slices and the
program dependency graph. Instead we extracted the necessary
information directly from the node responsible for the line
where the error originated and the symbolic execution session
when the error was reported.

The set of transformations used is described below. We list
the transformations in order of complexity, and a transforma-
tion is applied only after applying all of the other less complex
transformations.

1) DATA CLEANSING (7;,,): this transformation consists
in performing basic data cleansing. First, whitespacing is
fixed by placing a single space character between words and
eliminating tabs, relevant special characters are replaced with
tokens and irrelevant special characters are deleted. Second,
tokens from paths of classes and methods are split by replacing
the delimiters °. or */* for whitespaces.

2) ABSTRACTING NUMBERS AND STRINGS BOTH IN
LITERALS AND IDENTIFIERS (7,,s) : This transformation
replaces numbers and string literals that are present in the code
with abstract values. This improves the learning phase of the
model by reducing the size of the vocabulary of the dataset
and helps us in the training of more generalizable models. First
regarding literals, two digit numbers are replaced with N2,
three digit numbers are with N3, and numbers with four or
more digit are with N4+. We applied similar transformations
for negative numbers as well. Next, we extract the list of string
literals and replace each of them with the token STR followed
by a unique number. For example, the first string literal in
the list are replaced with STR1. To number literals that are
also identifiers we decided to split them in their constituent
digits in order to reduce the size of the vocabulary without
losing information. To string literals that are also identifiers
we attributed each one an unique token, e.g., VARI.

3) EXTRACTING ENGLISH WORDS FROM IDENTIFIERS
(Tert) : Many identifiers are composed of multiple English
words. For example, the GETFILEPATH method from the Java
standard library consists of three English words: get, File, and
Path. To make our models more generalizable and to reduce
the vocabulary size, we split any camelCase or snake_case
identifiers into their constituent words.

4) ABSTRACTING PROGRAM-SPECIFIC WORDS (7,;)

In Infer intermediate language and respective symbolic
execution one can find, as in source code, program specific
words. Learning these program specific words and identifiers
may not be useful for classifying Static Analysis reports

in other different programs. Therefore, this transformation
focus on abstracting certain words from the dataset that occur
less than a certain amount of time, or that only occur in a
single program. We do this by replacing the least common
N words with the token UNK. Similar to the two previous
transformations, it is expected to improve the effectiveness of
the model by reducing the vocabulary size and generalizability
via abstractions.

PROCESSING PROP 4 INSTRUCTION N 1 3 EQUALS PTR
AVRORA AVRORA SIM MCU ADC PTR IN V PATH FIND

ON EEXP ADDR IR VAR 2 V PATH FIND CANNOT FIND

IR VAR 1 PROP F 6 DIFFERENT ADC F 5 DIFFERENT

V PATH RBRACKET LPARENTHESES IR VAR 2 RPARENTHESES
N 2 7 3 RPARENTHESES M EQUALS NULLIFY EDU UCLA
MICROCONTROLLER PTR SUB OLD M EQUALS F 3 FORMAL
MCU ATMEL MICROCONTROLLER PTR SUB IR VAR @ EQUALS
FORMAL INT SUB OLD ADC CHANNEL EQUALS F 2

VOID IR VAR 1 EQUALS NULL UPDATE VOID IR VAR

1 FORMAL EDU UCLA CS COMPILERS AVRORA AVRORA

OLD THIS EQUALS F 1 FORMAL EDU UCLA C5 COMPILERS
SENSOR PTR SUB ASP EQUALS F © FORMAL EDU UCLA
ACCEL SENSOR POWER PTR SUB OLD ASP EQUALS F @
PLATFORM SENSORS ACCEL SENSOR POWER PTR SUB IR
RBRACKET FORMAL Z EDU UCLA CS COMPILERS AVRORA

Fig. 2. Example resultant of applying transformations 1 to 3 to the original
code.

C. Machine Learning Model

To efficiently find and locate false positive patterns in source
code several works have successfully used machine learning
approaches in the past. In a recent work several machine
learning techniques were compared when used to identify
false positives in the static analysis context [21]. In this
work, the authors concluded that Recurrent Neural Networks
obtained the best results, in particular LSTM networks. These
networks, with their proven ability to model long sequences
[23], achieved the best accuracy, precision and recall when
tested in a dataset of 400 static analysis reports.

For these reasons, we use LSTM networks to automatically
learn features from token vectors extracted from source code,
and then utilize those features to build false positive probabil-
ity prediction and warning classification models.

D. Infer integration

We develop an application that complements the analysis
performed by Infer Static Analysis tool. We do this by utilizing
the Neural Language Model discussed in this section and pair
it with two other programs.

The idea consists in retrieving the original output given
by Infer and trace the warnings to the line they originated
from. From there, the information present in the node and
session responsible for raising the warning is captured and
preprocessed. The data is then fed into the neural language
model which returns the probability of the input warning to
be a false positive.

Finally, the output is ranked accordingly placing true posi-
tives over false positives and given to the user.
The code for the developed application can be found here!

IV. TooL AND BENCHMARKS

In this work, we study Infer version 0.17.0 and focus
on Java written applications. Furthermore, we only evaluate
reports that do not correspond to test files. When an Infer
run occurs several checkers which identify different kinds of
errors are active. These are the default checkers for the Java
programming language:

(1) Biabduction (C/C++/0ObjC, Java)

(2) Fragment retains view (Java)

(3) Inefficient keyset iterator (Java)

(4) Starvation analysis (C/C++/0ObjC, Java)

(5) RacerD (C/C++/0bjC, Java)

For this work we disabled RacerD (C/C++/ObjC, Java)
checker. The reason behind this decision is mentioned by
Blackshearer et al. [10]. It states that RacerD performs a
different kind of analysis than typical checkers, where the
importance relies in keeping the false positive rates low even
though it can cause the existence of false negatives. This is
why this checker has a very low false positive rate compared
to other types of analysis. We also disabled Fragment retains
view (Java) checker since it is only focused on Android
specific errors.

The benchmark in this evaluation is constituent of 5 real-
world programs, that cover a wide range of issues. We then
analyze these programs using infer and then manually classify
the reports as true or false positives.

We selected these programs using the following criteria:

e The programs have to be written in Java.

o The programs must be open source since we need to
access the source code to analyze each one with Infer.

e The programs are under active development and are
highly used in order to increase relevancy.

Table III. shows the programs we chose. All the entries of
are from the Dacapo Benchmark [24], [25], except for JODA-
TIME that was used by Koc et al. 2019 [21] as part of their
proposed real-world benchmark. The number of Lines of Code
(LoC) was calculated by using Cloc (version 1.84) [26].

TABLE 1
PROGRAMS OF THE BENCHMARK
Program Description LoC
1. Apache Tomcat Implements Java Servlet [27] 435438
2. Apache Xalan Java | Transforms XML docs into HTML [28] | 205644
3. Avrora Simulation and Analysis Tool [29] 92041
4. Joda-Time Date and time framework [30] 94973
5. Jython Python for the Java Platform [31] 945500

Thttps://github.com/joaofranciscomartins/infer_output_prioritization

Running Infer on top of each program of the benchmark
resulted in more than 500 reports. We then labelled the reports
by manually reviewing the code, resulting in 313 true positives
and 230 false positives as can be seen in table II. To label a
Static Analysis report, we first analyze the method containing
the line where the warning originated from and the call tree
originated from that reported error line, if existent. Then we
inspect all the code present both in the call tree and in the
method under analysis until either we find the error reported
by the tool - indicating a true positive - or we exhaust the call
tree without identifying any issue - indicating a false positive.
False positives represented more than 40% of all the reports
output by Infer when analysing our benchmark.

TABLE II
INFER REPORT CLASSIFICATION

Program Warnings | True Positives | False Positives
1. Apache Tomcat 265 153 112

2. Apache Xalan Java 50 27 23

3. Avrora 51 39 12

4. Joda-Time 12 11 1

5. Jython 165 83 82
TOTAL 543 313 230

By looking at each false positive report we concluded that
89% of them were NULL DEREFERENCES and the remaining
11% were RESOURCE LEAKS. We therefore decided to focus
on these two types of bugs. All of the programs and respective
analysis are located here”.

V. EXPERIMENTAL SETUP

In this section we discuss our experimental setup. We
begin by laying out the test environment, then we describe
the different LSTM approaches to be studied as well as
two different application scenarios and the creation of two
different datasets to address each scenario, then we cover
the experiments made to achieve an optimal model parameter
configuration.

A. Test Environment

All the experiments were carried out in a Debian 10 server
composed by a 32-core Intel(R) Xeon(R) Silver 4110 CPU
@ 2.10GHz and 64GB of RAM, and in a Debian 10 server
composed by a 24-core Intel(R) Xeon(R) CPU E5-2630 v2 @
2.60GHz and 64GB of RAM.

The machine learning model implementation is done with
the Keras Library using a Tensorflow backend.

All the datasets used to trained the model are located here?.

Zhttps://github.com/joaofranciscomartins/infer_warning_classification
3https://github.com/joaofranciscomartins/infer_output_prioritization

B. LSTM approaches

In this work, we study how much each transformation ap-
plied to the dataset in section III-B impacts the performance of
the model. Each approach consists in the set of transformations
mentioned in the table below.

TABLE III
LSTM APPROACHES

Applied Transformations Approach Name
Tein LSTM-CLN
Tein + Tans LSTM-ANS
Tein + Tans + Teat LSTM-EXT
Tein + Tans + Text + Taps | LSTM-APS

C. Application Scenarios

Most studies that use machine learning techniques to clas-
sify false positives envision two different scenarios for the
use of these types of models. We evaluate our approach
considering these two scenarios:

1) Within-project false positive classification
2) Cross-project false positive classification

The first scenario considers the case where developers might
continuously run static analysis tools on the same set of
programs as those programs evolve over time i.e they use
Infer for diff time analysis as explained in Section II-B. In
this scenario, the models might learn signals that specifically
appear in those programs, certain identifiers, API usage, etc.
To mimic this scenario, we divided our benchmark randomly
into training and test sets. Doing so, both training and test sets
will have samples from each program in the dataset. We refer
to the random-wise split benchmark as B-Rand for short.

The second scenario, looks on the case where developers
might want to deploy static analysis on a new subject program.
In this scenario, the training would be performed on one set of
programs, and the learned model would be applied to another.
To emulate this scenario, we divided the programs randomly
so that a collection of programs forms the training set and the
remaining ones form the test set. We refer to the program-wise
split benchmark as B-Prog for short.

D. Parameter Tuning

In this section we introduce the choices that lead to the
optimal configuration of our machine learning model. The
model parameters that we find relevant are: the size of the
embedding, the number of LSTM layer units and the batch
size. We chose the optimal values for each parameter where
the model attained the highest Accuracy measure. We trained
every model for 20 epochs with a patience of 5 epochs, using
the B-Rand dataset and the LSTM-APS approach.

In summary, the optimal configuration used for testing
corresponds the following parameter settings listed in Table
IV.

TABLE IV
OPTIMAL CONFIGURATION OF THE LSTM NETWORK
Parameters Optimal Value
Embedding Size 128
Number of LSTM units 128
Batch Size 4

E. Training Configuration

Evaluating machine learning algorithms requires separation
of the data points into a training set, used to estimate model pa-
rameters and a test set, used to evaluate classifier performance.
The training method utilized was k-fold cross validation. First
the total data set is split in k sets. One by one, a set is
selected as test set and the k-1 other sets are combined into
the corresponding training set. This is repeated for each of
the k sets. A set of data is stored as the validation set where
the model is tested to measure the accuracy of the obtained
solution.

For both application scenarios mentioned in the previous
Subsection V-C we perform 5-fold cross validation. Further-
more, we repeat each execution 5 times with different random
seeds. The purpose of these many repetitions (5-fold cross-
validation x 5 random seeds = 25 runs) is to evaluate whether
the results are consistent.

F. Metrics

The metrics used to evaluate our model are the common
standards used to evaluate machine learning models. There-
fore, we consider:

Accuracy (1) is represented as the number of correctly
classified samples divided by the set of all samples (test set).
It is a good indicator of effectiveness for our study since we
have an even distribution of samples for each class.

Accuracy = tp+in (1)
tp+ fp+itn+ fn

Precision (2) is the ratio of correctly classified faulty
samples among all samples classified as faulty. It is particularly
useful when the cost of reviewing false positive reports is
unacceptable.

tp
tp+ fp

Recall (3) is the number of faulty samples correctly clas-
sified by the evaluated model divided by the total number of
faulty samples. It is important when missing a true positive
report is unacceptable (e.g., when analyzing safety-critical
systems).

2)

Precision =

tp

Recall = ———
eca P

3)

All these metrics composed of three parameters. These
parameters are the counts of elements that are regarded as:

o True Positives (tp) : Total number of reports that were
predicted to be defective and are actually defective.

o True Negatives (tn) : Total number of reports that were
predicted to not be defective and are actually not defective

« False Positives (fp) : Total number of reports that were
predicted to be defective but are actually not defective.

« False Negatives (fn) : Total number of reports that were
predicted to not be defective but are actually defective.

We comment on the obtained experimental results based on
these metrics and draw conclusions about the proposed model.
We compare the developed models under the same conditions
i.e, to the same dataset and parameters. All three metrics are
computed using the test portion of the datasets.

VI. ANALYSIS OF RESULTS

TABLE V
MEASURE RESULTS SORTED BY ACCURACY.

Dataset Approach Accuracy Recall Precision
B-Rand | LSTM-APS | 85.80 0.40 | 85.20 1.05 | 82.05 0.50
LSTM-EXT | 85.65 1.40 | 84.21 5.65 | 84.88 1.70
LSTM-ANS | 72.51 5.50 | 66.89 9.50 | 74.52 3.50
LSTM-CLN | 6529 2.50 | 52.91 8.50 | 61.15 3.00
LSTM-APS | 66.00 4.82 | 39.24 3.96 | 35.00 6.96
B-Prog | LSTM-ANS | 60.39 7.50 | 40.00 9.50 | 36.27 5.00
LSTM-EXT | 57.60 7.50 | 26.95 5.50 | 29.39 5.00
LSTM-CLN | 51.59 5.00 | 38.26 8.50 | 37.40 9.00

In total we trained 200 Infer warning classification models:
2 different datasets x 5 splits x 5 random seeds x 4 data
preparation routines for the LSTM network. The summary
of the results can be found in Table V, as the median and
the Semi-interquartile Range (SIQR) of 25 runs. Numbers in
bigger font are the median, and numbers in smaller font are
the SIQR. We report median and SIQR as we do not make
any assumptions on the underlying distribution of the data
and also, we want to be able to directly compare our results
with state-of-the-art Static Analysis tools report classification
models.

We now answer each research question.

RQ1: What is the overall performance of the model in
classifying Infer Static Analysis Tool warnings?

In this section we analyse the overall performance of our
model using the Accuracy score and make a comparison with
state-of-the-art SA tools report classification models.

The different LSTM approaches used by Koc et. al [21],
when analysing the FindBugsSec Static Analysis tool warnings
on a real-world random-wise split dataset achieved a maximum
Accuracy score of 89.33% and a maximum of 80.00% Accu-
racy score when analyzing a real-world program-wise split
dataset.

By using identical LSTM approaches, our model obtained
85.80% and 66.00% Accuracy score on the B-Rand and B-
Prog datasets respectively, as stated in Table V. These values

indicate that our model is effective when modeling long
sequences as can be seen in Table VI, as well as in accurately
modeling the language, thus allowing the finding of false
positives patterns in the symbolic execution performed by
Infer. These results also validate the capability of this model
of correctly classifying Infer output reports.

However, our model did not match the results achieved by
the work mentioned above [21], as our model’s maximum
Accuracy score was lower for both random and program wise
split datasets. This could be due to a few reasons:

1) Only 11% of the false positives warning samples are
of the RESOURCE LEAK type. This makes it harder for
the model to correctly identify false positives patterns
correspondent to such errors in the symbolic execution
since there are not that many spurious samples. This
causes for the overall Accuracy score of the model to
drop.

2) As can be seen in Table VI, we are dealing with
relatively long sequences, with a maximum of up to 17
700 words. Since the sequences are so long and we do
not have a large number of samples, it is harder for
the neural language model to correctly capture all the
features of the language and its dependencies. This ulti-
mately takes a toll in the Accuracy score of the model,
since its harder to identify patterns in the language.

RQ2: What is the effect of different data preparations on
performance?

We now analyse the effect of the different data preparations
on the performance of the machine learning model. The data
preparation process is done with the objective of providing the
best use for the information present in Infer’s symbolic exe-
cution. We found that LSTM-APS data preparation provided
the best accuracy results for both variations of the dataset.
The main reason for this result is the fact that on top of all
the previous preparations that were applied, which include
basic cleansing, abstracting variable identifiers and splitting
class paths, it removes program specific words increasing
furthermore the level of abstraction. The difference between
the LSTM-APS and LSTM-EXT is not as clear when analyzing
the B-Rand dataset, due to the fact that both train and test
sets contain warning samples from every program present
in the dataset. However, this difference becomes noticeable
when analyzing the B-prog dataset results, with LSTM-APS
outperforming LSTM-EXT by 8.40% in Accuracy. The reason
for this difference is that the program under evaluation is not
present in the training set, which makes vocabulary abstraction
more relevant to deal with program-specific words.

The LSTM-CLN approach got the lowest Accuracy score in
both datasets. This is due to the simple fact that the level of
abstraction is to low to correctly identify false positive patterns
even between samples of the same program.

It is also worth mentioning that LSTM-ANS approach
achieved a better score in the B-program dataset than the
LSTM-EXT. This happens because the sequence length in-
creases substantially from the LSTM-ANS approach to the

LSTM-EXT as seen in Table VI and it is aggravated by the
fact that the programs under evaluation are not present in
the training set, meaning that they have a bigger number of
unknown words. This makes it harder for the model to identify
patterns, and ultimately resulting in an Accuracy score drop.

RQ3: What is the variability in the results?

By using the SIQR values present in Table V, we analyse
the variance in the Accuracy, Recall and Precision measures.

On the B-Rand dataset, SIQR values are relatively low for
all approaches, except for the recall values in the LSTM-
ANS and LSTM-CLN approaches. The LSTM-APS approach
obtained the minimum variance for accuracy, recall and Pre-
cision, followed by the LSTM-EXT approach.

On the B-Prog dataset, the variance is in general bigger than
in the previous dataset. With a maximum SIQR value obtained
of 7.50, 9.50 and 9.00 for Accuracy, Recall and Precision
respectively. Again the LSTM-APS approach obtained the
minimum variance across all metrics followed by LSTM-EXT.

Overall, we conclude that applying more data preparations
to the datasets usually leads to a smaller variance for all the
three metrics in both case scenarios.

RQ4: How do different application scenarios impact the
performance of the model??

The maximum Accuracy score achieved is clearly higher
for the B-Rand dataset scenario, reaching to a score of almost
86% against the 66% achieved in the B-Prog dataset scenario.

The almost 20% Accuracy difference between case scenar-
ios is caused by the very nature of the programs under analysis
which are complex and considerably large. This complexity
and size means it is hard to capture false positives patterns
in a program never seen before, with new vocabulary and
dependencies. Although this effect is mitigated by the fact
that we are analyzing Infer’s symbolic execution which is
somewhat regular, the results still show the consequences of
analyzing a new subject program.

Our model does not demonstrate significant effectiveness
when dealing with cross-project warning classification, regard-
ing Infer output warnings.

TABLE VI
DATASET SIZE STATISTICS FOR EACH LSTM APPROACH

Approach Dictionary Size | Min Seq Length | Max Seq Length
LSTM-CLN 10805 418 13960
LSTM-ANS 3807 404 12955
LSTM-EXT 3189 501 17610
LSTM-APS 2000 491 17599

A. Output Prioritization

In this section we present the output of our application as
described in Section III-D and compare it with the original
output of Infer when analysing the same program. As can be
seen in Figure 3, Infer warnings are prioritized according to

JavaCupRedirect.java:63: error: RESOURCE LEAK
Probability of being a False Positive: 0.06495786

EnvironmentCheck. java:134: error: RESOURCE LEAK
Probability of being a False Positive: 0©.09818842

TransformerFactoryImpl.java:1385: error: RESOURCE LEAK
Probability of being a False Positive: 0.10622824

TransformerFactoryImpl.java:1312: error: RESOURCE LEAK
Probability of being a False Positive: 0.10622824

TransformerFactoryImpl.java:1209: error: RESOURCE_LEAK
Probability of being a False Positive: ©0.11100773

TransformerFactoryImpl.java:1164: error: RESOURCE LEAK
Probability of being a False Positive: 0.11180773

AbstractTranslet.java:561: error: RESOURCE LEAK
Probability of being a False Positive: 0.16833092

Key.java:90: error: NULL DEREFERENCE
Probability of being a False Positive: 0.2923071

DOMAdapter.java:184: error: NULL DEREFERENCE
Probability of being a False Positive: 0.2968096

DOMAdapter.java:249: error: NULL DEREFERENCE
Probability of being a False Positive: ©.3001589

Fig. 3. First 10 warnings of the prioritized output.

their probability of being false positives, thus reducing the
number of spurious warnings in the first lines of the output,
having 0 False positives in the first 10 warnings. Infer in the
first 10 output entries, Figure 4, reports a total of 5 false
positive warnings.

This example shows the effect and importance of warning
prioritization. It also allows the programmer to choose with
more precision which warnings to review since the probabili-
ties are discriminated.

VII. CONCLUSION AND FUTURE WORK

In this work we explored how Neural Language Models can
be used to prioritize bug reports produced by Facebook’s Infer.
We enumerated state-of-the-art static analysis tools warnings
false positives identification techniques. We also introduced a
dataset of more than 500 Infer Static Analysis Tool warnings
labeled as false/true positive that can serve as a reference
dataset to the research community. In our experiments, we
studied four different data preparations as input for the lan-
guage model in two different contexts with the end purpose of
prioritizing Infer output by filtering false positives from true
positives. We discussed the results and got important remarks
and insights. Our proposed model is able to successfully
classify Infer’s output, with a percentage of 86% correctly
classified warnings when dealing with within-project warning
classification, which is the most common use case for Infer.
As well as that, we created an application that combines the

WriterQutputBuffer.java:38: error: NULL DEREFERENCE
XPathFunctionResolverImpl.java:61: error: NULL DEREFERENCE
JavaCupRedirect.java:63: error: RESOURCE LEAK
FormatNumberCall.java:59: error: NULL DEREFERENCE
ApplyImports.java:65: error: NULL DEREFERENCE
SerializerBase.java:71: error: NULL DEREFERENCE
ApplyImports.java:79: error: NULL DEREFERENCE
ApplyImports.java:83: error: NULL_DEREFERENCE

Key.java:90: error: NULL DEREFERENCE

TrAXFilter.java:116: error: NULL DEREFERENCE

Fig. 4. First 10 warnings of Infer’s output.

proposed model with Infer Static Analysis tool which sorts
the output by prioritizing true positives over false positives.
We also observed in both application scenarios that more
detailed data preparation with abstraction and word extraction
leads to significant increases in accuracy. Finally, we observed
that the second application scenario, with cross-project false
positive classification, is more challenging since it is required
to learn patterns of true/false positive reports that can hold
across different programs.

In future work, we plan to explore other types of Infer
analyses with different programming languages. In addition,
we plan to utilize a different strategy in the parsing phase,
where fewer data is extracted from Infer’s symbolic execution,
making the model more abstract and less specific.

REFERENCES

[1] Cristiano Calcagno, Dino Distefano, and Peter O’Hearn. Open-sourcing
facebook infer: Identify bugs before you ship. code. facebook. com blog
post, 11, 2015.

[2] John C Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings 17th Annual IEEE Symposium on Logic in
Computer Science, pages 55-74. IEEE, 2002.

[3] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In International Workshop on
Computer Science Logic, pages 1-19. Springer, 2001.

[4] Ted Kremenek and Dawson Engler. Z-ranking: Using statistical analysis
to counter the impact of static analysis approximations. In International
Static Analysis Symposium, pages 295-315. Springer, 2003.

[5] Nathaniel Ayewah, William Pugh, David Hovemeyer, J David Morgen-
thaler, and John Penix. Using static analysis to find bugs. IEEE software,
25(5):22-29, 2008.

[6] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson
Engler. A few billion lines of code later: using static analysis to find
bugs in the real world. Communications of the ACM, 53(2):66-75, 2010.

[7] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon,
and Ciera Jaspan. Lessons from building static analysis tools at google.
2018.

[8] Dino Distefano, Manuel Fihndrich, Francesco Logozzo, and Peter W
O’Hearn. Scaling static analyses at facebook. Communications of the
ACM, 62(8):62-70, 2019.

[9] Cristiano Calcagno and Dino Distefano. Infer: An automatic program
verifier for memory safety of ¢ programs. In NASA Formal Methods
Symposium, pages 459-465. Springer, 2011.

[10

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Sam Blackshear, Nikos Gorogiannis, Peter W O’Hearn, and Ilya Sergey.
Racerd: compositional static race detection. Proceedings of the ACM on
Programming Languages, 2(O0PSLA):144, 2018.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin.
A neural probabilistic language model. Journal of machine learning
research, 3(Feb):1137-1155, 2003.

Felix A Gers, Jirgen Schmidhuber, and Fred Cummins. Learning to
forget: Continual prediction with Istm. 1999.

Danilo P Mandic and Jonathon Chambers. Recurrent neural networks

for prediction: learning algorithms, architectures and stability. John

Wiley & Sons, Inc., 2001.

Yoav Goldberg. Neural network methods for natural language process-
ing. Synthesis Lectures on Human Language Technologies, 10(1):1-309,
2017.

Sepp Hochreiter. The vanishing gradient problem during learning
recurrent neural nets and problem solutions. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02):107-116,
1998.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

Ulas Yiiksel and Hasan Sozer. Automated classification of static code
analysis alerts: a case study. In 2013 IEEE International Conference on
Software Maintenance, pages 532-535. 1IEEE, 2013.

Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Ar-
avkin. Aletheia: Improving the usability of static security analysis. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 762-774. ACM, 2014.

Joseph R Ruthruff, John Penix, J David Morgenthaler, Sebastian El-
baum, and Gregg Rothermel. Predicting accurate and actionable static
analysis warnings: an experimental approach. In Proceedings of the
30th international conference on Software engineering, pages 341-350.
ACM, 2008.

Ugur Koc, Parsa Saadatpanah, Jeffrey S Foster, and Adam A Porter.
Learning a classifier for false positive error reports emitted by static code
analysis tools. In Proceedings of the 1st ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pages
35-42. ACM, 2017.

Ugur Koc, Shiyi Wei, Jeffrey S Foster, Marine Carpuat, and Adam A
Porter. An empirical assessment of machine learning approaches for
triaging reports of a java static analysis tool. In 2019 I12th IEEE
Conference on Software Testing, Validation and Verification (ICST),
pages 288-299. IEEE, 2019.

Hlib Babii, Andrea Janes, and Romain Robbes. Modeling vocabulary
for big code machine learning. arXiv preprint arXiv:1904.01873, 2019.
Hasim Sak, Andrew W Senior, and Frangoise Beaufays. Long short-term
memory recurrent neural network architectures for large scale acoustic
modeling. 2014.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovi¢, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and analysis.
In OOPSLA °06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and
Applications, pages 169-190, New York, NY, USA, October 2006. ACM
Press.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovi¢, T. VanDrunen, D. von Dincklage, and B. Wieder-
mann. The DaCapo Benchmarks: Java benchmarking development and
analysis (extended version). Technical Report TR-CS-06-01, 2006.
http://www.dacapobench.org.

Cloc (Count Lines Of Code) - counts blank lines, comment lines, and
physical lines of source code. https://github.com/AlDanial/cloc.
Apache Tomcat - an open source implementation of the Java Servlet,
JavaServer Pages, Java Expression Language and Java WebSocket tech-
nologies. https://tomcat.apache.org.

Apache Xalan - develops and maintains libraries and programs that
transform XML documents using XSLT standard stylesheets. https:
//xalan.apache.org/.

Avrora - The AVR Simulation and Analysis Tool. http://compilers.cs.
ucla.edu/avrora/.

[30] Joda-Time - a quality replacement for Java date and time classes. http:
/Iwww.joda.org/joda-time/.
[31] Jython - Python for the Java Platform. https://www.jython.org.

