
Guiding the Evolution of the Software Architecture
of Two Large Scale Production Systems

Miguel Pires
IST (ULisboa) and INESC-ID

Lisbon, Portugal

Lucio Ferrão
OutSystems and INESC-ID

Lisbon, Portugal

Rodrigo Rodrigues
IST (ULisboa) and INESC-ID

Lisbon, Portugal

Rui Abreu
FEUP (UPorto) and INESC-ID

Porto, Portugal

Abstract—In large-scale production systems, maintaining the
quality of the software architecture can be daunting, as the pres-
sure to meet deadlines causes the delivery of new functionality
to take priority over thinking through this high-level design. In
this paper, we report our efforts at OutSystems, a market leader
in low-code platforms, to address this tension in a systematic
way. In particular, we developed AGRO, a tool for finding a
useful refactoring of components in a software project. The initial
design of AGRO is based on a set of existing metrics from the
literature, which assess the quality of a software architecture.
Our experience in applying these metrics to guide the software
architecture of two real-world large-scale software projects led us
to conclude that these are not particularly effective in our context.
As such, in this paper, we propose two new metrics and report
the results and experience of applying them at OutSystems. Our
experience showed some preliminary and promising results, to
the point where AGRO is now being adapted to become used in
production systems.

Index Terms—Software Architecture, Software Metrics, Soft-
ware Quality

I. INTRODUCTION

In a real-world, large-scale software project, high-level soft-
ware architecture decisions can have a tremendous impact on
the productivity of the development process and, consequently,
on the business success of the project [1].

In an ideal scenario, a project’s architecture would be
carefully thought out in the early stages and remain (mostly)
stable during its entire lifetime. However, this is often not
possible due to the dynamic nature of this process, and it
is fairly frequent that architectural changes done later in the
software development life cycle are not done with the same
care as in the planning phase [2], [3].

Consequently, the careful maintenance and revision of the
software architecture of a project is put at risk by the percep-
tion that the more attention is put to this task, the less time
developers have to actually program the system itself [4], [5].

Our experience at OutSystems1, a global software company
that is one of the market leaders in low-code application
platforms, attests to this tension between planning and main-
taining a software architecture, and developing the software
itself. The time and energy that is devoted to developing
rather than thinking through the quality of the architecture
often leads to increasing the time that is spent managing and
implementing the necessary changes to cope with the evolution

1https://www.outsystems.com/

of the software [7], often at a stage when the system has grown
to a considerable dimension [6].

In this paper, we report our efforts to address this tension
by using (quality) metrics to guide the software architecture of
two real-world, large-scale software projects at OutSystems.

In more detail, our first contribution is a tool for guiding
the software architecture of projects at OutSystems, called
AGRO2, which is based on a search that efficiently and
automatically reorganizes the different components in a sys-
tem, by trying to maximize a set of metrics that work as a
heuristic for the aforementioned search. These metrics must
take into account two important properties for a software
architecture: (i) the distribution of the sizes of the components
that comprise the system and (ii) the number of external
dependencies between them. In the literature, this is referred
to as high cohesion and low coupling [9], [37]. The purpose
of the heuristic is to try to balance the trade-off between
these two characteristics, as sometimes minimizing external
dependencies can lead to a highly skewed distribution of
component sizes, and, conversely, shifting towards a uniform
distribution of component sizes can lead to a highly coupled
system.

When first approaching this problem, we tried to use an ex-
isting metric from the literature, named Decoupling Level [31],
and applied it in the context of a large-scale production
software project. The second contribution of this paper is that
we report on our experience with using an initial version
of AGRO based on state-of-the-art metrics, and namely the
observation that they fail to meet our requirements of leading
to proposed changes that are both useful and practical to
system developers and maintainers.

Based on this negative result, the third contribution of
our work is that we introduce two novel metrics that were
integrated into AGRO. The intuition behind these metrics is
that they must consider that this search process must be able
to find a small set of movements that can easily be made
(i.e., these affect the smallest number of components possible),
and yet should be able to achieve a significant impact when
it comes to enhancing the system’s maintainability. In other
words, it is an attempt to answer the question: “what are the
best movements one can make in this architecture, when it

2AGRO is an acronym for Architecture Guidance and Refactoring at
OutSystems



comes to having the least possible cost and highest possible
impact in maintainability?”

Our final contribution is an evaluation of applying AGRO
and the newly proposed metrics to two large-scale production
software projects. The architectural changes that resulted from
this were individually analyzed so that one could understand
why these were performed; subsequently, we obtained feed-
back from two lead developers of these systems about the
practicality and impact of the proposed changes.

The main conclusions from this study are that, even though
our first proposed metric did not achieve attractive results,
our second metric has shown some promising results that we
believe to be indications that this tool can become useful
in production systems. However, before achieving this, our
second metric requires some adjustments that we also discuss.

II. BACKGROUND

A. Architecture Maintainability

A healthy software architecture is the basis for a faster de-
velopment process, as it leads to a more maintainable system,
i.e., its source code is more easily understood and can more
easily be modified without introducing new bugs [8]. Several
design principles have been established for providing guidance
towards a healthier, more organized software architecture.
We considered three fundamental maintenance principles [9],
[10]for the organization of different components/modules in a
system:

a) Cohesion: Measures how strongly the elements inside
a module belong together. High cohesion leads to reusability
[11]; by allocating elements related to the same concern in
a single module, we are making it easy to reuse it, as this
module does not need to interact with many other modules.

b) Coupling: Measures how connected distinct modules
are. The larger the number of connections between modules,
the more likely it is that changes propagate between them [12].
Having changes made in a module propagating to another is
a big loss in modifiability, as more time would be needed to
fix these changes.

c) Separation of concerns: This principle states that dur-
ing design, we should divide a software into several modules
with the fewest concerns overlapping between them, having,
ideally, one concern per module. [13]

B. OutSystems Context

OutSystems is a global software company and the owner
of the OutSystems Platform. This platform gives its users
the ability to develop large software factories, composed of
mobile web and enterprise web applications, through a full-
stack, ”low-code” visual development process. The OutSys-
tems Platform is considered one of the market leaders [14] in
low-code development systems.

An OutSystems Software Factory can be seen through dif-
ferent levels of abstraction: Domains, Services, Modules and
Elements. Each domain is composed of services, each service
of modules and each module of software elements. Elements
can be entities responsible for persisting information in the

Fig. 1: Distribution of size of the modules in the first project

Fig. 2: Distribution of weak dependencies per module in the
first project

database, web screens responsible for the user interface or
server actions run business logic on the server side. Elements
inside a module can be made public, so that other modules
can use them. This leads to dependencies between modules
and elements, that can be either weak or strong (unlike the
former, strong dependencies require importing code).

As a low code platform, many of the developers using
OutSystems tend to have little experience in developing and
little to no knowledge about design patterns or good practices.
In addition, some of the projects developed in OutSystems
grow rapidly, to a point where a project that started with small
teams of two or three developers can reach a size that may
need thirty times the number of developers.

C. Projects analyzed in this work

To guide our design choices and test their effectiveness, we
consider two OutSystems projects (for confidentiality reasons,
we refer to the projects as first and second). The first one is
a particularly large project, with a high number of elements,
modules, services, and domains.

A noteworthy aspect of our study is that we could only
have access to the dependencies between modules and not
the ones between elements. Therefore, even though we will
be considering the number of elements within each module,
our analysis of the dependencies considers only a two-level
hierarchy of services comprised of modules.

Also note that we anonymized all data that could provide
hints about the service domain and the details of the solution.
In particular, any name used to refer to any element, module
or service is replaced with an alias, with the purpose of hiding
its true identity.

1) First Project: This project features a total of 19412
elements, 1548 modules, 448 services and 20 domains. Fig-
ures 1, 2, and 3 show, respectively, the distribution of sizes
(measured in number of elements), weak, and strong depen-
dencies amongst the modules in the system.



Fig. 3: Distribution of strong dependencies per module in the
first project

Fig. 4: Number of elements per service of the first project

Figure 4 shows a stacked bar chart with two bars with the
size of the services of the system. The first bar depicts the
stacked size of the top 10% largest services in the system,
whereas the second one shows the stacked size of the remain-
ing 90% services.

2) Second Project: As for the second project, as previously
mentioned, it is a much smaller project when compared with
the first one. This project lacks the domain hierarchy, thus it is
comprised of 7539 elements, 581 modules and 264 services.

Figures 5, 6 and 7 show, respectively, the distribution of
sizes (number of elements), weak and strong dependencies
among the modules in the system.

Again, we have a stacked bar chart divided in two, display-
ing the size of the services of the system in Figure 8. The top
bar represents the size of the top 10% largest services and the
bottom one the size of the remaining ones.

III. STATE-OF-THE-ART METRICS ON HEALTHY
ARCHITECTURES

Several authors have contributed with research proposals
directed towards the definition of a healthy architecture or the
improvement of an unhealthy one.

Mo & Kazman proposed the Decoupling Level [31], a
metric well aligned with Baldwin & Clark’s design rule
theory [32]. Munialo et al. [15] identified several size-related
metrics for service-oriented architectures; Qian et al. [16]
also proposed a suite of metrics related to service-oriented
architecture systems, however, these were instead based on
the coupling that exists between services. The U.S. Air Force
proposed DSQI [17], an evaluation on a program’s design
structure; Bhatia & Singh proposed a way to measure the
modularity of a system [18] and Praditwong [19] used an
approach based on genetic algorithms, using a metric that
measured the quality of the modularization of a system as
fitness function. Menzies [20] considered several static code

Fig. 5: Distribution in size of the modules in the second project

Fig. 6: Distribution of weak Dependencies per Module in the
second project

attributes in order to obtain a software defect prediction model.
Jureczko & Spinellis [21] took a similar approach, through
the use of several metrics gathered from the Chidamber and
Kemerer (C & K) [22] and Quality Model for Object Oriented
Design (QMOOD) [23] metric suites, and from the work by
Tang et al. [24] and McCabe [25]. Sethi et al. proposed a
metric based on the percentage of independent modules in
a system [26] and McCormack et al. proposed a metric that
measures the coupling between files [27], through the use of
a square matrix [28]. Finally, Abreu and Goulão created the
Modularization Merit Factor [29], [30], which is computed
based on the average number of classes per module and the
percentage of intramodular coupling instances.

After studying these various metrics, we considered the
Decoupling Level [31] to be the most promising. Our choice
was justified by the fact that this metric seemed to correctly
capture the relevant cost of having strong dependencies and
highly coupled components in a system.

A. Decoupling Level (DL)

The main idea behind the Decoupling Level metric (as stated
by its authors) is that the smaller the modules, the easier it is
to replace them by better versions of them; furthermore, the
more independent these modules are, the easier it is to prevent
bugs from spreading across modules.

As such, the decoupling level metric measures how well a
software is decoupled into modules, considering the two code
quality attributes: the size of a module and how dependent the
modules are.

In order to properly use this metric, a system must have
a Hierarchical Layered Structure3 [33]–[35]. To compute the

3Also called layered architecture, tiered architecture, or n-tier architecture.
A layered software architecture consists of various layers, each of which
corresponds to a different service or integration. Because each layer is
separate, making changes to each layer is easier than having to tackle the
entire architecture.



Fig. 7: Distribution of strong Dependencies per Module in the
second project

Fig. 8: Number of elements per service of the second project

decoupling level of the system, we must first compute the
decoupling level of each layer and sum these results:

DLSystem =

k∑
Li=1

DLLi

Then, for the higher layers, namely for every layer whose
modules have depending modules in lower layers, the Decou-
pling Level is computed in the following manner:

DLLi =

k∑
i=1

[
#Files(Mj)

#AllF iles
∗ (1− #Deps(Mj)

#LowerLayerF iles
)]

The sum operation represents the summation for every
module (Mj) located in Layer i. As for the other variables
used:

• #Files(Mj) - the number of files that compose the
module j

• #AllF iles - the total number of files in the system
• #Deps(Mj) - the number of files that depend on Module

j, directly or indirectly
• #LowerLayerF iles - the total number of files in lower

layers
Finally, the decoupling level of the last layer is obtained by

the summation of the size factor of each module that belongs to
it. In order to penalize larger modules, a weight is introduced
when a module surpasses the threshold size of 5 files (set by
the authors of this metric). In particular, when a module has
no more than 5 files, its size factor is obtained as:

SizeFactor(Mj) =
#Files(Mj)

#AllF iles

whereas, when a module has over 5 files, this value is
multiplied by the previously mentioned penalty:

SizeFactor(Mj) =
#Files(Mj)

#AllF iles
∗ log5(#Files(Mj))

−1

IV. AGRO OVERVIEW

Our architecture guidance tool (AGRO) conducts a search
process by using a blind search algorithm that is guided by a
software maintenance metric. This search process attempts to
explore the search space of architectural changes considering
a set of strategies (or classes of modifications to the system).
Before explaining these, we will start by describing the search
algorithm that we use to explore the search space.

A. Search Algorithms

As search algorithms we have considered both A* [36] and
Greedy Best First Search [36], as these are well known and
efficient search algorithms. Given that the A* search usually
requires more memory, we initially considered the possibility
of adopting Greedy Best First Search, which can lead to a
solution that is close to optimal, but using only a fraction of the
memory used by A*. However, we realized that, in practice,
the amount of memory used by A* is far from the limit of the
hardware we had access to, and therefore we decided to use
A* for our search process.

The next design question we needed to answer was about
the nature of the search space. In the next sections, we discuss
different strategies in terms of architectural changes, where
AGRO can be configured to explore one of these strategies at
a time.

B. Placement of Modules

The reasoning behind this strategy is to test different place-
ments for each distinct module within the various different ser-
vices of the architecture, hence obtaining several architectures;
then, the architecture with the most favorable value according
to the used metric would be considered as the best one.

If we look at the search space of our problem, each node
holds a state that is represented by the placement of the
modules in services. In one iteration of our search algorithms
(i.e., when expanding a node), we consider the movement of
every module to every service that it is connected to, starting
from the state that was held in the node being expanded. Each
of these movements represents a visited node.

As we are considering every possible movement when
expanding a node, we attempted to make the search process
efficient, namely setting a bound on the number of expanded
nodes and keeping track of the nodes that were already
expanded and visited.

C. Division of Services

An alternative strategy employed by AGRO is dividing
services, i.e., splitting a target service by converting it into two
newly created services, each with a partition of the modules
of the original service.

To be exhaustive, this step of the search process must be
applied both to every service in the system, and also to every



possible split of that service into two separate partitions. Then,
our search will gauge how much this division would reduce the
value of the metric that is being employed, undo the split, and
repeat the process with another partition or another service.

Once the entire search space is explored or an imposed limit
for the search is reached, this iteration ends by returning the
state that was found with the best value for the metric.

D. Merging Services

Another strategy for the search is merging, which is simpli-
fied by the fact that this has a local impact: we will only be
looking at the final size of the merged service and the loss in
external dependencies that such merging leads to.

The algorithm for this merge starts by removing every
module inside one of these services, and placing them inside
the other service. After this, the service that was left with
no modules inside is removed from the system, ending this
process with only one service containing every module that
was inside the original two services.

In each iteration of this search, every possible coalescing of
two services is tested. In the end of this iteration, the search
process selects the two services whose merging benefits the
selected metric the most and proceeds to the next iteration.

V. LIMITATIONS OF DECOUPLING LEVEL

When we first applied AGRO to the codebase of our two
projects from Outsystems, we attempted to use the tool with
the decoupling level (DL) metric only. However, as we will
elaborate in our experimental results, this metric did not yield
satisfactory results. In this section, we illustrate the limitations
we found in this metric by means of a set of simple examples
that help pinpointing those shortcomings.

Figures 9–11 present a set of three small architectures, each
of them comprising a group of services (each identified by a
letter, and containing a set of modules whose size is displayed
next to this identifier) and a distinct recently created module
(module z in the figures, marked in blue), initially instantiated
as a separate service. In this scenario, the software engineer
(or the AGRO tool) wants to place this incoming module
among the set of existing services, and therefore each possible
placement must be evaluated according to the metrics we are
considering.

In these figures, arrows that connect the services represent
dependencies. Dashed-line arrows represent weak dependen-
cies, and solid-line arrows represent strong ones (as explained
in Section II-B). The number next to these arrows is the
number of dependencies of that kind that exist between those
services. In our examples, we considered that the size of a
service with a strong dependency is the sum of its original
size with the size of every service that it strongly depends on,
directly or indirectly.

In the first proposed placement for the example architec-
tures, shown in Figures 9a, 10a and 11a, the recently added
module (z) remains isolated from the existing services. Below
the graph of dependencies, we show the score of the DL
metric for the proposed architecture. (We additionally display

(a) 1st restructuring (b) 2nd restructuring

(c) 3rd restructuring

Fig. 9: Example architecture #1

the score of another metric, AW, introduced in the next
section.) The remaining subfigures (labeled b–d) represent the
placement of module z as part of each of the already existent
services of each architecture.

The scores are displayed following a 3-color scale: white,
blue and green. If the score of a metric below a placement is
green, it means that, according to that metric, the placement is
the best one considering all placement possibilities (including
leaving the recently added module isolated). A blue score
represents that, according to that metric, the placement is the
best one, excluding the possibility of isolating the new module.

The results for the DL metric highlight that its effectiveness
vary from system to system. In particular, in Figure 9, DL
identified the first proposal as the best one, which intuitively
corresponds to the most modularized one. However, in Fig-
ure 10 (and excluding the possibility to isolate the module),
DL scores the solution found in subfigure 10d as the best
one, which has the shortcoming of having a less balanced size
distribution and higher coupling than some of its alternatives
(for instance, the one depicted in figure 10b). Finally, another
shortcoming of DL is highlighted in Figure 11, which is that
both architectures represented in subfigures 11b and 11c are
equally scored according to this metric, even though one has
a higher number of dependencies than the other. Thus, these
synthetic examples highlight the following limitations of DL
(that were also observed in practice):

• Assigning higher scores to architectures with a less
balanced distribution of sizes and higher coupling.

• Not creating a distinction between architectures with a
different number of external dependencies



(a) 1st restructuring (b) 2nd restructuring

(c) 3rd restructuring (d) 4th restructuring

Fig. 10: Example architecture #2

(a) 1st restructuring (b) 2nd restructuring

(c) 3rd restructuring

Fig. 11: Example architecture #3

Before discussing results with real systems, we next reuse
these synthetic architectures to motivate our new proposal.

VI. PROPOSED METRICS

To address these shortcomings, this section presents two
new metrics that can serve as an alternative to DL.

A. Architectural Weight (AW)

We start by proposing Architectural Weight (AW), which
improves on DL by focusing exclusively on two architectural

properties: the distribution of service sizes and the number of
dependencies between services.

The idea behind this metric is for its value to grow
quadratically as a function of these two properties: the larger
and/or more coupled a service becomes, the higher the metric
value. (Note that is in the opposite direction of the previous
metric, since a lower value implies a healthier architecture.)
The reason why we chose a quadratic growth is that, without
it, when moving a module between two services, the size of
one would increase at the same proportion as the other one
decreases, and the aggregate value of the metric would remain
the same.

Finally, to generalize this concept to an entire architecture,
the AW value of a system is defined as the sum of the AW
value of every service in the system.

Given this intuition, for a system with k modules, Archi-
tectural Weight is computed as follows:

AW (System) =

k∑
i=1

AW (Servicei)

and

AW (Servicei) = (#Depsi)
2 + b ∗ (Sizei)2

where:
• #Depsi is the number of dependencies in Servicei (fan-

in + fan-out)
• Sizei is the number of elements in Servicei

“b” parameter: This parameter is meant to balance the
weight of the dependencies with the weight of the sizes in the
metric. During our empirical evaluation, we observed that the
unweighted metric can be biased towards either the reduction
of dependencies or the distribution of services sizes. We can
avoid each of these situations by increasing and decreasing the
value held by this parameter, respectively.

Default value for “b”: In order to find a default value for
this parameter, we experimented the assessment of the artificial
architectures in section V with b = 0.01 and b = 10. We
observed that, e.g., in the comparison depicted in subfigure
10c, using b = 10, this value led to choosing the architecture
with the most services (i.e., the most modularized one) as the
best one. This intuitively tells us that this value is giving a fair
amount of attention towards the distribution of the module’s
sizes, which is desirable. For that reason, we will be using 10
as the default value for this parameter.

AW results in the synthetic architectures: As mentioned
in section V, when applying the DL metric to assess the
architectures in figs. 9 to 11, some architectures with a
high number of external dependencies or unevenly distributed
component sizes (figs. 10 and 11) were highly ranked. In
contrast, by switching to the AW metric, these undesirable
properties become penalized. In particular, in Figures 10
and 11, we can see that AW now successfully identifies as
the best architectures the ones with the lowest number of
dependencies and the more even distribution of module sizes.



B. Distribution Weight (DW)

Next we propose an additional metric, coined Distribution
Weight (DW). The rationale behind having another metric is to
place more weight on the largest services of the system (which,
intuitively, may have grown organically beyond a manageable
size), thus guiding potential changes towards modifying them.
This metric was conceived with the purpose of evaluating how
well a service can be divided, in order to try and maintain the
service size distribution as even as possible. DW is quantified
using the following expression:∑10% largest

services Size∑ every
service Size

+ b ∗
∑external to

services Dependencies∑ every
service Dependencies

This metric was designed so that the modules with little to
no dependencies are moved to the newly created service until
one of the following happens:

• The modules inside the services to be divided are too
coupled to be removed, or

• The newly created service is in the top 10% largest
services and does not receive any more modules (because
doing so would not affect the value of the metric), or

• The service to be divided has left the top 10% and does
not move any more modules (because doing it so would
not affect the value of the metric)

One can see that considering only the sizes of the top
10% largest services makes our metric penalize badly dis-
tributed systems. Furthermore, this metric also considers the
fraction of dependencies that are external, i.e., that span across
services, thus making less coupled architectures architectures
more valuable according to this metric. Just like our previous
AW metric, the higher the value obtained for DW, the less
maintainable is the architecture.

“b” parameter: As in the previous metric, DW also has
a parameter “b”, meant to balance the weight given to the
dependencies and sizes.

Default value for “b”: We tested several values for the
“b” parameter, namely when applying it to divide the service
used in Section VII-B1. The value of 0.001 successfully
avoided increasing the number of external dependencies; thus,
it became the default value for this parameter.

VII. RESULTS

We conducted an experimental evaluation to compare the
proposed metrics using production code at OutSystems. Our
evaluation is structured according to the strategy of modifica-
tion of the architecture: for each strategy listed in Section IV,
we evaluate the effectiveness of applying different metrics to
our real-world codebases to guide that strategy.

For the Placement of Modules strategy, we used our smaller
system, detailed in Section II-C2, because this strategy re-
quires a substantial search space. For the other strategies —
the Division and Union of services — the larger system,
detailed in Section II-C1, was used as the search space for
these strategies is significantly smaller in comparison to the

Placement of Modules strategy. After obtaining the results, we
perform a detailed analysis in section VIII.

A noteworthy technical aspect of our evaluation is that,
since the OutSystems architecture is comprised of services
holding modules, the natural choice for plugging in values to
the formulas of the metrics is to use OutSystems services as
modules and OutSystems modules as files.

A. Module Placement Search Strategy

In this experiment, we tested both the DL and the AW
metric, with b = 10. The DW metric was not tested with this
strategy because it is designed to find opportunities to break up
modules, and not to change their placement. Given the high
cost of evaluating each placement identified by AGRO, we
restricted our search to 10 iterations.

1) Architectural Weight Metric Results: When analyzing
the set of movements produced by this metric, our measure-
ments showed that, as far as the number of dependencies
that became internal are concerned, these ranged between 118
and 477. In particular, the two largest values were 294 and
477, and all remaining movements had the number of external
dependencies reduced between 118 and 147.

As for the size of the source and target services, 7 of these
movements implied the movement of a module from a smaller
service to a larger one. In 8 of the 10 movements, the service
where the module originally was had a size lower than the
service that module was going to, with all of these 8 original
services having either 2 or 3 modules inside.

Throughout these 10 iterations, the modules were moved to
one of the same two services. These two services are consumed
by most modules and act as infrastructures for the system.
Initially, both services were comprised of 2 modules – one
with 497 external dependencies, and another with 312.

Analyzing these results, we can point out that these move-
ments significantly reduced the number of dependencies; how-
ever, the distribution of the sizes of the various services be-
came even more imbalanced. To gain a deeper understanding,
we tried to determine why these movements were the ones
chosen by our search process. It turns out that this is due to
the fact that the AW metric tries to minimize a factor that is
quadratic in the number of dependencies. Consequently, one
way to minimize this factor is to perform the change that leads
to the most significant decrease in external dependencies. This
happened in two of the iterations, where the two modules
that were moved were placed in the services they were most
coupled to, leading to a significant reduction in external
dependencies. In addition, another way to significantly reduce
the number of dependencies between modules is to move
modules that have a low coupling to the service they are in,
which was the case in the other 8 movements. In particular,
since the modules moved in these 8 movements were highly
coupled to a service that was not the one they were initially
placed in, moving them to this service led to significant gains.

In summary, a positive outcome of the proposed changes is
that there was a significant amount of dependencies that were
lost in the new architectures. However, this led to worsening



the imbalance in the distribution of service sizes, especially
due to the fact that the same two large services hosted every
moved module in these iterations.

2) Decoupling Level Metric Results: Applying the DL
metric led to distinct results from AW in terms of changes to
the dependencies, since 7 of these movements did not remove
more than 7 external dependencies. The remaining three
movements removed 19, 32 and 147 external dependencies

As for the sizes of the services involved in these iterations,
8 iterations lead to moving a module from a larger service to a
smaller one. The remaining two iterations moved one module
from a service with 14 modules to one with 22, and another
module from a service with 22 modules to one with 25.

Analyzing the results, we observe that the distribution of the
sizes of services became more uniform, leading us to believe
that most of these movements were made as a way to even
the sizes of the services in the system. When it comes to
the dependencies, we did not witness a significant number of
dependencies lost in any iteration performed.

B. Division of Services Search Strategy

Based on the observation from the previous section that
the DL metric had limited success when applied to our
architectures, we decided to drop DL from the set of metrics
we use in the remaining set of experiments, and instead focus
on comparing AW to the Division Weight metric presented in
Section VI-B (which we can now apply since it was created
with the purpose of measuring the impact of service divisions).

In this set of experiments we were able to search through
100 iterations, and we set b = 10.

1) Architectural Weight Metric: To evaluate the AW metric
with the division of services, we selected a service from our
first project that we believed could be easily divided without
creating new external dependencies, as 20 of its 42 modules
have no internal dependencies. The division of this service
using b = 10 (the original default value) lead to 8 external
dependencies between the resulting services. We tested several
values for the “b” parameter, including the value of 0 and every
tested value returned this solution.

Analyzing these results, we observe that while the original
goal of the AW metric was reach a low number dependencies
between the resulting services, since it contain a quadratic
factor in the number of external dependencies, the search
ended up steering towards an even distribution of a not very
small number of dependencies. We can thus conclude that the
AW metric is not well suited to the strategy of dividing or
joining services.

2) Distribution Weight Metric: Using the default value of
0.001 (as justified in Section VI-B), we tested the Division
of Services strategy in the larger OutSystems project from
Section II-C1. Recall that this project has a total of 448
services, and its top 10% largest services comprise 44 services.
Furthermore, the smallest of these has 116 elements, thus, for
a service to reach the top 10%, it must have over 116 elements.

Our results showed that the 1st division created a service
with 93 elements and another with 115 elements. In the 2nd

division, one service was comprised of 86 elements and the
other one of 115. In both the 3rd and 4th iteration, only the
largest module was moved: in the 3rd iteration, with its 106
elements, it left the other service with 81 elements; in turn, in
the 4th iteration, the module that was moved to a new service
had 124 and left the other service with 69 elements. In our last
iteration, a total of 48 elements were moved to a new service,
leaving the other service with 270 elements.

None of these iterations led to the creation of new dependen-
cies, as every module that was moved to the new service had
no internal dependencies to its original service. Furthermore,
every divided service belonged to the top 10% largest services.
We therefore conclude that this metric succeeded in dividing
some of the system’s largest services without increasing the
amount of external dependencies in the system.

C. Union of Services Search Strategy

For our last strategy (union of services), we used Dis-
tribution of Weight Metric with the same parameter as in
the previous section (b = 0.001), using again the larger
OutSystems project from Section II-C1.

The 5 iterations of this search using our Distribution Weight
Metric coalesced 8 different services into 3.

The first of these 3 resulting services was obtained from the
1st and 4th iterations. Joining 3 of the original 8 services led
to a service with 111 elements and 515 internal dependencies.
A total of 467 dependencies became internal.

The second resulting service happened in the 2nd iteration
and led to a service with 113 elements and 232 internal
dependencies. A total of 126 external dependencies were
turned into internal ones.

Finally, the last service resulted from the 3rd and 5th
iterations. It comprised 83 elements and 248 internal ones;
with this decision, 222 external dependencies became internal.

When analyzing these results, a noteworthy observation is
that none of the newly created services entered the top 10%
that is being considered by our metric; furthermore, our search
process managed to achieve this while reducing a total of 815
external dependencies in the system.

VIII. DISCUSSION

Having selected several metrics and performed several tests
and case studies in both real and synthetic architectures, we
conducted a critical assessment of the observed results. To help
us with this task, we asked one of the engineers involved in
the second system (from Section II-C2) to validate the results
obtained regarding the movement of modules strategy in that
same architecture. As for the Services Division and Union
strategies, we asked the software architect responsible the first
system (from Section II-C1) to share insight on the results of
applying these strategies on this system through a survey.

A. Movement of Modules

We start by analyzing the results from Section VII-A, cor-
responding to the strategy of reorganizing the first architecture
through the movement of modules.



1) Decoupling Level Metric: In terms of the effective-
ness of this strategy with the DL metric, we observed that
movements obtained with this metric have the same issues
as the ones obtained with the AW metric. For instance, 7
of these movements were made on modules that held core
functionalities of the service or that had a large number of
dependencies, which, as discussed, is not a recommended
action. Besides this, there was one iteration that moved a
module from a smaller service to a larger one.

Small impact movements: In 6 of the 10 movements, less
than 7 dependencies were hidden. In a system with thousands
of connections, hiding such a small number of dependencies
has no significant impact on the overall architecture of the
system. Furthermore, if we consider that we restricted our
search to the 10 movements that bring the highest positive
impact on the system, this result comes as unsatisfactory.

2) Architectural Weight Metric: As for the performance
of this search strategy with this metric, after analyzing the
changes that occurred in the architecture, we could see that
several of the decisions taken by our process differ from rec-
ommended practices when trying to reorganize an architecture:

a) Moving the main module of a service: Every Service
has a set of modules that hold a very important role within
it, as these are consumed by or depend on many of the other
modules in the service. These modules are usually the ones
with the highest number of dependencies inside a service, thus,
moving them is not a decision that is often recommended, as
there are more modules that will be affected by this change.

b) Imbalance in the Sizes of Services: We want to reduce
coupling between modules and one way to obtain this is by
moving a module that is highly coupled to a service into that
same service. However, this decision may compromise the
balance between sizes of services, and outweigh the benefits
of the reduction of coupling between them.

c) Placement in infrastructural services: Many modules
are consumed by most services in the system as they hold basic
and essential code. Many of these modules are placed together
in a large infrastructural service, whose main purpose is to be
consumed by other services. For this reason, it is essential that
only modules with essential code for the system are placed
there, as otherwise we would have code relative to a specific
feature or function being imported by every module. For this
reason, we should avoid placing modules in these services
unless these modules are really consumed by most services.

B. Division of Services

We will now discuss our survey results, regarding the
division of services using the Distribution Weight metric.

1) Distribution Weight Metric: The feedback obtained in
our survey tells us that 4 out of the 5 iterations did not
contribute towards a more maintainable system and the service
that was chosen to be divided was not a good one. Throughout
the evolution of the system, no suggested division was per-
formed, as none would make the system more maintainable.

There was however, one iteration that was approved by the
engineer taking the survey, stating that this iteration made

sense as it separated different concerns that were in the same
service. When analyzing the survey results and the proposed
divisions, we can highlight the following common situations:

a) Default Libraries: Two of these iterations divided
default OutSystems libraries. These have a small number of
dependencies and require little maintenance from the devel-
opers. We can argue that these divisions come as irrelevant,
since there are other services requiring more maintenance.
Furthermore, our enquired engineer added that if we were to
split these large libraries, these splits should be more modular
than the ones obtained by our metric.

b) Separating concerns: Two iterations proposed to di-
vide a service that was related to the same concern and was
being managed by the same team. Doing this would lead to this
concern being present in two services, which is undesirable.

After this feedback, we believe that it would be useful to
extend this metric with a term related to the maintenance cost,
namely to ignore modules with minimal maintenance.

C. Union of Services

In Section VII-C, we performed a search process on the
Architecture from Section II-C1, using our Distribution Weight
Metric. Next, we present the feedback we obtained from one
of the engineers involved in the design of this architecture.

1) Distribution Weight Metric: These 5 iterations per-
formed with this metric joined 8 services into 3. The feedback
we obtained in our survey tells us that 2 of these 3 new services
did not contribute towards a more maintainable system, as
these were the wrong services to be joined. Again, none of
these suggestions were performed, as most would not make the
system more maintainable. Only one suggestion was accepted
by our survey taker, who stated that even though complex, the
union appeared to make sense.

a) Testing Services: The 2 resulting services that did not
contribute towards a more maintainable system resulted from
the union of services that belong to the system’s testing space.
This space is not part of the production environment, as such,
the services inside it require little maintenance.

Overall, our experiments with the Distribution Weight met-
ric showed promising results, as in both considered exercises,
the main weakness identified in this metric was not being able
to determine the services that required the most maintenance.
For this reason, we believe that AGRO can become useful in
practical scenarios, if we complement our DW metric with a
maintenance cost term.

IX. CONCLUSION

Maintaining the quality of the software architecture is a
challenging task, as the pressure to meet deadlines causes the
delivery of new functionality to take priority over thinking
through this high-level design. In this paper, we reported our
efforts at OutSystems, a market leader in low-code platforms,
to address this tension in a systematic way. In particular, we
proposed AGRO, a tool for finding a useful refactoring of
components in a software project.



After applying a set of metrics from the literature to guide
the software architecture of two large-scale software projects,
we conclude that these are not particularly effective in our
context. We proposed two new metrics and report the results
and experience of applying them at OutSystems.

The observations from our empirical study shed light on
the ability and effectiveness of the proposed metrics to guide
changes to the software architecture in order to maintain its
quality throughout the life-cycle of software development. Our
experiments showed some promising results, and AGRO is
now being adapted to become used in production systems.

In the future, we think it would be beneficial to complete
AGRO by testing other search algorithms, such as the Genetic
Algorithm, Differential Evolution, Ant Colony Optimization
and Simulated annealing; or to combine the current metric
with maintenance metrics, such as the number of changes
each module has been subject in the last months, the impact
it has on the system or the proximity between the name
of the modules and the name of the service it belongs to.
Furthermore, we would like to strengthen the explainability of
AGRO, so that every suggested architectural decision would
be supported by an automatically generated justification.

REFERENCES

[1] Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in
practice. Addison-Wesley Professional.

[2] Williams, B. J., Carver, J., & Vaughn, R. B. (2006). Change Risk Assess-
ment: Understanding Risks Involved in Changing Software Requirements.
In Software Engineering Research and Practice, 966-971.

[3] Heijstek, W., & Chaudron, M. R. (2010). The impact of model driven
development on the software architecture process. In 2010 36th EUROMI-
CRO Conference on Software Engineering and Advanced Applications,
333-341.

[4] Baskerville, R. L. (2006). Artful planning. European Journal of Informa-
tion Systems, 15(2), 113-115.

[5] Waterman, M., Noble, J., & Allan, G. The Effect of Complexity and
Value on Architecture Planning in Agile Software Development. Agile
Processes in Software Engineering and Extreme Programming, 238-252.

[6] Hoch, D. J., Roeding, C., Lindner, S. K., & Purkert, G. (2000). Secrets
of software success. Boston Harvard Business School Press.

[7] Ropponen, J., & Lyytinen, K. (2000). Components of software devel-
opment risk: How to address them? A project manager survey. IEEE
transactions on software engineering, 26(2), 98-112.

[8] Visser, J., Rigal, S., Wijnholds, G., van Eck, P., & van der Leek, R.
(2016). Building Maintainable Software, C# Edition: Ten Guidelines for
Future-Proof Code. O’Reilly Media, Inc.

[9] Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R., Von Staa, A., & Lu-
cena, C. (2006). Quantifying the effects of aspect-oriented programming:
A maintenance study. In 2006 22nd IEEE International Conference on
Software Maintenance, 223-233.

[10] Du Bois, B., Demeyer, S., & Verelst, J. (2004). Refactoring-improving
coupling and cohesion of existing code. In 11th working conference on
reverse engineering, 144-151.

[11] Gui, G., & Scott, P. D. (2006). Coupling and cohesion measures
for evaluation of component reusability. In Proceedings of the 2006
international workshop on Mining software repositories, 18-21.

[12] Taube-Schock, C., Walker, R. J., & Witten, I. H. (2011). Can we avoid
high coupling?. In European Conference on Object-Oriented Program-
ming, 204-228.

[13] Tekinerdogan, B., Scholten, F., Hofmann, C., & Aksit, M. (2009).
Concern-oriented analysis and refactoring of software architectures using
dependency structure matrices. In Proceedings of the 15th workshop on
Early aspects, 13-18.

[14] Vincent, P., Lijima, K., Driver, M., Wong, J., & Natis, Y. (2019). Magic
Quadrant for Enterprise Low-Code Application Platforms. Retrieved
December, 18, 2019.

[15] Munialo, S. W., Muketha, G. M., & Omieno, K. K. (2019). Size Met-
rics for Service-Oriented Architecture. International Journal of Software
Engineering & Applications (IJSEA), 10(2), 66-82.

[16] Qian, K., Liu, J., & Tsui, F. (2006). Decoupling metrics for services
composition. In 5th IEEE/ACIS International Conference on Computer
and Information Science and 1st IEEE/ACIS International Workshop
on Component-Based Software Engineering, Software Architecture and
Reuse (ICIS-COMSAR’06), 44-47.

[17] Puntambekar, A.A. (2010) Software Engineering And Quality Assur-
ance. Technical Publications.

[18] Bhatia, P., & Singh, Y. (2006). Quantification Criteria for Optimization
of Modules in OO Design. In Software Engineering Research and
Practice, 972-979.

[19] Praditwong, K. (2011). Solving software module clustering problem by
evolutionary algorithms. In 2011 Eighth International Joint Conference
on Computer Science and Software Engineering (JCSSE), 154-159.

[20] Menzies, T., Greenwald, J., & Frank, A. (2006). Data mining static
code attributes to learn defect predictors. IEEE transactions on software
engineering, 33(1), 2-13.

[21] Jureczko, M., & Spinellis, D. (2010). Using object-oriented design
metrics to predict software defects. Models and Methods of System
Dependability. Oficyna Wydawnicza Politechniki Wrocławskiej, 69-81.

[22] Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object
oriented design. IEEE Transactions on software engineering, 20(6), 476-
493.

[23] Bansiya, J., & Davis, C. G. (2002). A hierarchical model for object-
oriented design quality assessment. IEEE Transactions on software engi-
neering, 28(1), 4-17.

[24] Tang, M. H., Kao, M. H., & Chen, M. H. (1999). An empirical study
on object-oriented metrics. In Proceedings sixth international software
metrics symposium (Cat. No. PR00403), 242-249.

[25] McCabe, T. J. (1976). A complexity measure. IEEE Transactions on
software Engineering, (4), 308-320.

[26] Sethi, K., Cai, Y., Wong, S., Garcia, A., & Sant’Anna, C. (2009). From
retrospect to prospect: Assessing modularity and stability from software
architecture. In 2009 Joint Working IEEE/IFIP Conference on Software
Architecture & European Conference on Software Architecture, 269-272.

[27] MacCormack, A., Rusnak, J., & Baldwin, C. Y. (2006). Exploring the
structure of complex software designs: An empirical study of open source
and proprietary code. Management Science, 52(7), 1015-1030.

[28] Steward, D. V. (1981). The design structure system: A method for man-
aging the design of complex systems. IEEE transactions on Engineering
Management, (3), 71-74.

[29] Abreu, F. B., & Goulão, M. (2001). Coupling and cohesion as mod-
ularization drivers: Are we being over-persuaded?. In Proceedings Fifth
European Conference on Software Maintenance and Reengineering, 47-
57.

[30] Abreu, F. B., & Goulão, M. (2001). A merit factor driven approach to
the modularization of object-oriented systems. L’Objet, 7(4), 455-476.

[31] Mo, R., Cai, Y., Kazman, R., Xiao, L., & Feng, Q. (2016). Decou-
pling level: a new metric for architectural maintenance complexity. In
2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), 499-510.

[32] Baldwin, C. Y., Clark, K. B., & Clark, K. B. (2000). Design rules: The
power of modularity (Vol. 1). MIT press.

[33] Wong, S., Cai, Y., Valetto, G., Simeonov, G., & Sethi, K. (2009).
Design rule hierarchies and parallelism in software development tasks.
In 2009 IEEE/ACM International Conference on Automated Software
Engineering, 197-208.

[34] Huynh, S., Cai, Y., & Sethi, K. (2008). Design rule hierarchy and analyt-
ical decision model transformation. Technical Report, Drexel University.

[35] Cai, Y., & Sullivan, K. J. (2006). Modularity in design: Formal modeling
and automated analysis. Technical Report, University of Virginia.

[36] Russel, S., & Norvig, P. (2013). Artificial intelligence: a modern
approach. Pearson Education Limited.

[37] Praditwong, K., Harman, M., & Yao, X. (2010). Software module
clustering as a multi-objective search problem. IEEE Transactions on
Software Engineering, 37(2), 264-282.


