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On the role of recurrent neural networks for
anomaly detection in water distribution systems
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Abstract—Water is an indispensable resource for society. A
major task associated with the proper management of water
distribution systems is to detect anomalies to support decision-
making and make contingency plans. Interesting anomalies can
be bursts, unusual demands, and illegal consumption. Water
leakage detection and location is a very difficult problem, due
to the lack of information about the water system, and a leak
might not be easily detected or confused with other events. The
methodology proposed detects anomalies in the water system
distributions, with a focus on bursts, through the use of deep
learning architectures, in particular, encoder-decoder architec-
tures based on LSTM such as CNN-LSTM, CNN-BiLSTM, and
SCB-LSTM. Predictions are adjusted by using a temperature
correction model. The water system studied is Quinta do Lago,
located in Portugal, Algarve region. Infraquinta is the entity
that manages the infrastructures. Experimental results in real
data show the pitfalls of the unsupervised anomaly detection
task in water distribution systems. It also highlights that the
proposed methodology, although yielding some properties of
interest, needs to be complemented with additional principles
to the targeted end. Finally, it pinpoints meaningful differences
between recurrent architectures.

Time series data analysis Anomaly detection Water manage-
ment system Recurrent neural network

I. INTRODUCTION

Water, once an abundant natural resource, is becoming
more valuable due to climate change and over-exploitation.
Challenges that will be faced with climate change are droughts,
flash floods, higher air temperature, and increased household
water demand in the hot season. In this context, it is necessary
to make distribution systems more resilient to climate changes
and prepare plans to optimize water supply. This can be
achieved by proper water supply management.

A Water Distribution System (WDS) collects a large amount
of data through sensors (e.g. pressure and flow) which needs
to be treated to generate useful information, not only for
daily control, operation, and management of systems but also
for supporting the current and future planning of the urban
water infrastructures. Water Management Entities (WME),
also referred to as water utilities, are responsible for the
operation of a WDS. Among other services, WMEs provide
drinking water and wastewater services (including sewage
treatment) to residential, commercial, and industrial sectors
of the economy. Typically, public entities operate WDSs.

In WDS, outliers in data might be caused by an unusual
household or non-household water consumption, leakages,
changes in network system operation, sudden system faults
(e.g. breaks in pipelines or service connections), meter mal-
function, or problems with the telemetry or supervisory control
and data acquisition (SCADA) system.

To reduce the efforts and costs of man labor associated with
the identification and characterization of outlier events, there
is a vast work in this field on traditional machine learning
methods, either in an online or offline manner. Usually,
traditional machine learning techniques require separate data
pre-processing before training, which tends to be very time-
consuming and often requires domain knowledge [5].

Recent deep learning approaches have shown to perform
well on raw time series data, eliminating the need for pre-
processing. Common deep learning architectures have convo-
lutional layers and recurrent layers. Recurrent neural networks
(RNN) have the advantage to persist information for later
use in the network. This makes them particularly suited for
the analysis of temporal data. Convolutional neural networks
(CNN) are appropriate for automating spatial feature extraction
from time series raw data through sensory signals. Only
recently, it was proposed models based on recurrent neural
networks (RNN) for time series anomaly detection [6, 17,
21]. Long-Short Term Memory(LSTM) has gained popularity,
due to automatic feature extraction abilities, to represent the
relationship between a current event and previous events, and
handle of time series problems. Commonly, LSTM is not used
alone, they are often used in hybrid models, particularly in
encoder-decoder architectures. There is a scarcity of works
aiming at detecting anomalies in the water domain. The data
to be analyzed is collected by public company Infraquinta that
manages the water supply system of Quinta do Lago, a luxury
tourist destination in Portugal. The data to be analyzed has a
high seasonality in water consumption.

This works aims to compare multiple deep learning archi-
tectures, joining the efforts of multiple works, without the
need for major preprocessing. These architectures will be
used as reconstructions models. Thus, first the models are
trained with normal sequence data. If the deviation is bigger
than the threshold, then an anomaly is detected. Typically,
these models are tested in simple anomaly detection scenarios,
where data is labeled, the environment is more static, and
there are few different types of anomalies. This research
addresses this gap by examining the performance of these
models in a complex and dynamic scenario such as anomaly
detection in water system networks, in an unsupervised way.
It is possible to know when a burst was perceived, or a
maintenance activity took place. However, is not possible to
know exactly when or where a burst occurred or if another
type of event occurred e.g. unusual demand. Furthermore,
it is hard to differentiate a consumption from a leak event,
or valves opening or closing, due to maintenance activities,
from a burst. The target problem is intentionally difficult to
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attack from this unsupervised stance. Thus, good results are
not expected. The main objective of this research is to test
whether anomalies characterized by leaks can be isolated or
not. This work will be organized as follows. In Section 2,
definitions of key topics of water system management and
deep learning are introduced. Section 3 offers a compilation
of related work. Section 4 describes the proposed solution,
including the architectures proposed. Section 5 presents and
discusses the results in real data. Section 6 summarizes the
main conclusions of this work, as well as future directions.

II. BACKGROUND

In WDS, leakage through pipes has two major types, burst
and background type leakages [1]. Burst type leakage is char-
acterized by quick pressure drop and can be easily detected
by the pressure sensors. They often are visually noticed, being
reported by public or utility workers, thus the repair time is
faster. Background leakage concerns the outflow from small
cracks or deteriorated joints. They are not characterized by
quick pressure drop and are not detectable by measuring
instruments. Consequently, they go unreported for a long time.

Leakage in distribution systems can be caused by several
different factors [22]. Some examples include bad pipe con-
nections, internal or external pipe corrosion, or mechanical
damage caused by excessive pipe load (e.g. by traffic on the
road above or by a third party working in the system). Other
common factors that influence leakages are ground movement,
high system pressure, damage due to excavation, pipe age,
winter temperature, defects in pipes, ground conditions, and
poor quality of workmanship.

The Supervisory Control and Data Acquisition (SCADA)
system is used to manage in real-time the water supply system
in a utility. This can be done by monitoring the whole system
from water sources to the customer. All the operations are
done at the command center allow remote control of the WDS.
Examples are to make setpoint changes on distant process
controllers, to open or close valves or switches, to monitor
alarms due to possible bursts, and to gather measurement
information [4].

A. Convolutional Neural Network

A convolutional neural network (CNN) is a class of deep
neural networks specialized in processing data with a known
grid-like topology [7]. Examples include time-series data,
which can be thought of as a 1-D grid taking samples at regular
time intervals, and image data, which can be thought of as a 2-
D grid of pixels. Convolution preserves the spatial relationship
between pixels by learning image features using small squares
of input data.

B. Recurrent Neural Network

Recurrent Neural Networks (RNN) is a class of neural
networks for processing sequential data [7]. RNN differs from
standard neural networks by allowing the output of hidden
layer neurons to feedback and serve as inputs to the neurons.
In this way, the network can use the past to understand the
sequential nature of the data.

The notation for the hidden state update is:

ht = φ (Wxt + Uht−1) (1)

The hidden state at time step t is ht. It is a function of
the input ~xt at the same time step t, modified by a weight
matrix W (like the one we used for feed-forward nets) added
to the hidden state of the previous time step, ~ht−1 , multiplied
by its own hidden-state-to-hidden-state matrix U, otherwise
known as a transition matrix and similar to a Markov chain.
The weight matrices are filters that determine how much
importance to accord to both the present input and the past
hidden state. The error they generate will return via back-
propagation and be used to adjust their weights until error
can’t go any lower.

The sum of the weight input and hidden state is squashed
by the function φ which condensates very large or very
small values, as well as making gradients workable for back-
propagation. Because this feedback loop occurs at every time
step in the series, each hidden state contains traces not only
of the previous hidden state but also of all those that preceded
ht−1 for as long as memory can persist.

An increasingly popular type of RNN is Long-Short Term
Memory network (LSTM) due to their capacity for classifying,
processing, and making predictions based on time series data.
LSTM has shown its advantages in numerous applications
through dealing with the exploding and vanishing gradient
problem and keeping short-term “memory” for a long time
[23].

C. Encoder-decoder architectures

An encoder-decoder architecture is a model comprised
of two sub-models: one called the encoder that reads the
input sequences and compresses it to a fixed-length internal
representation, and an output model called the decoder that
interprets the internal representation and uses it to predict the
output sequence.

III. RELATED WORK

A. Outlier Detection using Deep Architectures

Most deep models based on reconstruction errors are trained
on normal sequential data. To detect anomalies, the degree of
deviation between observed data and the prediction is then
computed. When given an anomalous sequence, it may not be
able to reconstruct it well, and hence would lead to higher
reconstructions errors compared to normal sequences. One
approach has been to calculate the anomaly score either by
assuming a normal distribution or non-parametric methods.
A threshold is then set, either by extensive search or by
considering a normal distribution again. An advantage of this
method is that anomalous data are not needed to train the
model, which is harder to get. A disadvantage is it depends
on the chosen threshold.

Deep or stacked architectures are often used with recurrent
units (RNN) or convolutional units (CNN). Graves et al. [16]
proposed a stacked LSTM for anomaly detection in time series.
A network is trained on normal data and used to forecast.
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B. Outlier detection using Encoder-Decoder architectures
Autoencoders also use recurrent units (RNN) [17] or con-

volutional units (CNN) [11] to perform outlier detection in
sequential data such as time series. When the series is inher-
ently unpredictable, the LSTM encoder-decoder can produce
superior results in comparison to the LSTM predictor [17].
Sparse autoencoders are also used, either individually or in
ensembles [12]. Generally, the most commonly used model is
a CNN unit as the encoder and then an LSTM as the decoder
(CNN-LSTM) [13].

Lee et. al [14] proposed a Convolutional Neural Networks
(CNNs) layer, Bidirectional and Unidirectional Long Short-
Term Memory (LSTM) Recurrent Neural Networks (RNNs),
which is one of a novel deep architecture named stacked
convolutional bidirectional LSTM network (SCB-LSTM). The
baseline models for which SCB-LSTM was compared was
stacked LSTM and stacked bi-LSTM. SCB-LSTM outper-
formed these baselines.

Canizo et al. [5] proposes the use of independent CNNs
(convolutional heads), to deal with anomaly detection in
multi-sensor systems. This architecture is called Multi-head
CNN–RNN. Each sensor is addressed individually avoiding
the need for data pre-processing and allowing for a more
tailored architecture for each type of sensor.

C. Water Distribution Network Data Analysis
One of the disadvantages of the methods applied either in

traditional machine learning or deep learning is the need to
make a database of interesting patterns or leak labeling [19].
To create the database there is the need for domain knowledge.
The database also needs to be large. Another disadvantage is
time and resources spent at preprocessing the time series [26,
20]

To avoid the cost and time of labeling data by experts,
many approaches use simulated data [18, 10]. Since real data
is not always labeled with the target events of interest (such as
bursts) and labeling is time-consuming and expensive, many
approaches use artificial sequences generated by a software
and considered to augment data or train networks (cite). The
most used software is EPANET. In this way, there is a certainty
if the sequence generated is normal or not. It is preferred to
use synthetic data because on real data there is no certainty if
the sequence is normal or not [10].

1) Deep architectures: For anomaly detection in WDS,
methods based on deep learning have currently been the focus
of researchers [8, 26].

Hu et al. in 2019 proposed a hybrid model based on CNN
and Bi-LSTM for urban water demand prediction [8]. After
the model predicts water consumption, a temperature and
holiday correction model is used. This temperature and holiday
correction model is based on statistical analysis. It receives 5
days of water usage data and the daily maximum temperature.
After the temperature correction model, accuracy improved
1%-3%. After the holiday correction model accuracy improved
2%-5%.

The model CNN-Bi-LSTM was compared with other 5
models: LSTM, bidirectional long-term memory networks (Bi-
LSTM), CNN, sparse autoencoder (SAEs), and CNN-LSTM.

It was concluded that CNN-Bi-LSTM had less prediction error
that the others. The training time of CNN-Bi-LSTM is less
than LSTM, Bi-LSTM, CNN, and CNN-LSTM, but larger than
SAEs. The training convergence of CNN-Bi-LSTM was set in
125 times, which is smaller than the training times of the other
five models.

IV. METHOD

A. Recurrent Autoencoders as a reconstruction model

Studies have shown that stacked CNN and LSTM archi-
tectures can build higher levels of representation of sequence
data. An encoder-decoder architecture is a model comprised
of two parts: the encoder that reads the input sequences and
compresses it to a fixed-length internal representation, and the
decoder that interprets the internal representation and uses
it to predict the output sequence. The encoder is typically
a recurrent and/or convolution layer, followed by a decoder,
typically recurrent layers. CNN can capture spatially feature
dimension and extracts spatial feature vectors from the input
signal as a feature detector. Therefore, CNNs are suitable
for being the first layer. Bi-LSTM can fully reflect the long-
term historical process and future trend. Bi-LSTMs can use of
both forward and backward dependencies. When feeding the
input sequence to the Bi-LSTMs, both the spatial correlation
in different locations and the temporal dependencies of the
feature information can be captured during the feature learning
process. In this regard, the Bi-LSTMs are very suitable for
being the first or second layer placed after CNN of the
proposed model to learn useful information from time series
data. When predicting future values, the last layer of the
architecture only needs to utilize learned features, namely the
outputs from lower layers, to calculate iteratively along the
forward direction and generate the predicted values. Hence,
an LSTM layer, for capturing forward dependency is a better
solution to be the last layer of the proposed model in this
paper. A typical neural network has a change in the distribution
of network activations due to change in network parameters
during training - internal covariate shift [9]. To minimize that
a layer of Batch Normalization (BN) is applied. The batch
normalization (BN) algorithm tries to normalize the inputs
to each hidden layer so that their distribution is reasonably
constant during training. This has advantages speeding up
convergence, having much higher learning rates, and be less
careful about parameter initialization. For each convolution,
a Batch Normalization is applied followed by an Activation
Layer (Relu). Batch normalization was used. This method
worked better than pooling. Models are trained with normal
sequences and learn to reconstruct them. When given an
anomalous sequence, it may not be able to reconstruct it well,
and hence would lead to higher reconstruction errors compared
to the reconstruction errors for the normal sequences.

B. Computing likelihood of anomaly

The anomaly score is given by the reconstruction error for
each point ti:

a(i) =
∣∣∣x(i) − x′(i)

∣∣∣ (2)
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where x is the observed time series and x′(i) is the recon-
structed time series.

If above a certain threshold, the point in a sequence is
considered an anomaly.

To calculate that threshold in the validation set, it maximizes
F-beta score:

Fβ =
(
1 + β2

)
× P ×R/

(
β2P +R

)
(3)

Fig. 1. Pipeline for anomaly detection

C. Data preprocessing

The data is preprocessed, such that does not have missing
data or censored data (including left-censored data such as
values below detection limits). Raw time series are unevenly
spaced. For the research, interpolation was used, so mea-
surements have exact intervals of 1 minute. For the missing
values, interpolation was also used. Before training, data
is compressed by the MinMaxScaler normalization method,
being compressed between the range [-1, 1]. Data was split as
train data, normal validation data, vN , and abnormal validation
data, vA. vN was used for early stopping. vA was used to find
thresholds. vA is a sequence of data that has subsequences
of normal and abnormal data. vN has only data considered
normal. Normal data is considered to not have reported burst
events at the WME database, in the case of real data. The
window size is 90 minutes. The number of sequences is 7. In
some experiments in real data, seasonality was removed. To
remove seasonality from the data, the seasonal component is
subtracted from the original series and then differentiates it
to make it stationary. To find the ideal percentage of splits,
between validation and training, the walk-forward approach
was used, using an expanding window. This method is also
referred to as a rolling window analysis.

D. Hyperparameter Tuning

Bayesian Optimization using Gaussian Processes was used
to find the best set of parameters. The python library used was
scikit-optimize. The objective was to minimize validation loss
and time expend to train. Blocked Rolling out cross-validation
was applied [3]. The optimal parameters found for the encoder-
decoder with an initial CNN part are indicated in Table I.

The optimal parameters found for the stacked architectures
are indicated in Table II.

Metrics Size
Stride size 2
Batch size 64

Encoder layers 2
Decoder layers 3

Number Kernels 5
Number filters 16
Dropout rate 0.25

TABLE I
PARAMETERS FOR CNN

Metrics Size
Batch size 128

Stacked layers 3
Learning rate 0.01

TABLE II
PARAMETERS FOR STACKED ARCHITECTURES

V. EXPERIMENTS

Real data is a much more dynamic scenario, where is not
possible to know exactly where or when a leak occurred or
even if an event of another type occurs. Only burst events
reported in the database by workers in the WME database
were considered. These reported events are only burst related
or some other maintenance operation that required open and
close valves. Only flow sensors were considered.

Table V compares training time and error of the last trained
epoch of 5 different models.

Results Validation errorTraining errorTraining time (s)Epochs
CNN-LSTM 0.0471 0.0427 224 17

CNN-BiLSTM 0.0331 0.0400 215 11
SCB-LSTM 0.0656 0.0652 136 19

Stacked BiLSTM 0.00527 0.005207 3314 21
Stacked LSTM 0.0215 0.0146 3548 26

TABLE III
ANALYSIS OF CONVERGENCE FOR ALL ARCHITECTURES FOR REAL DATA

Results AccuracyPrecisionRecallTrue positive rateFalse positive rate
CNN-LSTM 0.91 0.39 0.014 0.74 0.98

CNN-BiLSTM 0.91 0.32 0.023 0.54 0.98
SCB-LSTM 0.91 0.42 0.006 0.85 0.99

Stacked BiLstm 0.91 0.51 0.13 1.0 0.87
Stacked LSTM 0.91 0.36 0.09 0.64 0.92

TABLE IV
RESULTS FOR REAL DATA FOR 1 SEPTEMBER TO 30 DECEMBER OF 2017

FOR 6 BURSTS

Stacked BiLSTM had the lowest training and validation
error. For that, it trades training time. Stacked architectures are
the ones with the longest training time. Convolutional layers
as encoders are very fast to converge, but its SCB is the fastest.
The best model to detect leaks considered was CNN-BiLSTM,
even though stacked Bi-LSTM was the one with the lowest
loss.

Removing seasonality made the train time to be shorter.
Loss was overall smaller too.

When seasonality was removed, results got worse for de-
tecting leaks.
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Fig. 2. Map of WDS with marked sensors and possible location of leak.

Fig. 3. Time series of flow and pressure sensors considered as close in Figure
2. In red, time of perception reported by the WME.

Results Validation errorTraining errorTraining time (s)Epochs
CNN-LSTM 0.0395 0.0389 152 8

CNN-BiLSTM 0.0331 0.0337 138 17
SCB-LSTM 0.0352 0.0445 123 17

Stacked BiLstm 0.00509 0.00473 2408 21
Stacked LSTM 0.0127 0.0111 2886 21

TABLE V
RESULTS FOR REAL DATA REMOVING SEASONALITY

VI. CONCLUSION

In this research, architectures could effectively extract the
characteristics of water flow. It also was analyzed their ability
to detect anomalies in a dynamic and complex scenario.
The best model was considered CNN-BiLSTM, even though
Stacked BiLSTM was the one with the lowest loss. This re-
search was able to analyze differences between techniques and

Results AccuracyPrecisionRecallTrue positive rateFalse positive rate
CNN-LSTM 0.83668 0.0806 0.0692 0.836 1.014

CNN-BiLSTM 0.7439 0.0886 0.182 0.925 1.018
SCB-LSTM 0.749 0.0839 0.164 0.872 1.030

Stacked BiLSTM 0.820 0.0940 0.106 0.988 1.0013
Stacked LSTM 0.390 0.0960 0.64 1.01 0.97

TABLE VI
RESULTS FOR REAL DATA REMOVING SEASONALITY FOR 1 SEPTEMBER

TO 30 DECEMBER OF 2017 FOR 6 BURSTS

Fig. 4. Comparison between the original and reconstructed sensor readings
predicted on an abnormal validation set by a CNN-BiLSTM

Fig. 5. Comparison between the original and reconstructed sensor readings
predicted on a normal validation set by a CNN-BiLSTM

it also identified the problems and this specific scenario. The
idea of AEs is straightforward and generic, even for complex
data as this scenario. Different types of AE variants can be
built to perform anomaly detection. It has reasonable results
for a small dataset comparing with the sizes of the datasets
of other works. It can also perform promising performance
with only raw data by itself (e.g. not major preprocessing).
However, autoencoders also have disadvantages. There is the
assumption that training data is a normal sequence. The
learned feature representations can be biased by the presence
of anomalies or noise in the training data. Thresholds are
difficult to set, being very sensitive and exhaustive to find.
Setting the ideal regularization is also hard, since it can easily
underfit or overfit. If it has a good fit, it is possible to also
generalize anomalies. There are specific problems associated
with WDS anomaly detection. Leaks are easily confused
with other events, such as unusual demands or maintenance
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activities. Besides that, it is hard to verify events detected by
the models because sometimes there is no data about them. In
synthetic data, it was verified that depends on the leak size.
Bigger leaks and close to sensors are easily detected. The flow
direction has also influence. Leaks can also be confused with
demand if very close to the consumption point. It is possible
to detect leaks close to a sensor with greater intensity but it
also can detect other events occurring in other areas of the
network. There is a necessity for other principles to overcome
the identified anomalies.

VII. FUTURE WORK

These architectures were identified has generalizing anoma-
lies. To solve this drawback, a negative learning technique
could be applied. This approach controls the compressing
capacity of an autoencoder by optimizing the objectives of
normal and abnormal data. But this would only work if data
was labeled or partially labeled [24]. Variational Autoencoders
(VAE) would work without the need of labels [2]. They have
the advantage of not needing to set a threshold. The recon-
struction probability is more objective than the reconstruction
error. The reconstruction probability is a probabilistic measure
that considers the variability of the distribution of variables.

It is possible to create different types of neural network
layers and architectures under the autoencoder framework. It
is an area that still requires research. To solve the problem of
the normal sequence being polluted with anomalies or having
noise, the idea of RPCA may be used in AEs to train more
robust detection models [25]. This method learns a nonlinear
subspace that captures most data points while allowing for
some data to have arbitrary corruption. Another alternative
is, instead of exclusively using loss based on the distances
between series for training, sequences with labeled leaks could
be used, and loss would be penalized if the model would
reconstruct leaks wells. The worse the leak reconstructions,
the lower would be the loss.

Since finding a good regularization is difficult a solution is
not to regularize at all. Data is randomly partitioned into many
equally sized parts, overfit each part with its autoencoder, and
to use the maximum overall autoencoder reconstruction errors
as the anomaly score [15].

With the insight obtained, these architectures can help to
detect bursts. This could help to relax the already existent
alarm on the WDS, reducing the number of false alarms.
Also, the results obtained can help a domain expert, a civil
engineer, to make decisions or to find interesting patterns.
These models can select certain sequences that, under expert
validation, can be annotated and later used for developing
supervised methods.
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