
WArdian: Securing WebAssembly Applications on Untrusted Mobile Operating
Systems

(extended abstract of the MSc dissertation)
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Abstract—Mobile devices are extremely popular and are used
for running many data sensitive applications. Thanks to the
development of WebAssembly, an emerging browser technol-
ogy, applications no longer need to be installed on the device.
Instead, they can be download on-the-fly and executed directly
on the local browser. This is possible because WebAssembly
enables web developers to run native C/C++ code on a web
page, which runs much faster than typical JavaScript. Using
this new approach, the previously implemented sandboxing
mechanisms of modern web browsers will not be enough to
prevent attacks from an adversary that can compromise the
mobile operating system. For instance, if the android OS
is attacked by a rootkit, the adversary could compromise
the integrity and confidentiality of data manipulated by the
sandboxed WebAssembly application. This work presents the
design, implementation, and evaluation of Wardian, a secure
execution environment to run WebAssembly applications on
untrusted mobile operating systems. Leveraging on an existent
hypervisor, we intend to deconstruct the Chrome browser
and run WebAssembly code inside a protected memory space
– named web cage – where the operating system holds no
privileges.

I. INTRODUCTION

Nowadays, mobile devices have a strong influence in
our personal connections, and therefore, these devices hold
several applications that manage sensitive data, such as
banking applications, private social messengers and so on.
With the development of WebAssembly [1], an emerging
browser technology, developers can now run native C/C++
code directly on the browser and make use of its faster
performance when comparing it to typical JavaScript. This
technology makes possible the creation of applications that
run in the local browser, and therefore do not need to be
physically installed on the device. Consequently, browser
security is extremely important to prevent adversaries from
gaining access to web pages’ state and steal users’ private
information, for instance, prevent access to the user’s pri-
vate keys of a BitCoin wallet software implemented as a
downloadable WebAssembly module.

A. Motivation
Currently, Chrome uses a multi-process sandboxing envi-

ronment to protect the user against attackers that can manip-
ulate web pages and exploit bugs in the renderer process [2].

Due to the nature of web attacks that intend to escape
the sandbox environment, Chrome’s isolation techniques
leverage on the existent operating system (OS) security
measures to create and maintain this secured environment.
In Linux specifically, the kernel sandboxing environments
play an important role in the overall Chrome’s isolation and
security. In this thesis, we focused on the Chrome browser
and how to protect it against attacks on the Android OS.

Unfortunately, modern browsers do not have the necessary
security measures implemented to combat an adversary that
can compromise the integrity of the operating system of the
mobile device [3; 4]. Since the dependency on the operat-
ing system security measures is so ingrained in Chrome’s
sandboxing procedures, an attacker that can successfully
compromise the operating system can utilize the browser
for more complex attacks on the device. For instance, if
the Android OS is attacked by a rootkit, a malicious agent
will be able to extract secrets and other sensitive data
manipulated by the sandboxed WebAssembly application.

Considering that this class of attacks to the operating
system is far from uncommon [5; 6; 7; 8] and that the sophis-
tication of WebAssembly applications will naturally lead to
the processing of larger amounts of sensitive data, providing
a strong line of defense mechanisms is fundamental.

B. Objectives
Our goal is to address browser security by isolating We-

bAssembly execution without degrading the overall perfor-
mance of the Chrome browser nor the underlying operating
system’s.

Our approach is to combine TrustZone-technology with
partitioned execution of the Chrome browser. In particular,
by using a TrustZone-assisted hypervisor – Bao – and
creating isolated memory zones for securing WebAssembly
programs execution inside the Chrome browser, we aim to
ensure that an untrusted Android OS cannot tamper with
the data processed by such programs. As for partitioned
execution, the idea is to separate Chrome’s renderer process
into two parts: one runs normally on the Android OS, while
the other partition provides for the instantiation of web
cages, i.e., trusted execution environments that load and run
WebAssembly on a secure memory zone created by Bao.
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C. Contributions
Our work presents the following contributions:
• A new browser architecture featuring separation of priv-

ileges between the Android OS and trusted execution
environments for hosting WebAssembly code;

• Implementation of this architecture for the Chrome
browser’s version targeting mobile devices;

• Improvement on mobile browser security with modest
performance degradation;

• An extensive evaluation with real use case web appli-
cations.

II. BACKGROUND

This section provides some necessary background on our
work. We begin by introducing WebAssembly and discuss
its potential for speeding up the Web. Then, we present
the internals of a modern browser – Chrome – focusing
in particular on its security mechanisms. Lastly, we present
a brief introduction on Bao, our used hypervisor, and its
security mechanisms.

A. WebAssembly
WebAssembly, usually shortened to wasm, is a low level

binary format that can be executed in most of modern
browsers. Its small-sized footprint, due to being optimized
and precompiled, makes it faster to load and execute than
typical JavaScript code (20x-40x faster) [9] which makes it
more desirable to use for compute-intensive workloads and
all sorts of browser applications [1; 10].

To take advantage of this new technology, web developers
can compile their native code into a wasm module which
will then be glued to the HTML page, using intermedi-
ary JavaScript code, so that finally the application can be
presented on the browser. In order to compile the C code
into wasm code, a precompiled toolchain is used, the most
popular being Emscripten [11; 12].

Although WebAssembly has many advantages in terms of
speed and execution, JavaScript is still necessary to create
the connection between the wasm module and the browser.

Due to its faster performance, WebAssembly is commonly
leveraged to perform compute intensive browser workloads
that would otherwise be impossible to accomplish. Since
browser and cloud featured applications are on the rise,
several native applications are making their transition into
the browser [10] to benefit from its mobility and user
convenience.

B. Chrome Browser Architecture
Modern browsers, like operating systems, are robust and

place each application (renderers, plugins, extensions, etc.)
in a separate process that is walled off the concurrent
processes. This multi-process architecture ensures that a
crash in one component will not disturb the others nor the
integrity of the underlying system. It also ensures that each
user’s access to other user’s data is restricted. Essentially,
this internal structure brings into the browser the benefits

that memory protection and access control have brought to
operating systems [13].

To accomplish the desired architecture, Chrome is mainly
separated into two different kinds of processes: a privileged
browser process that is in charge of running the user
interface and managing all the other processes, and non-
privileged renderer processes that are responsible for actu-
ally interpreting and laying out the HTML pages. Contrarily
to popular belief, the same renderer process can actually
allocate several current web pages. By default, one renderer
process is created for each live domain instance. To commu-
nicate with each other, browser and renderer processes use
Chrome’s Inter-Process Communication system (IPC) [14],
which in Linux and Android is mainly implemented using
asynchronous socket pairs.

C. Sandboxing the renderer
To provide for a robust layer of security, and by making

use of Chrome’s multi-process architecture, each renderer
process is enclosed in a separate sandbox environment. This
approach is essential to the security of the browser since the
renderers process untrusted input and therefore face the risk
of being compromised.

To fully isolate the process, the sandboxing environment
makes sure to restrict its access to system resources, to the
network and to the file system using the host OS built in
permissions and a layered approach focused on semantics
and attack surface reduction [4]. This layered approach
is necessary due to the fact that it is hard to understand
semantics when filtering at the system calls interface. There
needs to be guarantees that different renderer processes can
be distinguished and are unable to affect the integrity of
each other while running under different context sandboxes.
If this separation was not made, sandbox escapes would be
easy to accomplish.

D. Bao Hypervisor
Currently being developed by our colleagues at Univer-

sidade do Minho, the Bao hypervisor, a lightweight static
partitioning tool, is a key component of our proposed
architecture, being in charge of managing and creating
secure memory zones outside the privileged scope of the
Android OS [15]. This lightweight component, leverages on
virtual memory and a TrustZone based approach to create
and manage enclaves, in our case, guest zones to allocate
web cages where the main OS holds no privileges. Bao
also controls the booting process of the Android OS and
constantly monitors and manages its behavior, e.g. system
calls performed and physical resources used.

The base architecture of Bao is purposely simple in order
to be easy to integrate in mobile devices and is mostly
composed out of two memory zones that run at the normal
world. The primary zone allocates the Android OS and has
the limited ability to instantiate enclaves, i.e other memory
zones.

Bao is also in charge of creating and managing a shared
memory zone, where both the Android OS and the enclaves
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can access, to provide a communication channel for both
ends to exchange the necessary information and data needed.

III. RELATED WORK

This section presents the related work, focusing first on
existing mechanisms that provide protection against un-
trusted applications, and then on known mechanisms that
can be used for protecting trusted applications from the
environment. This second line of work is mostly related to
ours.

A. Protection from Untrusted Applications
WebAssembly-based attacks were first introduced in 2017

involving in-browser coin mining [16]. The attackers would
take control over the victim’s computer by making them visit
a malicious web site that would use wasm code to leverage
on the local machine CPU to mine e-coins. Nowadays,
other exploits have surfaced that rely on WebAssembly to
compromise the victim’s device [17; 18; 19; 20]. Lonkar and
Chandrayan [21] performed an in-depth study on several real
use cases where WebAssembly was used maliciously, includ-
ing tech support scams, browser exploits and script-based
keyloggers. Next, we describe some relevant approaches
proposed in the literature to secure the system against
untrusted JavaScript and WebAssembly code executed in the
browser.

1) Taint tracking of WebAssembly code: Although se-
curity is one of the major requirements for local code
execution, sensitive information flow is still at a young
development age regarding WebAssembly. To help solve this
problem, Szanto, Tamm and Pagnoni [22] developed the first
JavaScript based virtual machine for wasm execution. The
developed JavaScript based virtual machine loads individual
wasm modules and follows their execution while performing
a taint tracking analysis. While wasm execution analysis is
not one of WArdian goals, wasm secure execution is. In
order to create our isolated web cages, the work of Szanto
et la. can serve as a valuable foundation to build our desired
sandboxing environments.

2) Same Origin Policy and Site Isolation: All modern
web browsers, including Chrome, implement same origin
policy as a security measure to protect websites information
from being accessed by different websites. This approach
allows scripts in the web page to access or request data from
other web pages but only if both share the same origin. With
this policy, a malicious script in one web page will not be
able to access sensitive data from another web page through
it’s Document Object Model (DOM).

Oftentimes, skilled adversaries can find vulnerabilities in
the code that enforces same origin policy and try to bypass it
in order to steal from other websites. Site isolation, a recent
security feature in Chrome, makes it harder for malicious
websites to have access to information outside of their
scope [23]. This new approach fully isolates each website,
based on its source, in their own renderer process, i.e. in
their own sandbox. Without site isolation, a malicious web
page with an iframe with login buttons for Facebook would

have access to user credentials inside the same renderer,
this is, the same process would be managing a vulnerable
website and user Facebook credentials. With site isolation,
a new renderer process is instantiated for each new website
involved in the web page, while showing the same visual
information to the user. Currently, Chrome 79 has site
isolation [24] enable by default in all desktop environments
and isolates all web sites. On Android, only websites that
request user credentials are isolated due to performance
restrictions of mobile devices.

3) Secure UI: ShadowCrypt [25], a local solution that
secures browser textual data, was for many years the state-
of-the-art approach for secure I/O within the browser. This
solution was implemented as a browser extension and made
use of Shadow DOM [26] to isolate and encrypt DOM trees.
The extension sits between the user and the browser and
only provides encrypted private data to the web application.
When encrypted information is retrieved from the web page,
the data is locally decrypted and shown to the user.

Freyberger et al. [27], explored the limitations of secure
I/O systems in the browser, and propose several attacks that
successfully bypass ShadowCrypt.

Both ShadowCrypt and the techniques proposed to evade
it are very interesting to study while developing our security
approach. Adding the additional untrusted operating system
to these case studies makes for a very similar threat model
when comparing it to WArdian.

4) Browser hardening: As mentioned before, Chrome
implements sandboxing mechanisms for confining untrusted
web application’s code within the boundaries of an unpriv-
ileged execution domain. In general, there are several ways
to isolate programs and processes from the host operating
system, e.g. virtual machines, hardware/software enclaves
and so on. Shanmugapriya and Geetha [28] performed an
in-depth study on sandboxing environments and how to
use them to create lightweight secure environments in large
scale systems. This techniques are very useful when running
untrustworthy code while making sure it cant have any
impact on the underlying operating system and even other
sandboxing environments.

However, implementing robust sandboxes is a difficult
feat. For instance, in the Chrome browser, several techniques
have been attempted to escape the sandbox environments,
being the most common ones forged IPC messages [23]
and memory disclosure attacks [5]. To defend against such
threats, most existing approaches involve hardening tech-
niques which consist in the development of customised fixes
for the browser [29].

5) Dynamic monitoring of browser extensions: Since
extensions execute third party code and have several inter-
actions with user data, several web attacks try to exploit
vulnerabilities in these processes, such as private information
gathering, browsing history retrieval and password theft.
Sanchez-Rola et al. [30] presented two main attacks that
attempt to bypass browser security measures related to
browser extensions.

Although many possible deviant behaviours by malicious
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extensions can be mitigated by the latest isolation and
sandboxing environments, user tracking at the network level
can still be a problem. M. Weissbacher et al. [31] focused on
solving this problem and presented a dynamic technique for
identifying user privacy violations on Chrome’s extensions
based purely on monitoring network traffic patterns.

Chen and Kapravelos [32], also focused on browser
extensions related to user privacy, developed a taint analysis
framework to perform a large scale study of Chrome’s
extensions and their privacy practices. Even though [31] used
machine learning to identify and analyse network traffic, it
remains vulnerable to attackers that possess the ability to
mask their network traffic with noise. To solve this issue, the
authors present [32], an extension analysis framework that
implements dynamic taint tracking for the Chrome browser.

B. Protection from Untrusted Environments

In this section, we switch roles and discuss existing
techniques that can protect the execution state of trusted
web application code from untrusted environments.

1) Hardware enclaves: A broad class of problems oc-
curs when the adversary can control the operating system,
and from there can naturally access the execution state of
web applications in the browser. Hardware enclaves can be
very successful against compromised browsers and operating
systems. Simply put, they provide user-level execution envi-
ronments for running sensitive code in isolation from the OS.
In commodity hardware, hardware enclaves are supported by
Intel’s software guard extensions (SGX) [33] technology.

Hunt et al. [34] developed a distributed sandbox environ-
ment, leveraging hardware enclaves to protect user secret
data while it is being processed by untrustworthy services.

When dealing with untrusted clients, web servers can-
not rely on the confidentiality and integrity of client-side
JavaScript code and data operated on. For example, a local
browser JavaScript credit card validation must be made first
locally, to warn the user in case of errors, and validated
again when it reaches the web server, since it cannot trust
the client. This sort of necessary validations adds time to
the operations and waste server resources.

TrustJS [35] explores the execution of client-side
JavaScript inside a hardware enclave, e.g. Intel SGX, in
order to improve user experience and conserve server re-
sources. The developed framework enables trustworthy ex-
ecution of local JavaScript code that can be attested at the
server, instead of validated again.

Fidelius [36], an architecture also based on hardware
enclaves, provides user data protection during web browsing
sessions. The enclaves are integrated into the browser and
enable protection even if the underlying browser and OS
are fully controlled by a malicious attacker, a threat model
that is very similar to ours. The isolated hardware enclave
functions as a small trusted running environment for man-
aging and executing all the web page JavaScript input forms
related with user credentials and private actions, e.g. banking
transactions.

2) TrustZone-assisted TEEs: Trusted Execution Envi-
ronments (TEEs) are secure integrity-protected zones that
provide processing, memory, and secure storage capabilities
for the processes and applications running inside. These
environments tend to be isolated from the memory space
where the OS runs, which is designated as the rich execution
environment (REE). Although SGX-based enclaves can be
considered an enabling technology for TEE, in mobile com-
puting devices, TEEs are mostly supported by a technology
specific to Arm hardware (which is prevalent on mobile
platforms). This technology is named ARM TrustZone [37],
and it is widely adopted in Android devices as the main
isolated zone to run and store sensitive applications and data,
e.g. cryptographic keys and certificates [38].

TrustZone relies on secure and normal worlds, hardware
separated, to securely isolate programs and data. Unfortu-
nately, due to the widely adoption of the secure world to run
and store applications and data, this secure zone is starting
to get bloated and security issues might rise from buggy (or
even malicious) code / data stored inside [39]. As an attempt
to increase user data security, sandboxing environments that
do not rely on the secure world to be isolated from the host
OS are worth exploring.

To make TrustZone-assisted TEEs more robust against
side channels, Costan et al. [40] introduced a system that
provides defenses against known side-channel attacks, such
as cache timing attacks and passive address translation
attacks by monitoring the memory access patterns of the
enclaves while hiding them from the host OS.This sort
of implementations is very useful to our own case study,
WArdian, since we intend to create isolated zones without
creating noticeable performance drawbacks to the user.

IV. WARDIAN DESIGN

This section presents WArdian, our proposed system for
securing WebAssembly code within the Chrome browser
against attackers with the ability to control the Android OS.
Our solution is targeted to run on Arm platforms featuring
ARM TrustZone technology.

A. Motivational Example and Threat Model
Before the technical specifications of our solution, we

begin with a demonstrative example showing the need to
protect the current state of wasm web applications. Consider
a bitcoin wallet service that allows its users to manage their
account and transactions on a mobile device through the
local browser. The local browser, running on the Android
OS, has a sandboxed partition where all the WebAssembly
code is loaded and executed. When a wasm module is
requested by the browser, a new sandboxed environment –
V8 instance – is created and the application’s web server
proceeds to send the module requested. In the current state of
affairs, an adversary with the ability to control the browser or
the OS (e.g., by installing a rootkit), would be able to retrieve
sensitive application data, which in this case includes the
private key associated with the user’s bitcoin wallet.
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This problem can be further generalized to other We-
bAssembly applications that manipulate data items that must
be preserved absolutely private to the user. Our work aims
to create a separate memory zone to load and execute wasm
modules while preventing the compromised Android OS
from tampering with it. We call these secured WebAssembly
packages by the name cagelets, and the secure environments
where they execute as web cages.

1) Threat Model: We want to protect against an attacker
that has full control over the operating system of the
mobile device. The adversary can also control the browser
process, examine and modify unprotected memory where
web pages are allocated, and that he/she can examine the
communication exchanged between the code executed by
the web page and the remote site. We assume, however, that
the attacker cannot inspect the contents of secure memory
regions allocated to hardware enclaves or to trusted execu-
tion environments. It is also worth noticing that the secure
memory regions we envision for securing the WebAssembly
code are instantiated by the browser process, so we do not
consider any type of DOS attacks.

B. System Overview

Our solution tackles the previous problem by isolating
the WebAssembly execution from the browser. WArdian
prevents Chrome from loading and running wasm modules
and instead leverages on the Bao hypervisor, and it’s enclave
environment, to safely execute wasm code.

Bao has the ability to create separate memory spaces
inside the same physical device – enclaves – where the
Android OS has no privileges, and therefore, cannot access
the isolated WebAssembly application’s data.

The native Chrome’s sandboxing mechanisms remain
fully functional, and continue to operate for JavaScript code,
but have no indication that WebAssembly is being called by
the web pages running inside it’s renderer processes. This
is accomplished by the introduction of a browser extension
that is in charge of tricking web pages into communicating
with WArdian instead of Chrome’s V8 environment.

Running at the enclave, WArdian maintains a fully func-
tional WebAssembly runtime that is able to securely commu-
nicate with our browser extension, creating the abstraction
needed to extract wasm code, and inject the corresponding
outputs, without V8’s knowledge.

Figure 1 presents the architecture of WArdian. In the
normal world, the Android OS runs as normally expected.
The Chrome browser will also have the same behaviour as
before, with the exception of renderers that have a wasm
module loaded. When an IPC message reaches the browser
process with a request to download a wasm module, a new
web cage is created inside a new and secure environment
where the received cagelet is loaded and executed. The
underlying mechanisms offered by Bao provide memory
isolation procedures that prevent an attacker from inspecting
the content of a web cage and access the execution state of
guest cagelet code.

Hardware

Bao Hypervisor

Normal World Secure World

Unsafe zone Safe zone

Controller

Android OS

Chrome Browser

Web Cage
Driver

Chrome
extension

Web Cage
runtime

WebAssembly
runtime

WebAssembly
Cagelet

WebAssembly 
runtime

Figure 1. WArdian architecture: its specific components are colored
in yellow.

Analogous to the first example, consider now a web page
application that presents a 2D dice and shows a different
dice face each time the user clicks on it, i.e. the faces 1
through 6 are randomized and one is shown on screen. A
web developer can take advantage of WebAssembly’s near
native speed and program the randomizer function in C
instead of relying on the browser’s JavaScript.

With the WArdian extension enabled, the WebAssembly
function call is detected and overridden in order to disable
Chrome’s V8 participation on the request. Instead, the wasm
module information – cagelet – is sent to the web cage en-
vironment, via web cage driver and the Bao communication
mechanisms, and the code is isolated from the browser at the
moment of execution. Finally, the wasm output is redirected
to the WArdian extension and consequently injected back
into the browser.

With this new WebAssembly life-cycle provided by WAr-
dian, wasm code is executed outside the privileged bounds
of the Android OS which prevents a malicious operating
system from tampering with the information managed by
the sandboxed wasm application, e.g. by tampering with the
wasm module in order to create a weighted dice (one that
always shows the same face).

C. WArdian API
WArdian is not only meant for user local data protection

but also to improve the ability of web developers to securely
insert wasm operations in their web pages.

1) Web Developers: In order for WArdian to work cor-
rectly, it needs to be able to detect and intercept wasm calls
made by the current web pages loaded in the browser. To
accomplish this task, some HTML and JavaScript syntax
restrictions are expected to be followed by web devel-
opers. These restrictions demand that the web developer
uses a specic WArdian API comprising a few HTML tags
and JavaScript function calls. Specically, whenever a web
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developer intends to execute wasm code on the browser,
and isolate it via WArdian, he/she must name the parent
script function with a default name, and all the necessary
arguments, for WArdian to correctly detect the call.

The previous dice example can be further explored in
order to understand these restrictions. Instead of using
typical JavaScript to program the dice randomizer function,
WebAssembly allows the developer to use native C code
and run it directly in the browser. After compiling it to a
wasm module, the developer has to fetch the resulting .wasm
file into the web page and call the desired C function via
JavaScript.

The function WardianFetchAndInstantiate is the one being
detected by the WArdian extension and overridden. Without
WArdian enabled in the browser, this JavaScript function
would be interpreted and executed inside Chrome’s V8
environment but, with WArdian enabled, the entire function’s
code is overwritten to trigger the enclave environment. The
enclave output is then injected into it’s return variable.

2) Users: On the other hand, users have no interaction
with the system. After successfully installing the WArdian
extension in Chrome, WebAssembly execution remains com-
pletely invisible to the user, providing for a normal and
inconspicuous browsing session.

D. Extending the Browser
Our lightweight Chrome extension improves browser

wasm secure execution without disrupting it’s native sand-
boxing mechanisms. WArdian starts by monitoring web
requests for new wasm modules and overrides the JavaScript
functions that fetch and instantiate said modules. After this
initial setup, the extension runs idle until it listens for a
wasm function call. When this condition is triggered, our
extension disables the web page ability to run the wasm
function and sends the respective wasm module to the
enclave. Finally, the wasm module is safely executed in our
isolated memory space, the result is returned to the extension
and consequently injected into the respective web page.

In order to accomplish these tasks, the extension relies
on two main components: a background and a content
script. The Background script, as the name implies, runs
in the background from the moment Chrome starts and is in
charge of listening to various events, such as WebAssembly
fetch, instantiation and execution requests, and to establish
communication with the enclave, via web cage driver.

To override some of the necessary JavaScript functions,
a content script was introduced. Recalling Chrome multi-
process architecture, extension processes are analogous to
renderer processes in which they run in a separate and
isolated process, so the background script does not have
the ability to directly communicate or alter the web page
content. A content script, however, allows the extension to
inject JavaScript code in the current web page which will
allow it to run in the same context of the renderer process,
making it possible to override native JavaScript functions
and establish a communication channel between the web
page and the background script.

Looking back at the previous dice example, we can now
begin to understand how the extension internals actually
work. The content script, when the web page begins to load,
and since it runs in the same context as the current renderer,
has the ability to parse the web page contents for wasm calls
and override the JavaScript calls that implement them.

At the same time, the background script is already running
and listening for wasm events. When the user clicks on
the dice, the wasm function doesn’t run locally since the
content script already overridden the necessary JavaScript
functions. Instead, the background script sends the wasm
module over to the web cage environment, at the enclave,
where the module is executed and the corresponding output
sent back to the background script.

Finally, and after being notified by the background script
with the wasm response, the content script can inject the
new dice value into the return variable of the initial web
page’s JavaScript function that initiated the entire process.

E. Securing Wasm Execution

With the WArdian components at the Android OS ex-
plained, we now introduce the enclave environment where
the wasm modules are loaded and executed isolated from the
privileged scope of the device’s operating system.

In order to create our desired enclave architecture, two
main components are needed, a Web Cage runtime, in
charge of managing all system calls at the enclave space
and a WebAssembly runtime where wasm modules can be
loaded and safely executed. Several open source projects
were analyzed but since we have a very specific hardware
architecture and overall functionality in mind, our choices
were very filtered at the starting point already.

Both components needed to support ARM architectures
and be as lightweight as possible, in order to minimize
the enclave space. Considering our strict requirements and
available open source projects, we selected the Zephyr RTOS
(real time operating system), by the Linux Foundation, and
the WebAssembly Micro Runtime, i.e. WAMR, a Bytecode
Alliance project. Zephyr is in charge of managing all the
systems calls at the enclave, i.e. it works as a replacement for
all the necessary Android OS functions that WArdian needs
while running at the enclave, and WAMR is a lightweight
WebAssembly runtime that interprets and executes wasm
code in a near native speed while also providing low memory
usage.

The combination of Zephyr and WAMR makes for a very
small enclave environment but with all the necessary security
mechanisms and basic functionality in place that enables
WArdian to successfully accomplish it’s proposed goal.

1) Web Cage Environment: By embedding WAMR in
Zephyr, and running this system configuration at our enclave
space, we accomplish the desired web cage environment that
is able to communicate with our WArdian browser extension
and safely sandbox wasm code executions.
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F. Communication Channels
In order for both endpoints to communicate with each

other, a shared memory zone is implemented by two un-
derlying components: the web cage driver deployed in the
Android’s memory space, and the web cage runtime residing
in the Bao enclave. The former provides an interface to the
WArdian extension.

In the untrusted Android OS, the web cage driver is nec-
essary to manage all the in and outbound communications
between both zones. Bao also manages these communica-
tions making sure to preserve the integrity of the secure
environment. The web cage runtime – Zephyr – provides
an interface to the WebAssembly runtime – WAMR – and
implements the necessary system functions to receive and
reply messages to the web cage driver.

1) Native Messaging: To establish a communication
channel between the extension and the enclave, our Web
Cage driver needs to be able to exchange messages with
the Wardian extension in real time. This driver works as a
communication bridge between the WArdian extension and
the enclave environment.

Chrome allows developers to exchange messages between
extensions and native applications using their Native Mes-
saging API. Our driver communicates with the extension’s
background script, via native messaging, and is in charge of
receiving the wasm module to be executed in the enclave,
redirecting this information to the enclave and finally redi-
recting the enclave output back to the extension.

2) Shared Memory: In regards to the communication
between the driver and the web cage environment, Bao offers
custom services that can be called from the Android OS zone
and interpreted at the enclave.

WArdian leverages on these services and introduces two
new ones: one to start the enclave environment, i.e. WAMR
application execution, and one to send wasm data to the
running web cage. The first one is called as soon as the
Chrome browser starts (event triggered by the WArdian
extension) and the second one is called each time a wasm
function is requested by the browser.

To minimize Bao space occupation on the mobile device,
since they can be very limited in terms of physical memory,
the shared memory buffer is initialized with only 8 KB of
allocated memory. This small buffer is, most of the times,
enough for all the commands and parameters that need to
be passed between both ends, but in case of large amounts
of data, as can be the case when working with big wasm
modules, a chunked approach is used, i.e. big messages are
split in several chunks to be sent one at a time.

G. Secure Bootstrap
To prevent an adversary from disabling WArdian’s security

mechanisms, it is essential to guarantee the integrity of the
entire system’s trusted computing base (TCB) upon boot.
This TCB includes components in the secure world – the
controller – and in the normal world – the Bao hypervisor
and WArdian’s web cage components (see Figure 1). When

the mobile device starts its bootstrapping process, the con-
troller firmware is verified (according to a typical trusted
boot digital signature validation). Then, after validating
the digital signatures of WArdian’s software images to be
executed in the normal world, the controller switches to
the normal world and hands over the control flow to Bao’s
bootloader. This chain of events ensures that the integrity of
WArdian’s TCB has not been compromised upon boot.

The remaining of the bootstrapping sequence is as fol-
lows. Bao starts by allocating space for three different mem-
ory regions. One for the Android OS (unsafe zone), one for
the WArdian enclave (safe zone), and a third memory region
where both previous regions have access. Once all three
memory zones are allocated, Bao starts the Android booting
process in the unsafe zone and the enclave environment in
the safe zone. The third memory region is intended for the
communication process explained in the previous section.

V. IMPLEMENTATION

During the development of WArdian, several prototypes
were built while trying to accomplish our desired final goal.
This section presents all the major steps taken and our
reasoning for them to happen. We also present some of the
setbacks we faced and how we were able to solve them.

A. WArdian Prototypes
Since WArdian has a complex architecture where multiple

components are integrated and work together in different
ways, we have opted, since the beginning of the develop-
ment, for a iterative and incremental approach. To follow
this development decision, we have built several WArdian
prototypes and learned from each one how to progress and
optimize the next ones.

Two main prototypes were essential for the final WArdian
build. We have started with QEMU, an open source machine
emulator and virtualizer, to simulate our enclave environ-
ment and used a generic x86 64 Linux distribution – Ubuntu
– as our main operating system (where Chrome runs). This
first prototype does not yet run in the desired hardware
architecture nor relies on the Bao hypervisor but implements
all the functionality and communication channels desired.

After the QEMU prototypes, with all the components
communication dealt with, we iterated to the second pro-
totyping stage where we started to explore our desired
hardware architecture – ARM – and introduced the Bao
hypervisor in order to create our final WArdian architecture.

B. Chrome Modifications
During the projecting phase of this thesis, our main

approach was to develop a custom build of the Chrome
browser with our desired isolation changes. After some in
depth search and testing, we reached to the conclusion that
this would not be a good approach for our problem. Due
to the nature of the pieces of code that we were trying
to modify, some of Chrome’s built in security mechanisms
were preventing us to accomplish our isolating changes.
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However, a Chrome extension, running as a separate
Chrome process, has the ability to directly change and
communicate with web page’s content and consequently
bypass the previous problems.

1) Web page content access: In order to detect and
intercept WebAssembly calls, we first need to have access
to the web page contents, i.e. DOM and JavaScript code.
Since Chrome extensions are also sandboxed, and therefore
run in individual and separate processes, the WArdian ex-
tension needs to be granted several browser permissions, as
described in its manifest file.

The given permissions enable WArdian to have access to
all open browser tabs and to be able to distinguish them from
each other. This is very important since we need to remain
isolating different scripts, from different sources, to have
access to each other’s content. WArdian also has permission
to manage web requests to actively monitor and detect wasm
modules calls.

However, the WArdian extension does not yet have the
capacity from accessing and actually changing web pages’
source code, since separate Chrome processes run in sep-
arate contexts. To overcome this issue, and as previously
introduced, a content script was necessary. This component
enables the extension to run in the same context as the
renderer’s web page and therefore access all the page’s
contents

2) Changing JavaScript behavior: With access to the
web page’s content, we can now modify and insert new
code in the current web page. Since we want to override
the JavaScript function – WardianFetchAndInstantiate – that
initiates the entire browser WebAssembly process, we can
leverage on our content script to achieve this goal.

Our content script is executed before the web page loads
in order to override the desired JavaScript function, that
instead of actually fetching and instantiating wasm code,
now dispatches a WArdian custom event that is detected
by our background script. When the enclave operations are
concluded and the wasm result is redirected to the extension,
our content script is in charge of injecting it to the web page,
via the initial function’s return variable.

This new process successfully changes JavaScript be-
haviour without the knowledge of neither the rendering
engine nor the V8 engine, which securely isolates wasm
code execution from Chrome’s scope.

C. Communication with the extension
One unpredictable problem in our QEMU prototypes was

the communication channel with the extension, via Web
Cage driver. Unfortunately, QEMU does not yet support
network communications for their cortex-a53 emulation, this
means that we can only communicate via stdin and stdout
which severely decreases this set of prototypes performance.
Instead of being able to start our QEMU environment and
then dynamically send the wasm modules and arguments,
we have to manually build our WAMR application with the
arguments given as header files (.h) and only then start the
simulated enclave environment.

Although we have automated this procedure so that our
Web Cage driver can start the process and successfully
receive the response from the enclave, this process needs
to run every time when either the wasm module or its
arguments change, which is a very frequent event.

However, this problem is only relevant when considering
the initial prototypes since our final architecture does not
depend on QEMU emulation.

1) Dynamic enclave execution: To fix this issue on
the Bao prototypes, we built a custom socket connection
between the two endpoints: the Web Cage driver and the
WAMR application. The Web Cage driver now starts the
enclave environment as soon as the extension background
process initializes and instead of passing the wasm module
and arguments via header files, the data is now exchanged
via our socket channel which makes the dynamic WAMR
execution possible and therefore eliminates the previous
performance issue.

D. Bao Integration

Unfortunately, due to time restrictions, we were unable to
finish this last prototype in time. This final implementation
section presents all the current work in progress aiming at
integrating Bao and WArdian in the same final build.

1) Communication protocols: Out of the box, Bao comes
with 4 services that the Bao application running at the An-
droid OS zone can request: start and close enclave session,
invoke enclave command and cancel enclave command. Our
Bao integration was started by adding two new commands
to the custom Bao protocol.

As explained before, we need one command to start our
WAMR application when a new browser session starts and
an additional one (to be called frequently) everytime wasm
data and its arguments need to be communicated to the web
cage environment. To implement these new calls, and with
great help from our colleagues at Universidade do Minho,
we altered Bao’s source code for these changes to take effect.

After instructing our web cage driver to create messages
using the custom Bao structure it is only a matter of
interpreting this information in the web cage environment
and execute our WAMR application as we are used to. By
adding some new instructions to the source code of Bao,
specifically on the modules that run at the enclave and
interpret receiving messages from the Android OS zone, and
by embedding our zephyr final binary in the enclave we
could create a similar behaviour known from our previous
prototyping experiences.

2) Prototyping problems: Unfortunately, time constraints
on the Bao’s development team, in combination with project
synergies, delayed this final step in the integration of WAr-
dian and Bao. Due to technical problems while flashing our
zephyr binary on the Bao enclave, we were unable to have
our web cage environment up and running in time to finish
our final prototype.
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VI. EVALUATION

Since the beginning of our work, a big emphasis was
placed on device performance due to the major changes
made to the WebAssembly browser runtime environment
and consequently the wasm data life-cycle. In this section
we evaluate WArdian’s final results based on three main
categories.

A. Global Performance
Starting with the overall WArdian’s performance, we

wanted to measure the global impact of our system in
browsing sessions, i.e. the total wasm operation’s time with
and without the WArdian extension enabled. To measure this,
we changed our developed web pages to record the starting
and ending time of the entire wasm operation and return the
difference via browser console logs.

To perform this evaluation, we used a combination of
several developed web pages in order to get an average
of WArdian execution times. To better understand how our
system works, and consequently achieve more interesting
conclusions, we started by evaluating our QEMU prototypes
and then made our way to the Bao ones. Recalling the
QEMU performance issues discussed earlier, our gathered
benchmark results for this set of prototypes were not sur-
prising.
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Figure 2. WArdian global performance.

At this point in time in our WArdian evaluation, the Bao
hypervisor was still in development, which made us have to
be creative while gathering the following benchmark values.
Predicting the dynamically way in which we can run our
WAMR application when using the Bao enclave, the need
to rebuild our application vanishes, which means that this
operation’s time can be subtracted from our previous results.
To accomplish this new batch of testing, we preemptively
added our wasm arguments to the WAMR application before
the browser wasm calls were made. Figure 2 shows the
combined results of our batch of tests for the global WArdian
performance, where we show the average operation’s time
of several WebAssembly browser calls, while using WArdian
with QEMU, the simulated Bao environment and without the

WArdian extension enabled, i.e. using the native browser’s
V8 engine.

Comparing the WArdian’s simulated Bao prototypes
against the native Chrome browser, the results are far more
similar and almost unnoticeable to the human eye. Although
there is a significant increase in time, approximately 2 times
slower, we consider these to be successful WArdian results
since user experience is unaffected and almost unnoticeable
to most users.

B. Micro-benchmarks
Since WArdian is a complex system, with several com-

ponents communicating and working together in different
ways, we felt the need to evaluate each component sepa-
rately, and in specific, measure each communication channel.

The total WArdian execution time can be separated into
two parts: browser and enclave communication; and WAMR
application’s execution time. Knowing that the communica-
tion channel is composed of several components, we arrived
at the following total time equation.

TotalT ime = 2 ∗ (t1 + t2 + t3) + t4 + t5 (1)

Our complex communication channel starts at the browser.
Chrome passes the wasm data to the WArdian extension (t1),
which then needs to be communicated to our web cage driver
(t2), and only then does it reach the enclave environment
(t3). The WAMR execution time is represented as t4 (with
t5 being the application build time) and the communication
channel time is doubled since a response with the final wasm
result needs to be sent back to the browser.

Using this equation, and the gathered results from the
previous section, we were able to isolate each communica-
tion bridge and gather values to evaluate each component’s
performance.

Web Page t1 t2 t3 t4 t5 total (ms)

Simple 0.005 0.002 0.354 0.014 4.306 5.042
Card verifier 0.006 0.002 0.437 0.015 4.119 5.025
Counter (S) 0.009 0.001 0.435 0.015 4.103 5.007
Counter (M) 0.010 0.002 0.462 0.015 4.012 4.975
Counter (L) 0.009 0.002 0.451 0.015 4.063 5.002

Table I
WArdian QEMU Micro-benchmarking.

As the results show, and unsurprisingly, the QEMU pro-
totypes present very similar results on all web testing pages.
Since QEMU runs in the same space as the underlying
operating system, the communication between the web cage
driver and the WAMR application is just as simple as two
native programs sharing information. We can also detect
that the communications between the browser, the WArdian
extension and the web cage driver (t1 and t2) are very
insignificant, which makes sense since these are all Chrome
shared processes (the renderer, the extension and the driver),
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that communicate via it’s inter-process mechanisms[14] and
stdin/stdout respectively.

Since the communication between our WArdian extension
and the web cage driver also happens in the same memory
space, it’s unsurprisingly fast, and considering that the
enclave environment is the same in all WArdian’s prototypes,
the communication between the driver and the enclave is the
most impactful in the total procedure’s time.

In regards to the Bao values, we once again had to
improvise in order to obtain them, since the final prototype
was not yet completed at this stage. To accomplish these
simulations, we then again removed the compilation time
of the WAMR application and used our socket approach
to simulate the data transfer between the web cage driver
and the enclave environment. We manually ran our testing
messages through this channel to simulate the Bao shared
memory protocol. The communication between the browser
and the extension, and the execution time of the wasm
application, are expected to remain the same between both
prototypes.

Web Page t1 t2 t3 t4 t5 total (ms)

Simple 0.005 0.002 0.124 0.014 NA 0.276
Card verifier 0.006 0.002 0.124 0.015 NA 0.279
Counter (S) 0.009 0.001 0.124 0.015 NA 0.283
Counter (M) 0.010 0.002 0.125 0.015 NA 0.289
Counter (L) 0.009 0.002 0.128 0.015 NA 0.293

Table II
WArdian Simulated Bao Micro-benchmarking.

As our simulated results show, the overall Bao total exe-
cution time is much shorter, as expected, since the WAMR
application can now run dynamically and there is no more
need to instantiate a new virtualization environment each
time a new wasm call is made.

C. Security Analysis
By combining our browser modifications with Bao, we

successfully mitigated most of the possible attacks poten-
tially issued by a malicious browser or operating system.

Starting with attacks potentially issued by a malicious
operating system, Bao gives us the memory separation we
need to combat and overcome this adversary. By statically
partitioning the memory zones of both the Android OS
and the enclave environment, Bao ensures that the OS
cannot access nor override the enclave memory space, which
guarantees the safe isolation of all the enclave trusted
applications.

Another potentially problematic attack surface is the hard-
ware processor where the android OS and the enclave are
running. Bao overcomes this issue by allocating, at boot,
one single processor core to be assigned to the enclave
environment, and the remaining to the Android OS, making
it secure from access attempts by a malicious operating
system.

Having secured the enclave environment, the wasm web
applications running at the local browser can still be com-
promised. WArdian deals with this problem by removing
all wasm processes from the browser’s renderer and instead
executes wasm at the enclave. This ensures that the wasm
application, and the data it manipulates, are loaded and
executed outside the scope of the Android OS, which makes
it impossible for it to read or change its contents.

VII. CONCLUSIONS

Although WArdian is not yet in a stable stage neither
for users nor web developers, it already presents a strong
foundation for secure WebAssembly browser execution.
Even though web developers currently have a well defined
set of rules to follow in order to successfully leverage
on WArdian’s security mechanisms, which might make it
overwhelming to implement in their web pages, sensitive
wasm operations might justify the added work on their part
and the consequent lack of performance on the user’s device.

Regarding this factor, we should consider that WebAssem-
bly is mostly used to perform intense and complex browser
computations, e.g. media decoding, but these are not the kind
of operations our system is intended to isolate. WArdian was
developed to sandbox wasm browser operations that leverage
and manipulate user sensitive data, like credit card verifica-
tions and money transfer operations, which execute faster
and therefore will present a least noticeable performance
constraint.

The developed Web Cage Driver, in combination with
Bao, successfully creates a secure communication channel
with our enclave environment which makes sure that no
sensitive wasm information, or data manipulated by the
wasm module, is leaked to a potentially malicious operating
system and/or web browser, preserving the integrity and
confidentiality of said data.

Although, in the end, we were not able to successfully
finish the integration of WArdian and Bao, the predicted
combination of efforts between the WArdian developed
components and the used hypervisor present all the initial
goals we were trying to accomplish.

In the future, we would like to remove the syntax re-
strictions and, out of the box, provide support for all the
different ways to load and instantiate wasm calls making
WArdian inconspicuous to web developers. Finally, it is
worth mentioning that WAMR has native support for Intel’s
SGX, which means that our final implementation could
easily be deployed in desktop environments as well.
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