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Resumo

Os dispositivos móveis são extremamente populares e usados para correr várias aplicações que trabal-

ham com dados sensı́veis ao utilizador. Graças ao desenvolvimento de WebAssembly, uma tecnologia

emergente com suporte para a maioria dos browsers modernos, vastas aplicações deixam de necessi-

tar uma instalação prévia no dispositivo. Desta nova forma, necessitam apenas de ser transferidas, em

tempo real, para o browser utilizado e conseguem correr localmente no dispositivo. Isto é possı́vel visto

que WebAssembly traz aos web developers a possibilidade de correr código nativo C/C++ compilado

directamente para a web page, o que corre muito mais rapidamente do que tı́pico JavaScript. Utilizando

esta nova técnica, os antigos mecanismos de encapsulamento dos browsers modernos não serão su-

ficientes para tolerar ataques provenientes de um adversário que consiga comprometer o estado do

sistema operativo do dispositivo móvel. Por exemplo, caso um dispositivo Android seja atacado por um

rootkit, o adversário consegue comprometer a integridade e confidencialidade da informação trabalhada

pela aplicação de WebAssembly, mesmo que devidamente encapsulada pelo browser. Este trabalho

apresenta a concepção, implementação e avaliação de WArdian, um ambiente de execução seguro

para aplicações de WebAssembly em sistemas operativos móveis não confiáveis. Aproveitando um

hipervisor existente, pretendemos desconstruir o Chrome browser e correr WebAssembly em memória

protegida – intitulada Web Cage – onde o sistema operativo não apresenta privilégios.

Palavras-chave: WebAssembly, Chrome browser, Android, Encapsulamento, Hipervisor,

Virtualização
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Abstract

Mobile devices are extremely popular and are used for running many data sensitive applications. Thanks

to the development of WebAssembly, an emerging browser technology, applications no longer need to

be installed on the device. Instead, they can be download on-the-fly and executed directly on the local

browser. This is possible because WebAssembly enables web developers to run native C/C++ code on

a web page, which runs much faster than typical JavaScript. Using this new approach, the previously

implemented sandboxing mechanisms of modern web browsers will not be enough to prevent attacks

from an adversary that can compromise the mobile operating system. For instance, if the android OS is

attacked by a rootkit, the adversary could compromise the integrity and confidentiality of data manipu-

lated by the sandboxed WebAssembly application. This work presents the design, implementation, and

evaluation of Wardian, a secure execution environment to run WebAssembly applications on untrusted

mobile operating systems. Leveraging on an existent hypervisor, we intend to deconstruct the Chrome

browser and run WebAssembly code inside a protected memory space – named web cage – where the

operating system holds no privileges.

Keywords: WebAssembly, Chrome browser, Android OS, Sandboxing, Hypervisor, Virtualiza-

tion
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Chapter 1

Introduction

Nowadays, mobile devices have a strong influence in our personal connections, and therefore, these

devices hold several applications that manage sensitive data, such as banking applications, private

social messengers and so on. With the development of WebAssembly [1], an emerging browser tech-

nology, developers can now run native C/C++ code directly on the browser and make use of its faster

performance when comparing it to typical JavaScript. This technology makes possible the creation of

applications that run in the local browser, and therefore do not need to be physically installed on the de-

vice. Consequently, browser security is extremely important to prevent adversaries from gaining access

to web pages’ state and steal users’ private information, for instance, prevent access to the user’s private

keys of a BitCoin wallet software implemented as a downloadable WebAssembly module. This thesis

focuses on securing browser WebAssembly executions, specifically on the Chrome mobile version, in

an environment completely isolated from the browser and the underlying untrusted operating system.

1.1 Motivation

Currently, Chrome uses a multi-process sandboxing environment to protect the user against attackers

that can manipulate web pages and exploit bugs in the renderer process [2]. Due to the nature of web

attacks that intend to escape the sandbox environment, Chrome’s isolation techniques leverage on the

existent operating system (OS) security measures to create and maintain this secured environment. In

Linux specifically, the kernel sandboxing environments play an important role in the overall Chrome’s

isolation and security. In the remaining of this project, we will focus on the Chrome browser and how to

protect it against attacks on the Android OS.

Unfortunately, modern browsers do not have the necessary security measures to protect the exe-

cution state of browser-hosted application from an adversary that can compromise the integrity of the

operating system of the mobile device [3, 4]. Since the dependency on the operating system security

measures is so ingrained in Chrome’s sandboxing procedures, an attacker that can successfully compro-

mise the operating system can utilize the browser for more complex attacks on the device. For instance,

if the Android OS is attacked by a rootkit, a malicious agent will be able to extract secrets and other
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sensitive data manipulated by the WebAssembly application running inside a browser’s sandbox.

Considering that this class of attacks to the operating system is far from uncommon [5–8] and that

the sophistication of WebAssembly applications will naturally lead to the processing of larger amounts

of sensitive data, providing a strong line of defense mechanisms is fundamental.

1.2 Objectives

In this work, our goal is to address browser security by isolating WebAssembly executions without de-

grading the overall performance of the Chrome browser nor the underlying operating system’s. As

browsers manage private user information, and mobile devices are extremely populated by such data,

WebAssembly code execution needs to be isolated to ensure data confidentiality and integrity. Taking it

a step further, a compromised operating system can take advantage of the modern browser architecture

to have unlimited access to such data.

Our approach is to combine TrustZone-technology with partitioned execution of the Chrome browser.

In particular, by using a TrustZone-assisted hypervisor and creating isolated memory zones for securing

WebAssembly programs execution inside the Chrome browser, we aim to ensure that an untrusted

Android OS cannot tamper with the data processed by such programs. As for partitioned execution, the

idea is to separate Chrome’s renderer process into two parts: one runs normally on the Android OS,

while the other partition provides for the instantiation of web cages, i.e., trusted execution environments

that load and run WebAssembly on a secure memory zone created by the hypervisor. A set of drivers

and API’s must be created to allow for the communication between both zones while preserving the

integrity of the secured space.

1.3 Contributions

This thesis presents WArdian, a system that provides a trusted execution environment within the browser

for loading, interpreting, and executing WebAssembly code completely isolated from the host operating

system. Our solution leverages an existing TrustZone-assisted hypervisor that can create protected

memory spaces where the operating system holds no privileges. By partitioning the Chrome browser

and learning from their existent sandboxing mechanisms we have created web cages, sandboxing envi-

ronments for running WebAssembly code inside secure memory zones provided by the used hypervisor.

In WArdian, the deployed WebAssembly code is able to interact with the remaining components of

the web page located in the browser and renderer’s process outside the secure memory zone (i.e.,

DOM and JavaScript code), and have access to security services that will prevent specialized attacks

potentially issued by an untrusted operating system, e.g. tampering with the system clock, file system,

or random number generation.

In summary, this thesis makes the following contributions:

• A new browser architecture featuring separation of privileges between the Android OS and trusted
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execution environments for hosting WebAssembly code;

• Implementation of this architecture for the Chrome browser’s version targeting mobile devices;

• Improvement on mobile browser security with modest performance degradation;

• An extensive evaluation with real use case web applications.

1.4 Thesis Outline

The rest of this document is organized as follows. Chapters 2 and 3 present some background and

related work, respectively, where Chrome and WebAssembly internals are introduced and the current

state of vulnerabilities and possible solutions are analyzed. Chapter 4 describes the proposed architec-

ture of WArdian, and Chapter 5 describes the steps taken in order to implement it. Chapter 6 presents

the evaluating process of WArdian and the consequent results obtained. Finally, Chapter 7 concludes

this report and describes possible future work implementations to extend WArdian functionalities.

3
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Chapter 2

Background

This chapter provides some necessary background on our work. We begin by introducing WebAssembly

and discussing its potential for speeding up the Web. Then, we present the internals of a modern browser

– Chrome – focusing in particular on its security mechanisms. Lastly, we present a brief introduction on

Bao, our used hypervisor, and its security mechanisms.

2.1 WebAssembly

WebAssembly, usually shortened to wasm, is a low level binary format that can be executed in most of

modern browsers. Its small-sized footprint, due to being optimized and precompiled, makes it faster to

load and execute than typical JavaScript code (20x-40x faster) [9] which makes it more desirable to use

for compute-intensive workloads and all sorts of browser applications [1, 10].

In browsers today, JavaScript is executed inside a virtual machine which optimizes the code to im-

prove performance. JavaScript is one of the fastest dynamic languages but cannot compete with native

C/C++ raw code. WebAssembly runs in the same virtual machine but its performance is much better.

To take advantage of this new technology, web developers can compile their native code into a wasm

module as described in Figure 2.1. This module will then be glued to the HTML page using intermediary

JavaScript code so that finally the application can be presented on the browser. In order to compile the

C code into wasm code, a precompiled toolchain is used, the most popular being Emscripten [11, 12].

.c / .cpp .wasm .html

Emscripten
compiler

JavaScript
glue code

Native Code Wasm Module Web Application

Figure 2.1: WebAssembly compilation process.
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Although WebAssembly has many advantages in terms of speed and execution, JavaScript is still

necessary to create the connection between the wasm module and the browser. The two technologies

can communicate freely which lets us get the best out of both worlds, JavaScript has a vast library

ecosystem and friendly syntax while WebAssembly delivers near native performance.

Due to its faster performance, WebAssembly is commonly leveraged to perform compute intensive

browser workloads that would otherwise be impossible to accomplish. Since browser and cloud featured

applications are on the rise, several native applications are making their transition into the browser [10]

to benefit from its mobility and user convenience. Recent use case applications go from simple media

decoders to more complex gaming experiences and even 3D modelling applications like AutoCad.

2.2 Chrome Browser Architecture

Modern browsers, like operating systems, are robust and place each application (renderers, plugins,

extensions, etc.) in a separate process that is walled off the concurrent processes. This architecture

ensures that a crash in one component will not disturb the others nor the integrity of the underlying

system. It also ensures that each user’s access to other user’s data is restricted. Essentially, this

internal structure brings into the browser the benefits that memory protection and access control have

brought to operating systems [13].

To accomplish the desired architecture, Chrome is mainly separated into two different kinds of pro-

cesses: a privileged browser process that is in charge of running the user interface and managing all

the other processes, and non-privileged renderer processes that are responsible for actually interpreting

and laying out the HTML pages. The full architecture diagram is as shown in Figure 2.2. To communicate

with each other, browser and renderer processes use Chrome’s Inter-Process Communication system

(IPC) [14], which in Linux and Android is mainly implemented using asynchronous socket pairs. On the

browser process side, communication with the renderers is done via a separate I/O thread (input/output)

to ensure that the main thread is never blocked. This is important when making resource requests, for

example, this way the main thread can continue to run while waiting for the request to succeed. On

the renderer process side, communication is done in the main thread while the remaining work, like

decoding media and interpreting JavaScript, is done in a separate thread.

2.2.1 Process models

To understand how renderer processes are created, we first need to understand how browser tabs are

managed between different renderers. To this affect, Chrome supports four different models that dictate

how the browser allocates web pages into renderer processes [15]. With Figure 2.2 as reference, we

can see that the first renderer has two web pages – RenderViews – and that the second renderer has

only one. By default, Chrome uses a separate render process for each instance of web site visited.

However, users can specify which model to use at startup.
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RenderProcessHost

RenderProcessHost

RenderViewHost

RenderViewHost

RenderViewHost

Main Thread

I/O Thread
SocketPair

SocketPair

ResourceDispacherHost

Browser

Main Thread

RendererProcess

Render Thread
RenderView

RenderView

ResourceDispacher
WebKit

Renderer

Main Thread

RendererProcess

Render Thread

RenderView

ResourceDispacher
WebKit

Renderer

IPC

Figure 2.2: Chrome multi-process architecture.

Process per site instance: The default model ensures that pages from different sites are rendered

inside separate processes, and separate visits to the same site are also walled off from each other. A site

instance is a collection of connected pages from the same site. Two pages are considered connected

if they can obtain references to each other, e.g. if we login at ist-fenix and open several course pages

they will all share the same renderer, but if we manually open a new tab and start a new fenix session

a new process will be created. This model has the advantages of isolating content from different sites

while also isolating independent tabs from showing the same web site. On the other hand, it produces

more memory overhead, due to the fact that it will generate several renderer processes.

Process per site: This model is similar to the previous one but will group all instances of the same

site in the same renderer process. This will result in less memory overhead due to less processes being

created, but will generate very large renderer processes, which can be a burden if one tab crashes.

Process per tab: As the name suggests, in this case one renderer process is created for each dif-

ferent browser tab. While being simple to understand, and therefore used in most of public educational

presentations, it leads to undesirable context and information sharing between web pages.

Single Process: Finally, and only for the purpose of testing and development, a single process is also

supported. In this model, both the browser and renderer engine share the same and only process. It is

safe to assume that this is not a secure nor reliable environment for regular usage.

2.2.2 Sandboxing the renderer

To provide a more robust layer of security and to make use of Chrome’s multi-process architecture, each

renderer process is enclosed in a separate sandbox environment. This approach is essential to the
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Figure 2.3: Renderer process isolation

security of the browser since the renderers process untrusted input and therefore face the risk of being

compromised.

To fully isolate the process, the sandboxing environment makes sure to restrict its access to system

resources, to the network and to the file system using the host OS built in permissions and a layered

approach focused on semantics and attack surface reduction [4]. In this approach, a semantics layer is

in charge of preventing access to most of the resources from a process where it is engaged using user

namespaces. An attack surface reduction layer restricts access from a process to the attack surface of

the kernel, making use of a native seccomp-bpf sandbox that both the kernels of Linux and Android offer.

This layered approach is necessary due to the fact that it is hard to understand semantics when filtering

at the system calls interface. There needs to be guarantees that different renderer processes can be

distinguished and are unable to affect the integrity of each other while running under different seccomp-

bpf sandboxes. If this separation was not made, sandbox escapes would be easy to accomplish.

Digging a bit further, in the semantics layer, three main namespaces are used to isolate the renderer

process (see Figure 2.3). The first namespace – NS NET – isolates the process from the network,

although the renderer process has to display web pages, all resource requests are made through the

parent Browser process, which is the only privileged process, and consequently the only one with inter-

net access. The second namespace – NS PID – isolates the process from the knowledge of existence

of other processes by giving it pid=1. This makes the process think that it is alone on the machine.

The third, and last, namespace – NS USER – makes the process think it is root, in fact, the process is

root inside the isolated sandbox environment. Inside this last namespace, three other tools are used to

isolate the process further more. Setrlimit and Chroot, two Linux security functions, are used to limit the

resources available to the process and to restrict file system access respectively, and finally the second

layer is introduced.

The attack surface reduction layer, as stated before, leverages on an existent Linux kernel sandbox

environment, seccomp-bpf, to manage and restrict the system calls issued by the renderer process.
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Seccomp-bpf was designed to shelter the kernel from malicious code executed in userland. A BPF

compiler will compile a process-specific program to filter system calls and send it to the kernel which will

interpret this program for each syscall made and allow or disallow the call.

2.2.3 Inter-process Communication

Currently, Chrome uses Mojo and Mojo services in order to handle all the inter-process communications.

Given Chrome’s multi-process architecture, as portrayed in Figure 2.2, mojo creates message pipes

between two endpoints, e.g. the renderer’s Main thread and the browser’s I/O thread. Each endpoint

has a queue of incoming messages and can add new messages to the other endpoint’s queue, which

makes it a bidirectional message pipe.

Mojo interfaces are described by mojom files, which hold a collection of accepted message types

that are available to circulate through specific Chrome processes. In order to establish communication,

one endpoint must take initial action and become the Remote end of the communication which makes it

able to send interface messages. The other endpoint, the Receiver, is able to receive said messages.

The communication remains bidirectional due to the fact that receivers can reply to incoming messages.

Mojom gives the ability to exchange simple messages through Chrome processes but, in order to create

more advanced actions, services can be used.

A service is a self-contained library of code which implements a more complex action or behavior on

the receiving end and its interaction with Chrome processes or outside code is done exclusively through

mojo interface connections.

For example, when a renderer process needs to know the battery level of the device (information not

directly accessible by the process) the renderer needs to communicate with the parent browser process

via mojo message pipe. On the browser side, a mojom service can be used to get the information from

the underlying operating system.

2.2.4 V8

We have talked about Chrome’s architecture and how each component can communicate with each

other but we have yet to explain where WebAssembly is actually loaded and executed.

The V8 engine is the current Chrome’s open-source engine for high-performance JavaScript and We-

bAssembly execution. Inside each renderer process, a new and isolated instantiation of V8 is allocated

in order to manage, load and execute all the JavaScript and WebAssembly code local to the renderer.

V8 is a standalone engine with the ability to instantiate several tiny virtual machines were web page

scripts are interpreted and executed safely and isolated from other renderer components, e.g. scripts

from other web pages.

In figure 2.2, V8 is represented by the webkit component in each renderer process and, as we can

see, all web pages from the same renderer share the same V8 instance.

When new JavaScript code is called by the browser, V8 instantiates a new virtual machine to handle

the request. After the V8 environment initialization, a new isolate is created and made the current one.
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Isolates are small memory zones that work as containers to separate and isolate code when several

scripts are running inside the same V8 virtual machine. Each isolate has its own stack and context

where JavaScript and WebAssembly code is compiled and executed. After the conclusion of the page’s

script the isolate is dismissed and, if no more isolates currently exist, the renderer’s V8 virtual machine

is teared down.

2.3 The Bao hypervisor

Currently being developed by our colleagues at Universidade do Minho, the Bao hypervisor, a lightweight

static partitioning tool, is a key component of our proposed architecture, being in charge of managing

and creating secure memory zones outside the privileged scope of the Android OS [16]. This lightweight

component, will leverage on virtual memory and a TrustZone based approach to create and manage

enclaves, in our case, guest zones to allocate web cages where the main OS holds no privileges. Bao

controls the booting process of the Android OS and constantly monitors and manages its behavior, e.g.

system calls performed and physical resources used.

Hardware

Hypervisor

Normal World Secure World

Android OS

Primary zone enclave1

...

enclave2

Controller

Figure 2.4: Bao hypervisor architecture.

The base architecture of Bao is shown in Figure 2.4. The primary zone allocates the Android OS

and has the limited ability to instantiate other enclaves. In the secure world, a controller module is also

used to execute a trusted boot and to calculate and store the hash of all the new enclaves instantiated

in order to be able to verify the integrity of the same if later requested, i.e. external parties (e.g. web

servers) can remotely attest to the running conditions of the enclaves. Since the enclaves are stateless,

and therefore do not have persistence storage capabilities, the controller is also used to securely seal

all the necessary information in order to be able to store it at the primary zone. The data is sealed and
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configured to the enclave software and hardware combination so that only enclaves are able to access

that information.

Bao is also in charge of creating and managing a shared memory zone, where both the Android

OS and the enclaves can access, to provide a communication channel for both ends to exchange the

necessary information and data needed.

Summary

In this chapter we introduced the main technologies and some necessary background knowledge on

our work. We looked into WebAssembly, the Bao hypervisor and dissected the Chrome browser to

understand how they are structured and work together. In the next chapter we’ll be reviewing some of

the related work studied.
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Chapter 3

Related Work

Our goal is to build a security mechanism for the Chrome browser that can protect the execution state of

WebAssembly code from a potentially compromised operating system. This chapter presents the related

work, focusing first on existing mechanisms that provide protection against untrusted applications, and

then on known mechanisms that can be used for protecting trusted applications from the environment.

This second line of work is mostly related to ours.

3.1 Protection from Untrusted Applications

Unfortunately, when a new technology is introduced and supported by all major modern browsers, ma-

licious actors will try (and have tried) to find ways to use it to their advantage. WebAssembly-based

attacks were first introduced in 2017 involving in-browser coin mining [17]. The attackers would take

control over the victim’s computer by making them visit a malicious web site that would use wasm code

to leverage on the local machine CPU to mine e-coins. Nowadays, other exploits have surfaced that rely

on WebAssembly to compromise the victim’s device [18–21]. Lonkar and Chandrayan [22] performed

an in-depth study on several real use cases where WebAssembly was used maliciously, including tech

support scams, browser exploits and script-based keyloggers. Next, we describe some relevant ap-

proaches proposed in the literature to secure the system against untrusted Javascript / WebAssembly

code executed in the browser.

3.1.1 Taint tracking of JavaScript and WebAssembly code

Although security is one of the major requirements for local code execution, sensitive information flow

is still at a young development age regarding WebAssembly. To help solve this problem, Szanto, Tamm

and Pagnoni [23] developed the first JavaScript based virtual machine for wasm execution. Taint Track-

ing is a technique that marks all program variables that have contact with sensitive user information,

e.g. banking card information, user personal identification, and hardware system properties, and follows

them though the entire execution of the program in order to detect and prevent illegal access, modifi-

cation, and possible leakage of said data. The developed JavaScript based virtual machine [23] loads
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individual wasm modules and follows their execution while performing a taint tracking analysis. While

wasm execution analysis is not one of WArdian goals, wasm secure execution is. In order to create our

isolated web cages, the work of Szanto et la. can serve as a valuable foundation to build our desired

sandboxing environments.

3.1.2 Same Origin Policy and Site Isolation

All modern web browsers, including Chrome, implement same origin policy as a security measure to

protect websites information from being accessed by different websites. This approach allows scripts in

the web page to access or request data from other web pages but only if both share the same origin.

An origin can be defined as a combination of URI scheme, host name and port used. With this policy,

a malicious script in one web page will not be able to access sensitive data from another web page

through it’s Document Object Model (DOM).

Oftentimes, skilled adversaries can find vulnerabilities in the code that enforces same origin pol-

icy and try to bypass it in order to steal from other websites. Site isolation, a recent security feature in

Chrome, makes it harder for malicious websites to have access to information outside of their scope [24].

This new approach fully isolates each website, based on its source, in their own renderer process, i.e.

in their own sandbox. We have studied how Chrome allocates renderer processes for different web site

instances in Section 2.2.1. Site isolation adds an additional layer of security to that previous implemen-

tation. Without site isolation, a malicious web page with an iframe with login buttons for Facebook would

have access to user credentials inside the same renderer, this is, the same process would be manag-

ing a vulnerable website and user Facebook credentials. With site isolation, a new renderer process is

instantiated for each new website involved in the web page, while showing the same visual information

to the user. This is done by creating a dummy iframe in each renderer process that points to a different

one. Figure 3.1 demonstrates the previous example. Currently, Chrome 79 has site isolation [25] enable

by default in all desktop environments and isolates all web sites. On Android, only websites that request

user credentials are isolated due to performance restrictions of mobile devices.

Renderer Process

Malicious.com

Renderer Process

Malicious.com

Renderer Process

VS

Figure 3.1: Before and after site isolation.
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3.1.3 Secure UI

Regarding user interactions with web pages, several security mechanisms can be placed to protect

user private input while browsing though vulnerable / malicious web pages. ShadowCrypt [26], a local

solution that encrypts / decrypts browser textual data, was for many years the state-of-the-art approach

for secure I/O within the browser. This solution was implemented as a browser extension and made use

of Shadow DOM [27] to isolate and encrypt DOM trees. The extension sits between the user and the

browser and only provides encrypted private data to the web application. When encrypted information

is retrieved from the web page, the data is locally decrypted and shown to the user.

Freyberger et al. [28], explored the limitations of secure I/O systems in the browser, and propose sev-

eral attacks that successfully bypass ShadowCrypt. The attack vectors expose the privacy weaknesses

of Shadow DOM, the key browser component of ShadowCrypt. Via client-side JavaScript code the au-

thors could trick the ShadowCrypt extension into not encrypting private data while displaying encrypted

data to the user.

Both ShadowCrypt and the techniques proposed to evade it are very interesting to study while de-

veloping our security approach. Adding the additional untrusted operating system to these case studies

makes for a very similar threat model when comparing it to WArdian. In Section 3.2.2 we will discuss

in extent another security implementation that takes into consideration user input in web pages and

implements several mitigations to similar and current attacks.

3.1.4 Browser hardening

As mentioned in Section 2.2, the Chrome browser – as well as all other modern browsers – implements

sandboxing mechanisms for confining untrusted web application code within the boundaries of an un-

privileged execution domain. In general, there are several ways to isolate programs and processes from

the host operating system, e.g. virtual machines, hardware/software enclaves and so on. A sandbox

environment is an isolated space where processes, programs, systems can be executed without disrupt-

ing the host machine operating system, i.e. without having full access (or none at all) to the file system,

resources and kernel calls. This is possible by virtualizing all the resources that the isolated process

needs and make it believe it’s running at the real host machine. Shanmugapriya and Geetha [29] per-

formed an in-depth study on sandboxing environments and how to use them to create lightweight secure

environments in large scale systems. This techniques are very useful when running untested / untrust-

worthy code while making sure it cant have any impact on the underlying operating system and even

other sandboxing environments.

However, implementing robust sandboxes is a difficult feat. For instance, in the Chrome browser,

several techniques have been attempted to escape the sandbox environments (although different levels

of expertise are needed for the adversary to be able to bypass the security measures implemented):

• Forged IPC messages: The renderer process, properly sandboxed, has connection with the privi-

leged browser process through an IPC system. An attacker that can find and exploit vulnerabilities

in the renderer process may be able to bypass some security checks and eventually run arbitrary
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code in the sandboxed process. An adversary with this capabilities has access to any data in the

renderer process while also able to control the IPC messages sent to the browser. Forged IPC

messages can be used to lie to the privileged process and steal information from other render-

ers [24].

• Memory disclosure attacks: This kind of attacker cannot run arbitrary code neither lie to the

browser process, but has the ability to read arbitrary data within the renderer process memory

address space [24]. To achieve this goal, the adversary relies on speculative execution attacks

such as Spectre and Meltdown [5]. All modern processors perform speculative execution to some

extent. This is a way to optimize and improve the performance of some intensive or recurring

executions. For example, assuming that a certain condition will be met, the processor executes

instructions accordingly and when the condition can be determined true or false the executed

instructions will have effect or be discarded respectively. However, while discarded speculative

executions do not alter the state of a program, they do make some changes to the lowest level

of architectural features of the processors. For example, if by result of a speculative execution a

resource is loaded into cache, it may not be removed after the execution is discarded.

To defend against such attacks, most existing approaches involve hardening techniques which consist

in the development of customised fixes for the browser [30].

3.1.5 Dynamic monitoring of browser extensions

In Chrome, plugins and browser extensions are also maintained by separate processes, and much like

renderer processes, they are fully isolated and sandboxed from the parent browser process, i.e. they

have limited privileges. However, since they execute third party code and have several interactions with

user data, several web attacks try to exploit vulnerabilities in these processes, such as private infor-

mation gathering, browsing history retrieval and password theft. Sanchez-Rola et al. [31] presented two

main attacks that attempt to bypass browser security measures related to browser extensions, i.e. timing

side-channel attacks on access control settings and attacks that take advantage of poor programming

practices. Access control settings are security measures implemented by most browsers to mitigate

enumeration and exploitation of the installed extensions by a malicious user.

This class of attacks was very relevant when extension processes had full access to the browser

process, and therefore had access to system files and resources. Nowadays, with process sandboxing,

this types of attacks are less frequent but there still exist some timing side-channel attacks that can

be used to exploit them, mainly due to poor programming practices, e.g. a malicious user can make

several requests to extensions known to be installed and compare the response times with extensions

that are known to not be installed. With this approach, the adversary can eventually enumerate the

installed extensions and look for individual vulnerabilities. Combining the information that an adversary

can gather with poor programming practices, a skilled attacker can retrieve sensible user information

and use it for malicious purposes, e.g. targeted phishing attacks using compromised websites.
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Although many possible deviant behaviours by malicious extensions can be mitigated by the latest

isolation and sandboxing environments, user tracking at the network level can still be a problem. M.

Weissbacher et al. [32] focused on solving this problem and presented a dynamic technique, Ex-Ray,

for identifying user privacy violations on Chrome’s extensions based purely on monitoring network traffic

patterns. By presenting unique URLs to several extensions and with the help of a pre-configured honey-

pot to detect access to said URLs the authors were able to find which extensions were leaking data and

tracking user activity. Ex-Ray automates this process while creating a useful dataset to train classifiers

and autonomously detect leaking and tracking extensions. Similarly to this project, we will be monitoring

incoming browser connections to detect WebAssembly modules autonomously.

Chen and Kapravelos [33], also focused on browser extensions related to user privacy, developed

a taint analysis framework to perform a large scale study of Chrome’s extensions and their privacy

practices. Even though Ex-Ray [32] used machine learning to identify and analyse network traffic,

they remain vulnerable to attackers that possess the ability to mask their network traffic with noise. To

solve this issue, the authors present Mystique [33], an extension analysis framework that implements

dynamic taint tracking for the Chrome browser. In particular, they augmented the V8 JavaScript en-

gine [34] with taint tracking capabilities and automatically load extensions to a monitored environment

while analysing them. This work, even with a main objective different then ours, propose several im-

plementations very similar to our project, mainly in regards to monitored secure environments and the

modification of Chrome’s V8 engine.

3.2 Protection from Untrusted Environments

Above, we focused on browser’s security mechanisms that can protect the environment against un-

trusted applications. In this section, we switch roles and discuss existing techniques that can protect the

execution state of trusted web application code from untrusted environments, e.g., attacks launched by

an external party sending crafted inputs through an insecure interface, or by an adversary that controls

the browser or (worse) the entire operating system which means he has full access to the application’s

runtime state.

3.2.1 Memory-safe compilers

One class of problems involves the existence of potential vulnerabilities in web applications. Given

that C and C++ are potentially problematic when memory related issues are poorly developed, the

consequent wasm module can suffer from the same problems when compiled from a poorly written

piece of native code. Vulnerabilities such as buffer overflows and use-after-free can still disturb the

wasm code execution. Even though WebAssembly is executed in a sandboxed virtual machine, these

classic techniques can still be used to corrupt the memory within the sandbox and mount several attacks,

e.g. remote code execution and cross site scripting [35], that may even be able to successfully escape

the sandboxed environment.
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To prevent these attacks, Vassena et al. [36] developed a study of secure compilers to eliminate

memory safety violations based on hypersafety properties, i.e. properties defined over multiple runs

of the wasm module, that extend the native wasm security mechanisms. The authors affirm that, with

a secure memory-safety-preserving compiler, memory vulnerabilities are less frequent and therefore

sandbox escapes, related with memory issues, are harder to exploit.

3.2.2 Hardware enclaves

A second broad class of problems occurs when the adversary can control the operating system, and from

there can naturally access the execution state of web applications in the browser. Hardware enclaves

can be very successful against compromised browsers and operating systems. Simply put, they provide

user-level execution environments for running sensitive code in isolation from the OS. In commodity

hardware, hardware enclaves are supported by Intel’s software guard extensions (SGX) [37] technology.

Distributed hardware enclaves: In regards to complex distributed platforms, such as modern data-

processing online services, users are forced to trust their private data to the service providers due

to their lack of control over the service and the computational platform. Hunt et al. [38] developed a

distributed sandbox environment, leveraging hardware enclaves to protect user secret data while it is

being processed by untrustworthy services.

Ryoan, the system proposed by the authors, is a remotely attestable sandbox environment that runs

on the service machines with an individual instance for each user. With this implementation, users

can securely insert sensitive information while verifying that the sandbox environment is running as

supposed, which means that they don’t have to place trust in the service, developers nor administrators.

Each sandbox has a data-processing module that interprets data only once and do not save any state or

log of the input to prevent any information leakage (intentional or not) and leverages on trusted hardware

enclaves, e.g. based on Intel SGX [37], to provide remote attestation and bypass compromised operating

systems.

Our project has similar threat models and trust computing primitives but relies on sandboxing environ-

ments to secure local executions instead of remote services executions. Nevertheless, the sandboxing

environment is very relatable with our own in terms of privilege separation, trust on the local OS and

sandbox environments communication.

Hardware enclaves for browsers: When dealing with untrusted clients, web servers cannot rely on

the confidentiality and integrity of client-side JavaScript code and data operated on. For example, a

local browser JavaScript credit card validation must be made first locally, to warn the user in case of

errors, and validated again when it reaches the web server, since it cannot trust the client. This sort of

necessary validations adds time to the operations and waste server resources.

TrustJS [39] explores the execution of client-side JavaScript inside a hardware enclave, e.g. Intel

SGX, in order to improve user experience and conserve server resources. The developed framework
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Figure 3.2: Fidelius architecture.

enables trustworthy execution of local JavaScript code that can be attested at the server, instead of

validated again.

Fidelius [40], an architecture also based on hardware enclaves, provides user data protection during

web browsing sessions. The enclaves are integrated into the browser and enable protection even if the

underlying browser and OS are fully controlled by a malicious attacker, a threat model that is very similar

to ours. The isolated hardware enclave functions as a small trusted running environment for managing

and executing all the web page JavaScript input forms related with user credentials and private actions,

e.g. banking transactions. By having included a browser isolated component, which they refer to as Web

Enclosure, they mitigate the possibility of a compromised browser / OS to interfere with the execution

environment.

The main focus of this project is to create secure channels for the user to input data on web pages

and also to verify that the visual output shown to the user is valid and correct. To accomplish this tasks,

and to protect the user against keyloggers and end-user malware, the authors introduce new protocols

for interactions between the enclave, the keyboard and the display by creating secure I/O paths with the

help of external raspberry pi’s. These external devices will encrypt all keyboard input, only when inserted

into a Web Enclosure, in a way that only the enclave has the ability to interpret that data. For the user to

visualise the input given, the second raspberry pi, connected between the machine and the display, will

decrypt and forward the data directly to the display. Figure 3.2 illustrates the system architecture and

the secure I/O paths.

This project takes a very interesting approach to protect user private data while browsing the web.

Similarly to our work, this project depends on remote attestation and sealed data to verify the code

version being run on the hardware enclave and to be able to store persistent data on the untrusted

OS respectively. On the other hand, we are focused on controlling WebAssembly executions while

maintaining browser performance, which could be severely influenced when encrypting / decrypting

large portions of wasm code (and the data it manipulates) running on a separate hardware enclave.
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3.2.3 Rollback protection

Hardware enclaves, like said SGX [37] enclaves, bring several security advantages, e.g. handle un-

trusted OS, support attestation and information sealing, but fall short when confronted with side channels

and rollback attacks [41]. For instance, consider a banking service and an enclave that stores sealed

data on the untrusted OS every time a bank action is performed. In case of crash or reboot, the enclave

loses the current state and asks the untrusted OS for the last bank action. Although the untrusted OS

can’t compromise the integrity of the sealed data, it can send an old commit to the enclave which will

make it disregard the previous actions.

To protect against these sort of attacks, Matetic et al. [41] developed Rote, a distributed system to

provide freshness and integrity to enclave contents and secure storage. All enclave participants send

and receive each other sealed data and reply with confirmation of success with a commit id. The

authors start with the premise that one single platform is not enough to prevent rollback attacks and

finish demonstrating that the only way to break Rote is to reset all the participating platforms to their

initial state. Similarly to this implementation, WArdian also stores sealed data on the untrusted OS, e.g.

persistent cookies, but only for performance enhancement which makes rollback attacks not being a

critical system requirement. Also, this implementation makes use of a distributed system which steers

away from our localized system.

3.2.4 Obfuscated execution

When countering untrusted operating systems, hardware enclaves [42] and systems that offer similar

defenses based on hardware-virtualization techniques [43, 44] manage secure memory zones protected

from compromised operating systems. In particular, they control the memory pages the application

needs to access while remaining protected from the operating system.

However, Xu, Cui and Peinado [6] introduced a controlled side channel attack to take advantage of

page access patterns of legacy applications protected with shielding systems. The attacks proposed

were successful against famous systems like Overshadow [43], InkTag [44] and Haven [42]. The attack

uses page faults as a side channel, it starts by monitoring the addresses of each binary used by the

legacy application and revoking access to particular code or data pages. When the application tries to

access said pages, page faults will occur which will give opportunity for the malicious operating system to

record the accessed pages and analyse their contents afterward. Using this approach, the authors were

able to retrieve large amounts of private data from shielding systems and their secured applications.

The authors note that several applications could be rewritten to avoid access patterns that depend on

application’s secret data but that could severely impact performance.

As a response to side channel attacks, obfuscation has been proposed to confuse attackers and

therefore prevent memory and data leakage. Rane, Lin and Tiware[45] developed Raccon, a set of

mechanisms to obfuscate applications at the source code level and create several different and inconse-

quential paths, which the authors call decoy paths, to provide confidentiality to private application data

while minimizing execution overhead. This implementation focus only on digital side channels, which the
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authors describe as side channels that carry information over discrete bits, e.g. address spaces, cache

usage and data size. The authors were able to mitigate several types of side channel attacks, in partic-

ular the ones we described above. This implementation, combined with secure data page encryption,

can be a viable security mechanism to integrate into WArdian to prevent side channel attacks potentially

issued by the malicious OS.

3.2.5 TrustZone-assisted TEEs

Trusted Execution Environments (TEEs) are secure integrity-protected environments that provide pro-

cessing, memory, and secure storage capabilities for the processes and applications running inside.

These environments tend to be isolated from the protection environment where the OS runs, which is

designated as the rich execution environment (REE). Although SGX-based enclaves can be considered

an enabling technology for TEE, in mobile computing devices, TEEs are mostly supported by a technol-

ogy specific to Arm hardware (which is prevalent on mobile platforms). This technology is named ARM

TrustZone [46], and it is widely adopted in Android devices as the main isolated zone to run and store

sensitive applications and data, e.g. cryptographic keys and certificates [47].

Untrusted Application

Untrusted OS

Untrusted Application

Untrusted OS

Monitor

Figure 3.3: ARM TrustZone Architecture for Cortex-A.

The typical architecture of a TrustZone-assisted TEE can be shown in Figure 3.3. TrustZone relies on

secure (green) and normal worlds (red), hardware separated, to securely isolate programs and data. To

accomplish this task, it follows a System-on-Chip (SoC) and CPU system-wide approach to security that

relies on trusted software developed to run inside the secure world and manage trusted boot, secure

world switch monitor, a small trusted OS and all the trusted applications. The combination of all the

trusted software creates a trusted execution environment that can be expanded for future usage [48].

Unfortunately, due to the widely adoption of the secure world to run and store applications and data,

this secure zone is starting to get bloated and security issues might rise from buggy (or even malicious)

code / data stored inside [49]. As an attempt to increase user data security, sandboxing environments

that do not rely on the secure world to be isolated from the host OS are worth exploring.

To make TrustZone-assisted TEEs more robust against side channels, Costan et al. [50] introduced

Sanctum. This system provides defenses against known side-channel attacks, such as cache timing

21



attacks and passive address translation attacks by monitoring the memory access patterns of the en-

claves while hiding them from the host OS. To accomplish this task, the authors implemented a software

based secure monitor, to create and manage enclaves, with minimal invasive hardware modifications.

Since the implementation is not based in a specific hardware piece, like the widely used Intel SGX, the

system can be slight modified to correctly function in several different hardware architectures. This sort

of implementations is very useful to our own case, WArdian, since we intend to create isolated zones

without creating noticeable performance drawbacks to the user.

Summary

In this chapter, we reviewed several articles and projects related to WArdian. We started by looking

into protections against untrusted applications and followed our study with research about untrusted

environments. From several studies, we gathered important information that was kept in mind while

developing WArdian. In the next chapter, we present our solution and dive deep into its architecture.
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Chapter 4

WArdian Design

This chapter presents WArdian, our proposed system for securing WebAssembly code within the Chrome

browser against attackers with the ability to control the Android OS. Our solution is targeted to run on

Arm platforms featuring ARM TrustZone technology. After providing a motivating example and describing

our threat model, we present an overview of the system’s components and discuss each one in detail.

4.1 Motivational Example and Threat Model

Before the technical specifications of our solution, we begin with a demonstrative example showing the

need to protect the current state of wasm web applications. As portrayed in Figure 4.1, consider a bitcoin

wallet service that allows its users to manage their account and transactions on a mobile device through

the local browser. The local browser, running on the Android OS, has a sandboxed partition where all

the JavaScript / WebAssembly code is loaded and executed. When a wasm module is requested by

the browser, a new sandboxed environment – V8 instance – is created and the application’s web server

proceeds to send the module requested. In the current state of affairs, an adversary with the ability to

control the browser or the OS (e.g., by installing a rootkit), would be able to retrieve sensitive application

data, which in this case includes the private key associated with the user’s BitcoinWallet. By retrieving

this key, it is straightforward for the adversary to transfer all money from the user’s account.

This problem can be further generalized to other WebAssembly applications that manipulate data

items that must be preserved absolutely private to the user (e.g., account details, user credentials, user

information and health records). Protection of this information is a priority for the correct execution of

the application. Unfortunately, like for said example, an attacker that can compromise the integrity of the

operating system, can potentially have access to the sandboxed information of all these applications.

Our work aims to create a separate memory zone to load and execute wasm modules while preventing

the compromised Android OS from tampering with it. We call these secured WebAssembly packages by

the name cagelets, and the secure environments where they execute as web cages.

We want to protect against an attacker that has full control over the operating system of the mobile

device, e.g., the attacker can obtain this level of control by installing a rootkit. The adversary can also
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Figure 4.1: Bitcoin Wallet Example.

control the browser, e.g., by exploiting a vulnerability in the browser that allows him to access the execu-

tion environment of JavaScript / WebAssembly sandboxes. We assume that our attacker can examine

and modify unprotected memory where Web pages are allocated, and that he/she can examine the com-

munication exchanged between the code executed by the Web page and the remote site. We assume,

however, that the attacker cannot inspect the contents of secure memory regions allocated to hardware

enclaves or to trusted execution environments. It is also worth noticing that the secure memory regions

we envision for securing the WebAssembly code are instantiated by the browser process, so we do not

consider any type of DOS attacks.

4.2 System Overview

Our solution tackles the previous problem by isolating the WebAssembly execution from the browser.

WArdian prevents Chrome from loading and running wasm modules and instead leverages on the Bao

hypervisor, and its enclave environment, to safely execute wasm code. Bao has the ability to create

separate memory spaces inside the same physical device – enclaves – where the Android OS has

no privileges, and therefore, cannot access the isolated WebAssembly application’s data. The native

Chrome’s sandboxing mechanisms remain fully functional, and continue to operate for JavaScript code,

but have no indication that WebAssembly is being called by the web pages running inside it’s renderer

processes. This is accomplished by the introduction of a browser extension that is in charge of tricking

web pages into communicating with WArdian instead of Chrome’s V8 virtualization environment. Run-

ning at the enclave, WArdian maintains a fully functional WebAssembly standalone runtime that is able

to securely communicate with our browser extension, creating the abstraction needed to extract and

inject wasm code, and the corresponding outputs, without V8’s knowledge.

Figure 4.2 presents the architecture of WArdian, our proposed solution for securing WebAssembly

code on Android platforms. In order to provide this level of protection from a compromised Android OS,
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Figure 4.2: WArdian architecture: its specific components are colored in yellow.

we leverage on an existing hypervisor – named Bao – that is in charge of creating a secure memory

zone where the operating system holds no privileges. In the normal world, the Android OS runs as

normally expected. The Chrome browser, running on the Android OS, will also have the same behaviour

as before, with the exception of renderers that have a wasm module loaded. When an IPC message

reaches the browser process with a request to download a wasm module, a new web cage is created

inside a new and secure environment where the received cagelet is loaded and executed. The under-

lying mechanisms offered by Bao provide memory isolation procedures that prevent an attacker from

inspecting the content of a web cage and access the execution state of guest cagelet code.

To illustrate how WArdian works in practice, consider a simple web page as portrayed in Figure 4.3.

This simple web page application presents a new dice face each time the user clicks on it, i.e. the

faces 1 through 6 are randomized and one is shown on screen. A web developer can take advantage of

WebAssembly’s near native speed and program the randomizer function in C/C++ instead of relying on

the browser’s JavaScript. Analogous to the previous example, in this mock up application, our goal is to

secure the integrity and confidentiality of the randomizer function and respective execution state.

With the WArdian extension enabled, the WebAssembly function call is detected and overridden

in order to disable Chrome’s V8 participation on the request. Instead, the wasm module information

– cagelet – is sent to the web cage environment, via web cage driver and the Bao communication

mechanisms, and the code is isolated from the browser at the moment of execution. Finally, the wasm

output is redirected through the WArdian extension and consequently injected back into the browser.

With this new WebAssembly life-cycle provided by WArdian, wasm code is executed outside the

privileged bounds of the Android OS which prevents a malicious operating system from tampering with
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Figure 4.3: Simple wasm web page.

the information managed by the sandboxed wasm application, e.g. by tampering with the wasm module

in order to create a weighted dice (one that always shows the same face).

In contrast to renderer processes that interpret and layout HTML pages, the web cages only load

and execute cagelets, which means that most of the renderer process is still executed in the untrusted

environment. The creation of these cages is very similar to the previously discussed creation of renderer

processes. Using site isolation [24], one web cage will be created for each different source, and no com-

munication is allowed between different cages. Regarding the allocation of Web Cages, two scenarios

can be explored:

• New web cages are instantiated inside the same and only secure zone; This implementation fa-

cilitates the creation of Cages and utilize the same LibOS, making it have a shorter impact on

memory used. However, several Web Cages in the same zone may deteriorate the overall security

pretended.

• New web cages are instantiated in a new and separate secure zone; On the other hand, this

implementation improves security but may have performance problems when considering a user

with several cagelets requested from different sources.

We ended up going with the first approach, since the Bao mechanisms work in a similar fashion

out of the box, and made our lives easier when developing and iterating through our proof of concept

prototypes. However, the second approach can also be implemented, in the future, with some tweaks at

the internals of Bao.

In regards to usability, users will always have the knowledge of WArdian since the extension needs

to be installed and operational in the local user’s browser. In the current state of WArdian, since the

extension isn’t available at the Google store, users’ need to browse to chrome://extensions, enable

Developer mode and load the unpacked .zip WArdian extension, as shown in Figure 4.4. Nevertheless,
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these are the only necessary steps for WArdian to work on the device and, after this initial setup, WArdian

execution is completely invisible to the user. In the future, we intend to add a user options page to the

WArdian extension so that users can also chose which wasm operations they intend to be executed

inside the enclave.

Figure 4.4: Chrome extensions page.

4.3 WArdian API

WArdian is meant for user local data protection by improving the ability of web developers to securely

insert wasm operations in their web pages. In order for WArdian to work correctly, it needs to be able to

detect and intercept wasm calls made by the current web pages loaded in the browser. To accomplish

this task, some HTML and JavaScript syntax restrictions are expected to be followed by web developers.

These restrictions demand that the web developer uses a specific WArdian API comprising a few HTML

tags and JavaScript function calls.

Specifically, whenever a web developer intends to execute wasm code on the browser, and isolate

it via WArdian, he/she must name the parent script function with a default name, and all the neces-

sary arguments, for WArdian to correctly detect the call. This is implemented this way, due to the fact

that differently compiled wasm modules are called using different methods by the JavaScript code on

each page. For example, the same piece of C code can be compiled to wasm using different compil-

ers, e.g. emscripten or WASI. Both compilers will originate the same wasm module but with different

internal structures that rely on different JavaScript instantiation functions. Since more compilers are

constantly appearing, with wasm security and performance improvements [36], we choose to introduce

these syntax restrictions in order to focus on the development of WArdian instead of overriding each new

JavaScript fetching form.

The previous dice example can be further explored in order to understand these restrictions. Instead

of using typical JavaScript to program the dice randomizer function, WebAssembly allows the developer
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to use native C/C++ code and run it directly in the browser. For instance, consider the following C file

that could be used to accomplish the dice randomizer function:

// DiceRoll.c

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main(int argc, char ** argv) {

printf("WebAssembly module loaded\n");

}

int roll_dice() {

srand ( time(NULL) );

return rand() % 6 + 1;

}

After compiling it to a wasm module, the developer has to fetch the resulting .wasm file into the web

page and call the roll dice() function via JavaScript.

// index.html

<script>

var module = path_to_wasm_module;

async function WardianfetchAndInstantiate() {

const response = await fetch(module);

const buffer = await response.arrayBuffer();

const obj = await WebAssembly.instantiate(buffer);

res = obj.instance.exports.roll_dice();

return res;

}

</script>

The function WardianFetchAndInstantiate is the one being detected by the WArdian extension and

overridden. Without WArdian enabled in the browser, this JavaScript function would be interpreted

and executed inside Chrome’s V8 environment but with WArdian enabled the entire function’s code is

overwritten to trigger the enclave environment and send over the wasm module. The enclave output is

then injected into the return variable, i.e. the variable res in this case.

In the future, we intend to detect every different way to load and call wasm code and implement
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HTML developer tags, so that WArdian can correctly run with or without web developer knowledge. This

will enable web developers to chose, if they want, which wasm functions should run in the enclave and

which ones can be executed by the browser, which can be accomplished by the insertion of a custom

tag before each script in the web page. This implementation can be useful if, in the same web page,

there are sensitive and non-sensitive wasm calls that the developer wants to isolate in different forms.

4.4 Extending the Browser

In the unsafe zone, where the Android OS runs, we augmented the Chrome browser with the WArdian

extension in order to override native JavaScript calls and disable Chrome’s V8 environment when wasm

calls are made. WArdian is responsible for dispatching the requests for execution of wasm modules

to be served by the WebAssembly runtime running inside a Bao enclave. Our lightweight Chrome

extension, with the added advantage of solution portability, improves browser wasm secure execution

without disrupting it’s native sandboxing mechanisms.

The WArdian extension starts by detecting web requests for new wasm modules and overrides the

JavaScript functions that fetch and instantiate said modules. After this initial setup, the extension runs

idle until it listens for a wasm function call. When this condition is triggered, our extension disables the

web page ability to run the wasm function and sends the respective wasm module, with all its necessary

arguments, to the enclave. Finally, the wasm module is safely executed in our isolated memory space,

the result is returned to the extension and consequently injected into the respective web page.

Background.js

    Wardian extension

Content.js

Web Cage 
Driver

Figure 4.5: WArdian extension architecture.

In order to accomplish these tasks, and as portrayed in Figure 4.5, the extension relies on two main

components, a background and a content script. The Background script, as the name implies, runs in

the background from the moment Chrome starts and is in charge of listening to various events, such

as WebAssembly fetch, instantiation and execution requests, and to establish communication with the

enclave, via web cage driver.

In order to override some of the necessary JavaScript functions, a content script was introduced. Re-

calling Chrome multi-process architecture, extension processes are analogous to renderer processes in

29



which they run in a separate and isolated process, so the background script does not have the ability to

directly communicate or alter the web page content. A content script, however, allows the extension to

inject JavaScript code in the current web page which will allow it to run in the same context of the ren-

derer process, making it possible to override native JavaScript functions and establish a communication

channel between the web page and the background script.

Revisiting the dice example from Section 4.2, we can now understand how the extension internals

work. The content script, when the web page begins to load, and since it runs in the same context

as the current renderer, has the ability to parse the web page contents for wasm calls and override

the JavaScript calls that implement them. At the same time, the background script is already running

and listening for wasm events. When the user clicks on the dice, the wasm function doesn’t run locally

since the content script already overridden the necessary JavaScript functions. Instead, the background

script sends the wasm module over to the web cage environment, at the enclave, where the module

is executed and the corresponding output sent back to the background script. Finally, and after being

notified by the background script with the wasm response, the content script can then inject the new dice

value into the return variable of the initial web page’s JavaScript function that initiated the entire process.

4.5 Securing Wasm Execution

With the WArdian components at the Android OS explained, we now introduce the enclave environment

where the wasm modules are loaded and executed isolated from the privileged scope of the device’s

operating system inside an enclave-like abstraction that we refer to as Web Cage environment. To create

our desired enclave architecture, two main components are needed, a Web Cage runtime, in charge of

managing all system calls at the enclave space, which we previously refereed to as LibOs for simplicity

reasons, and a WebAssembly runtime where wasm modules can be loaded and safely executed.

For implementing the Web Cage runtime, several open source projects were researched and an-

alyzed but since we have a very specific hardware architecture and overall functionality in mind, our

choices were very filtered at the starting point already. In particular, our Web Cage runtime needs to

support ARM architectures and be as lightweight as possible, in order to minimize the enclave space. A

good candidate that satisfies this requirement is the Zephyr RTOS (real time operating system), which

is an open source project by the Linux Foundation. Zephyr is a scalable lightweight OS optimized for

resource constrained devices and built with security in mind. It presents built in support for several differ-

ent hardware architectures, including ARM, which checks all WArdian requirements. Zephyr is in charge

of managing all the systems calls at the enclave, i.e. it works as a replacement for all the necessary

Android OS functions that WArdian needs while running at the enclave. Being that Zephyr is mainly

directed at small embedded systems, it is built with a small footprint which helps us maintain a compact

enclave space.

In order for our enclave to maintain the desired small size factor, the choice of WebAssembly runtime

was also very constrained. Several different solutions were studied, and then again, our specific hard-

ware architecture and small footprint were the decisive factors. We opted to adopt the WebAssembly

30



Micro Runtime, i.e. WAMR, a Bytecode Alliance open source project, since it presented all WArdian re-

quirements and the added bonus of built in support for the Zephyr OS. WAMR is a lightweight standalone

WebAssembly runtime that makes use of it’s custom VM core – iwasm – to interpret and compile wasm

code. Iwasm supports ahead of time (AoT) and just-in-time compilation (JIT), useful for obtaining near

native application speed, and its minimal binary size makes it easy to embed in all sorts of environments

while also providing low memory usage.

The combination of Zephyr and WAMR makes for a very small enclave environment but with all the

necessary security mechanisms and basic functionality in place that enables WArdian to successfully

accomplish it’s proposed goal. By embedding WAMR in Zephyr, and running this system configuration

at our enclave space, we accomplish the desired web cage environment that is able to communicate

with our WArdian browser extension and safely sandbox wasm code executions.

Recalling the previous dice example, we can now understand how each of these components work

together in order to complete the WArdian main system architecture. When a new message is received

from the browser extension, including the desired wasm module to execute and all it’s necessary pa-

rameters, the embedded WAMR application in Zephyr collects this information and executes the desired

module. After allocating memory for the new module, WAMR creates a new thread with a new instantia-

tion of a WebAssembly runtime environment that loads and executes the received dice wasm randomizer

function. The output of this application is then sent to the browser extension and the WebAssembly run-

time environment destroyed, i.e. the allocated memory is cleaned and the thread terminated. By creating

a new thread and memory allocation, inside the enclave, for each wasm module, we can guarantee no

communication between different web cages and after terminating each execution, the destruction of the

WebAssembly runtime deletes all the wasm used data from the enclave environment.

4.6 Communication Channels

With both the components of WArdian running in the Android’s zone and those in the enclave explained,

we now focus on the communication between both zones and the mechanisms used to accomplish it.

Figure 4.6 details the entire process. In order for both endpoints to communicate with each other, a

shared memory zone is implemented by two underlying components: the web cage driver deployed

in the Android’s memory space, and the web cage runtime residing in the Bao enclave. The former

provides an interface to the WArdian extension.

In the untrusted Android OS, the web cage driver manage all the in and outbound communications

between both zones. The hypervisor also manages these communications making sure to preserve the

integrity of the secure environment. The web cage runtime, based on a LibOS (a component – Zephyr

– that simulates an OS kernel and emulates system calls requested by the web cage), provides an

interface to the WebAssembly runtime and implements some necessary system functions.

As depicted in Figure 4.6, all the communication steps are numbered in ascending order. Relying on

our previous dice example we can more easily understand what kind of information is being exchanged:
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Figure 4.6: WArdian communication channels.

1. WArdian extension sends the dice wasm module followed by all it’s necessary parameters (function

to be executed, function arguments, return object type, etc) serialized using JSON format.

2. Web Cage Driver dumps the received information into the Bao shared memory buffer.

3. WAMR application, embedded in Zephyr, receives the wasm contents and is able to load and

execute the dice randomizer function.

4. WebAssembly runtime output is redirected to the Web Cage Driver via the Bao shared memory

mechanisms.

5. Web Cage Driver receives the wasm output, serializes it to JSON and replies the value to the

WArdian Extension

6. WArdian extension receives the final result and is able to inject it into the JavaScript function that

requested it.

4.6.1 Native Messaging

To establish a communication channel between the extension and the enclave, our Web Cage driver

needs to be able to exchange messages with the Wardian extension in real time. This driver, imple-

mented using the python programming language, for simplicity reasons, works as a communication

bridge between the WArdian extension and the enclave environment.

Chrome allows developers to exchange messages between extensions and native applications using

their Native Messaging API. Chrome starts each native messaging host, in this case our web cage

driver, in a separate process and communicates with it using standard input (stdin) and standard output

(stdout). The same format is used to send messages in both directions, as depicted in steps 1 and 6 of
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Figure 4.6: each message is serialized using JSON, UTF-8 encoded, and preceded with 32-bit message

length in native byte order, for memory allocating purposes. The maximum size of a single message

from the native messaging host is 1 MB, mainly to protect Chrome from misbehaving native applications.

Our web cage driver communicates with the extension background script, via native messaging,

and is in charge of receiving the wasm module to be executed in the enclave and their respective

parameters, redirecting this information to the enclave and finally redirecting the enclave output back to

the background script.

4.6.2 Shared Memory

The WArdian Web Cage environment, running in the enclave, is detected by Bao as a bao guest and

has a Bao interface which allows it to communicate with the Android zone via shared memory. On the

Android OS, Bao instantiates a high level operating system component which is an enclave application,

running in the Android’s memory space, that implements an interface with all the enclave available

services so that they can be requested by the WArdian components running in the Android zone.

WArdian introduces two new services to the Bao communication mechanisms that can be called by

our web cage driver: one to start the enclave environment, i.e. WAMR application execution, and one to

send wasm data to the running web cage. The first one is called as soon as the Chrome browser starts

(event triggered by the WArdian extension) and the second one is called each time a wasm function is

requested by the browser. The communication process is based on said services. WArdian components

at the Android zone, i.e. web cage driver, can request enclave services, that are interpreted by Bao and

executed in the safe enclave environment. The shared memory works like a buffer between both ends.

To minimize Bao space occupation on the mobile device, since they can be very limited in terms of

physical memory, the shared memory buffer is initialized with 8 Kb of allocated memory. This small buffer

is, most of the times, enough for all the commands and parameters that need to be passed between both

ends but in case of need to pass large amounts of data, as can be the case when working with big wasm

modules, a chunked approach is used.

The Bao hypervisor implements a cpu interruption – bao hvc – to notify each end when a new

message is available in shared memory. When the need to exchange data is larger than the maximum

shared buffer size, the message is split in chunks of 8Kb and a first message is sent with the total number

of chunks of said message. Both ends can then coordinate and gather all message chunks, when a big

message is sent from one end to the other, and construct the final message at the receiving end.

4.7 Secure Bootstrap

To prevent an adversary from disabling WArdian’s security mechanisms, it is essential to guarantee the

integrity of the entire system’s trusted computing base (TCB) upon boot. This TCB includes components

in the secure world – the controller – and in the normal world – the Bao hypervisor and WArdian’s

web cage components (see Figure 4.2). When the mobile device starts its bootstrapping process, the
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controller firmware is verified (according to a typical trusted boot digital signature validation). Then, after

validating the digital signatures of WArdian’s software images to be executed in the normal world, the

controller switches to the normal world and hands over the control flow to Bao’s bootloader. This chain

of events ensures that the integrity of WArdian’s TCB has not been compromised upon boot.

The remaining of the bootstrapping sequence is as follows. Bao starts by allocating space for three

different memory regions (see Figure 4.2). One for the Android OS (unsafe zone), one for the WArdian

enclave (safe zone), and a third memory region where both previous regions have access (managed by

the hypervisor). Depending on the mobile device capability, a different processing power is allocated for

the enclave environment, by default, only one processor core is allocated for the enclave. At the current

state of Bao, one enclave needs an entire core to work correctly, which means that in order to have

more than one web cage available concurrently, several of the device’s CPU cores are utilized. This can

create a possible bottleneck on the device’s CPU and therefore WArdian is currently working with only

one web cage at a time. Once all three memory zones are allocated, Bao starts the Android booting

process in the unsafe zone and the enclave environment in the safe zone. The third memory region is

intended for the communication process explained in the previous section.

Although all these memory regions have been successfully allocated and the enclave environment

set, the WArdian enclave will not be ready until a new Chrome session starts, i.e. when a renderer

process is initialized. When this event occurs, our Web Cage driver starts the WAMR application em-

bedded in our enclave environment, utilizing the Bao service explained in the previous section, and only

then the entire WArdian bootstrap is completed. When Chrome session ends and the main process is

terminated, the WArdian extension notifies the Web Cage driver to tear down the WAMR application but

the zephyr environment stays up to engage in future browsing sessions. We opted for this approach

since we want our WAMR application ready as fast as possible for wasm executions while not wasting

system resources when the browser is closed.

Summary

In this chapter we presented WArdian, our solution to isolate WebAssembly executions from untrusted

mobile devices. With the help of several practical examples, we went over its utilization models, system’s

architecture and individually explained each component and their consequent functionality. In the next

chapter we’ll present our work methodology and explicitly show how we were able to implement and

develop our proposed solution.
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Chapter 5

Implementation

During the development of WArdian, several prototypes were built while trying to accomplish our desired

final goal. This chapter presents all the major steps taken and our reasoning for them to happen. We

also present some of the setbacks we faced and how we were able to solve them.

5.1 WArdian Prototypes

Since WArdian has a complex architecture where multiple components are integrated and work together

in different ways, we have opted, since the beginning of the development, for a iterative and incremental

approach. To follow this development decision, we have built several WArdian prototypes and learned

from each one how to progress and optimize the next ones.

Two main prototypes were essential for the final WArdian build. We have started with QEMU, an

open source machine emulator and virtualizer, to simulate our enclave environment and used a generic

x86 64 Linux distribution – Ubuntu – as our main operating system (where Chrome runs). This first

prototype does not yet run in the desired hardware architecture nor relies on the Bao hypervisor but

implements all the functionality and communication channels desired. After the QEMU prototype, with

all the components of the communication dealt with, we iterated to the second prototyping stage where

we started to explore our desired hardware architecture – ARM – and introduced the Bao hypervisor in

order to create our final WArdian architecture. Next, we describe both these prototypes.

5.1.1 QEMU Prototype

To simulate, as close as possible, our final architecture, we developed an initial prototype leveraging

on QEMU and its built-in support to emulate Cortex-A53, the one used by most of the modern mobile

devices, and used a stable version of Ubuntu, a Linux distribution, to simulate the host Android OS.

With all the previously discussed components and the addition of QEMU to this prototype, an initial

architecture takes place, as shown in Figure 5.1. Inside our qemu-cortex-a53 emulation build, the WAMR

application executes the given wasm module with the arguments sent by the web cage driver. They both

communicate via stdin / stdout, which makes it possible for the driver to get the final web cage execution
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Figure 5.1: QEMU prototype architecture.

result from WAMR and consequently report it back to the extension’s background process. All the

remaining components work as explained in Chapter 4. To aid in the development and testing of this

first prototype, a minimal web page was created, as shown is Figure 5.2.

Figure 5.2: Wasm simple testing web page.

On the web page source folder, two wasm modules were introduced with one C function each (addi-

tion and multiplication basic functions). This simple testing page allows the user to insert two integers

and chose a wasm function to execute. With the help of the native browser console and Chrome’s Dev-

Tools we were able to monitor the WArdian extension behaviour and check if each extension stage was

completed with success.

With this initial prototype we were able to achieve the desired functionality, but not yet all the security

mechanisms wanted since Bao was not yet integrated in the system. However, some benchmark values

could already be retrieved.

5.1.2 Rock960 Prototype

With the QEMU prototypes functional, it was time to introduce the Bao hypervisor and to run WArdian

in the desired hardware architecture. To accomplish this task, we leveraged on Rock960, a circuit board

based on RK3399 SoC – System-on-a-chip – which is a dual cortex CPU that includes Cortex-A53, the

one we intend to use. The used prototype board is as shown in Figure 5.3 alongside a smaller circuit

board which was wired to the first one in order to have access to a serial debug console.

Currently, the latest Chrome build for Android does not support the use of browser extensions, but

since Chromium is an open source project, several builds already exist with extensions enabled. Fortu-

nately, the Kiwi browser is one of them, and we chose it to test and debug WArdian since it was the one

36



(a) Rock960 (b) CP2102N-MINIEK

Figure 5.3: WArdian prototyping boards.

with less changes made to the Chrome source code. We can safely consider Kiwi to be a build of the

current Chrome browser with extensions enabled on Android.

Since we already had a QEMU prototype running, the only steps missing were the introduction of

the Kiwi browser and the compilation of our enclave environment to the correct hardware setup. With

those changes made and the addition of the Bao hypervisor, to handle all the component’s and device’s

booting and the communication protocol, we could finally build our minimal viable product prototype, as

shown in Figure 5.4. The next sections explain in detail how we were able to achieve these prototypes

successfully, all the major setbacks we were faced with and how we were able to overcome them.

    Wardian extension Web Cage 
Driver

Kiwi Browser Enclave Environment

Figure 5.4: Rock960 prototype architecture.

5.2 Chrome Modifications

During the projecting phase of this thesis, our main approach was to develop a custom build of the

Chrome browser with our desired isolation changes. After some in-depth search and testing, we reached

to the conclusion that this would not be a good approach for our problem. Due to the nature of the pieces

of code that we were trying to modify, some of Chrome’s built in security mechanisms were preventing

us to accomplish our isolating changes.

Since the Chrome’s native WebAssembly runtime is also isolated inside the active renderer process,

via the used v8 instances, communication with outside processes is not allowed. To try to overcome

this issue, we dived into Chrome’s IPC mechanism (mojo) in order to create a custom communication
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process that would be able to bypass this security mechanism and give us the functionality that we

needed to build WArdian. Our several attempts were mostly unsuccessful and only correctly created our

communication channel when Chrome’s renderer sandboxing mechanism was previously disabled.

Although this approach would solve our problems and still give WArdian the minimum security mech-

anisms needed, it would severely damage the overall Chrome’s browser security, so we opted for a

different solution: a Chrome extension. Running as a separate Chrome process, a Chrome extension

has the ability to directly change and communicate with web page’s content and consequently bypass

the previous problems. In the following sections, we present the main stages, and consequent setbacks,

of the WArdian extension development.

5.2.1 Web Page Content Access

In order to detect and intercept WebAssembly calls, we first need to have access to the web page

contents, i.e. DOM and JavaScript code. Since Chrome extensions are also sandboxed, and therefore

run in individual and separate processes, the WArdian extension needs to be granted several browser

permissions, as described in its manifest file.

// manifest.json

[...]

"permissions": ["tabs",

"activeTab",

"declarativeContent",

"nativeMessaging",

"webRequest",

"webRequestBlocking",

"downloads"],

[...]

The described permissions enables WArdian to have access to all open browser tabs and to be able

to distinguish them from each other. This is very important since we need to remain isolating different

scripts, from different sources, to have access to each other’s content. WArdian also has permission to

engage in native messaging communications, as explained in Section 4.6.1, and several web requests

and download permissions to actively monitor and detect wasm modules calls.

The WArdian extension has now the ability to track all the information flow, from and between all

browser web pages, but does not yet have the capacity from accessing and actually changing the web

page’s source code, since separate Chrome processes run in separate contexts. To overcome this issue,

and as introduced in Section 4.4, a content script is necessary.
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// manifest.json

[...]

"content_scripts": [

{

"matches": ["<all_urls>"],

"js": ["contentScript.js"]

}],

[...]

A content script is an additional extension file that can run in the same context as the renderer’s web

page and therefore access all the page’s contents. By matching it with all urls we can make sure that

it will share context with web pages from all sources. This field could be changed in order to restrict

WArdian access to web pages from certain sources, similarly to a white list.

5.2.2 Changing JavaScript Behavior

With access to the web page’s content, we can now modify and insert new code in the current web

page. Since we want to override the JavaScript function – WardianFetchAndInstantiate – that initiates

the entire browser WebAssembly process, we can leverage on our content script to achieve this goal.

// contentScript.js

[...]

WardianFetchAndInstantiate = async function(a, b, c){

console.log(’Wardian: intercepted WardianfetchAndInstantiate’);

document.dispatchEvent(new CustomEvent(’wasmcall’, {detail: { wasm_mod: a, function: b,

args: c}}));

var result = await getResult();

return result;

}

[...]

Our content script is executed by the WArdian extension, before the web page loads, to override

the desired JavaScript function and insert a new one, getResult. WardianFetchAndInstantiate, instead

of actually fetching and instantiating wasm code, now dispatches a WArdian custom event, with all the

wasm information appended, that is detected by our background script. When the enclave operations

are concluded and the wasm result is redirected to the extension, our content script is in charge of

injecting it in the web page, via the variable result. The previously injected function getResult detects

that this new variable exists and notifies the WardianFetchAndInstantiate so that it can finally return. This

new process successfully changes JavaScript behaviour without the knowledge of neither the rendering

engine nor the V8 engine, which securely isolates wasm code execution from Chrome’s scope.
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5.2.3 Wasm Data Structures

After detecting and retrieving all the wasm module’s data, this information needs to be exchanged with

our enclave environment in order for it to be externally executed. Generally, the enclave needs three

pieces of data for it to successfully load and execute the desired wasm module: the wasm module

binary file, the name of the wasm function to execute and, if necessary, the function’s arguments. In

order to create this communication channel, our Web Cage driver is used.

The WArdian extension starts this process by web requesting the desired wasm module and storing

it in a temporary local directory. To facilitate this data transfer with the enclave, we have developed a

new python tool – WasmToBytecode.py – that creates a simple array with the dumped contents of the

original wasm binary file, as shown in the next code snipet:

unsigned char wasm_module_file[] = { 0x00, 0x61, 0x73, 0x6d, 0x01, 0x00, 0x00, 0x00, 0x01,

0x07, 0x01, 0x60, 0x02, 0x7f, 0x7f, 0x01, [...], 0x70, 0x01, 0x01, 0x01, 0x05, 0x03, 0x01,

0x00, 0x63, 0x32, 0x38, 0x29 };

The Web Cage driver is in charge of creating this array buffer, appending to it the other necessary

parameters and create a single string to be passed in to the enclave. Initially, in the QEMU prototypes,

the arguments were inserted in header files (.h) to be imported by the WAMR extension, since the Bao

shared memory communication protocol was yet to be implemented, which would result in large wasm

header files that could be costly to exchange. However, after the Bao integration, large wasm binary

buffers could be exchanged via shared memory in a chunked approach as explained in section 4.6.2.

5.3 Enclave Environment

The environment of our WArdian enclave was the subject of much deliberation during the development

of this thesis. Several WebAssembly runtimes, and LibOs like systems, were studied and analyzed

but our specific hardware architecture, and intentions of keeping it as lightweight as possible, were the

decisive factors that made us go for Zephyr RTOS and the WebAssembly Micro-Runtime (WAMR). With

the added advantage of native WAMR support for Zephyr, this combination proved to accomplish all

WArdian requirements and both their official documentation and tech support, thought their respective

GitHub pages, were extremely helpful during the development of WArdian.

5.3.1 Embedding WAMR in Zephyr

At this point in our work, and by following our iterative approach, we were still using QEMU to simulate

our enclave and to test our WAMR/Zephyr environment. Although provided with good documentation,

this embedment process required much work from our part since several configuration files (both in

Zephyr, WAMR and QEMU) needed to be changed in order to accept our desired hardware architecture.
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In particular, by specifying the Cortex-A53 on QEMU, and AARCH64 target architecture both in

QEMU and Zephyr, via their respective configuration files, these components were ready to be de-

ployed, but a WAMR application still needed to be developed and embedded in Zephyr before the final

binary compilation. WAMR already has several simple application examples publicly available. We have

leveraged on this documentation to learn and create our first ’hello world’ type application to embed in

Zephyr and test our entire enclave environment.

Concretely, our WAMR application is in charge of creating and managing the entire WebAssembly

runtime since its creation and until its teared down. The application starts by allocating executable

memory, inside our Zephyr build, and by cleaning it before loading the wasm module it receives as an

argument. The application’s main – iwasm main – has three main tasks:

1. Initializing the runtime: The WAMR application starts by creating a new thread for the received

wasm module, it then allocates executable memory depending on the selected hardware architec-

ture and finally initializes the runtime environment.

2. Executing WebAssembly: With a runtime environment created, the application can now load the

wasm byte buffer received from the Web Cage driver and use it to instantiate and load said module.

Consequently, it can now invoke the wasm function received as argument, execute it and reply the

result back to our Web Cage driver.

3. Destroying the runtime: The module instance can then be destroyed, alongside with the cleanse

of the allocated executable memory and the tear down of the runtime environment.

Several cross-compile tool chains can then be used to directly compile the WAMR application to

AARCH64, we chose aarch64-none-linux-gnu due to its stable current version and since it is a ready-

to-use open source Tollchain with all the necessary tools for the Cortex-A family. After successfully

compiling our WAMR application, Zephyr was then built leveraging on it’s command line tool – west –

that allowed us to build the final Zephyr binary, with our WAMR application embedded, aimed at our

desired architecture.

5.3.2 Communication with the Extension

One unpredictable problem in our QEMU prototype was the communication channel with the extension,

via Web Cage driver. Unfortunately, QEMU does not yet support network communications for their

cortex-a53 emulation, this means that we can only communicate via stdin and stdout which severely

decreases the performance. Instead of being able to start our QEMU environment and then dynamically

send the wasm modules and arguments, we have to manually build our WAMR application with the

arguments given as header files (.h) and only then start the simulated enclave environment.

Although we have automated this procedure so that our Web Cage driver can start the process and

successfully receive the response from the enclave, this process needs to run every time when either

the wasm module or its arguments change, which is a very frequent event. Table 5.1 presents this faced
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performance challenge with the overall time wasted in the communications between the Web Cage and

the QEMU environment prototypes.

Event time (sec)

Web Cage requests wasm execution 0.00
WAMR app build starts + 0.12
QEMU environment ready + 4.95
WAMR app runs + 5.07
Web Cage receives result + 5.23

Table 5.1: QEMU prototypes performance setback.

As we can see, the actual wasm execution and enclave response, in average, is rather fast and

invisible to the user but the fact that the application and environment needs to start every time a new

wasm call is made is a serious setback in performance that completely damages WArdian. We continued

to analyse this and similar issues, and our gathered results, and consequent analysis, is extended in

Chapter 6. However, this problem is only relevant when considering the initial prototypes since our final

architecture does not depend on QEMU emulation.

5.3.3 Dynamic Enclave Execution

Predicting the Bao integration and the usage of actual hardware to develop our next batch of prototypes,

we started to fix the previous communication problem, attempting at creating a dynamic enclave that

does not suffer from initialization performance handicaps.

To fix this issue we built a custom socket connection between the two endpoints: the Web Cage driver

and the WAMR application. The Web Cage driver now starts the enclave environment as soon as the

extension background process initializes and instead of passing the wasm module and arguments via

header files (which made necessary the rebuilding of the app), the data is now exchanged via our socket

channel which makes the dynamic WAMR execution possible and therefore eliminates the previous

performance issue.

Figure 5.5 portrays how the communication was improved with our custom socket protocol and how

both ends can connect and use the channel. Our Web Cage driver, built in python, triggers the initial-

ization of the WAMR application, embedded in Zephyr at our enclave environment, that then sets up its

socket endpoint and binds it to a known port to the driver (we used 9090). The WAMR app, developed in

C, then waits for the Web Cage connection and, after accepting it, both endpoints can freely exchange

messages until the socket connection is destroyed (which only happens when the browser session is

terminated).

It is worth mentioning that this optimization was only tested with a simple client-server application

since we were still working with QEMU. However, the ground work was mainly implemented and after

integrating Bao only a couple of tweaks are necessary for our socket implementation to fully work in aid

of WArdian’s performance.
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Figure 5.5: Socket communication improvement.

5.4 Bao Integration

With the previous prototypes, we were able to successfully develop and implement all of WArdian’s

components at the Android OS zone (extension and web cage driver) and also the components at the

Bao enclave (wasm runtime and web cage runtime). Now, to successfully build the final prototyping

WArdian’s build, it was necessary to embed our zephyr binary in Bao and flash it to our hardware

prototyping board – Rock960 – alongside with the latest Android OS image. Unfortunately, due to

time restrictions, we were unable to finish this last prototype in time. This final implementation section

presents all the current work in progress aiming at integrating Bao and WArdian in the same final build.

5.4.1 Hardware Setup

In order to debug our system, and consequently verify that each WArdian stage was being successfully

implemented, we needed to have some sort of console access to the prototype environment while in

execution. Also, a screen capture of the Android’s environment, in real time, was extremely important to

confirm the user’s visual browsing experience.

To establish console access to the prototype board, an UART communication protocol was used with

the help of an additional circuit board as explained in section 5.1.2. Both boards were wired together,

as portrayed in Figure 5.6, in order to connect the GND(ground), RX(receiver) and TX(transmitter) pins

of each board respectively. Both boards were then individually connected, via usb, to a development

machine, e.g. Linux laptop, in order to have access to the wanted outputs. With this board’s configura-

43



tion, Rock960 can be powered up and connected to an external screen via HDMI or streaming protocol,

e.g. scrcpy, which we ended up using since it de-cluttered our working station and provided several

automation advantages, such as drag and drop features to directly install .apk’s on our Android build

and the support for the native computer’s keyboard and mouse to navigate the Android system.

Figure 5.6: Debug wiring diagram. (black:GND, RX-TX:red, TX-RX:yellow)

With this setup, we were able to have visual output of the Android environment, via scrcpy as shown

in figure 5.7, keyboard and mouse input via the development machine and serial console input/output via

the UART communication with the debug board. Figure 5.8 shows the two main debug/testing terminal

windows. On the left we have the UART output console, where we can check and verify several useful

information, such as Bao booting stages and warnings, cpu interruptions, board network connectivity,

etc. On the right, via adb shell, we can have access to the native Android console where we can

manually run several commands, e.g. send Bao enclave commands and test response times.

Figure 5.7: Android OS capture.
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Figure 5.8: UART debug configuration.

In this particular example scenario, Figure5.8 shows a bare-metal Bao version responding to a simple

”hello world” type service. On the right terminal, via adb shell, we have access to the native Android

console where we manually executed a simple TA (trusted application) that runs at the enclave and

generates a random UUID. On the left terminal we can verify the entire Bao behavior while managing

and executing said service.

5.4.2 Communication Protocols

Out of the box, Bao comes with 4 services that the Bao application running at the Android OS zone –

HLOS – can request: start and close enclave session, invoke enclave command and cancel enclave

command. Our Bao integration was started by adding two new commands to the custom Bao protocol.

As explained before, we need one command to start our WAMR application when a new browser

session starts and an additional one (to be called frequently) every time wasm data and its arguments

need to be communicated to the web cage environment. To implement these new calls, and with great

help from our colleagues at Universidade do Minho, we altered Bao’s source code for these changes

to take effect. But before looking at the changes made, we first need to understand how Bao’s internal

messages are structured.

struct bao_msg_arg

{

int cmd;

int func;

int session;

int cancel_id;

int pad;

int ret;
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int ret_origin;

int num-params;

struct bao_msg_params params[0];

}

In order for both zones to communicate via the explained shared memory protocol, Bao messages

need several attributes, such as return addresses, origins and internal paddings. However, to implement

our WArdian new commands, we only need to take advantage of some of the available message fields.

Using the cmd field we can specify which WArdian command we are sending to the web cage

environment: 0 for startup and 1 when requesting wasm execution. In case of wasm execution, we

also leverage on the secondary params structure, where we insert all the necessary wasm data (wasm

module binary dump, function called and its arguments), via web cage driver, that is then received and

interpreted by our WAMR application. After instructing our web cage driver to create messages using

the custom Bao structure, via HLOS, it is only a matter of interpreting this information in the web cage

environment and execute our WAMR application as we are used to.

With this information in mind, our next steps to integrate Bao in WArdian were pretty straightforward.

By adding some new instructions to the source code of Bao, specifically on the modules that run at

the enclave – bao guest – and interpret receiving messages from HLOS, and by embedding our zephyr

final binary in the enclave we could create a similar behaviour known from our previous prototyping

experiences.

// bao_msg.c

[...]

#define WARDIAN_START 0;

#define WARDIAN_ARGS 1;

[...]

// this function is called everytime a new msg reaches the enclave

// i.e. when a command is being invoked by HLOS

void handle_invoke(struct bao_msg_arg *msg){

[...]

switch(msg->cmd){

case WARDIAN_START:

// here we start the web cage WAMR application analogous to the QEMU prototypes

start_wamr_app();

break;

case WARDIAN_ARGS:

// here we send the wasm data to the running WAMR app

receive_wasm_data(msg->num_params, msg->params[]);

break;

default:
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break;

}

[...]

}

[...]

Both functions start wamr app and receive wasm data were also added to Bao’s source code, how-

ever, some problems risen from these changes that we were not able to fix in time.

5.4.3 Prototyping Problems

After installing the Kiwi browser with our WArdian Chrome extension on our prototyping board we were

ready to flash our final Bao and Zephyr build in order to start debugging our implementation and conse-

quently retrieve some benchmark values once everything was in order.

Unfortunately, time constraints on the Bao’s development team, in combination with project syner-

gies, delayed this final step in the integration of WArdian and Bao. Due to technical problems while

flashing our zephyr binary on the Bao enclave, we were unable to have our web cage environment up

and running in time to finish our final prototype.

Summary

In this chapter we presented the main developed prototypes alongside with detailed information about

how we’ve achieved them, the consequent setbacks we were faced with and how we were able to solve

them. We presented our entire development process, including the browser modifications made, our

enclave environment setup and the integration of Bao into WArdian. In the next chapter we present the

metrics used to evaluate WArdian and the consequent obtained benchmark values.
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Chapter 6

Evaluation

In this chapter, we present the main evaluation results of our system. We start by identifying our concrete

evaluation goals. Then, we present each of our main findings according to each of these goals.

6.1 Evaluation Goals

From the beginning of our work, a big emphasis was placed on device performance due to the major

changes made to the WebAssembly browser runtime environment and consequently the wasm data life-

cycle. WArdian main goals were always to improve mobile wasm execution security without disrupting

the overall device’s performance nor the underlying operating system’s. With this in mind, we evaluate

WArdian’s final results based on four main categories.

• Performance: We start by looking into performance benchmarks, where we evaluate our final

solution, using not only global but also component specific metrics.

• Resource efficiency: We then move on to a more resource oriented metric approach, where we

evaluate specific WArdian architecture modules and components in order to measure the overall

WArdian’s efficiency and explore how each component is leveraged in terms of memory overhead

and communication performance.

• Usability: WArdian usability is also measured. In this evaluation category we take a step back

and try to fill the shoes of web developers and browser users in order to understand how WArdian

fits into the overall developer’s work-cycle and user’s browsing sessions.

• Security: Finally, we look into the implemented WArdian security measures and construct a deep

analysis on WArdian’s security, recalling not only the attacks and vulnerabilities mitigated by our

final system but also the ones that are still in place.
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6.2 Performance

Starting with performance evaluation, two new web pages were developed in order to facilitate results

gathering. During the prototyping of WArdian, we leveraged on a simple web page with addition and

multiplication wasm modules to verify the correct execution of our enclave environment. In order to run

more compute extensive workloads, we felt the need to develop new wasm web pages.

(a) Credit card verifier (b) Character counter

Figure 6.1: WArdian performance testing web pages.

We started by developing a more complex web page, as portrayed in Figure 6.1, that verifies if a given

credit card number is valid and, if true, also detects which company it belongs to, e.g. Visa, MasterCard,

etc. This new web page was implemented using the Luhn algorithm, that performs a series of operations

on the given credit card number to verify its veracity. This is a more complex wasm computation that was

built with the intention of measuring the efficiency of our internal WArdian components at the enclave,

and consequently retrieve some interesting benchmark values.

We then developed another web page that receives a text input and returns a total character count.

This second page was useful to evaluate several WArdian aspects, i.e. enclave communication speed

and the underlying Bao shared memory communication channel, depending on the size of the given text

input. Both web pages were leveraged to retrieve the benchmark values analysed in the next sections.

6.2.1 Global Performance

Starting with the overall WArdian’s performance, we wanted to measure the global impact of our system

in browsing sessions, i.e. the total wasm operation’s time with and without the WArdian extension

enabled. To measure this, we changed our developed web pages to record the starting and ending time

of the entire wasm operation, in milliseconds, and return the difference via browser console logs.

To perform this evaluation, we used a combination of all the developed web pages in order to get

an average of WArdian execution times. To better understand how our system works, and consequently

achieve more interesting conclusions, we started by evaluating our QEMU prototypes and then made our

way to the Bao ones. Recalling the QEMU performance issues discussed in section 5.3.2, our gathered

benchmark results for this set of prototypes were not surprising. The performance drawbacks of our
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Figure 6.2: WArdian global performance.

QEMU prototypes severely impact the browsing user experience, due to the need to constantly rebuild

our WAMR application, since QEMU does not yet support network communication on the used cortex.

At this point in time in our WArdian evaluation, the Bao hypervisor was still in development, which

made us have to be creative while gathering the following benchmark values. Predicting the dynamically

way in which we can run our WAMR application when using the Bao enclave, the need to rebuild our

application vanishes, which means that this operation’s time can be subtracted from our previous results.

To accomplish this new batch of testing, we preemptively added our wasm arguments to the WAMR

application before the browser wasm calls were made. Figure 6.2 shows the combined results of our

batch of tests for the global WArdian performance, where we show the average operation’s time of

several WebAssembly browser calls, while using WArdian with QEMU, the simulated Bao environment

and without the WArdian extension enabled, i.e. using the native browser’s V8 engine.

As the gathered results show, all testing web pages show similar values, even when considering

different and more intense workloads (as in the credit card samples) and even when the transferred

data size increases (as in the character counter page), which praises the execution consistency of our

chosen and developed enclave environments.

In terms of speed, and as predicted, the QEMU prototypes are severely hindered since the WAMR

application needs to be rebuilt on each wasm request, and therefore, the added operation time is very

noticeable. Nevertheless, in scenarios where QEMU is the only environment available option, and there

is a need to securely isolate wasm executions and its data, this might be a trade-off in performance that

it’s users are wiling to accept.

Comparing now the WArdian’s simulated Bao prototypes against the native Chrome browser, the

results are far more similar and almost unnoticeable to the human eye. Although there is a significant
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increase in time, approximately 2 times slower, we consider these to be successful WArdian results since

user experience is unaffected and almost unnoticeable to most users. It is also worth mentioning that,

in our simulated Bao testing, we are still having to instantiate a QEMU virtual environment everytime a

wasm call is made, even without rebuilding the app, which also adds to the global operation’s time. We

predict that the actual Bao final prototypes will be even faster than our obtained predictions.

6.2.2 Micro-benchmarks

After the global performance tests, we moved on to fine-grained testing. Since WArdian is a complex

system, with several components communicating and working together in different ways, we felt the

need to evaluate each component separately, and in specific, measure each communication channel.

The total WArdian execution time can then be separated into two parts: browser and enclave commu-

nication; and WAMR application’s execution time. Knowing that the communication channel is composed

of several components, we arrived at the following total time equation.

TotalT ime = 2 ∗ (t1 + t2 + t3) + t4 + t5 (6.1)

Our complex communication channel starts at the browser. Chrome passes the wasm data to the

WArdian extension (t1), which then needs to be communicated to our web cage driver (t2), and only

then does it reach the enclave environment (t3). The WAMR execution time is represented as t4 (with t5

being the application build time) and the communication channel time is doubled since a response with

the final wasm result needs to be sent back to the browser.

Using this equation, and the gathered results from the previous section, we were able to isolate each

communication bridge and gather values to evaluate each component’s performance. To achieve this,

several changes were made to the WArdian components. Keeping in mind that the sample web pages

were already recording timestamps, we added the same functionality to the extension’s background

process, a log file for our web cage driver to do the same and finally added a new feature to the WAMR

application so it could also record it’s total execution time. After these small changes were implemented,

we ran the same batch of tests from the previous section and gathered the following values.

Web Page t1 t2 t3 t4 t5 total (ms)

Simple 0.005 0.002 0.354 0.014 4.306 5.042
Credit card verifier 0.006 0.002 0.437 0.015 4.119 5.025
Char counter (small) 0.009 0.001 0.435 0.015 4.103 5.007
Char counter (medium) 0.010 0.002 0.462 0.015 4.012 4.975
Char counter (large) 0.009 0.002 0.451 0.015 4.063 5.002

Table 6.1: WArdian QEMU Micro-benchmarking.

As the results show, and unsurprisingly, the QEMU prototypes present very similar results on all

web testing pages. Since QEMU runs in the same space as the underlying operating system, the

communication between the web cage driver and the WAMR application is just as simple as two native
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programs sharing information. We can also detect that the communications between the browser, the

WArdian extension and the web cage driver (t1 and t2) are very insignificant, which makes sense since

these are all Chrome shared processes (the renderer, the extension and the driver), that communicate

via it’s inter-process mechanisms[14] and stdin/stdout respectively.

Since the communication between our WArdian extension and the web cage driver also happens in

the same memory space, it’s unsurprisingly fast, and considering that the enclave environment is the

same in all WArdian’s prototypes, the communication between the driver and the enclave is the most

impactful in the total procedure’s time.

Regarding the Bao values, we once again had to improvise in order to obtain them, since the final

prototype was not yet completed at this stage. To accomplish these simulations, we then again removed

the compilation time of the WAMR application and used our socket approach to simulate the data transfer

between the web cage driver and the enclave environment. In the implementation phase of our integra-

tion of Bao into WArdian, we developed a socket custom communication, based on a chunked approach,

as explained in Section 5.3.3. We manually ran our testing messages through this channel to simulate

the Bao shared memory protocol. The communication between the browser and the extension, and the

execution time of the wasm application, are expected to remain the same between both prototypes.

Web Page t1 t2 t3 t4 t5 total (ms)

Simple 0.005 0.002 0.124 0.014 NA 0.276
Credit card verifier 0.006 0.002 0.124 0.015 NA 0.279
Char counter (small) 0.009 0.001 0.124 0.015 NA 0.283
Char counter (medium) 0.010 0.002 0.125 0.015 NA 0.289
Char counter (large) 0.009 0.002 0.128 0.015 NA 0.293

Table 6.2: WArdian Simulated Bao Micro-benchmarking.

As our simulated results show, the overall Bao total execution time is much shorter, as expected,

since the WAMR application can now run dynamically and there is no more need to instantiate a new

virtualization environment each time a new wasm call is made.

One interesting aspect of our simulation, is that with the use of our socket testing prototype we were

actually able to retrieve more realistic values in regards to the size of the wasm data transfered to the

enclave environment. As shown in Table 6.2, we can see that time increases as the input data, and

consequently the information sent to the enclave, becomes larger. With our QEMU prototypes we were

not able to reach any maximum value of tolerance, but we believe that, on a real Bao prototype, some

performance problems could surface from this issue.

To conclude this section, we emphasise that these are only simulated benchmark values and that

they could be extremely different on a real functional final prototype, where we expect them to be even

better since these values still have residual time damaging influences from the QEMU results.
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6.3 Memory Footprint and Code Size

In terms of memory utilization, it was a WArdian goal, since the beginning of this project, to develop a

small footprint web cage environment to occupy the least possible amount of enclave and device’s mem-

ory space. To this account, our final Zephyr binary file, with the WAMR application already embedded,

comprises a total of 3.9 MB which, even without a maximum enclave size to take into consideration, we

feel like it’s an acceptably short sized memory allocation.

Component C JavaScript Python

WAMR application 239 – –
Extension content – 45 –
Extension background – 61 –
Web Cage Driver – – 96
WasmtoBytecode.py – – 45
Socket optimization 45 – 33

Table 6.3: WArdian’s source lines of code (SLoC).

In terms of WArdian code size, the total SLoC for each component are presented in Table 6.3. This

small code base reflects the overall low degree of complexity of the system. Most of the code is written

in C and JavaScript, in accounts to the WAMR application and the WArdian extension respectively,

although some components, such as the web cage driver at the Android OS zone, were developed in

Python to simplify some functionalities and overall component’s integration. Due to the small code base

running at the browser and driver, WArdian presents a short attack surface on the Android OS zone,

which considerably shortens the possibility of a malicious agent being able to compromise our system.

6.4 Usability

In regards to WArdian usability, both the users and the developers need to be taken into consideration.

WArdian is intended to completely run in the background and disrupt browsing sessions and web page

development as little as possible.

Regarding users, after the initial browser extension installation, the entire WArdian process is invisible

and inconspicuous to the browsing section. In the current WArdian state, the extension is missing

an options page where users could manage some of the extension’s functionalities, such as choosing

which wasm modules to isolate, but we consider this to be an advantage since no user interaction is

needed after the initial setup. Considering that a browser user could use Chrome without knowing that

WArdian was installed and without noticing anything strange about the browsing session, we consider

our implementation to be a success regarding user experience.

On the other hand, currently web developers need to comply with restrict JavaScript syntax calls

in order to successfully leverage on WArdian’s security mechanisms. This means that, currently, our

browser extension only works properly if web developers consider it’s existence and choose to obey

it’s restrictions. Although complying with WArdian syntax does not change the normal JavaScript flow
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in non-WArdian browsers, it can pose as an additional time constraint for web developers to consider,

which might make them choose not to use it. In the future, it would be interesting to tackle this problem,

and make WArdian inconspicuous to developers as well, in order for WArdian to correctly work in any

scenario, independently of web developer’s adherence.

6.5 Security Analysis

Regarding WArdian security measures, we have made some efforts to increase wasm browsing ses-

sion’s isolation, and consequently security, from an untrusted mobile operating system. By combining

our browser modifications with the Bao hypervisor, we successfully mitigated most of the possible at-

tacks potentially issued by a malicious browser or operating system. In this section, we explore in detail

the possible scenarios that WArdian successfully mitigates, alongside with current vulnerabilities that

might influence the correctness of our final system.

• Starting with attacks potentially issued by a malicious operating system, the Bao hypervisor gives

us the memory separation we need to combat and overcome this adversary. By statically partition-

ing the memory zones of both the Android OS and the enclave environment, Bao ensures that the

OS cannot access nor override the enclave memory space, which guarantees the safe isolation of

all the enclave trusted applications.

• Another potentially problematic attack surface is the hardware processor where the android OS

and the enclave are running. Bao overcomes this issue by allocating, at boot, one single processor

core to be assigned to the enclave environment, and the remaining to the Android OS, making it

secure from access attempts by a malicious operating system.

• Having secured the enclave environment, the wasm web applications running at the local browser

can still be compromised. WArdian deals with this problem by removing all wasm processes from

the browser’s renderer and instead executes wasm at the enclave. This ensures that the wasm

application, and the data it manipulates, are loaded and executed outside the scope of the Android

OS, which makes it impossible for it to read or change its contents.

• The operating system cannot then access the enclave memory space but it can still compromise

the web browser in order to manipulate the communication with the WArdian extension, and conse-

quently the enclave. Keeping in mind that it is the browser that is in charge of starting the enclave

process, and sending the wasm inputs, one might argue that the isolation of wasm execution is

pointless if the malicious operating system can still tamper with its input and control if the output is

correctly delivered to the local browser. However, the malicious OS cannot access the execution

information and manipulated data, which makes this a Denial-of-Service attack, that although is

not a concern for wasm information security, can disrupt the correct functionality of WArdian and

prevent web assembly code to be executed locally.
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Summary

In this chapter we evaluated our final solution based on its performance, resource efficiency, general

usability and resulting security mechanisms. In each metric we present the used batch of tests, the

achieved results and our thoughts on them. In the next, and final chapter, we conclude this report with

our final conclusions alongside with our major achievements and some ideas for future work.
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Chapter 7

Conclusions

Although WArdian is not yet in a stable stage neither for users nor web developers, it already presents

a strong foundation for secure WebAssembly browser execution. The current achieved mobile device’s

performance can leave WArdian as an handicap for recurring and systematic wasm executions but

already gives the users the capability of isolating wasm code from malicious browsers and operating

systems that can be extremely useful when dealing with data sensitive wasm operations. On the other

hand, web developers currently have a well defined set of rules to follow in order to successfully leverage

on WArdian’s security mechanisms, which might make it overwhelming to implement in their web pages,

although sensitive wasm operations might justify the added work on their part and the consequent lack

of performance on the user’s device.

Regarding our performance issues, we should consider that WebAssembly is mostly used to per-

form intense and complex browser computations, e.g. media decoding, but these are not the kind of

operations our system is intended to isolate. WArdian was developed to sandbox wasm browser opera-

tions that leverage and manipulate user sensitive data, like credit card verifications and money transfer

operations, which execute faster and therefore will present a least noticeable performance constraint.

Nevertheless, with all these factors in mind, and the overall security mechanisms that we implemented,

we consider WArdian to be a successful project since the main sandboxing objectives were achieved.

In this final chapter we present the main WArdian achievements and conclude this report with some

ideas for future work that would develop WArdian into a real world system with several real benefits for

it’s users and for web developers who intend to add sensitive wasm operations to their web pages.

7.1 Achievements

WArdian successfully achieves most of its initial proposed goals excluding a briefly noticeable lack in

performance while comparing it with un-isolated wasm executions. Our Chrome browser extension

takes control of wasm modules, and wasm operations in-browser life-cycle, making sure that the native

Chrome execution environments – V8 instances – do not load, execute or even have knowledge of

WebAssembly local executions.
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The developed Web Cage Driver, in combination with the Bao hypervisor, successfully creates a

secure communication channel with our enclave environment – web cages – which makes sure that

no sensitive wasm information, or data manipulated by the wasm module, is leaked to a potentially

malicious operating system and/or web browser, preserving the integrity and confidentiality of said data.

Finally, the used components of our web cage environment, i.e. the Zephyr RTOS and the WAMR

runtime, work together to create a small footprint enclave that is able to run successfully without taking

noticeable space nor memory capabilities of the mobile device.

Although, in the end, we were not able to successfully finish the integration of WArdian and Bao, the

predicted combination of efforts between the WArdian developed components and the used hypervisor

present the following measurable and successfully evaluated achievements:

• Secure isolation of WebAssembly executions from the mobile version of the Chrome browser with-

out alerting it’s native sandbox mechanisms.

• Execution of WebAssembly modules sandboxed from the underlying mobile operating system.

• Creation and maintenance of a small enclave environment, that is able to successfully perform all

it’s operations without consuming much of the device’s resources.

• Preservation of confidentiality and integrity of the data manipulated by the WebAssembly modules.

• Low user install effort and invisible during most browsing sessions.

• Simple to integrate in existing wasm web pages.

7.2 Future Work

During the development of WArdian we were focused on creating a stable system prototype where we

could prove and test our initial concept. That being said, several additional features could be imple-

mented in order to develop WArdian into its full potential.

The current version of WArdian forces web developers to respect our JavaScript syntax restrictions

which, although in a minimalist form, can increase the web application development time. In the future, it

would be interesting to implement and override every single way to fetch and instantiate wasm modules

into our WArdian browser extension to abstract the web page development from WArdian and even

make web developers unaware of its existence. The introduction of HTML developer tags would also be

interesting in order to enable web developers to consciously chose which wasm modules to isolate in

WArdian and which modules to run in Chrome.

On the other hand, users could also benefit from an options page, where they could enable and

manage the desired enclaved wasm modules with an intuitive visual layout to give them more control

over the WArdian extension. This additional extension UI could give users the option to whitelist/blacklist

different web site sources, enable/disable HTML developer tags, chose the amount of allocated memory

to the enclave environments and so on.
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Regarding our used hypervisor, some additional future work implementations could also take place

in order to improve WArdian’s overall security and performance. The Bao hypervisor gives us many

security mechanisms, that we successfully leverage on to create and communicate with our web cages,

but we could explore it even further. In the secure world, Bao presents us a controller module that

manages the creation and state of each running enclave environment. In the future, we could leverage

on this additional component to enable the remote attestation of our enclaves from web servers that

want to verify the integrity of our running system and overall isolation of the sent cagelets. The controller

module can also enable the ability to seal enclave data and store it either at the Android’s memory zone

or in the secure world. This could be interesting to explore in order to securely save wasm module data

to increase enclave performance, e.g. in case of increased recurring wasm operations during several

different browsing sessions, persistent cookies, etc.

Finally, it is worth mentioning that our used WebAssembly runtime has native support for Intel’s SGX,

which means that, with minimal effort, our current working WArdian prototype could be transferred from

mobile devices into desktop / laptop environments, making WArdian accessible in a multitude of different

browsing devices.
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