
Universal Consent Management Platform

André Santos Martins Nunes

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor(s): Prof. Miguel Nuno Dias Alves Pupo Correia

Examination Committee

Chairperson: Prof. José Luís Brinquete Borbinha
Supervisor: Prof. Miguel Nuno Dias Alves Pupo Correia

Member of the Committee: Prof. Carlos José Corredoura Serrão

November 2020

ii

Dedicated to my family and friends

iii

iv

Acknowledgments

I would like to start by giving my thanks to my supervisor, professor Miguel Correia, for his

continuous support, guidance and dedication throughout this journey. For the encouragement

and much advice, I am grateful.

I would also like to thank my parents and family who, throughout the years, have always

supported me during my studies and encourage me to never stop.

I also wish to thank Blockbird, specially José Figueiredo and Carlos Faria, for being sup-

portive, contributing with good ideas and giving feedback during the elaboration of this thesis.

Lastly, I would like to thank my closest friends who were very supportive during the elabo-

ration of this project and whose feedback was always welcome.

v

vi

Resumo

Os sistemas baseados em Blockchain têm vindo a receber cada vez mais interesse tanto na área

de investigação com na indústria. Uma Blockchain é um registo distribúıdo que consiste numa

estrutura de dados, onde só é posśıvel anexar outros dados, que armazena uma lista ordenada

de transações, replicada por vários nós que por sua vez estão conectados entre si através da

Internet. Neste documento vamos explorar as vantagens desta tecnologia quando aplicada à

gestão de consentimentos na área da saúde digital. Os dados médicos devem ser propriedade

dos pacientes e por conseguinte controlados pelos mesmos apesar de estarem espalhados por

diferentes sistemas de saúde. Devido ao recente RGPD, terceiros, como é o caso das instituições

de saúde e laboratórios de pesquisa médica, que armazenam dados médicos, não podem proceder

à partilha destes mesmos dados médicos sem ter o consentimento adequado do proprietário (pa-

ciente). Propomos uma solução que tira proveito desta tecnologia em ascensão para implementar

uma plataforma de gestão de consentimentos, a qual permite aos pacientes ter um maior grau

de controlo sobre os seus dados médicos enquanto providencia às instituições médicas um meio

de permanecer em conformidade com a legislação da UE.

Palavras-chave: blockchain, Ethereum, gestão de consentimentos, saúde

vii

viii

Abstract

Blockchain systems have received an outburst of interest in both research and industry. A

blockchain, or distributed ledger, consists of an append-only data structure that stores an ordered

list of transactions, replicated in several nodes that are connected by the Internet. In this

document we explore the advantages of this technology when applied to consent management

in the eHealth area. Healthcare data should be owned and controlled by patients despite being

scattered in different healthcare systems. Due to the most recent GDPR, third parties such as

healthcare institutions and medical research related institutions, who store medical records, can

not share those same records with another institution unless given proper consent by the owner

(patient). We propose a solution that takes advantage of this rising technology to implement a

consent management platform that allows patients to have a better degree of control over their

medical records while providing medical institutions a means to stay compliant with EU’s law.

Keywords: blockchain, Ethereum, consent management, healthcare

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Figures . xiii

Glossary . 1

1 Introduction 1

1.1 Topic Overview . 1

1.2 Goals . 3

1.3 Thesis Outline . 3

2 Background and Related work 5

2.1 Blockchain . 5

2.2 Ethereum . 8

2.3 Enterprise blockchain . 10

2.4 Hyperledger Besu . 11

2.5 Blockchain security . 12

2.6 GDPR . 16

2.7 Consent management . 17

2.7.1 Zyskind et al. 18

2.7.2 Healthcare Data Gateway . 19

2.8 Summary . 20

3 Universal Consent Management Platform 23

3.1 Participants and Roles . 23

3.2 UCMP operations . 24

3.2.1 Login and authentication . 24

3.2.2 Access Request to Personal Information 26

xi

3.3 Architecture . 28

3.3.1 Blockchain . 31

3.3.2 Web App . 32

3.3.3 Database . 36

3.3.4 Web server . 41

3.4 Implementation . 43

3.5 Summary . 46

4 Results 47

4.1 Evaluation Methodology . 47

4.2 Experimental Results . 49

4.2.1 Latency . 49

4.2.2 Transaction Cost . 54

4.2.3 Gas price . 57

4.3 Discussion . 58

4.4 Summary . 61

5 Conclusions 63

5.1 Future Work . 64

Bibliography 65

xii

List of Figures

2.1 Example of how mixers work. Alice wants to send Bob 3 coins 14

2.2 Example of the cave’s layout . 15

3.1 Flowchart representing the patient’s client behaviour when attempting to interact

with the system . 27

3.2 Flowchart representing the process behind the access protocol from a data holder

perspective . 28

3.3 Flowchart representing the process behind the access protocol from a data owner

perspective . 29

3.4 UCMP’s Architecture . 30

3.5 Flowchart representing the the process behind assembling a meta transaction . . 33

3.6 Flowchart representing the workflow of the identity relayer 34

4.1 Graph representing the obtained values for latency when submitting transactions

to the Ropsten test network . 50

4.2 Graph representing the obtained values for latency when submitting transactions

to the Rinkeby test network . 50

4.3 Graph representing the obtained values for UCMP overhead when submitting

transactions to Rinkeby test network . 52

4.4 Graph representing the obtained values between a submission made by a custodial

and by a non-custodial users . 53

4.5 Graph representing the obtained values for the relation between transaction cost

and number of attributes submited . 55

4.6 Graph representing the obtained values for the relation between transaction cost

and number of characters used on a string . 55

4.7 Graph representing the obtained values for the relation between gas price and

transaction speed . 58

xiii

xiv

Chapter 1

Introduction

Over the past few years blockchain technology has been obtaining increasing interest due to the

vast possible variety of applications this new technology has shown [CDE+16, GHM+17]. It

all started back in 2008 when an individual or group of individuals named Satoshi Nakamoto

first presented Bitcoin [N+08], a peer-to-peer version of electronic cash with the objective of

eliminating the need for a trusted third party in online transactions.

1.1 Topic Overview

With the evolution of blockchains and the raising popularity of Bitcoin, people started looking

at the blockchain from a different perspective, in which, blockchains, although public, could

have other uses and purposes. This has lead to the development of new blockchains that are

more restrict and controlled, called permissioned or private blockchains. This also enabled the

blockchain application scope to become wider and start affecting a much more ample variety

of different areas, such as the Healthcare and real estate business areas. Today standalone

applications are being transformed into distributed applications – DApp. This happens mainly

because of the growing trend of deploying applications in cloud platforms.

Regarding healthcare business area, Electronic Health Records (EHR) [And17] have been

gaining more and more importance over the past few years due to the advantages they bring

in comparison to the traditional storing methods. An EHR is a digital version of a patient’s

paper chart. EHRs are real-time, patient records that make information available instantly and

securely to authorized users. One of the key features of an EHR is that health information can

be created and managed by authorized providers in a digital format capable of being shared

with other providers across more than one health care organization. The benefits of EHRs can

be categorized in three main dimensions:

1

• Clinical – decrease in errors and improvements in healthcare quality;

• Organizational – increase in operational performance and financial gains;

• Social – improvements on the overall population health (individual or aggregate).

Concerning the social dimension, individuals with long term diseases or conditions benefit the

most from EHRs since these provide better monitoring capabilities for both their health and their

treatments. On the other hand, at the aggregate population-level, the data provided by EHRs

can be used to analyze and detect health patterns and trends on a given community. Healthcare

organizations, who implement and deploy EHR as their main storage method for patients related

medical data, can expect these systems overall benefits to outweigh their software and hardware

implementation costs, as well as personnel training and system maintenance.

Companies and organizations inside the European Union must stay compliant with the Gen-

eral Data Protection Regulation (GDPR) [Eur16] in order to practice their business activities.

With the GDPR, companies and organizations can not share any user personal data with third

parties unless a proper consent has been given by the owner of that data, even if a sharing solu-

tion already exists [MPA+18, SC17]. In the healthcare business area, consent management can

be defined as the set of policies a given medical institution applies in order to give their patients

the ability to decide which user medical related information they are willing to share, with whom

and under what circumstances. Having a consent management platform is a key mechanism to

companies that rely on their users’ personal data to practice their business activities.

The present document proposes Universal Consent Management Platform (UCMP) – a

blockchain based consent management platform that allows healthcare institutions to share

their EHR records with other institutions and organizations in accordance with their patients

consents. The objective of the project is to design and implement a consent management plat-

form that allows patients to monitor and control, up to a certain degree, their medical records.

The following approach provides patients a means to manage their data allowing them to choose

what to share and with whom. The proposed solution also enables healthcare institutions and

organizations to stay compliant with the most recent GDPR policy by providing a tamper proof

system that stores their patients consent preferences.

The implementation of UCMP uses the Google Firebase 1 service as the backbone for its

core components. Firebase was used in order to provide our system with an easily manageable

database, a backend server through the use of cloud functions, authentication mechanisms and a

hosting service. Firebase is a Backend-as-a-Service (BaaS) that facilitates building apps without

1https://firebase.google.com/docs

2

the need to manage a server. On the other hand, while implementing UCMP’s prototype we

used Truffle 2 as the Ethereum client in order to connect and interact with the blockchain.

Although we used Truffle due to its simplicity, Hyperledger Besu could have also been used.

Besu provides additional features when compared to Truffle and therefore, an increase on the

solution’s complexity. This complexity was not desired when implementing a prototype, but

should UCMP be deployed on the Ethereum main net, it is highly advisable to use Besu instead

of Truffle.

1.2 Goals

This document addresses the lack of a system or platform that provides patients with a consent

management platform while still providing strong privacy assurances. With this in mind, UCMP

should assure the following requirements:

1. Blockchain – The solution shall incorporate a blockchain as a base for the whole system.

This blockchain will operate under a public environment.

2. User identity – The identity notion in the system must be strong and reliable: an account

can be traced by our system to one user and one user only.

3. GDPR compliance – The solution must be in compliance with the GDPR.

4. Privacy – Although user identity is required, no user should be able to identify another

inside the network. Only authorized auditors shall be able to access user identities.

5. Prototyping – The system shall be deployed and later presented using a fully working

prototype that enables testing and execution of all provided functionalities.

6. Management interface – The system should include an easy-to-use, versatile and intu-

itive management interface that allows patients to unequivocally set their sharing prefer-

ences.

1.3 Thesis Outline

This dissertation begins by giving, on Chapter 2 core concepts regarding blockchain technology

as well as give some insights on the topics of GDPR and consent management. In this same

Chapter we also present and briefly discuss current implementations of already existing systems

that attempt at solving the consent management problem regarding the healthcare business

2https://www.trufflesuite.com/docs

3

area. UCMP, the proposed solution, and its core operations are then presented and described

on Chapter 3. Chapter 4 presents and discuss an evaluation methodology to assess UCMP as well

as the results from the experimental evaluation. Finally, Chapter 5 concludes this dissertation.

4

Chapter 2

Background and Related work

This section provides an understanding of how blockchains work. Specifically, several existing

blockchain implementations will be introduced. Moreover, core concepts regarding blockchain’s

confidentiality and privacy will be addressed as well as existing implementations of consent

management systems.

This section is organized as follows. Section 2.1 defines the core concepts of a blockchain as

well as key notions of technologies that support blockchains. Section 2.2 briefly explains how

Ethereum blockchain work first by addressing its functionality and goal and then by explaining

the concepts of smart contracts and their interaction on the main chain. Section 2.3 gives

a brief introduction to the fundamental requirements of enterprise blockchains and how they

emerged. Section 2.4 explores Hyperledger Besu implementation and consensus protocols as

well as their usage under different environments. Section 2.5 gives insights on existing systems

that provide consent management platforms and key techniques that help achieve confidentially

and privacy on blockchain networks. Finally, Sections 2.6 and 2.7 briefly introduces to the most

important European Union legislation and policies regarding consent management and discuss

current implementations of consent management architectures, respectively.

2.1 Blockchain

Blockchain is a cryptographically secured distributed ledger [N+08, Bec18, DLZ+18, Und16,

Pec17, Her19, XPZ+16] that uses a consensus mechanism to keep consistency, whenever a new

transaction needs to be validated, and is maintained by all the nodes within its network. On

the other hand, the name Blockchain can also be used as a tamper-resistant database that is

consistent across a large number of nodes. One of the objectives of the blockchain technology

is to remove the middle-man that is present in all kinds of transactions. Therefore this network

5

does not rely on any central trusted authority to keep on running.

There are two main types of blockchain in regard of their access scope: public and private

[DLZ+18, Pec17]. The main difference between a public and private blockchain is the level of

access granted to its participants [Her19]. Public or permissionless blockchain can be accessed

by anyone with an internet connection and are behind most of today’s digital currencies. This

means that anyone can create a personal address, begin interacting with the network and leave

the network at anytime, if they wish to. In order to add new entries to the ledger there are

consensus protocols [Cor19] that are responsible for choosing the next block for the blockchain.

A consensus protocol is distributed algorithm used by a set of computers (nodes) to reach

agreement on a value [Cor19]. Since these networks are open to the public, having a combination

of economic incentives and game theory are a vital factor to help ensuring its participants behave

properly and do not attempt to cause any harm to the network or its participants. Game theory

is behind the execution of most consensus protocols with the most common ones being Proof of

Work [Pec17] and Proof of Stake [KN12].

On the other hand private or permissioned blockchains have restrictions on who can join

and participate in the blockchain. In these cases the owner of the blockchain must act like

a gatekeeper in order to enforce some kind of access control policy, enabling them to control

who has access to write operations on the blockchain and who has permissions to read the

information contained in the blockchain. Private blockchains, on the opposite side, do not need

any kind of incentive or rules in order to prevent their participants misbehaviour. Given the

fact that its participants are known a priory (we know the mapping between user’s and their

blockchain account), if some users were to behave poorly they could be easily identifiable and

would, eventually, suffer the consequences of their misbehaviour.

A consensus algorithm is a procedure through which all the participants of the blockchain

network reach a common agreement about which block should be added next to the blockchain

[DLZ+18]. In a way, consensus algorithms achieve reliability for the blockchain network and

establish trust between unknown participants in a distributed computing environment. Essen-

tially, the consensus protocol makes sure that every new block that is added to the blockchain

is the one and only version of truth that is agreed upon by all the nodes in the blockchain.

There are two main data structures in the blockchain: transactions and blocks. The former

is a piece of data representing an atomic event that is allowed by the underlying protocol of

the blockchain. This event could represent a variety of actions, if we think of the blockchain

as a distributed ledger that keeps a record of who owes who how much then a transaction is a

payment but if we think of the blockchain as a data structure then a transaction is just an event

6

that updates the data store. The latter is simply a collection of multiple transactions that are

aggregated together by the miners.

As mentioned above, miners are responsible for collecting transactions that were previously

sign by a user’s wallet and construct their own block of transactions. Miners can select which

transactions to include on their block, from a pool of unconfirmed transactions on the network,

that are still waiting to be processed. Afterwards, in order to add this block of transactions to

the current blockchain a miner has to find the solution to a cryptographic puzzle (this is the

proof of work). It is important to notice that every miner will have a different problem to solve

based on the block they built. These problems are all equally hard to solve and consist of finding

a hash that starts with an X given number of consecutive zero’s. This hash is calculated based

on the hash of the previous block, plus the transaction data that is present on the block itself,

plus a random nonce that has to be generated by the miner. Since the hash of the previous

block and the transaction data is constant, miners have to generate multiple random nonces in

order to find one that, together with the rest of the block data, solves this problem.

This is the process referred to as mining. Once a miner has solved this cryptographic puzzle

it broadcasts to the entire network its block of transactions along side the solution it found.

Finally, a consensus protocol is executed and once there is an agreement between nodes, this

new block is added to the current blockchain giving an incentive, usually in the form of a crypto

currency, to the miner who added the new block to the blockchain. Proof of work as described

above require that a miner invests both time and computational resources, which represent an

electricity cost in order to have a chance at winning the race versus other miners. For this reason,

proof of work is seen as a countermeasure method that prevents attackers from disturbing the

normal flow of the blockchain network.

Given the fact that miners are competing against each other to see who can first solve the

cryptographic puzzle and add a new block to the blockchain network, sometimes there can be a

“draw”, where two or more miners find a solution at nearly the same time. In these cases, the

entire network might not agree on the same choice of the new block. When such event happens

we are in the presence of a fork. Usually this situation arises because it takes some finite time

for the information to propagate in the entire blockchain network and hence conflicted opinions

can exist regarding the chronological order of events. These forks resolve themselves when one

of the chain dies because, eventually, the majority of the full nodes will choose the other chain

to add new blocks to and sync with.

The most relevant threat to a blockchain network is the 51% attack [ABC17], where more

than half the network power is concentrated in a single entity. This entity can be either a single

7

person (node) or a collaboration between users such as mining pools, where a set of users come

together in order to solve the cryptographic puzzle faster by applying a divide and conquer

strategy and thus, splitting the rewards once they have successfully mined a new block. Having

51%+ of the network power allows this entity to alter the consensus rules as it sees fit, which

could lead to a monopoly of the network, therefor defeating the main purpose of the blockchain

technology – decentralize services.

There are two main types of nodes in any given blockchain: full nodes that consist of a full

copy of the entire blockchain since the genesis block and lightweight nodes that only maintain a

copy of a couple blocks of interest to them. When making decisions for the future of the network,

full nodes are the ones that vote on proposals. Miners can be either a full node themselves or be

a lightweight node and receive data from other full nodes on the network, in order to know the

current status of the blockchain and the required parameters for the next block. Since they must

verify that a given transaction is valid before appending it to the block they are assembling this

requires miners to access the entire blockchains from the time of the genesis block in order to

guarantee that a given transaction is valid (that a given person A has indeed the amount that

they are trying to transfer to a person B)

In summary, a blockchain can be seen as a series of consecutive blocks that are linked to one

another via a cryptographic hash. In other words every block has a hash based on the hash of

the previous block plus the information that is contained on itself, this way should a block that is

already within the chain be altered all subsequent blocks would become invalid, since this altered

block would have a different hash therefore making every subsequent block also have a different

hash. It is also important to mention that a copy of the same blockchain is spread among a

vast number of nodes. This two properties together are behind every blockchain’s strong tamper

proof resistance characteristic. Considering that, in order to alter the information present in

a single block, which has already been incorporated deep in the blockchain, not only does an

attacker have to calculate every subsequent block’s hash but also convince the other nodes that

they possess the wrong copy of the blockchain. This means that transactions contained on a

block that is deep within the blockchain can not be modified or deleted. If a user wants to

update the information of a given transaction they must create a new one and append it to the

end of the blockchain.

2.2 Ethereum

Ethereum is an open software platform based on blockchain technology that enables developers

to build and deploy decentralized applications with a built-in Turing-complete programming

8

language [LCO+16, DAK+16, BP17, Sza97]. On the Ethereum blockchain, Ether is the cryp-

tocurrency that fuels the network. Apart from being a currency, Ether is also used by people

on the network to pay for code execution (transaction fees).

In other words, Ethereum is a distributed public blockchain network [B+14] that focus on

running code for any decentralized application that is deployed on its network [Dan17]. In order

to do this, users have to write smart contracts [Pec17] – agreements between mutually distrusting

participants, which can also be seen as computer programs that are deployed on the Ethereum

blockchain and have their correct execution enforced by the consensus protocol of the blockchain.

In Ethereum, smart contracts [DLZ+18] are identified by an address therefore, when a given user

wants to invoke a certain smart contract they have to send the transaction to that contract’s

address. Apart from having a unique address each smart contract also holds some amount of

virtual coins (Ether) and, each single one of them, has its own private storage. Guaranteeing the

correct execution of smart contracts is a necessity for achieving their effectiveness. Avoiding to do

so would mean that an attacker could tamper with the contracts execution and therefore, redirect

money from a legitimate user’s transaction to oneself [ABC17].The code behind Ethereum smart

contracts is a low-level bytecode language usually called Ethereum virtual machine (EVM) code.

Users, on the other hand, can write smart contracts using a high-level programming language

called Solidity which is compiled into EVM code before executing the smart contract [DAK+16].

As in any other public blockchain Ethereum also needs to have a method of rewarding miners

for they computational effort when mining new blocks [BP17, Dan17]. In order to achieve this,

Ethereum uses the concept of Ethereum gas. Ethereum gas is a unit that measures the amount

of computational effort that it will take to execute certain operations. Every single operation

that takes part in Ethereum requires some amount of gas, be it a transaction or a smart contract

execution. Miners get paid, as a reward, a certain amount of Ether based on the gas it took for

them to execute a given operation.

It is important to understand that gas is simply a unit for measuring the cost of a transaction.

Gas is the amount of computational power required while Ether is the currency used to pay for

that gas. There is no fixed price for conversion between gas and Ether, it is up to the sender

of a transaction to specify the gas price that they are willing to pay for the execution of their

transaction. On the other hand, it is up to the miner to verify and include on their block any

transactions they want. With this being said, miners usually try to include first transactions

that specify a higher gas price when compared to the average gas price of the network. Since

gas price is not fixed, it can also increase and decrease according to the network traffic on the

moment a transaction is created. Gas price goes up during times of high network traffic, since

9

there are more transactions competing among each other to be included in the next block and

equivalently, gas price goes down during times of low network traffic. Inside this concept of

Ethereum gas, there is also the concept of gas limit and a refund mechanism that enables users

to get their transaction fees back, in case something goes wrong during the execution of a smart

contract or the transaction itself. Gas limit refers to the maximum amount of gas the sender is

willing to pay to get his transaction included in a block. Miners as a counter-measure against

resource exhaustion attacks will stop executing a given transaction the moment it run out of

gas. This means that every smart contract execution is finite thus, even if there is an infinite

loop inside a certain smart contract the operation will eventually run out of gas and it will be

aborted. In these cases, the operation that ran out of gas is reverted back to the original state,

before it has started and the operation fee is not refunded to the operation generator, since the

latter must sill pay the miner the fee for their computational costs. On the other hand, if there

is any gas left over, it will be refunded to the operation generator.

2.3 Enterprise blockchain

The enterprise blockchain concept has been developing over the past few years [Pec17]. When

blockchains first appeared, there were only public blockchains and these networks would be

deployed in unsafe environments where any user could attempt an attack to exploit both these

networks and other users. At this point of time, it was unthinkable that this technology could

have any possible applications other than cryptocurrencies.

Over the years and with the increasing popularity of this new technology, companies started

applying the concept of public blockchain on their own internal communities creating the first

private blockchain networks [Pec17]. These blockchain networks, also known as enterprise

blockchains [RBBM19] had a new feature – the need to have a strong consensus protocol and

economic incentives were not a must but rather an option. The first permissioned blockchain

to appear was R3 [BCGH16] which consisted of a consortium formed by a group of financial

institutions who aimed at improving the efficiency of payments between banks. Due to this

approach, the belief that blockchain usage was only to create cryptocurrencies started fading

away giving opportunity to the rise of new concepts where blockchains could be applied on. The

two most popular permissioned blockchains are Hyperledger Fabric (HLF) [ABB+18, Cac16] and

R3.

Hyperledger Fabric is a modular permissioned blockchain platform that allows several well-

known implementations of different components (such as ordering and membership services), to

be easily plugged in a blockchain system. The ordering service is responsible for creating blocks

10

for the distributed ledger, as well as the order by which blocks are appended to the ledger.

It uses a pluggable consensus component which in the current release supports three different

implementations for the ordering service:

• Solo – In this implementation only a single node is used for ordering. As a result, this

implementation is not fault tolerant. For that reason, Solo implementations should only

be considered for testing purposes.

• Raft – This implementation is a crash fault tolerant (CFT) ordering service based on an

implementation of Raft protocol [OO14]. It follows a “leader and follower” model, where

a leader node is elected and its decisions are replicated by the followers.

• Kafka – This implementation is similar to Raft as it is also a CFT implementation that

uses a “leader and follower” node configuration. Kafka utilizes a ZooKeeper ensemble for

management purposes rather than the Raft protocol approach.

Once a block is appended, the decision is final, so the block cannot be replaced or modified.

HLF also supports the execution of non-deterministic smart contracts (called chaincode), that

are executed and validated by the endorsing peers, who maintain a ledger, a state database and

follow the endorsement policies.

The increasing popularity that enterprise blockchains have gained over the years has resulted

in companies who already had a certain business area of operating to expand their services in

order to also include blockchain related products. On the other hand there are also some entities

that have been founded to exclusively serve the enterprise blockchain market. These entities are

usually small start-ups whereas the former tend to be larger-scale corporations originated from

other industries. It should also be noted that the most significant part of enterprise blockchains

are related to the finance and insurance department which could mean that this technology is

not yet as versatile as one could imagine. Surprisingly as it might seem, the vast majority of

enterprise networks are designed for shared use between different, non-affiliated entities, which

leads to a greater and simpler service exchange method that enables these organizations to thrive

on their business’s market, by giving a greater access to user related information for instance.

2.4 Hyperledger Besu

Hyperledger Besu is an open source Ethereum client implementation built for enterprise use.

Besu can operate on the Ethereum public network or on a private permissioned network and it

11

includes several consensus algorithms such as proof of work (PoW), proof of authority (PoA)

and Istanbul Byzantine fault tolerance (IBFT) [SHW19].

Depending on the type of blockchain Besu is being used with, a different consensus protocol

from the previous list may be applied to better serve the requirements of that given blockchain

environment. For instance, PoW consensus is usually used on the main Ethereum blockchain

when mining is required but, on a private permissioned blockchain, where participants are

known to each other and a certain level of trust exists between them, a PoA consensus protocol

is preferred. On the latter, IBFT is an example of a PoA consensus protocol that uses approved

accounts as validators. These validators are responsible for creating appending blocks, one at

a time, and for voting to add or remove validators from the approved accounts list. Blocks

in IBFT protocol are final, which means that there are no forks and any valid block must be

somewhere in the main chain. In order to avoid a faulty node from generating and appending an

invalid block, each validator can only append new blocks when it has received 2F+1 signatures

from other validators confirming that the block is indeed valid and can be appended to the

main chain. These signatures are also written on the block’s header before inserting it into the

current chain. As it is, this approach could cause problems on block hash calculations since the

same block from different validators could have a different set of signatures. This would cause

the generation of different block hashes for the exact same block given that [signature one] +

[signature two] + [signature three] + [block transaction] has a completely different hash than

[signature two] + [signature three] + [signature one] + [block transactions].

Being an Ethereum client, Besu contains:

• An execution environment for processing transactions in the Ethereum blockchain

• Storage for persisting data related to transaction execution

• Peer-to-peer networking for communicating with the other Ethereum nodes on the network

in order to synchronize state

• APIs that allows application developers to interact with the blockchain

2.5 Blockchain security

When it comes to blockchain security there are a couple of terms that are important to un-

derstand such as confidentiality, privacy, integrity and availability. These properties play a key

role when we want to meet the requirements that enterprise blockchains should have, in order

to satisfy their users needs. There are also a couple of frameworks that attempt to produce

12

more attractive features on top of the current blockchain technology, in order to make it more

appealing for companies to move a centralized service to a decentralized blockchain.

Given the four concepts mentioned above, it is important to understand the differences

between them in order to have a better grasp of the reasons behind the development of frame-

works that are used to deploy applications on top of existing blockchain networks [ZNP15].

Confidentiality can be seen, in the context of protecting data, as the process and methods be-

hind transforming a given piece of data so that it is possible to limit the access by third parties

[ZNP15]. This could involve hiding the transaction details, account and wallet balances, or any

relevant information that is important to keep secret from the general public and is present

within the blocks of a public or private blockchain network. Similarly, privacy also involves

protecting a piece of information that is involved within the blockchain network but in this case

the goal is to protect the identity of its participants rather than the information referring to the

transaction that is contained inside the blocks. As mentioned in Section 2.1, integrity refers to

the ability that a blockchain has to store its information in an immutable (extremely difficult to

tamper with) state. This is, usually, achieved through the consensus protocol used by a given

blockchain. Equivalently availability is also achieved due to the characteristics of the blockchain

network. Availability in the scope of a blockchain refers to its ability to withstand outages and

attacks. If a given network were to go down, then every single participant in that same network

would have to be offline by either having their machine not connected to the network or due to

a fault on their internet connection. Even though this might be possible to happen on small

blockchain networks this is nearly impossible to happen to a well established network that has

users all over the globe. Even if there were no power outages a given network could also have

a low availability if it is not able to handle a high amount of traffic and transactions while still

remaining functional and responsive to its users.

Despite existing several frameworks [KMS+16] that tackle these problems, the high require-

ments of confidentiality and privacy that are asked for, along side the high amount of transaction

per second which results in low availability are still the biggest drawbacks that prevent large

companies, such as banks, to move their services to a decentralized network.

There are a couple of companies that attempt to ease the burden of learning a new spe-

cific programming language for a certain framework by developing simple and intuitive internal

frameworks. Not only do some of these frameworks facilitate our everyday work but they also

are equipped with additional features that more experts users could exploit in order to pro-

duce better and more sophisticated applications and programs, that meet higher expectations

while still complying with the base requirements. As an example of such frameworks we have

13

Figure 2.1: Example of how mixers work. Alice wants to send Bob 3 coins

both Hawk [KMS+16] and Coco Framework [Mic17]. For the sake of achieving key enterprise

requirements, these frameworks take advantage of existing mechanisms and techniques that

mainly attempt to restrict access to blockchain networks while still maintaining a decentralized

approach. Some of most common techniques include the usage of mixing and zero knowledge

proofs [ZNP15, YGWO16].

Mixing can be seen as a black box service that requires a trusted third party where users

(senders) send their funds to [YGWO16], instead of the final owner (receivers). Afterwards,

these funds are partitioned into different random values mixed together with other funds from

another senders and sent at different times to different addresses all belonging to the same

rightful owner. This method helps obfuscate the path that a single transaction takes, making it

extremely hard for an observer to find the path between sender and receiver.

Given the extra confidentiality and privacy that mixers offer, they are usually used by ill

intended users who want to either cause any type of damage to a network and its users or

participate in illegal matters. Nonetheless there are several users who are only concerned with

their transaction’s privacy and therefore often end up resorting to mixers in order to achieve

their goal. This, however, may have negative side effects, for instance, a legitimate user may

use a mixer to send his funds to a friend and once the funds are inside of a mixer they may get

mixed with other funds from other users that might be using that very same mixer to perform

an illicit activity. This results in his friend receiving tainted funds. Figure 2.1 gives a visual

example of how mixers operate.

One other concept that is used to improve a users privacy inside a blockchain is zero-

knowledge proofs (ZKP). By applying this concept, a given party can prove to another that

a statement is true without revealing any information to the other participant. In practice, by

using a zero-knowledge protocol, users could send a transaction to a miner without revealing

14

Figure 2.2: Example of the cave’s layout

their account balance and prove to the miner that they in fact do hold enough funds to perform

the transaction they are requesting. With this method users can participate in blockchain net-

works without the disclosure of their funds to other participants. Hyperledger Fabric provides

anonymous client authentication with Identity Mixer by leveraging ZKP to offer anonymous

authentication for clients in their transactions.

The best analogy to explain zero-knowledge proofs is to resort to the cave example. Lets

suppose we have a cave that has 2 separate tunnels and they are connected through a magic

door that only opens if you now the secret password, Figure 2.2 shows an example of this cave.

This magic door is placed between points C and D. Alice wants to prove to Bob that she knows

the secret password, but she does not wish to reveal this secret to Bob. In this example, both

Alice and Bob are outside the cave on point A. Alice goes first inside the cave until she is by

the magic door (position C or D), and wait for further instructions from Bob. Bob then goes

inside the cave as well and stops by the intersection of both tunnels (position B) shouting which

direction he wishes to see Alice appear from.

After this step there are two possible outcomes, Alice is either on the right side of the magic

door and just walks to meet Bob or Alice is on the opposite side of the door and has to use the

magic password that only she knows to cross to the other side. Performing this process once

ends up proving nothing, since there is a 50/50 chance that Alice got lucky and was already

on the right side of the door, but if we repeat this experiment a couple times, eventually Bob

can be sure that Alice does indeed know the secret password and that it was not luck what

got her to appear from the correct side of the cave. This process is repeat indefinitely until

Bob is satisfied with the result, if this is done 10 times then the probability that Alice got

lucky is merely 0.098%. The higher the amount of times this protocol is executed the lower the

probability that Alice is lying. It is important to note that by applying this process there will

be always a probability, small as it might be, that the prover (Alice) got lucky on every single

attempt, this is known as the soundness error.

Zcash [HBHW16] takes advantage of the base concept of ZKP by implementing Zero-Knowledge

15

Succinct Non-Interactive Argument of Knowledge (zk-SNARK). The main improvement of zk-

SNARK when compared to the normal method of ZKP is its non interactive property. With

this approach, the verifier does not need to communicate with the prover in order to validate a

certain zero-knowledge proof.

HLF has a membership infrastructure that enables participants of the network to strongly

authenticate themselves in transactions. As a result, no unauthorized nodes can store the ledger

or issue transactions. HLF implements a channel architecture that can be used to offer privacy

for its participants. A channel, in this case, can be thought of as a virtual overlay blockchain

network, that sits on top of a physical blockchain network. Channels in Hyperledger Fabric are

configured with access policies that govern access to the channel’s resources, restricting access

to information exclusively within participants in the channel. Furthermore, HLF also offers

the ability to create private data collections, that allow a certain subset of organizations on

a channel, the ability to endorse, commit, or query private data without having to create a

separate channel. In other words, there is some data inside a channel that is accessible only by

a subset of entities within the channel. Data collections can also be used when transaction data

must be kept confidential from the ordering service nodes.

2.6 GDPR

The General Data Protection Regulation (GDPR) [LCT] is a regulation in EU law which states

how organizations should handle any type of personal data that they store or process by giving

rights to data subjects and duties to data holders. Its main objective is to give individuals a

greater control over their personal data that is held by third-parties. This regulation is followed

by every country, member of the European Union (EU), and protects personal data regardless

of the technology used for processing that same data. Countries may also have their own set of

data protection laws while still complying to the GDPR.

A piece of data is considered to be personal data if it has any type of information that

relates to an identified or identifiable living individual. Personal data also includes several

pieces of information which collected together can lead to the identification of a particular

person. Encrypting personal data or applying pseudonymization techniques in a way that it is

still possible to restore the original state of a piece of data, remains personal data and falls within

the scoped of the GDPR. On the other hand, anonymized data which can never be restored to

its original state stops being considered personal data and no longer falls under the scope of the

GDPR.

Among the several rules imposed by the GDPR, the right to access and right to erasure

16

(most commonly known as right to be forgotten) [Fin18] should be considered the ones with

most interest to both companies and clients that have their data held by a third party. On one

hand, these entities must fully comprehend the implications of this rights so that, in the event

that a given client evokes them, they are prepared to take the necessary measures to ensure

that everything is handle according to the law. On the other hand, clients should be completely

aware of their rights in order to prevent companies to take advantage of their data.

The right to access states that every subject has the right to inquire the controller whether

or not their personal data is being used, the purpose of this usage as well as other controllers

that might have access to this same data. Applying this article of the GDPR to blockchain

technology would raise serious questions to how would the conditions that are stated within the

article be imposed and verified by external parties. Supposing that a data subject can contact

a node, it would be impossible for that same node to verify the usage of a subject’s data.

According to the right to be forgotten controllers are obliged to delete any and every type

of personal data they own from a given data subject, should this request to do so. The same

article also states that controllers may refuse the deletion of data under certain circumstances

such as: deletion of personal records that would indulge in a loss (either monetary or infor-

mation wise) to the company, or result in a obstruction to justice or public interest. One of

the strongest properties of blockchain technology is its immutability meaning that, once written

on the blockchain, data can never be forgotten. This results in a failure of a straightforward

application of this right.

As mention on Section 2.1 Blockchain can be used as a decentralized database where its

participants can freely access the information contained there. Given the concepts of GDPR

and blockchains its plausible to think that these two concept are highly incompatible (especially

public blockchains) since data that is stored on the blockchain is exposed to anyone within its

network. This means that if there is any kind of personal data kept inside a blockchain this is

easily accessed and leaked, therefore going against the goals of GDPR leading us to conclude

that personal data should not be stored inside a blockchain.

2.7 Consent management

Consent management refers to a set of processes and policies a given company applies in order

to give their customers the ability to decide which user related information their are willing to

share and with whom. Since the GDPR implementation back in 2018, companies started giving

more attention to how they collect, store and use user related data [RDD+18]. Some enterprises

quickly started adopting their own consent management platforms that enable an autonomous

17

process to take place. These platforms are specially useful for large sites that have high volumes

of traffic since they allow its users to understand what data is being collected and for which

purposed they might be used for.

The vast majority of these platforms are centralized or, in other words, each company holds,

on their own, the power to manage both user information data and their consent [GZL+17]. As

it is, users have to trust that this third party will both follow what has been agreed on, and it will

not exploit in any way the information they possess. This may raise some serious questions on

whether or not some sites are trustworthy or not. One possible solution to this problem would be

to apply DLT (distributed ledger technology or blockchains) to enforce a consent management

platform where users are in total control of their consent management. The two main features

that make blockchain based solutions attractive are:

• Trust improvement – users no longer have to rely on a single point of trust, as mention

on Section 2.1, trust is now distributed among every single participant on the blockchain

network;

• Data immutability – one of the main features that blockchain technology brings is data

immutability since the consensus protocols that are used, ensure that once a given piece

of data inside a block is attached to the existing blockchain it is extremely hard to modify

that block. Data is distributed among several peers so, in order to change a block on the

blockchain, every single peer that holds a copy of the blockchain would also need to have

their copies modified.

There are a couple of systems that already attempt to solve this problem by applying

blockchain technology to develop a decentralized consent management platform [DRFM18,

ZNP15, YWJ+16].

2.7.1 Zyskind et al.

[ZNP15] presented a solution, specifically focused on mobile applications, that enable users to

manage their applications personal data sharing consents, using blockchain technology while

the data itself is stored off chain, on data silos. This solution was designed to be compatible

with any public blockchain without revealing their client’s personal information. Furthermore,

applications who implement this solution on their systems, are responsible for safely storing

their clients personal data. This framework, in order to ensure that users own and control their

personal data, recognizes the users as the owners of the data and the services as guests with

delegated permissions.

18

In order to achieve the aforementioned privacy, Zyskind et al. use compound identities –

shared identity for two or more parties, where some parties (at least one) own the identity

(owners), and the rest have restricted access to it (guests). Compound identities can be seen as

a set of public keys (from the owners and guests) as well as a symmetric key used to encrypt

(and decrypt) the data, guaranteeing that only the allowed parties have access to it. Since the

data is stored off chain, only a hash to that same data is written on the blockchain alongside

the permissions of the guest parties who can access that data.

Zyskind et al.’s solution accepts two new types of transactions: Taccess, used for access control

management; and Tdata, for data storage and retrieval. Taccess is used to configure the system

access policies whenever a new users joins the network. Tdata is used to send data collected by

the user’s phone to the blockchain. This data is then stored off-chain while a pointer to that

same data is written on the public ledger (the pointer is a hash of the data). This hash allows

accessing parties to verify that the data has not been tampered with.

Even though this solution tackles some of the main problems regarding data storage and

users consent management, by enabling users to be fully aware of which data has been collected

about them and by which service providers as well as how it is being used, this approach lacks

when it comes to processing data. In order to process large volumes of data, there is a need

to access a vast variety of permissions from a single client, this makes processing data from the

the data silos very impractical. Another drawback in this solution is related to the GDPR right

to be forgotten, as it is, once a service queries a piece of data, it could store that data and use

it for future analysis without the user’s consent. This means that untrustworthy parties that

might, hold user information on their own storage can still profit from that data without the

user’s consent.

2.7.2 Healthcare Data Gateway

Yue et al.’s solution for health care consent management [YWJ+16], enables patients to own

their personal data as well as control who has access to their data, without compromising the

patients privacy. In order to tackle the problem of having data from the same patient spread

among several institutions, this solution stores every EHR on the blockchain. Given the fact

that data is stored on the blockchain and, in order to ensure the desired privacy to its users, all

data that is written on the private blockchain cloud must be first encrypted.

The proposed solution, HDG – Healthcare Data Gateway, consist of a smartphone App

which works as a gateway for its users to access the private blockchain cloud. This App is also

responsible for evaluating all data accesses, both incoming and outgoing ones, and determining

19

whether or not a certain user is allowed to access the requested resource.

This solution is divided into three layers. First we have the storage layer that is responsible

for providing a scalable, secure, highly available and independent storage service for healthcare

data. Then there is a data management layer which is compromised of a set of individual HDGs

that are connected and work independently from one another. The HDGs that are present in

this layer work as a firewall, by executing access control policies, and as a database manager,

by performing queries to facilitate the cloud accesses. Finally there is the data usage layer that

represent all entities that use patients healthcare data stored on the private cloud.

HDG also tackles the problem of having different kinds of data (records, text, images, etc.)

stored on the same system by designing a schema where each patient has a single table to store

all their medical records. When querying for data, participants who fall under the data usage

area, have to go directly to the patients table before specifying which type of data they which

to retrieve.

This approach as it is, may lead to problematic situation on two different matters. Firstly, if

the medical data records are stored on the blockchain then the information contained on those

records could be accessed by anyone with a copy of that blockchain. Should this information be

compromised by an adversary and its contents made public, other users could run supervised

algorithms on that same data in order to profile users and related those same profiles which

could eventually pin point to a certain patient medical records removing the provided privacy.

Secondly, in order to store the medical records, and given the current increase in the amount of

information about e-Health that is being registered every year, there could be incompatibilities

between the block sizes and the amount of information that has to be store for each patient,

which may lead to a point where each block can only hold information for a single patient,

making it impractical to store data for a large community of users.

2.8 Summary

In this chapter, we started by explaining the base concepts of blockchain technology. We then

continued, by introducing Ethereum – a global, open-source platform for decentralized appli-

cations. Afterwards, we introduced the concepts of enterprise blockchains and discussed an

Ethereum client – Hyperledger Besu.

Later, we discussed confidentiality and privacy in blockchains and gave a brief introduction

to the GDPR, which states how organizations should behave when dealing with their client’s

personal data. Finally, we conclude this chapter by explaining the concept of consent manage-

ment and the reasons why it is important that companies and clients should be aware of its

20

existence. We also briefly discuss and analyse existing systems that already attempt to solve

the consent management issue by applying blockchain technology.

21

22

Chapter 3

Universal Consent Management

Platform

The Universal Consent Management Platform (UCMP) is a system that allows patients to decide

which medical personal information they wish to share and with whom. In order to achieve this,

each patient has to give his consent before any information is shared with a third party. This

consent happens in the form of permissions which is then written in the Ethereum blockchain

due to the strong immutability property that blockchains have to offer. UCMP implements two

main approaches that allow patients to easily manage their sharing consents: à priori consent

and consent on request. In order to ensure that no third party tampers with the patients’

consents, each patient writes his sharing preferences directly on the blockchain on a personal

smart contract.

3.1 Participants and Roles

Within the scope of this system there are several different participating actors where each is

assigned a role based on the service they provide. UCMP has two main active roles and another

passive role that does not directly interact with the platform. Each role represents a given group

of participants. The roles are the following:

• Patients or Data Owners – individuals that attend to a medical facility due to a disease

or clinical condition.

• Healthcare Institutions or Data Holders – hospitals, private clinics, medical centers

(any institution that directly interact and attends to patients healthcare needs).

• Data Consumers – organizations and companies that might need patient related data to

23

improve a patient’s treatment quality, to perform medical related research or simply use

that data to exercise their business activities.

Patients and healthcare institutions are the two active roles while data consumers, even

though being important for the use case, do not interact with UCMP directly. According to

the task each participant has, a different role with a given set of permissions is applied. Firstly,

there is the patients’ role where they are only allowed to perform read and write operations on

the blockchain as well as interact with the server in order to update their personal information

stored on the database. Secondly, we have the healthcare institutions’ role. This role has

the same capabilities of the previous one but, in addition, any actor associated with the role

may also query the server’s database to retrieve patient related information. This is used to

enable institutions to access specific medical records as long as the given patient has given

proper authorization. Furthermore, any actor assigned to this role may request access to a given

patient’s medical records regardless of their sharing consent, based on the circumstances.

This last role gives doctors the ability to access medical records when their patients are in

need of an urgent medical intervention and are unable to either communicate or give proper

consent. When doing so, an event is written down on the blockchain and an alert is sent to the

patient. If the patient is indeed in need of treatment and unable to alter their consent, doctors

can simply access it. On the other hand, if the patient is not in need of treatment and they

believe it was a mistake, and in order to prevent a privileges exploit, patients can simply revoke

the access and the doctor who made the request is unable to access their medical records. It is

important to note that every doctor will have their own set of private/public keys in order to sign

the access requests to patients data. This way, the transactions written on the blockchain, on

behalf of medical institutions, will have both the institution’s signature as well as the signature

of the requesting doctor.

3.2 UCMP operations

This Section describes and gives insights on UCMP’s functionalities based on the supported

system operations.

3.2.1 Login and authentication

All users have to create an account before using this platform. The account is used to authen-

ticate both patients and healthcare institutions. While healthcare institutions have to login

using a traditional user and password method, patients can take advantage of the Portuguese

24

citizen card features. This citizen card possesses both a public private key pair, that can be

used to digitally sign messages or documents, as well as a digital certificate (which contains a

corresponding public key) that can be used by patients to prove they are who they say they

are. UCMP also takes advantage of another technology called Chave móvel digital 1 which can

be used instead of the Portuguese citizen card to authenticate a given user remotely. Firstly,

when creating an account, each patient has to decide which type of account they wish to create

- Custodial or Non-Custodial:

• Custodial – the patient trusts our platform to generate, store and manage their Ethereum

account keys.

• Non-Custodial – the patient is the sole responsible for managing their Ethereum account

keys.

These two account types exist to facilitate the introduction of blockchain concepts to patients

that wish to use UCMP to manage their consents but, due to lack of knowledge, are not familiar

with how blockchains work or simply do not wish to safe keep their Ethereum key pair. Should

a patient choose a custodial account, UCMP’s server will generate a private/public key pair and

directly store it on the database. Before storing the key pair on the database, the private key is

encrypted with a secret known only to UCMP.

On the other hand, if a non-custodial account was chosen, patients have to make sure that

they have an Ethereum account (EOA or Externally Owned Account that represents a normal

Ethereum address). Afterwards, patients have to authenticate themselves before the Portuguese

government using Chave móvel digital or their citizen card, in this process, after a successful

authentication, each patient will receive/generate a token that can be used by third parties to

verify their identity. To complete their registry in the management server, patients will be asked

to create an account with an username and password. Finally, a message will be sent over to

the server, this message contains three attachments:

• Firstly, some information contained within their citizen card (name, age, gender, id, NIF

- número de identificação fiscal);

• Secondly, the token that they obtained during their authentication with Portuguese gov-

ernment which will be used by the server to verify their identity;

• Finally, if the account type was Non-Custodial, the public key that they are going to use

in order to access the blockchain. On the other hand, if the account type was Custodial,

1https://www.autenticacao.gov.pt/a-chave-movel-digital

25

there is no need to send this information since the public key is already stored on the

database.

The information contained within the citizen card is sent in order to enable healthcare

organizations to query the database when they wish to access/request access to a given set

of medical records. Similarly, the Ethereum public key of each patient has to be sent to the

database in order to create a mapping between a given patient’s public key and the information

contained inside their citizen card. This enables healthcare organizations and companies to

query for specific medical data, belonging to one of their customers. For instance, an insurance

company could ask for medical records of one of their patients to verify that they indeed have

a certain medical condition.

Should a patient with a non-custodial account type lose his private key, they also lose access

to their smart contract, therefore making it impossible to further set consent permissions and

alter previous consent decisions that have been made. This happens because the patient’s smart

contract that is deployed on the blockchain, when a new patient registers in UCMP, has a

contract owner associated with it. Only the contract owner may alter the consent permissions

within that smart contract. To tackle this problem, UCMP offers an option of setting a new

private key as the new contract owner. In order to do so, a patient has to authenticate themselves

on UCMP using their Portuguese citizen card or their chave móvel digital. Afterwards, and only

if the authentication is successful, the patient is requested to provide a new Ethereum address

which will be associated as the new contract owner of their smart contract. Finally UCMP sends

a transaction to the blockchain requesting that the provided address becomes the new contract

owner and removing the old address from the smart contract. After this point, only the new

key pair is able to modify the contract permissions.

Figure 3.1 illustrates the data flow process during an access made by a patient, which can

either be from a first time accessing patient or from an already registered patient.

3.2.2 Access Request to Personal Information

In order to obtain patients’ medical records, a given data consumer has to perform a request to

the data holder that is holding them. Afterwards, the data holder has to use UCMP in order

to write an access request on each relevant data owner’s smart contract. After the request is

written on the blockchain, the next time a data owner signs in on UCMP, a new consent request

will pop up. The data owner now has to decided whether or not to accept the sharing request

that is being made. These requests shown to the data holder with the following parameters:

• Data of Request – the date at which the request has been written on the blockchain

26

Start

Patient visits the
website

Registered
Patient?

Deploy personal
smart contract

Authenticate using
Chave Móvel Digital

Show management
platform menu

Obtain citizenship
data

First time access?

Wait for confirmation

End

Yes

No No

Yes

Figure 3.1: Flowchart representing the patient’s client behaviour when attempting to interact
with the system

• Data Consumer – the institution name with whom the data holder wishes to share data

• Data Holder – the Institution name that is holding medical personal data

• Permissions – a list of attributes that will be shared if the data holder gives consent

• Description – which purpose will those attributes be used for

Once a data owner makes his decision, they have to sign a transaction using their Ethereum

account private key and send it to their clients’ smart contract. The transaction contains meta

data representing that decision.

Data holders may check, at anytime, the status of their request, where they can get infor-

mation about how many data owners have already gave their consent as well as how many are

still awaiting a response or have been declined. The data holder may also export a CSV file

containing the data owners’ ids that have given their sharing consent. With this information

they can send the requested medical documents to the data consumer(s).

Since each data owner has their own smart contract and every request that is written on any

smart contract has the data holder’s and data consumer’s name, should any data owner decide

to revoke their sharing consent of a given request, it is possible to look up on the blockchain for

who is holding what information about whom. This was designed with the purpose of notifying

27

data consumers, who hold a copy of a certain medical record from data owners who do not wish

to share their personal information any longer. This enables data consumers to be notified right

away and allow them to take the appropriate measures in order to delete those same records.

Figures 3.2 and 3.3 illustrates how the involved parties should behave when they receive a

request to share medical records. The former represents the access protocol of a data holder

while the latter represent the access protocol of a data owner.

Start
Data Holder receives a

request to share medical
personal data

Data Holder uses UCMP to
write an access request on

the blockchain

Send the requested
data Deny access

End

Data Holder waits for the
Data Owners' response

Has the data Owner
given their consent?

Yes

No

Figure 3.2: Flowchart representing the process behind the access protocol from a data holder
perspective

3.3 Architecture

UCMP can be deployed on any blockchain that runs the EVM (this could be Ethereum main

net, Ethereum Classic or Ropsten for instance) as well as on private blockchains based on clients

that run EVM (such as Hyperledger Besu or Ganache for example). UCMP is composed of four

main components:

• Blockchain – responsible for storing the patients’ consents as well as keep a log of all

changes that are performed.

28

Start Data Owner uses UCMP to
view all existing requests

Allow access

Deny access

End

Yes

No

Data Owner
wishes to alter

a request's
status?

Request status =
Pending?

Request status =
accepted? Revoke access

Data Owner
wishes to share

their PII?

Data Owner can not
alter request status

Yes

Yes

YesNo

No

No

Figure 3.3: Flowchart representing the process behind the access protocol from a data owner
perspective

• Web App – responsible for allowing each participant to interact with the blockchain,

database and web server.

• Database – responsible for storing patient related personal information as well as a map-

ping that identifies each patient on the blockchain.

• Web Server – responsible for reading and writing information on the database. The Web

Server acts as a bridge, connecting the Web App and the Database.

Even though UCMP helps institutions stay GDPR compliant by giving data holders a means

to save their patients consents in an immutable form, each institution is still responsible for

storing their patients medical data records as well as ensuring that they successfully reach the

other party once an access is requested. Figure 3.4 illustrates UCMP’s overall architecture.

The web app serves as the interface between the end users and the blockchain by reading the

information written on the blockchain and then by presenting it in a simple manner. Through the

web app, data holders may request and verify which patients have given their sharing consents

while data owners are able to manage their consents.

29

Data Consumers

Ethereum BlockchainUCMP

Web App

Database

Web Server Smart Contract

Users

Healthcare Institutions Users/Patients

Figure 3.4: UCMP’s Architecture

The web server facilitates institution to patient and institution to institution communica-

tions. Since institutions do not know the mapping between the account address used to sign the

sharing consent and the patient’s ID that a given consent belongs to, the web server is respon-

sible for reading and sending that information from the database to the web app. With this

approach the web server and the database act as a directory service which stores non medical

patient related information.

For instance, if a data consumer wishes to request access to a single patient medical records,

they only need to know that patient’s ID. Afterwards the web server will retrieve that patient’s

account address from the existing mapping that is written on the database. Finally, the consent

request written on the blockchain will be made using that patient’s account address. It is

important to note that before answering the request, the server is also responsible for retrieving

the necessary information from the blockchain in order to stay compliant with the patients

consent preferences. Every participating party can communicate with each other using the

blockchain.

In order to correctly identify the same patient between different institutions, UCMP uses a

global ID to reference each patient. The global ID used by our platform is the patient’s NIF

(número de identificação fiscal). The NIF is an ID that every Portuguese citizen has in order to

be identified by the country’s tax authority. Furthermore, each citizen can only have one NIF,

making NIF an unique ID.

UCMP’s architecture can be divided into three separate layers. The first layer is related

30

to the network and how each node exchanges messages with each other. The components of

this layer are also responsible for following Ethereum’s consensus protocol. The second layer

is responsible for the correct execution of the defined smart contracts, where all transactions

are executed, and for storing client related data. This layer consists of the blockchain itself.

The access policy will also be implemented in this layer and it is compromised by the public

address of each participant with permission to interact with the blockchain and by the addresses

of existing nodes on the network. Participants on the network will contact these nodes whenever

they wish to write a new transaction on the blockchain. Finally the third layer is composed by

UCMP as well as the blockchain’s interacting parties such as patients, healthcare institutions

and data consumers.

UCMP takes advantage of Google’s Backend-as-a-Service Firebase in order to implement

several of its components. Backend-as-a-Service is a cloud service model in which developers

outsource all the behind the scenes aspects of a web or mobile application so that they only have

to write and maintain the frontend. Backend-as-a-Service vendors provide pre-written software

for activities that take place on servers, such as user authentication, database management,

remote updating, and push notifications (for mobile apps), as well as cloud storage and hosting.

3.3.1 Blockchain

There are a total of three main smart contracts on UCMP that are responsible for implementing

the desired features:

• Identity Relayer – smart contract responsible for receiving, validating and rerouting a

relayed transaction to the appropriate user’s smart contract function.

• Smart Consent Management – smart contract responsible for storing all the informa-

tion regarding data owners. This smart contract also acts as a template when deploying a

new user’s smart contract.

• Smart Consent Management Factory – smart contract responsible for deploying a

new instance of the Smart Consent Management smart contract. When deploying a new

smart contract the patient’s address is passed down in order to set the owner of the smart

contract. With this approach each patient is the sole responsible for altering the consent

permissions of their smart contract.

Note that, upon first accessing our platform and given the fact that each patient is responsible

for managing their own smart contract, every time a new patient registers in UCMP a new Smart

Consent Management contract is deployed. This user’s smart contract is an exact copy of the

31

Smart Consent Management. Furthermore, the Smart Consent Management smart contract

inherits all the functions written on the Identity Relayer smart contract. Since the Identity

relayer is responsible for validating and rerouting the relayed transactions (transactions that

are sent by UCMP in the name of custodial users), this enables each smart contract to act

independently from a central smart contract.

Each data owner smart contract keeps a record of all existing permissions of that data owner,

as well as their current state. A permission can have four different states (Pending, Accepted,

Denied, Revoked) and only the smart contract owner can alter the permission status. New

permissions can be added to the smart contract by data holders. Data holders have to use

UCMP in order to submit a new sharing request that is saved on the blockchain as a permission.

The identity relayer exists in order to allow Custodial users to freely interact with the

blockchain without the need of having to pay ETH for their transactions. Since this type of

user is supposed to have little to no knowledge about blockchains, it is safe to assume that they

are also not familiar with crypto currencies and the need to pay for transactions. To tackle this

issue we use a meta transaction in order to write the Custodial users sharing preferences on the

blockchain.

A meta transaction is a type of transaction that is signed by a given key pair (in this case

the user’s key pair), but it is funded by a relayer. The relayer submits the transaction to the

network as if they were the original sender and pay for the gas fee. The destination contract

of the transaction, the Identity Relayer smart contract, can determine the original user, their

intent and can process the contract call accordingly. In order for this to work, when a Custodial

client wishes to write some data on the blockchain, they have to use UCMP to encode the

appropriate function call, retrieve a valid nonce by performing a contract call to the client’s

contract, generate a hash representing the transaction and finally sign the generated hash with

the client’s private key.

Afterwards this signed transaction is sent to UCMP’s backend server and submitted to

the identity relayer. Once the identity relayer receives the transaction, it verifies the client’s

signature along side the encoded function call and if everything is successfully validated the

encoded function call is executed by the client’s smart contract.

Figures 3.5 and 3.6 illustrate the process behind assembling and digesting a meta transaction.

3.3.2 Web App

UCMP’s web app can divided in three major components in accordance to their use:

• Login and Registration menu – menu responsible for retrieving personal data, such

32

Custodial user
login to UCMP

User decides to
"Accept "a given
sharing request

Start

UCMP encodes
the "Accept"
function call

UCMP retrieves an
apropriate nonce

from the blockchain

UCMP generates a
hash based on the
nonce and encoded

call

UCMP compiles a
transaction with the
encoded call, nonce

and signature

UCMP signs the
hash with the

client's private key

The compiled
transaction is paid

and sent to the
network by UCMP

End

Figure 3.5: Flowchart representing the the process behind assembling a meta transaction

as NIF and name, from each client upon a registration on our platform. This personal

data is then used to create a record on the database that allows UCMP to unequivocally

identify its clients. Furthermore, this menu is also responsible authenticating the clients

using firebase’s authentication feature.

• Data Owner menu – menu that is exclusively accessed by the data owners. The menu

allows its users to check the status of their permissions as well as modify any permission

that they wish to.

• Data Holder menu – menu that is exclusively accessed by the data holders. On this

menu data holders can perform new sharing requests to their patients as well as monitor

already existing requests.

Data Sharing Request

UCMP only allows data holders and data owners to interact with the system. With this being

said, data consumers may ask data holders to perform a sharing request using UCMP. This

sharing request may contain either one or multiple attributes related with medical personal

33

Relayed transaction
is received by the

client's smart
contract

Obtain the hash
from the values of

the submited
transaction

Start

Extract the
signature on the

hash, submited with
the transaction

Execute the
encoded function

call

Abort the
transaction

End

Is the
signature

valid?

Yes

No

Figure 3.6: Flowchart representing the workflow of the identity relayer

information as well as being performed to multiple data owners simultaneously. On a sharing

request data holders have to specify the following fields:

• Data Consumer – the institution(s)’ name(s) with whom the data holder wishes to share

data

• Attributes – a field representing all the attributes that are being shared (for example:

”Age”, ”Name”, ”Exams”, ”Medical Prescriptions”, etc.)

• Purpose of Use – the reason behind requesting access to those attributes (for example:

”Research”, ”Write a Report” etc.)

• Additional Comments – Any additional information that the data holder wishes to

share with the patient

• Data Subjects – the global id (patient’s NIF) of all data subjects that the data holder

wishes to request access (this field has to be submitted via a CSV file where each line

contains a single patient’s NIF).

34

Upon submitting a request, the information above is written on each data owner’s smart

contract. Furthermore, a general overview of the request is written on the database in order to

create a record of all requests that have been performed using UCMP. Data holders can then

check these permissions in order to know the overall status of the request.

When updating their set of permissions and, therefore, performing a write to the blockchain,

data owners will also request UCMP to update its own database with the status change that

has been performed. This way we can keep on the server’s database an overview of the total

number of permissions as well as their updated status. Data holders, by checking the overview

of a request, can visualise how many permissions have been accepted, denied and which ones

are still waiting for a clients’ response. At any time they wish to, data holders may also export

a CSV file containing a list of NIFs from all patients who have already accepted to share their

personal information. On the request overview, data holders may also access the patients’ NIF

that have revoked the sharing consent. This way they are able to take the appropriate measures

in order to guarantee that a client’s right to be forgotten is successfully met.

Managing permissions

Although UCMP is a consent management platform, when we wish to refer to any given consent

we often use the term permission. When a data holder proceeds to use UCMP in order to ask for

a sharing consent this is done by writing a transaction to the blockchain requesting the patient’s

permission to share a given piece of personal data. Therefore the term permission is often used

in place of the term consent.

Regarding permission management, UCMP offers its clients two different approaches. Clients

can choose, from a given set of permissions, certain fields that they are willing to share. Fur-

thermore, patients can also choose with which data consumers’ they are willing to share their

data based on the area of expertise. For instance, one client may decide that he wishes to share

his name, age and his medical records with any data consumer that is related with medical

research. In this particular case, when a data holder asks for the client’s sharing consent, and

if the data consumer is a company that performs medical research, the data consumer will get

immediate access to the patients personal data. In this process, two writes are performed to the

blockchain. One write is performed when the client decides his sharing preferences, while the

other happens when the data consumer gets access to the shared medical personal information.

In the latter, an event is issued on the blockchain, these events can then be checked at any time,

working as a history of past states of the blockchain.

The second permission management approach allows patients to receive sharing requests.

35

These requests are sent from data holders who wish to share their patients personal information.

When receiving one of these requests, patients can choose to either accept or deny the sharing

request. Either option will lead to a write on the blockchain, altering the state of a permission,

as mentioned on section 3.3.1. With this approach patients can decide, on the spot, whether or

not they wish to share their personal information with that given third party. Furthermore, if a

patient decided to accept the sharing request, he can always revoke the request at a later date.

At the moment of making a choice, UCMP gives patients information regarding:

• Date of Request – the date at which the request was made/written on the blockchain

• Data Consumer – the institution’s name with whom the data holder wishes to share

data

• Data Holder – the institution’s name who holds the given personal data

• Attributes – a field representing all the attributes that are being shared

• Purpose of Use – the reason behind requesting access to those attributes

• Additional Comments – Any additional information that the data holder wishes to

share with the patient

When data holders perform a sharing request, UCMP will first check if the involved patients

have already given permission to share the requested personal information with that given data

consumer. If this is not the case, UCMP will then give data holders the opportunity to write a

sharing request on each of the relevant patients’ smart contract.

3.3.3 Database

UCMP takes advantage of Google’s Cloud Firestore, that provides the app’s database. Cloud

Firestore is an non-relational database (NoSQL) that stores data in documents that contain

fields mapping to values. Those documents are stored in collections, which can be seen as

containers for those same documents. UCMP’s database has three collections:

• Users – This collection contains all the necessary information regarding the UCMP’s

users.

• Requests – This collection contains information regarding every sharing request that is

performed by the Data Holders.

• Vaults – This collection contains the public and encrypted private key of custodial users.

This key pair is used to access the blockchain.

36

Users Collection

The user’s collection has a record for every client that uses UCMP. Each record is represented

by an unique identifier that is automatically generated by Firebase when a client first registers

to UCMP. In addition to the unique identifier each record also stores the following fields:

• contractAddress – the contract address is saved in order to be provided to data holders

when they wish to perform a sharing request to a given client.

• email – the email is saved in order to send notifications to the client. One possible

notification could be when the user first registers to UCMP. Another notification example

could be when a client needs to change ownership of their smart contract, should they lose

their key pair.

• isCustodial – this field represents a bool and is used by UCMP to know whether or not

a given client is custodial or non custodial. This information is then used by the system

to determined which method to use during transaction signing.

• name – the name which is stored in this field is the one provided by the client during the

registration process. The name is then used when sending emails. After a user logs in to

UCMP the name is also displayed in a sidebar so that clients know which user is logged

in.

• nif – In this field there are two values stored. One is the NIF of a given client and the

other is a hash of that same NIF. The hash is stored in order to reduce the number of

function calls to Firebase’s cloud functions (these cloud functions will be presented and

discussed further ahead on Section 3.3.4). This hash is generated by converting the nif

(number) into a string, add salt and then interact the final string multiple times with a

hash algorithm.

• type – this field stores which type of user has been registered in UCMP – either a data

holder or a data owner.

• createdAt – this field is a timestamp that marks the moment a new user is created. It

can be used for audit purposes and to perform checks on the system consistency.

• updatedAt – this field is a timestamp that represents the last time a user record received

an update. One possible update that would trigger this field could be a change performed

on a user’s email address. This field can also be used for audit and consistency purposes.

37

Requests Collection

Request’s collection is composed of every sharing request performed by the data consumers. In

this collection each request gets attributed a random ID which is generated by Firebase, similarly

to the clients’ ID. Each record on this collection has to contain all the information regarding a

request that is performed by a data holder. In order to achieve this purpose the following fields

were created on the Cloud Firestore database:

• attributes – this field contains a list of all attributes that were written on each patient’s

smart contract.

• dataConsumer – this field refers to the data consumer that requested access to the

attributes mentioned on the field above.

• dataHolder – this field stores data regarding the data holder that placed the request. It

stores the name of the data holder as well as the unique ID that is generated by Firebase,

when the data holder registers to UCMP.

• purposeOfUse – this field stores the reason why a given data holder performed a sharing

request.

• accepted – this field stores a list of NIF hashes from all clients who have already given

permission to share their medical personal information, which was mentioned on the at-

tributes field.

• denied – similarly to the previous field, a list of NIF hashes from clients who have denied

the sharing request is stored on this field.

• pending – this field follows the same approach as the two previous ones but in this case

it stores information regarding clients who have a pending request.

• revoked – identically to the last three fields, revoked stores the hash of clients who have

revoked their sharing consent.

• createdAt – this field stores the timestamp at which the request was submitted by the

data holder. It also has the same purpose as similar fields on different collections – to

server as consistency checks.

• updatedAt – this field also stores a timestamp, except in this case, the timestamp is

updated every time a write is performed on the request. In other words, when the database

information is update, this field also receives an update on the timestamp. When a client

38

alters the state of their own permission request, for instance, they accept the sharing

request their NIF hash will go from the field pending to the field accepted, at this time a

write is performed on the database and the updatedAt field is filled with the timestamp of

that write operation.

The request collection was created in order to store relevant information, that can be used

to show data holders an overview of the status of each request they perform. Although most

of this information is also written on the blockchain, and given the fact that each request may

have thousands of patients involved, reading the data from several smart contracts at the same

time, would simply take too much time to become practical. To tackle this issue, not only

is the request information written on the database (such as attributes, purpose of use, data

consumer and data holder) but also four fields were created to store the different possible status

of a request. These fields are automatically updated by UCMP when a client accepts, denies or

revokes a request.

Since UCMP uses the Ethereum main net, a client with enough knowledge about blockchains,

transactions and meta data may also send transactions directly to their smart contract without

using UCMP’s web app. To prevent the inconsistencies that this action may result in, specially

on the requests collection at the database, UCMP performs daily checks on the information

written on the database. This happens during the times with less traffic so that the server

resources do not get consumed all at the same time, possibly leaving the platform with a higher

response time to its clients requests. With this being said, UCMP has a cloud function that

executes everyday during night time (where it is estimated to have fewer traffic). This cloud

function checks each request individually and verifies if the information saved on the database

matches the information written on the network. If there is a client that has indeed sent a

transaction to the smart contract without using UCMP then the cloud function updates the

database with the change that was performed on the blockchain.

A similar problem may also occur when a data holder wishes to export the CSV file containing

all the patient’s NIFs who have already accepted the sharing request. In this situation, if a client

has sent a transaction without using UCMP and the cloud function has not yet been executed,

there could be a missing NIF on the file (if the patient has decided to accept the sharing request)

or more problematic, there could be an extra NIF on the file (if the patient revokes an already

accepted request). In order to address this issue, when a data holder decides to export the CSV

file, the previously mentioned cloud function is called so that the file containing the patients

NIFs is up to date with the information written on the blockchain.

39

Vaults Collection

The vaults collection is used to store the key pair of UCMP’s custodial users. Since this type of

user is assumed to have little to no knowledge about blockchains and how they work, we decided

to store the key pair on UCMP’s side. With this approach we hope to reduce the barriers

between blockchain technology and end users.

In order to reduce the information saved on each record, this collection associates the ID

of the custodial user with their own record. In other words, each record is being identified on

the database by the user’s ID that they belong to, avoiding the need to write any additional

information on the record itself other than the key pair that is being stored. With this being

said there are only two fields on each record:

• accountAddress – this field contains the client’s public key that also serves as the account

address.

• encryptedPrivateKey – this field contains the client’s private key. This private key has

been encrypted before is was sent to the database.

The following section 3.3.2 gives more insights on how this key pair is generated as well as

the encryption performed on the private key.

Database Rules

Firebase Security Rules for Cloud Storage leverages a superset of the Common Expression

Language (CEL) that relies on match and allow statements that set a condition for access

at a defined path. These rules allow the specification of path based permissions that restrict

Google Cloud Storage requests to a certain user or type of users. Firebase Security Rules for

Cloud Storage ties in to Firebase Authentication for user based security. Furthermore, Firebase

Security Rules can also read the fields used in Cloud Storage and use it to grant role-based

access, for example.

Each database collection in UCMP has its own set of rules in order to provide strict access

control to the information that is written there. The rules specify which user or type of user

can read and write on any given record of each collection. Although every database has its own

set of rules, there is a global rule that applies to all collections - only authenticated users can

access the database. This means that UCMP’s web app can only retrieve information from the

database if the user who is performing the request has logged in beforehand.

When a user signs in UCMP, Firebase Authentication generates a token that poses as the

users identity within Firebase products. After a successful sign in, it is possible to access the

40

user’s basic profile information, as well as control the user’s access to data stored in other

Firebase products. We can also use the provided authentication token to verify the identity of

users in our own backend services.

The code bellow represents the security rules developed for cloud storage.

service cloud.firestore {

match /databases/{database}/documents {

match /vaults/{uid} {

allow read, write: if false

}

match /users/{uid} {

allow read, write: if request.auth != null

&& request.auth.uid == uid

}

match /requests/{uid} {

allow read, write: if request.auth != null

&& request.auth.uid == uid

}

}

}

The collection with the most sensitive information and therefore the most restrictive rules is

the vaults collection. Given the fact that it contains the key pair for every custodial user, only

UCMP’s cloud functions can read or write information on this collection, no user, regardless of

being a data owner or a data holder, can access the data on this collection.

Considering that, the requests collection stores information regarding data holders’ request,

the rules developed for this collection only allow a user which type is data holder to access the

collection. Additionally, in order to guarantee that the patients privacy is ensured only the

data holder who performed the request has read and write permissions over that same request.

Similarly, the users collection can only be access by the the own user and Firebase’s cloud

functions. By doing so, it is possible to restrict database access only to the necessary parties.

3.3.4 Web server

UCMP uses Firebase’s cloud functions in order to implement all the web server backend logic

needed to write and access data on both the database and the blockchain. These functions

41

are executed on Google’s servers when a function call is performed or when a certain event

occurs. One possible event that triggers a cloud function execution could be, for example, when

a document is created or updated in the database. Similarly, a cloud function could also be

trigger in response to the creation and deletion of Firebase user accounts. Furthermore, if there

are no events that suit our needs, Firebase also allows cloud functions to be scheduled and then

executed at specified times. Finally, the method that is more commonly used to trigger cloud

functions is calling the function directly from our app using the provided Firebase API. The

vast majority of UCMP cloud functions are trigger by a function call leaving only a few to be

trigger by events. Among UCMP’s cloud functions the most important are:

• createEthereumAccount – function responsible for generating an Ethereum key pair for

custodial users. The newly generated key pair is then sent to a collection in the database

where it is stored. Before storing the key pair in the Cloud Firestore database, the private

key is encrypted with a secret based on the users’ unique ID generated by UCMP plus a

given salt. This way we can ensure that two different private keys are not encrypted using

the same password.

• deployContract – function responsible for deploying a new Smart Consent Management

contract (user’s smart contract) on the blockchain. In order to deploy a new smart contract

that belongs to a single user, the web app has to pass down the user’s public key when

calling this function. Then, the public key is used to call the Smart Consent Management

Factory smart contract, which is responsible for deploying a new contract on the network.

Afterwards, the function writes on the user’s collection in the database, the public address

of the newly deployed smart contract.

• signEthereumMessage – function used to sign a transaction on regard of a custodial

user. The function execution is triggered with a call request, when a custodial user wants

to modify their sharing consent on a given permission. For that purpose, the user has

to submit a transaction to the blockchain which requires the cloud function to access the

database, so that an appropriate key pair can be retrieved. Afterwards it decrypts the

private key in order to sign the transaction that is being sent on behalf of the user and

finally returns the signed message to the user.

• relayTransaction – function responsible for sending a signed transaction to the database

on behalf of a user. Before submitting a relayed transaction, the cloud function has to

perform a contract call in order to obtain a valid nonce. The nonce is used to prevent

replay attacks, where the same message is sent more than one time to the network.

42

• checkExistingClients – function called when a data holder wishes to submit a new

consent request to the data owners. This function receives an array of user’s NIFs and

then checks the database for matches. The function returns to the data holder a list of

Ethereum public addresses belonging to the matches found. In other words, the function

checks which NIFs belong to existing UCMP’s users and returns their public addresses so

that a request can be written on each clients’ smart contract.

3.4 Implementation

UCMP’s components and functionalities were implemented in a prototype. For the smart con-

tracts, Solidity was used as the programming language while the web app was developed using

Vue.js. Solidity is an object-oriented, high-level language for implementing smart contracts and

is designed to target the Ethereum Virtual Machine (EVM). On the other hand, Vue.js is a

progressive framework for building user interfaces. Vue is designed from the ground up to be

incrementally adoptable and has its core library focused on the view layer only.

UCMP’s smart contracts were not deployed directly on the Ethereum main net given the

fact that Ether was required to send transactions to the blockchain. Instead, we decided to use

Ropsten test network considering that Ropsten, from all the available test networks, is the most

similar to Ethereum due to the fact that both use a proof of work consensus mechanism. In

addition to deploying on Ropsten network we also deployed on Rinkeby test network for testing

purposes. With these two deployments we were able to compare network availability as well as

latency between requests.

During the practical implementation of the proposed solution, we also took advantage of a

few libraries and tools to ease both the buildup of the smart contracts as well as the buildup of

the web app and cloud functions. The main libraries and tools used were the following:

• Ganache – Ganache is a personal blockchain for rapid Ethereum and Corda distributed

application development. Ganache was used across the entire development cycle, enabling

us to develop, deploy, and test our dApps in a safe and deterministic environment. Al-

though Ganache provides its users with a desktop application – Ganache UI, we decided to

use the command line tool – Ganache-cli in order to simplify the development stage of our

proposed solution. The main reason behind choosing ganache-cli over Ganhache UI was

due to the fact that we just needed a local blockchain to test and deploy smart contracts,

the extra features that Ganache UI had to offer were not mandatory and would only add

complexity levels to the developed prototype.

43

• Truffle – Truffle provides a development environment, testing framework and asset pipeline

for blockchains using the Ethereum Virtual Machine. Truffle was responsible for compil-

ing, deploying and testing the developed smart contracts on both ganache and Ropsten

test network.

• OpenZeppelin – For the smart contracts, we used OpenZeppelin, a library for secure

smart contract development. This library provided our system with cryptographic func-

tions that were used to verify signatures, decode function calls and produce and verify

hashes. This library was most used when developing the Identity Relayer smart contract,

given the fact that this smart contract was responsible for validating transactions to ensure

that each client was the sole responsible for managing their own smart contract. From the

eligible hash algorithms accepted by National Institute of Standarts and Technology, we

decided to use SHA3-256.

• Firebase – As mentioned on the previous sections, Firebase was used to provide Authen-

tication, the Cloud Firestore database, and cloud functions, that supply UCMP with a

simple user-password authentication, storage and backend services respectively.

• Infura – In order to connect UCMP to the blockchain, the developed cloud functions use

Infura as a service provider. Infura is a hosted Ethereum node cluster that allows its users

to run their applications without the need to set up and manage their own Ethereum node

or wallet. For that end, Infura provides its users with the necessary tools and infrastructure

to perform simple connections to the Ethereum blockchain.

• MetaMask – Metamask is a wallet which is available as a browser extension and as a

mobile app. MetaMask provides a key vault, secure login, token wallet, and token exchange

and was responsible storing an Ethereum key pair and for signing and sending transaction

to both Ganache generated blockchain and Ropsten test network.

• Web3 – web3.js is a collection of libraries that allow developers to interact with a local

or remote Ethereum node using HTTP, IPC or WebSocket. Web3 was used during the

development of UCMP’s web app, being responsible for connecting UCMP’s users and

cloud functions to a service provider such as Infura and Metamask as well as connecting

UCMP to ganache and Ropsten test network. Furthermore, web3 was also used by a cloud

function to generate the Ethereum key pairs of custodial users as well as generate the

hashes that would be attached to the transactions sent by clients. The hash algorithm

used by web3 was SHA3-256 since it had to match the algorithm used by OpenZeppelin

to enable validation. If a different algorithm was used, the hashes produced over the

44

same piece of data would not match and no transaction would be accepted by the smart

contracts.

• Vuetify – In addition to Vue, Vuetify was also used to facilitate the interfaces’ building

process. Vuetify is a Vue UI library that provides reusable components for web and mobile

applications. Vuetify material design framework is built on top of Vue.js and was developed

exactly according to material design specification.

• CryptoJS – CryptoJS is a growing collection of standard and secure cryptographic al-

gorithms implemented in JavaScript using best practices and patterns. CryptoJS was

used to encrypt the web3 generated private keys. The encryption algorithm of choice was

AES-256, given that we needed a symmetric encryption algorithm approved by National

Institute of Standarts and Technology (NIST) and AES was one of those. The 256 bit

version was chosen due to CryptoJS functionalities where it generates a 256-bit key from

a given passphrase. This passphrase is created by UCMP by performing a hash to the

string resultant from merging a client’s UID with a given salt. The goal of this process is

to ensure that UCMP can generate unique passphrases for each user.

When implementing the cloud functions, there was a need to provide some critical informa-

tion to those same functions. This critical information is: (1) the private key used by UCMP

to write on the blockchain on behalf of custodial users, (2) the Infura provider key used to

access Infura’s services and (3) the salt used in conjunction with the user’s ID when creating the

passphrase used when encrypting and decrypting custodial users’ private key. There were two

possible solutions for this problem, the first solution was to simply save this critical information

within the cloud functions themselves as global variables, the other solution was to use Firebase

to store this critical information as environment variables. We decided to follow the second

approach, based on the security that was offered by firebase services.

By simply storing critical information as global variables within cloud functions, we could

restrict client access, since only an administrator can interact with cloud functions. Nonetheless,

if the developed code was stolen by an attacker, he then would have total access to critical

information. With this being said, using Firebase to store the critical information was the best

approach given the fact that we are able to store information, at anytime, on a configuration

file and then, the developed cloud functions can access this same file during runtime. Bellow

there is an example of the code produced in order to store and access critical information using

Firebase services. In order to set the configuration file, we had to use Firebase API and the

following command line instructions:

45

firebase functions:config:set secretsauce="MYSECRETSAUCE"

firebase functions:config:set infura.key="RANDOMAPIKEY"

Then after setting the configuration file all we had to do was access that same file inside a cloud

function. The following snippet represents the code used to access the critical information.

const functions = require(’firebase-functions’)

...

const provider =

‘https://rinkeby.infura.io/v3/${functions.config().infura.key}‘

const secretSauce = functions.config().vault.secretsauce

For security reasons, Firebase saves this configuration file separately from the main database

files, this means that even if a database breach should happen the critical information would

still remain confidential. This second approach also solves another problem, given the fact that

the critical information is no longer written directly on the code, should an attacker manage to

get access to UCMP’s code, they would still have no access to the critical information.

3.5 Summary

This chapter presented the Universal Consent Management Platform architecture and implemen-

tation. In Section 3.1 we started by describing and giving insight on the platform’s participants

as well as the roles they had within UCMP. Afterwards, in Section 3.2 we defined the base oper-

ations that UCMP had to perform in order to provide its clients with appropriate confidentiality

measures. Additionally, we also described the protocols behind the base operations performed

by UCMP. Section 3.3 starts by giving a general overview of UCMP’s architecture, then we give

a more detailed description of the smart contracts used, the web app architecture as well as the

database and web server developed. Finally, in Section 3.4, we finish this chapter by presenting

tools and libraries that were used to implement UCMP, along with a brief discussion of the

problems we faced during its implementation.

46

Chapter 4

Results

This chapter presents the evaluation of Universal Consent Management Platform. We start by

describing the evaluation methodology as well as give insights on several decisions that were

made during UCMP implementation and testing. We further describe the approach performed

in order to benchmark our platform as well as the issues that arise during the testing phase. We

then continue to present and discuss the experimental results obtained during the tests.

4.1 Evaluation Methodology

In this section we will measure the performance of UCMP implementation. We focus the evalu-

ation on the cost of submitting transactions to the blockchain as well as the latency of both the

platform (web app and database) and the blockchain.

UCMP is prepared to have its smart contracts deployed on Ethereum, however, given the fact

that Ethereum charges Ether to submit transactions and execute smart contracts, the performed

tests and evaluation were made using test networks or simply testnets. As mentioned on Section

2.2, these transaction fees exist in order to prevent ill-intentioned users from consuming all of

the network resources.

Ethereum test networks allow developers to design and test new decentralized applications

without the need to pay Ether to execute smart contracts. Instead, developers can received

free Ether, that is only valid within a given test network, and use that same Ether to execute

their smart contracts. This Ether can be received via faucets - websites that will give crypto

currencies in exchange for viewing adds of performing simple tasks. There are four main test

networks that can be used to deploy decentralized applications:

• Ropsten - Ropsten has a proof-of-work consensus algorithm. Given the fact that it has

the same consensus algorithm as Ethereum, it best reproduces the current production

47

environment of the live mainnet. Ropsten can also be used by all Ethereum clients which

makes it ideal for test purposes. In order to receive Ether for this test network one can

either place a request on a faucet or mined the Ether directly from the test network. On

Ropsten, a new block is usually mined around every 30 seconds.

• Rinkeby - Rinkeby is a proof-of-authority (PoA) consensus algorithm. Ether on this test

network can not be mined, meaning that Ether supply is controlled by trusted parties. This

approach produces a blockchain that is immune to spam attacks. Since the Ether supply

is controlled by third parties, each user only gets a small amount of Ether to perform their

deploys and tests. Should a user decide to spam the network with random requests, this

Ether will quickly run out avoiding a spam attack. Afterwards, the trusted third parties

simply have to refuse all requests from that user asking to receive more Ether. Since this

is a PoA network, Rinkeby does not fully reproduce the current production environment

as Ropsten does. On this test network, a new block is usually mined around every 15

seconds.

• Kovan - Kovan is very similar to Rinkeby test network. Like Rinkeby, Kovan also has a

proof-of-authority consensus algorithm, users can only receive Ether by using a faucet and

for the same reason this test network is also immune to spam attacks. On the other hand,

a new block is mined around every 4 seconds on the Kovan test network.

• Görli - Similarly to Rinkeby and Kovan, Görli also uses a proof-of-authority consensus

algorithm. On this test network Ether can by acquired by using a one-way throttled

bridge from any of the other three test networks to Görli. Given the fact that Ether can

be obtained from the other three test network by performing a transaction, Görli is not

immune to spam attacks because a user can mine Ether on Ropsten and then send it over

to Görli. The main advantage of Görli is its stable implementation that is supported but

all Ethereum clients. On this test network, a new block is usually mined around every 15

seconds.

Given the available test networks we decided to use Ropsten as our main testnet during

the implementation phase, due to the fact to its strong resemblance to the current production

environment Ethereum. Nonetheless, when performing tests and measuring the appropriate

metrics we decided to use both Ropsten and Rinkeby to have a means of comparison between

two different consensus protocols.

UCMP was evaluated by benchmarking the performance of its requests. These requests

include transactions to the above mentioned blockchains and requests to our database and

48

web server. With this in mind, we decided to use two indicators to evaluate the blockchain

deployment and one indicators to evaluate our database and web server requests. The indicators

used were the following:

• Latency - This metric was used for both the blockchain and the database requests. On

the former, we tested the response time of a request to a client’s smart contract, while

on the latter we tested the response time of a read operation on the database. The time

elapsed for the database request also includes a cloud function call, this cloud function is

responsible for receiving client requests and then access the database in order to retrieve

the necessary information.

• Transaction Cost - This metric was only applied to the blockchain requests, where we

measure the cost to send various transaction to a client’s smart contract. The cost refers

to the computational cost needed to perform each request. By doing so, we can achieve

the average cost of a transaction for each client, enabling us to predict and inform the

clients with an estimate cost for each transaction they are about to perform.

4.2 Experimental Results

In this section we cover the results obtained while performing several tests to our system. In

order to achieve more accurate results we performed 40 transaction submissions for every test

that was made. Notice that we use the term “direct submission” many times throughout this

chapter, with this term we are referring to the action of simply sending an already signed

transaction to the blockchain without any further computations.

4.2.1 Latency

During our testing phase, we decided to measure and compare the time it takes for our system to

perform several core actions. Among these actions we have direct transaction submission from a

client’s browser, UCMP transaction submission on behalf of a client and UCMP custodial versus

non-custodial users submission times.

Direct transaction submission

Initially, and in order to obtain some base line results that could be use as a baseline through-

out the testing phase, we decided to measure the time it took to submit a transaction to the

blockchain directly from a client’s wallet provider (without using UCMP). During this test, we

measured the submission time for two blockchains: (1) Ropsten test network and (2) Rinkeby

49

test network. The average time to mine a new block for each of these blockchains is 30 seconds

and 15 second respectively.

Figure 4.1: Graph representing the obtained values for latency when submitting transactions to
the Ropsten test network

Figure 4.2: Graph representing the obtained values for latency when submitting transactions to
the Rinkeby test network

Figure 4.1 and Figure 4.2 illustrate the test results regarding Ropsten and Rinkeby test

networks. In the results, we have grouped the transaction performed into time periods based

on the time it took for a transaction to complete. By observing the value distribution of both

figures, we can deduce that the average time it took for a transaction to complete is higher

than the average time it takes to mine a block (it takes around 15 seconds for Rinkeby and 30

seconds for Ropsten to mine a new block). The average time, to submit a transaction, that we

obtained in our tests is around 22,94 seconds for Rinkeby test network and around 43,77 seconds

50

for Ropsten test network.

This transaction time is higher than the average time to mine a block due to the fact that

when a transaction is submited it takes the time for finishing mining the current block plus the

average time to mine the block that our transaction is going to be in. Therefore, the obtained

average time to submit a transaction is within expectations (the expected value should be around

the average time to mine a block plus half the average time to mine a block).

For instance, if we take Rinkeby as an example, the expected average time to submit a

transaction to this blockchain would be around: 15 seconds to mine the block our transactions

is going to be in, plus 7.5 seconds to mine the remaining of the current block that the miner is

working at. Since the miner can receive our transaction at anytime when mining a block, on

average, it will take half the expected time to finish mining the current block.

On the other hand, we can also observe in Figure 4.1 and Figure 4.2 that there were a few

transactions that took more than double the average time to mine a block. These cases could

have happen due to the fact that the transactions submited had the lowest possible gas fee, and,

for that reason, were not chosen by the miner to be part of the next block. Another possible

explanation for this event could be related to the network, if our transaction got delayed due to

high traffic, the miner would have not received the transaction right away and therefore when

mining the second block where our transaction is supposed to be in, it would be missing. This

would cause our transaction to show up only on a third or higher block.

UCMP

Afterwards, we decided to measure the extra time needed to complete a transaction when sub-

mitting it using UCMP. This would be the case for a custodial user. On this test, we had to

slightly modify UCMP’s implementation in order to measure only the submission time of a trans-

action when using UCMP. To do so, the client had to sign the transaction before using UCMP

as the submission medium. Recall that, the cloud function used to submit the transaction to the

blockchain, has to first access the database to retrieve the appropriate private key, then sign the

transaction on the client’s behalf and finally send that same transaction to the blockchain. For

this test, this overhead was undesirable, therefore, the cloud function was modified in order to

simply receive an already signed transaction and submit it to the blockchain. We also decided

to use Rinkeby test network for this test because it had a lower average time to mine a new

block when compared to Ropsten test network. Section 4.3 gives more insights on the reason

why Rinkeby was chosen over Ropsten.

Figure 4.3 illustrates the overhead generated by UCMP when submitting an already signed

51

Figure 4.3: Graph representing the obtained values for UCMP overhead when submitting trans-
actions to Rinkeby test network

transaction, this overhead includes only the cloud function call. The measured value indicates

that it takes approximately 1,27 extra seconds to submit a transaction when using UCMP. This

result meets our expectation by showing that UCMP adds only a small delay when submitting

transactions on behalf of the clients. It is important to note that, this overhead takes into

consideration the network delay when communicating with Google’s Firebase service in addition

to the computational time required to execute the cloud function. One further aspect that may

also contribute for this delay is the fact that the provider used to submit the transaction is not

exactly the same. When submitting the transaction using UCMP we have to perform requests to

Infura service provider while when submitting directly to the blockchain we used MetaMask as

a service provider. Although MetaMask at its core also uses Infura as its own service provider,

we can not assume that both have the same level of efficiency when submitting transactions.

For these two tests we also did not take into account the time required to build and sign the

transactions as they were variables common to both tests.

Custodial and Non-Custodial users submission times

Given the fact that we already had the baseline average value to submit a transaction as well

as the overhead caused by UCMP when simply submitting a transaction we decided to test

and compare these values with the overhead caused by UCMP when requesting data from our

database, assembling, signing and subtitling a transaction to the blockchain. In other words, we

would be comparing the latency of a transaction that is submited by a non-custodial user with

a transaction that is submited by a custodial user.

52

On this test, contrarily to the previous one, we also measured the time it takes for assembling

and signing a transaction. The assembling process includes a Read operation to the blockchain,

in order to retrieve the appropriate nonce, and performing a hash on the relevant parameters

that will be sent to the blockchain. Our goal is to determined as precisely as possible the time

it takes for both types of clients to submit a transaction.

Figure 4.4: Graph representing the obtained values between a submission made by a custodial
and by a non-custodial users

Figure 4.4 represents the obtained results when both user types submit transactions repre-

senting an accept action. In other words, we measure the time it took for each user type to

accept a sharing request. For this test we also had to perform slight adjustments to UCMP

smart contracts. On the developed smart contracts, it is only possible to accept a request with a

pending status, therefore after every test round we had to return the request status to pending.

Usually, this would not be possible since the pending status is only given as the default value

when creating a new request but, in order to avoid the necessity of creating a new request on

every test round, we decided to temporally remove this restriction and create a function that

converts a request status from accept to pending. This function was automatically called at the

end of every test round and had no influence on the obtained results.

As we can observe in Figure 4.4, the custodial users submission takes a small additional time

when compared to a non-custodial user. This value is within expectation since a custodial user

submission has to perform extra actions when compared to the almost direct submission process

of a non-custodial user. We can further observe that the average custodial user submission takes

1.90 seconds longer than a non-custodial. As mentioned on the previous test, the main reasons

behind this delay are the network connection and the extra computational time performed by

53

the cloud function. In addition to these reasons, we also have to take into consideration the

time it takes UCMP cloud function to access our database and retrieve the client’s private key.

Although this access time should be very small when compared to the network delay and the

computational time a cloud function takes to execute, it will still impact the total submission

time and should be taken into account.

4.2.2 Transaction Cost

After getting the results for the latency tests of UCMP operations we decided to measure the

transaction cost of the different actions that data holders and data owners could perform with

UCMP. With these test we wish to be able to provide UCMP’s clients with an estimate cost for

each transaction they perform.

A transaction’s cost can be influenced by two main factors: (1) the actions performed within

the smart contract or smart contract efficiency and (2) the gas fee paid by the sender. There

can be two smart contracts that perform the same action but with different implementations

where one of these has double the gas consumption of the other. Reading and writing from

storage has a gas cost associated with it, having needless read and write operations within a

smart contract’s code can lead to an unnecessary gas consumption.

In addition to those two main factors, the information sent within a transaction also in-

fluences the transaction cost. Lets take a request submission action as an example. In this

transaction that is sent by a data holder when he wishes to ask a data owner for a consent

request, he has to send to the blockchain several fields. Recall Section 3.2.2, where the data

holder has to specify the name of the data consumer as well as which attributes they wish to

access and the purpose of use.

Although the size of a string influences the gas consumption, from these three fields, the

one that impacts the gas consumption the most is the attributes field. The size variation of

the data consumer’s name and the purpose of use only slightly influences the gas consumption

given the fact that both fields only have a single string sent to the smart contract. Therefore,

having a data consumer named “My Data Consumer” and another named “My Other Data

Consumer” would have minimum influence on the transaction cost difference between two equal

transactions when also taking into consideration the attributes field. On the other have, if we

have two similar transactions with the only difference being on the number of attributes that

are being requested, we can observe a steady increase on the transaction cost. During this test,

we assume that each attribute has, on average, six characters, therefore the difference between

a five attribute transaction and a ten attribute transaction is thirty characters.

54

Figure 4.5: Graph representing the obtained values for the relation between transaction cost
and number of attributes submited

Figure 4.6: Graph representing the obtained values for the relation between transaction cost
and number of characters used on a string

Observing Figure 4.5 and Figure 4.6 show us two comparisons. The former between the cost

of a transaction with the number of attributes submited and the latter between the transaction

cost and the number of characters of a single string. For both test we have a transaction that is

sent by data holders when they wish to request sharing consent to their clients. This transaction

has the following structure and parameters:

• Data Consumer - “CUF”

• Data Holder - “Lusiadas”

• Attributes - “[“Name”, “Age”, “Blood Type”]”

55

• Purpose of Use - “Data needed to perform an exam”,

• Additional Comments - “” (empty string)

A practical example of a transaction like this would be the following:

await SmartConsentManagement.methods

.requestPermission(

"CUF",

"Lusiadas",

["Name", "Age", "Blood Type"],

"Data needed to perform exam",

""

)

.send({

gas: 2000000,

from: web3.givenProvider.selectedAddress,

})

This transaction was used as a baseline for our test regarding the transaction cost. As

mentioned before we decided to perform two variations of this transaction in order to determine

the influence of adding or removing data from a transaction.

For test 4.5, we increase the number of fields that were sent over on the transaction, while

maintaining the remaining fields as they were. On the other hand, for test 4.6 we decided to

increase the length of an attribute’s string instead of altering the number of attributes.

As expected, by observing graph 4.5, increasing the number of attributes that are sent in

a transaction, has a major influence on the transaction cost. On the other hand, we expected

graph 4.6 to have the transaction cost remain almost the same. By observing the image, we can

see that there is an disproportional increase when a string with fifty characters is sent as well as

a string with one hundred characters. The reason behind this sudden increases is related with

Solidity and the Ethereum Virtual Machine architecture. Recall that EVM works with a word

size of 256 bits (or 32 bytes), and has memory addresses of the same size. One byte is capable of

storing one character meaning that it can store strings as long as 31 bytes on a single memory

address (the extra byte is used to store metadata and therefore can not be used to store any

string character). Storing any string within this size corresponds to one single write operation

56

on the EVM storage. When a string longer than 31 characters is submited, additional memory

addresses have to be used in order to store the remaining characters.

This is the case for the strings submited during our tests. By sending in the transaction

a string with fifty characters, EVM has to use two memory addresses in order to store that

string. This corresponds to two write operations instead of one, which dramatically increases

the transaction cost (when compared to a single write operation). Similarly when submitting

a transaction with a string size of one hundred characters, three write operations have to be

performed in order to store this string which further increases the transaction cost.

Applying the same line of thought to the results obtained on the first graph 4.5, submitting

multiple attributes within a single transaction corresponds to multiple write operations on the

blockchain. For instance, by sending five attributes in a transaction the EVM has to perform

five unique write operations, for ten attributes, ten write operations are needed and so on. With

both test results we can clearly see that adding more attributes to a transaction has a much

greater impact than adding several characters to a string, for example, adding a description on

the additional comments field.

4.2.3 Gas price

The final test we performed was related with the gas price and the latency reduce that was

caused by this increase. For this test we decided to send the same transaction with different gas

prices. Recall that miners choose which transaction to add to the block their are mining based

on the gas fee that the sender is willing to pay for that same transaction. By increasing the gas

price, the sender also increases the chance that his transaction will be picked by a miner. In

other words, the higher the gas price, the higher the transaction fee a sender has to pay is and

the higher the chance that his transactions is chosen by the miners.

Gas prices may also vary according to the current network traffic, for instance, using 10

GWEI, as a gas price, at a time where the network is crowded may make the sender’s transaction

take longer to execute than paying 6 GWEI when the network is with low traffic. For our

experiment we decided to use three different values for the gas price (10, 20 and 30 GWEI).

By observing Figure 4.7 we can see that increasing the gas price did not influenced the

average time to submit a transaction. The expected results would be to see a time reduction

when the gas price increases. One possible explanation for the obtained results could be related

to the network. If there was low network traffic during the tests it would mean that the gas

price that was paid was irrelevant to the transaction speed. In other words, if we assume that

each block can contain a maximum of twenty transactions and there is only enough network

57

Figure 4.7: Graph representing the obtained values for the relation between gas price and
transaction speed

traffic to submit an average of fifteen transactions, having a low gas price will yield the same

results as having a high gas price.

4.3 Discussion

In this section we will briefly discuss the obtained results and give some insights on the reasons

why the transactions used during our testing phase were chosen.

Recall that UCMP operations perform several transactions to the blockchain:

• (1) Request Sharing Consent - transaction sent by data holders when they wish to

ask one of their clients for a sharing consent request.

• (2) Deploy the client’s smart contract - transaction sent by data owners when they

first use UCMP in order to deploy their personal smart contract on the blockchain.

• (3) Accept Request - transaction sent by data owners when they wish to give their

sharing consent to a given request.

• (4) Refuse Request - transaction sent be data owners when they wish to refuse a

sharing request from a given data holder

• (5) Revoke Request - transaction sent by data owners when they wish to revoke their

sharing consent regarding a specific request

During our first test, reported on Section 4.2.1, we decided to use the transaction (1) due

to the fact that no adaptations had to be made on the developed smart contracts in order to

58

perform the tests. Note that, since we are testing the network latency, any transaction could

have been used as all of them would have yield similar results. From this first test, we retrieved

a baseline result that could be used as “an ideal value to achieve” when measuring latencies

using UCMP as a submission medium. Here, we obtained an average time value for submitting

transactions to both Ropsten and Rinkeby test networks. We were able to attain an average

submission time of 43,77 seconds for Ropsten test network and an average time of 22,94 seconds

for Rinkeby test network. As already explained on Section 4.2.1, these values are expected to

be higher than the average time to mine a new block, recall that the average time to mine a

new block is around 30 seconds for Ropsten and 15 seconds for Rinkeby. With the theoretical

results, for submitting a transaction, being around 45 seconds for Ropsten and 22,50 seconds for

Rinkeby we can affirm that the obtained practical results, although having slightly lower time

values for the Ropsten test network, are within expectations.

One possible explanation for the measured values, regarding Ropsten test network, being

slightly lower than the theoretical expected results, could be related with the network traffic.

Remember that, on Section 2.1 when we first introduced miners, we mentioned that they had to

validate transactions before appending to the block they would mine, as well as, in case of a proof

of work consensus algorithm network, solve a cryptographic puzzle that requires computational

power to be invested in. Miners perform these two actions simultaneously by adjusting the

amount of computational power they apply to solving each task. Assuming that there was a

low network traffic during our first test, it would mean that there were fewer transactions to be

validated. With this being said, miners could simply invest almost one hundred percent of their

computational power on trying to solve the cryptographic puzzle, reducing the time it would

take to mine a new block by a few seconds.

On our second test, Section 4.2.1, we decided to use the already obtained baseline results

for the latency when submitting direct transactions to the network and compare it with the

latency when submitting transactions using UCMP. In order to measure these value we used

the (3) transaction, given the fact that only data owners may have the need to use UCMP

as the submission medium. Note that, although transactions (4) and (5) are also executed by

data owners, these perform very similar actions that would not impact the overall latency of a

request. On this test, we decided to use the Rinkeby test network, due to the fact that this test

network presented better results than Ropsten test network during our first test (the results

obtained were closer to the theoretical values).

When using UCMP to submit transactions, we obtained an average time value of 24,24

seconds. By comparing this value with the results of our first test we can see that by using

59

UCMP a client can be expected to wait, on average, an extra 1,27 seconds. This additional time

corresponds to only about 5% of the total time it takes to submit a transaction using Rinkeby

test network. Considering that, this 1,27 extra seconds, takes into consideration the time it takes

to perform the additional request to UCMP and the time it takes to call and execute the cloud

function used to submit the transaction, we believe the overhead generated by UCMP to have

little impact on the performed action. Assuming that this overhead absolute time (1,27 seconds)

would be similar when using Ropsten testnet, it would mean an increase of only approximately

2,9% on the total submission time. The longer the average time to submit a transaction the

lower this percent value will become.

Our third test was related to transaction (3), we wanted to compare the latency of our clients

requests when submitting a transaction to the blockchain using our system. For this test we also

accounted for the time it takes the client’s browser and UCMP to assemble and sign a transaction.

Our goal was to simulate as closely as possible, a client’s routine when using UCMP to manage

their sharing consents. As mentioned on Section 4.2.1 we had to perform slight modifications on

the developed smart contracts in order to facilitate this test. The performed modifications had

no impact on the results obtained and were made simply to speed up the testing process. Our

results showed us that custodial users take a bit longer to submit their requests wen compared

to non-custodial users. The difference between this two request was 1,9 seconds. Although both

requests perform the same actions we have to take into consideration that during a custodial

user’s request submission UCMP has to access the database as well as call and execute a cloud

function. Most of this overhead is generated by the cloud function execution due to the fact

that when a function call is made by our system, Firebase has to launch the cloud function.

Even though this Firebase approach prioritizes saving resources it brings a small delay, in the

order of milliseconds, to the system normal execution.

After testing the latency of our solution, we decided to test the transaction cost of two

variations of transaction (1). Transactions (2), (3), (4), and (5) had no user inputs, therefore

their cost is almost constant when compared to transaction (1). The cost for this transactions

was measured using a gas price of 1 GWEI. By using this gas price we can easily predict the

total cost of a transaction to any other gas value, we simply have to multiply the shown results

by the desired gas price.

Transaction (2) cost is around 0,0040 ETH which represents the cost needed to deploy a

client’s smart contract on the blockchain. Since transactions (3), (4), and (5) only perform a

single write operation on the blockchain, their costs are around 0,00020 ETH per transaction. On

the other hand, transaction (1) is assembled based on UCMP’s data holders’ inputs, therefore its

60

cost may vary according to the inputs that are given by the data holder. As shown on our results

in Section 4.2.2, increasing the number of attributes highly influences the transaction cost. This

is due to that fact that these attributes are store inside a mapping on the smart contract. For

this reason, the EVM has to perform a write operation in order to store a single attribute. By

having multiple attributes sent in a single transaction means a direct increase on the transaction

cost. Since each attribute refers to a certain category of personal information, very rarely will

a data holder need to perform a transaction that contains more than ten. Nonetheless, in our

tests we decided to go as far as performing a transaction that requests access to fifty unique

attributes. By doing so we could get a better grasp of the transaction’s cost should we wish to

expand the attributes list.

On our last test, we decided to measure the influence that the transaction gas price had on

the overall transaction speed. We used three different gas values with equal intervals between

them. With this approach we ought to find the most efficient gas/transaction time value possible.

By observing the results we can determine that the gas price did not have any impact on the

transaction speed. Although this does not meet the expected results, we can easily identify the

main cause for this discrepancy on the final results - the network traffic. Due to the lack of

network traffic, there was never a competition between senders in order to get their transactions

chosen by the miners.

With these test results, UCMP meets our expectation of producing a low overhead regarding

transaction submission as well as having an appropriate cost per transaction. Data holders who

actually need access to certain personal information from their patients can easily ask for a

sharing consent while data holders who may try to abuse our system by requesting additional

attributes than the ones needed will have an extra value to pay in term of ETH.

4.4 Summary

In this section we started by presenting the methodology used to evaluate UCMP performance.

We then proceeded to the testing phase where we submited our system to several performance

tests. These tests aimed at finding and evaluating UCMP impact regarding the requests latency

for both user types. We started by establishing some baseline results that were then used to

measure UCMP performance.

Further ahead we discussed the transaction cost for two different variables - the length of

a parameter versus the amount of parameters used in a single transaction where we concluded

that the latter has the most influence on the final cost of a transaction.

Afterwards, we presented the influence that the gas price has over a transaction submission

61

speed. Finally, we end this section with a brief discussion regarding the obtained results and

the insights that they give regarding UCMP performance.

62

Chapter 5

Conclusions

This document explores the core concepts of blockchain, namely, as a replicated append only

data structure that stores an ordered list of transactions. Furthermore, we also briefly explain

how to take advantage of this technology in order to develop DApps. A characteristic of DApps

is that they benefit from a strong tamper proof resilience offered by the blockchains. A clear

distinction was made between permissionless and permissioned blockchains.

Along the document and particularly in Section 2, an overview is presented about the sev-

eral blockchain based systems related with our proposed solution. Those systems were briefly

analysed based on their functionality, provided service and security capabilities.

Our main goal for this thesis, as previously mentioned, was to provide a consent management

platform capable of enabling patients to have a better control over their personal medical data

while providing data holders a means to stay compliant with GDPR. On Chapter 3 we proposed a

consent management platform that allows patients to manage their sharing consents and control

the accesses made to their medical records that are stored on different medical institutions.

We also explain and detail the core components as well as the architecture of the system.

When describing the architecture of our system we also presented the data structures that were

used as well as the backend logic responsible for managing both our clients and their consents.

Our work on design and implementation of a blockchain platform for consent management,

made UCMP capable of satisfying the needs of patients by providing a decentralized platform

that stores their sharing consents without the risk that central storage offers (the data stored

could be easily altered without a patient knowledge) and by delivering a solution that data

holders can use in order to collect their patients consents while staying compliant with the EU’s

law.

Lastly, on Chapter 4, we presented the practical results for the developed prototype. Users

can expect UCMP to add a small overhead when submitting transactions to the blockchain. We

63

also demonstrated the actual cost of each transaction, allowing users to choose which price they

are willing to pay (in Ether) for each transaction. As mentioned before, the transaction fee can

vary based on the gas price each client decides to use.

5.1 Future Work

Even though this solution incorporates blockchain technology and the healthcare business area,

similar solutions which aim at providing consent management for personal information that is

being stored by third parties, could be developed by adapting the methodology of this platform

to the desired business area. To adapt and enhance this work, there are some tasks that could

be done as future work. As an example of it, we propose the following points:

• Expand UCMP in order to be used in additional areas outside Healthcare. In order to

achieve this, the attribute field would have to be modified. This field allows the developer

to adapt the platform to his needs.

• Incorporate both submission methods in a single one. It is possible to convert both the

custodial and non-custodial user’s submission methods in a single one, which would relief

non-custodial users of the burden of having to pay or transactions. They would simply

have to sign their own transactions and UCMP would be in charge of submitting those

transactions (paying the transaction fee).

• Create a trade broker that would allow similar platforms to share or trade existing consents.

One additional use for this trade broker would be to allow users to sell their personal data

directly to the data consumers, creating a marketplace around personal information.

64

Bibliography

[ABB+18] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos

Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-

man, Yacov Manevich, et al. Hyperledger fabric: a distributed operating system

for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Conference.

ACM, 2018.

[ABC17] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on

ethereum smart contracts (sok). In International Conference on Principles of Se-

curity and Trust, pages 164–186. Springer, 2017.

[And17] Ana Raquel Rocha Andrade. Adoption of electronic health records in the portuguese

healthcare system in the presence of privacy concerns. Master’s thesis, Universidade

Católica Portuguesa, 2017.

[B+14] Vitalik Buterin et al. A next-generation smart contract and decentralized applica-

tion platform. white paper, 3:37, 2014.

[BCGH16] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda: an

introduction. R3 CEV, August, 1:15, 2016.

[Bec18] Roman Beck. Beyond bitcoin: The rise of blockchain world. Computer, 51(2):54–58,

2018.

[BP17] Massimo Bartoletti and Livio Pompianu. An empirical analysis of smart contracts:

platforms, applications, and design patterns. In International conference on finan-

cial cryptography and data security, pages 494–509. Springer, 2017.

[Cac16] Christian Cachin. Architecture of the hyperledger blockchain fabric. In Workshop

on distributed cryptocurrencies and consensus ledgers, volume 310, page 4, 2016.

[CDE+16] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed

Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. On

65

scaling decentralized blockchains. In International Conference on Financial Cryp-

tography and Data Security, pages 106–125. Springer, 2016.

[Cor19] Miguel Correia. From byzantine consensus to blockchain consensus. In Essentials

of Blockchain Technology, chapter 3. CRC Press, 2019.

[DAK+16] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi.

Step by step towards creating a safe smart contract: Lessons and insights from a

cryptocurrency lab. In International Conference on Financial Cryptography and

Data Security, pages 79–94. Springer, 2016.

[Dan17] Chris Dannen. Introducing Ethereum and Solidity. Springer, 2017.

[DLZ+18] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and

Ji Wang. Untangling blockchain: A data processing view of blockchain systems.

IEEE Transactions on Knowledge and Data Engineering, 30(7):1366–1385, 2018.

[DRFM18] João Pedro Dias, Lúıs Reis, Hugo Sereno Ferreira, and Ângelo Martins. Blockchain

for access control in e-health scenarios. arXiv preprint arXiv:1805.12267, 2018.

[Eur16] European Parliament and European Council. Regulation (EU) 2016/679 of the

European Parliament and of the Council of 27 april 2016 on the protection of natural

persons with regard to the processing of personal data and on the free movement of

such data, and repealing Directive 95/46/EC (General Data Protection Regulation),

April 2016.

[Fin18] Michèle Finck. Blockchains and data protection in the european union. Eur. Data

Prot. L. Rev., 4:17, 2018.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the

26th Symposium on Operating Systems Principles, pages 51–68. ACM, 2017.

[GZL+17] Philippe Genestier, Sajida Zouarhi, Pascal Limeux, David Excoffier, Alain Prola,

Stephane Sandon, and Jean-Marc Temerson. Blockchain for consent management

in the ehealth environment: A nugget for privacy and security challenges. Journal

of the International Society for Telemedicine and eHealth, 5:GKR–e24, 2017.

[HBHW16] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol

specification. Tech. rep. 2016–1.10. Zerocoin Electric Coin Company, Tech. Rep.,

2016.

66

[Her19] Maurice Herlihy. Blockchains from a distributed computing perspective. Commun.

ACM, 62(2):78–85, 2019.

[KMS+16] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-

thou. Hawk: The blockchain model of cryptography and privacy-preserving smart

contracts. In 2016 IEEE Symposium on Security and Privacy (SP), pages 839–858.

IEEE, 2016.

[KN12] Sunny King and Scott Nadal. PPCoin: Peer-to-peer crypto-currency with proof-of-

stake. self-published paper, 2012.

[LCO+16] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Mak-

ing smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC conference

on computer and communications security, pages 254–269. ACM, 2016.

[LCT] Tom Lyons, Ludovic Courcelas, and Ken Timsit. Blockchain and the GDPR.

[Mic17] Microsoft Corporation. The Coco framework - technical overview, 2017.

[MPA+18] David R Matos, Miguel L Pardal, Pedro Adao, António Rito Silva, and Miguel

Correia. Securing electronic health records in the cloud. In Proceedings of the 1st

Workshop on Privacy by Design in Distributed Systems, page 1. ACM, 2018.

[N+08] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.

[OO14] Diego Ongaro and John Ousterhout. In search of an understandable consensus

algorithm. In 2014 {USENIX} Annual Technical Conference USENIX ATC, pages

305–319, 2014.

[Pec17] Morgen E Peck. Blockchains: How they work and why they’ll change the world.

IEEE Spectrum, 54(10):26–35, 2017.

[RBBM19] Michel Rauchs, Apolline Blandin, Keith Bear, and Stephen B McKeon. 2nd global

enterprise blockchain benchmarking study. 2019.

[RDD+18] Konstantinos Rantos, George Drosatos, Konstantinos Demertzis, Christos Ilioudis,

and Alexandros Papanikolaou. Blockchain-based consents management for personal

data processing in the iot ecosystem. In ICETE (2), pages 738–743, 2018.

[SC17] Carlos Serrão and Elsa Cardoso. Handling confidentiality and privacy on cloud-

based health information systems. Journal of Information Privacy and Security,

13(2):51–68, 2017.

67

[SHW19] Roberto Saltini and David Hyland-Wood. IBFT 2.0: A safe and live variation of

the IBFT blockchain consensus protocol for eventually synchronous networks. arXiv

preprint arXiv:1909.10194, 2019.

[Sza97] Nick Szabo. Formalizing and securing relationships on public networks. First Mon-

day, 2(9), 1997.

[Und16] Sarah Underwood. Blockchain beyond Bitcoin. Communications of the ACM,

59(11):15–17, 2016.

[XPZ+16] Xiwei Xu, Cesare Pautasso, Liming Zhu, Vincent Gramoli, Alexander Ponomarev,

An Binh Tran, and Shiping Chen. The blockchain as a software connector. In 2016

13th Working IEEE/IFIP Conference on Software Architecture (WICSA), pages

182–191. IEEE, 2016.

[YGWO16] Danny Yang, Jack Gavigan, and Zooko Wilcox-O’Hearn. Survey of confidentiality

and privacy preserving technologies for blockchains. R3, Zcash Company, Res. Rep,

2016.

[YWJ+16] Xiao Yue, Huiju Wang, Dawei Jin, Mingqiang Li, and Wei Jiang. Healthcare data

gateways: found healthcare intelligence on blockchain with novel privacy risk con-

trol. Journal of Medical Systems, 40(10):218, 2016.

[ZNP15] Guy Zyskind, Oz Nathan, and Alex Pentland. Decentralizing privacy: Using

blockchain to protect personal data. In 2015 IEEE Security and Privacy Work-

shops, pages 180–184. IEEE, 2015.

68

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	Glossary
	1 Introduction
	1.1 Topic Overview
	1.2 Goals
	1.3 Thesis Outline

	2 Background and Related work
	2.1 Blockchain
	2.2 Ethereum
	2.3 Enterprise blockchain
	2.4 Hyperledger Besu
	2.5 Blockchain security
	2.6 GDPR
	2.7 Consent management
	2.7.1 Zyskind et al.
	2.7.2 Healthcare Data Gateway

	2.8 Summary

	3 Universal Consent Management Platform
	3.1 Participants and Roles
	3.2 UCMP operations
	3.2.1 Login and authentication
	3.2.2 Access Request to Personal Information

	3.3 Architecture
	3.3.1 Blockchain
	3.3.2 Web App
	3.3.3 Database
	3.3.4 Web server

	3.4 Implementation
	3.5 Summary

	4 Results
	4.1 Evaluation Methodology
	4.2 Experimental Results
	4.2.1 Latency
	4.2.2 Transaction Cost
	4.2.3 Gas price

	4.3 Discussion
	4.4 Summary

	5 Conclusions
	5.1 Future Work

	Bibliography

