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Abstract

The use of free-flyer robots in space applications has been increasing in recent years. Several
space agencies, such as NASA, DLR and JAXA, have at this moment, or intend to have, projects
involving this type of vehicles. The increasing interest in these robots can be associated with the
desire to expand the limits of present space exploration. Inherent to this interest is the necessity to
develop control systems capable of autonomous navigation and task execution while considering a
minimum energy expenditure. This work presents a performance study of nonlinear model predictive
control applied to the free-flyer Space CoBot, developed by ISR-Lisboa, within a real-time operation
context, subjected to different mission conditions which aim to explore the limits of its operational
stability and reliability. For performing guidance tasks, an offline trajectory generation method was
integrated, capable of handling not only highly confined spaces, composed by walls and obstacles
but also additional constraints such as control actuation limitations and system dynamics. These
trajectories are provided to the controller as references. All tests conducted in this work are obtained
exclusively through an accurate simulation environment based in ROS and Gazebo/RotorS.
Keywords: Free flyer robots, Fast NMPC, Offline trajectory optimization, Control, Guidance

Introduction

In recent decades, the interest in Unmanned Aerial
Vehicles (UAV) has experienced considerable in-
creases. This is mainly due to the ability to exe-
cute actions without an onboard pilot, whether it is
controlled remotely or by an autopilot system, com-
monly composed by several onboard elements that
originate Guidance, Navigation and Control (GNC)
systems [1]. This allows a vast range of applications
that reduce operating costs, operations with no risk
to human life or even tasks that would be otherwise
impossible to manned vehicles. An even more re-
cent trend is the use of small robots in the Inter-
national Space Station (ISS). National Aeronautics
and Space Administration (NASA) free-flyer robots
are one example and they have been onboard the
ISS for over a decade. Initially they were a platform
used for many experiments from flight directors and
researchers on the ground that aimed at improving
formation flying and docking algorithms [2]. This
research has since allowed the development of new
free-flyer robots that include more features and can
perform a variety of Intravehicular Activity (IVA)
work in the ISS [3]. The Institute For Systems and
Robotics (ISR-Lisboa) has also developed a highly
maneuverable holonomic free-flyer robot designated

Space CoBot [4, 5], which provides a similar plat-
form for conducting research in this type of robots.

Currently, robotic arms are already used to assist
humans in maintenance tasks in the ISS, namely the
Canadarm2 [6]. However, in a remote space sta-
tion there could be significant limitations to these
systems. Free-flyer robots will allow more complex
operations without human presence. In order to
achieve this level of autonomy and unsupervised
operation, several aspects have to be extensively
studied, such as the vehicle interaction with the
station, objects, tools, and astronauts, in the case
of a manned station. Its navigation system must
guarantee high awareness and risk-free maneuvers.
Lastly, but definitely not less important, the control
system must use the least amount of energy possible
as access to energy might be severely restricted.

State-of-Art
NASA has been using free flyers as research plat-
forms on board the ISS as early as 2006 through
Synchronized Position Hold Engage Reorient Ex-
perimental Satellites (SPHERES) [2]. SPHERES is
a formation flight testing facility consisting of three
satellites operating onboard the ISS. It aims to use
the microgravity environment to further develop
formation flight and docking algorithms. Astrobee
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[3] is a similar platform that replaced SPHERES as
a testbed onboard the ISS. Astrobee is expected to
increase and improve SPHERES features, specially
when it comes to navigation and possible interac-
tions with its surroundings, such as cargo transfers
and maintenance tasks.

Japan Aerospace Exploration Agency (JAXA)
has developed Int-Ball [7], which is able to move
autonomously inside the ISS and is used for pho-
tographing and filming the crew.

German Aerospace Center (Deutsches Zentrum fr
Luft- und Raumfahrt) (DLR) has also developed a
free flyer designated Crew Interactive MObile com-
panioN (CIMON) [8] which is currently on the sec-
ond iteration, CIMON-2, already onboard the ISS
as of 2020. The project aims to develop autonomous
astronaut assistance through artificial intelligence.

Nonlinear Model Predictive Control (NMPC) is
an extension of optimal control methods, which con-
sists in solving an Optimal Control Problem (OCP)
repeatedly at each time step. The feedback control
law is obtained by applying the first element of the
solution at each time step to the system and dis-
carding the rest. NMPC cannot rely on analytical
control laws. Alternatively, it relies on discretiza-
tion techniques that transform the infinite OCP into
a standard Nonlinear Programming (NLP) problem
that can be solved through general NLP solvers [9].
There are two main families of NLP solvers, Interior
Point (IP) and Sequential Quadratic Programming
(SQP) solvers.

Currently, there is a wide variety of algorithms
available based in both solver families. Recent de-
velopments are briefly presented and compared in
[10], where an effort to close the gap to the real-time
frame is visible. Methods that are worth mention
for their extensive presence in literature as bench-
mark methods are the SQP based SNOPT [11] and
the IP based IPOPT [12].

NMPC is very versatile as it can take several roles
within the control system.

Guidance tasks such as trajectory planning as in
[13], where a NMPC is proposed to adjust a trajec-
tory in the presence of obstacles by incorporating
new constraints during operation.

Interestingly, NMPC are being considered to per-
form low level control tasks, which requires fast and
stable rates of operation.

The hierarchical controller implemented in [14]
uses a NMPC controller for the attitude of a Multi-
rotor Aerial Vehicle(MRAV) and registered execu-
tion averages of 1ms while operating at a 5ms sam-
pling time. Although it only controls the attitude
component of the system, it represents a very rea-
sonable computation delay.

In [15], a single non-hierarchical real-time NMPC
controller implemented in a fixed wing aircraft is

used to control both position and attitude for track-
ing a given reference trajectory while avoiding ob-
stacles and respecting actuator bounds. The exe-
cution time required by the NMPC controller aver-
ages at 30ms while operating at a sampling time of
500ms. This can be an indication of the impact of
system complexity on execution time.

Also implemented in a MRAV, in [16], a hierar-
chical controller is used to track a feasible trajectory
generated offline. A position NMPC controller com-
putes attitude references feeding a second attitude
NMPC controller, operating with sampling times of
200ms and 2ms, respectively.

The application of NMPC in a MRAV with
Multi-Directional Thrust (MDT) capability is stud-
ied in [17]. A NMPC controller is used to compute
force inputs for each rotor to track both position
and attitude references.

Background
Optimization methods allow the formulation of an
OCP that can be solved by numerical and optimiza-
tion solvers. Optimality is defined as the minimiza-
tion or maximization of an objective function, that
can be defined arbitrarily to describe the optimal
solution [18].

The term optimization variable is used to de-
scribe a variable that the optimization solver ad-
justs to minimize the objective function. These can
be the initial and final time, t0 and tf , as well as
state and control variables, x(t) and u(t), respec-
tively [19]. The set of optimization variables will
be henceforth designated by z := (to, tf ,x(t),u(t)).

The optimization is subject to a variety of limits
and constraints, namely dynamic constraints (2),
path constraints (3), and boundary constraints (4).

This concludes the formulation of a general
continuous-time OCP

min
t0,tf ,x,u

J(t0, tf ,x(t0),x(tf )) +
∫ tf
t0
`(x(t),u(t), t)dt (1)

subject to ẋ = f(x(t),u(t), t), (2)

h(x(t),u(t), t) ≤ 0, (3)

g(t0, tf ,x(t0),x(tf )) ≤ 0 (4)

There are several ways to approach an OCP. The
two main approaches are indirect and direct meth-
ods.

Indirect Methods use the necessary conditions
of optimality of the continuous problem to de-
rive a Boundary Value Problem (BVP) in Ordi-
nary Differential Equations (ODE) [20]. This BVP
must be numerically solved, and the approach is
often viewed as ”first optimize, then discretize”.
The class of indirect methods encompasses the
well known calculus of variations and the Pon-
tryagin Maximum Principle. These methods of-
ten treat only control inputs as optimization vari-
ables while implicitly enforcing dynamic constraints
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through the system’s simulation.[21]. This prop-
agation is highly dependent on the initial state
value. Common indirect methods are Differen-
tial Dynamic Programming (DDP) [22] and iter-
ative Linear Quadratic Regulator (iLQR) [23]. It is
also worth mentioning the Augmented Lagrangian
TRajectory Optimizer (ALTRO) algorithm [21],
which combines both indirect and direct methods
to achieve advantages of both approaches.

Direct methods transform the original infinite
OCP into a finite NLP. This NLP is then solved
by variants of numerical optimization methods [18].
It is often viewed as ”first discretize, then opti-
mize”, which is an intuitive way of distinguishing
direct and indirect methods. All direct methods
are based on a finite dimensional parameterization
of the control trajectory, but differ in the way the
state trajectory is handled [20]. Nowadays, direct
methods such as Direct Transcription (DIRTRAN)
[24], Direct Collocation (DIRCOL) [25], and Multi-
ple shooting [9] are the most widespread and suc-
cessfully used techniques.

Approach
Throughout this work, three system configurations
are considered. A single Space CoBot system, a
Space CoBot carrying a payload system and a for-
mation system comprising two Space CoBots and a
shared payload.

Space CoBot model
The Space CoBot is an hexarotor UAV with a spe-
cial rotor design configuration, that can be visual-
ized in Figure 1.

Figure 1: Space CoBot 3D model.

It is modelled through the Newton-Euler equa-
tions of motion following [5]. In this work, quater-
nions are used to describe rotation instead of Euler
angles. The resulting model is described by

ṗ = v
v̇ = (1/m) R(q) F
q̇ = (1/2) Q(q)ω
ω̇ = J−1(M− ω × Jω)

(5)

where p = [x , y , z] is the position, v =
[u , v , w] corresponds to linear velocity, and q =
[qw , qx , qy , qz] is the attitude quaternion. These
components are described with respect to (w.r.t.)

the inertial frame I, and ω = [ωx, ωy, ωz] is the
angular velocity described w.r.t. the body frame
B. These elements constitute the state vector x =
[p,v,q,ω]. The scalar m is the system’s mass, J
is the moments of inertia matrix and F and M
are vectors representing the thrust force and torque
generated by the rotors w.r.t. the body frame.
R ∈ SO(3) is the rotation matrix obtained by con-
sidering right-hand rotation and defined by

R(q) =

1− 2q2y − 2q2z 2qxqy − 2qzqw 2qxqz + 2qyqw
2qxqy + 2qzqw 1− 2q2x − 2q2z 2qyqz − 2qxqw
2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2x − 2q2y

 (6)

and Q is a 4× 3 matrix defined by

Q(q) =


qw −qz qy
qz qw −qx
−qy qx qw
−qx −qy −qz

 (7)

Propulsive system model
The propulsive system model follows the approach
in [5] where each rotor i generates a scalar thrust
fi and a torque τi described by

fi = K1ui, τi = wiK2ui, i ∈ {1, ... , 6} (8)

where K1 and K2 are constants used to describe the
propeller properties, wi is either -1 or 1 depending
on whether the propeller rotates clockwise or anti-
clockwise for a positive forward thrust fi > 0. The
actuation signal ui, expressed in rps, is defined by
ui = sgn(ni)n

2
i , where sgn() is a sign function, to

achieve a linear relation between the actuation and
forces/moments.

Each rotor is represented by a relative position
to the Center of Mass (CoM), expressed by the vec-
tor ri, orthogonal to the z axis w.r.t. B, and the
unit vector ûi, aligned with the propeller orienta-
tion axis. Both are uniquely defined by the angles
θi and φi through the following expressions

ri =

d cos(θi)
d sin(θi)

0

 ûi =

 sin(θi) sin(φi)
− cos(θi) sin(φi)

cos(θi)

 , i ∈ {1, ... , 6} (9)

where d = ||ri|| is the distance from the propeller
to the CoM.

The resulting thrust Fi and torque Mi are ob-
tained (

Fi

Mi

)
= aiui, i ∈ {1, ... , 6} (10)

where ai represents the components of force and
torque of each rotor i and is defined by

ai =

(
K1ûi

K1ri × ûi − wiK2ûi

)
, i ∈ {1, ... , 6} (11)
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The resulting net force and torque will be the sum
of the contributions of the 6 rotors. In matrix form(

F
M

)
= Au (12)

where A = [a1 ... a6] is a square matrix hereby

called actuation matrix and u = [u1 ... u6]
T

is the
actuation input.

Space CoBot with payload model
To redefine the model with payload, one can resort
to the Parallel axis theorem to compute the result-
ing inertial matrix around the CoM of the resulting
system.

In order to perform this modification, rigid body
conditions are considered. An illustration of the
considered system can be observed in Figure 2 be-
low.

Figure 2: Space CoBot with payload configuration.

The new CoM represented by point S presents a
displacement in the z axis only w.r.t. B. In general,
the CoM can be found by vector addition of the
weighted position vectors which point to the CoM
of each object in a system.

Following [26], the Parallel axis theorem states

JO = JG +msystem

(
rTGrGI− rGrG

)
(13)

where rG is a vector representing the position of a
given point G relative to a given point O. I is the
identity matrix.

The desired inertia can then be obtained by

JS = JT1 + JT2 (14)

where JT1 and JT2 are defined by

JT1 = JSC +mspace cobot

(
rTSCrSCI− rSCrSC

)
(15)

and

JT2 = JP +mpayload

(
rTP rP I− rP rP

)
(16)

The deviation in the CoM requires an adjustment
in the position vector of each rotor as seen in Figure
3 and described by

rpi
= coff + ri (17)

The resulting model is then
ṗ = v
v̇ = (1/msystem) R(q) F
q̇ = (1/2) Q(q)ω
ω̇ = J−1

S (M− ω × JSω)

(18)

Figure 3: Visualization of vector operation to ob-
tain rotor positions with payload.

Formation with payload model
This formation will be considered as a single system
where all elements are rigidly linked, comprising a
rigid body. In this case, the model will be defined
around the CoM of the complete system. The re-
sulting configuration can be observed in Figure 4.

Figure 4: Formation with payload configuration.

The total inertia of the system can be calculated
by summing the inertia of each element expressed
around point S, the CoM of the system, using the
same method mentioned in the previous section re-
sulting in the following expression

JS = JT1 + JT2 + JT3 (19)

where JT1, JT2 and JT3 are individual inertial ele-
ments expressed in point S.

The deviation in the CoM also requires an adjust-
ment in the position vector of each rotor as seen in
Figure 5 and described by

rfi = ri + coff (20)

Figure 5: Visualization of vector operation to ob-
tain rotor positions in formation.
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The resulting actuation model of the individual
Space CoBot can then be defined by(

Fi

Mi

)
= aiui ai =

(
K1ûi

K1rfi × ûi − wiK2ûi

)
(21)

The resulting force and torque will be the sum of
the contributions of all 12 rotors in the formation.
In matrix form(

F1 + F2

M1 + M2

)
= A1u1 + A2u2 (22)

where Ai = [ai1 ... ai6 ] are the actuation matrices
of each Space CoBot and u1 and u2 are individual
control inputs corresponding to each Space CoBot,

which compose the actuation input u =
[
uT
1 uT

2

]T
.

The dynamics of the system described through
the CoM of the system is then obtained by sum-
ming the contributions of each Space CoBot and
are defined by

ṗ = v
v̇ = (1/msystem) R(q) (F1 + F2)
q̇ = (1/2) Q(q)ω
ω̇ = J−1

S (M1 + M2 − ω × JSω)

(23)

Note that the states of the model mentioned
above in (23) are described in the CoM of the forma-
tion while each Space CoBot has sensors positioned
in their own CoM. Therefore, this information is
transformed to the CoM of the formation by fol-
lowing Euler’s equations

pA = pB + rBA

vA = vB + ωb/i × rBA

aA = aB +αb/i × rBA + ωb/i × (ωb/i × rBA)

(24)

NLP formulation
To achieve a NMPC formulation, an NLP must be
formulated. To perform the problem discretization,
multiple shooting is used.

First the controls are discretized piecewise on a
given time grid

u(t) = qi for t ∈ [ti, ti+1] (25)

Then the ODE is solved on each interval [ti, ti+1] in-
dependently, starting with an artificial initial value
si, the so-called shooting node [9]

ẋ(t) =f(xi(t),qi), t ∈ [ti, ti+1], (26)

xi =si (27)

By numerically solving these initial value prob-
lems, the state trajectory pieces xi(t, si,qi) are ob-
tained [20].

Simultaneously with the decoupled ODE solu-
tion, any integrals in the cost function are also nu-
merically computed at each point of the grid

li(si,qi) :=

∫ ti+1

ti

`(xi(ti, si,qi),qi)dt (28)

In order to ensure dynamic feasibility, the conti-
nuity conditions si+1 = xi(ti+1, si,qi) are imposed.

The 4th order Runge-Kutta integration method
applied and described in [27] is used to numerically
solve the integrals.

Thus, arriving at the following NLP formulation

minimize
s,q

N∑
i=0

li(si,qi) + J(sN+1) (29)

subject to s0 − x0 = 0, (30)

si+1 − xi(ti+1, si,qi) = 0, i = 0, ..., N, (31)

h(si,qi) ≥ 0, i = 0, ..., N, (32)

g(sN+1) = 0. (33)

All optimization variables can be summarized as
z := (s0,q0, ..., sN+1,qN ).

Sequential Quadratic Programming
The SQP considered now, augments the objective
function through the Lagrangian function L as in
[28]. The objective is to apply Newton’s method to
the Karush-Kuhn-Tucker conditions as in [29] re-
sulting in the following linear system[

HL ∇zC
T

∇zC 0

] [
∆z
−λ

]
=

[
−∇zFJ

−C

]
(34)

where HL is the Hessian matrix of the Lagrangian,
C is the set of equality and inequality constraints
and FJ is the objective function being augmented.

According to [29], in this approach the search
direction ∆z can be computed by solving the
Quadratic Programming (QP) subproblem

minimize
1

2
∆zTHL∆z +∇zF

T
J ∆z (35)

with respect to ∆z ∈ Rnz (36)

subject to ∇zC∆z = −C (37)

Note that approximations of the constraints C
are used (37). To increase the computation speed,
an approximation of HL is computed via the Gauss-
Newton approach [27] that avoids the computation
of second order derivatives. Additionally, the SQP
process is stopped prematurely after one iteration
instead of iterating until convergence as in [30].

NMPC controller
In this work, the ACADO toolkit [31] is used to
generate a real-time solver in efficient C code, in-
cluding the QP solver qpoases [32], which is the one
selected to solve the SQP subproblems (35) in this
work.

The generated solver is included in a ROS node,
hereafter designated by controller node, that will
compose the NMPC controller. The optimization
horizon will have 20 intervals and a sampling time
of 100 ms.
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Actuation function
It is important to note some details regarding the
integration of the ACADO solver. The objective is
to work with control inputs expressed in rpm. If
the optimal control input to be found by the solver
is expressed in rpm2, henceforth designated by u,
the set of possible solutions will be significantly big.

In order to remove some complexity of the model
provided to the solver, the optimal control input to
be found by the solver will be expressed in force, N ,
described by the force control input uf as follows

uf = λrpmu (38)

where λrpm is a conversion factor defined by

λrpm =
K1

602
(39)

resulting in the modified actuation model(
F
M

)
= ANuf (40)

The control input uf is then converted to angular
velocity, urpm, via

urpm = sgn(uf )

√
|uf |
λrpm

(41)

The resulting controller node is now represented by
Figure 6.

Figure 6: Visualization of the controller node.

The models provided to ACADO are based in (5),
(18) and (23) for the respective configurations.

Objective function
To define the objective function to be minimized
by the solver, a built-in function of ACADO [33] is
used to generate the following

N−1∑
k=0

[h(xk,uk)− yk]Wk[h(xk,uk)− yk]T (42)

+ [hN (xN ,uN )− yN ]WN [hN (xN ,uN )− yN ]T

where h are called reference functions and are de-
noted with h ∈ Rny and hN ∈ Rny,N , yk ∈ Rny

and yN ∈ Rny,N denote minimizing reference values
that can be fixed or time-varying, and Wk ∈ Rny

and WN ∈ Rny,N are the weighting matrices.

Position and attitude errors along with control
inputs are selected to construct h and hN . The
objective is to set y0,...,N = 0 so that minimizing
the objective function implies reducing the position
and attitude errors and selecting low control inputs.

The position error vector ∆p ∈ R3 can be triv-
ially obtained by subtraction

∆p = p− pref (43)

The attitude difference, ∆Θ ∈ R3, is obtained by
computing a truncated version of the quaternion
error, qe described in [34], yielding

∆Θ =

 qrefw qx + qrefz qy − qrefy qz − qrefx qw
−qrefz qx + qrefw qy + qrefx qz − qrefy qw
qrefy qx − qrefx qy + qrefw qz − qrefz qw

 (44)

The control inputs are used as is. Recalling
that y0,...,N = 0 the following objective function
is formed

N−1∑
k=0

[∆pk,∆ΘT
k ,u

T
k ]Wk[∆pk,∆ΘT

k ,u
T
k ]T (45)

+ [∆pN ,∆ΘT
N ]WN [∆pN ,∆ΘT

N ]T

where Wk is a 12× 12 diagonal matrix and WN is
a 6× 6 diagonal matrix.

Note that for the formation with payload config-
uration, the weighting matrix Wk is 18× 18.

Trajectory Optimization
A new OCP is solved offline with ALTRO [21] to
generate a feasible trajectory that will be fed to the
NMPC controller as a reference.

TrajectoryOptimization.jl is an open source li-
brary implemented in JULIA that implements the
ALTRO algorithms. The same models provided to
ACADO are used.

The costs are defined by a built-in function and
follows the LQR tracking formulation

(xNTO
− xf )TQf (xNTO

− xf ) (46)

+

NTO−1∑
k=1

(xk − xf )TQ(xk − xf ) + uT
k Ruuk

where Qf , Q and Ru are 13×13 diagonal weighting
matrices, associated to states and control, respec-
tively. It is important to note that for the formation
with payload configuration, the weighting matrix
Ru is 12× 12. This choice of cost function implies
that the only reference parameter the cost function
requires from the user is the terminal desired state
xf .

Several constraints types are considered in this
approach:

Goal constraints,

xNTO
= a (47)
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State bound constraints,

min ≤ xk ≤ max, k = 1, ... , NTO (48)

Control bound constraints,

min ≤ uk ≤ max, k = 1, ... , NTO − 1 (49)

Sphere constraints,

(xk − xc)2 + (yk − yc)2 + (zk − zc)2 ≥ r2, k = 1, ... , NTO (50)

The resulting objective function is the sum of
all cost functions and Lagrangian terms originating
from the constraints.

The optimal trajectory xopt ∈ R13×NTO achieved
by this method is saved in a .txt file. The NMPC
controller will load this trajectory into an array to
serve as references.

Simulation Results

The RotorS simulator is used to perform the MRAV
simulation, which is implemented within Gazebo,
resulting in the simulation environment depicted in
figure 7. All results were obtained in a laptop com-
puter with an Intel Core i7-4710HQ @ 2.50GHz.

For brevity, Space CoBot is henceforth abbrevi-
ated to SC.

Figure 7: Complete simulation environment
scheme.

Trajectory Optimization

To evaluated the NMPC controller different trajec-
tories were generated for each configuration:

1) Single SC single obstacle fly to goal trajectory

2) Single SC single obstacle with payload fly to
goal trajectory

3) Single SC two obstacles fly to goal trajectory

4) Formation flight with single obstacle fly to pay-
load and transport it back to start position trajec-
tory

Table 1 presents the solution computation time
by ALTRO for the different problems. Evidently,
increasingly constrained problems present signifi-
cant increases in computation time to satisfy similar
feasibility conditions. It is important to note that
Table 1 presents only the transport phase of the
Formation trajectory.

Table 1: Trajectory optimization computation
time.

Trajectory ALTRO

Unconstrained 66 s
State/control bounds 739 s
One obstacle 892 s
One obstacle w/payload 2903 s
Two obstacles 2732 s
Formation w/ payload 2601 s

Table 2: Average tracking errors.

Trajectory ‖p‖e ‖∆Θ‖e
SC-Obstacle 3.0e−2 1.5e−3

SC w/ payload-Obstacle 1.1e−1 2.0e−2

SC-Two obstacles 5.0e−2 2.4e−3

Formation SC1-Obstacle 4.1e−2 1.1e−2

Formation SC2-Obstacle 3.9e−2 1.1e−2

Trajectory execution
Figures 8, 9, 10 and 11 present a representation of
the real-time execution of each trajectory.

The execution of trajectories involving a single
SC and a single obstacle in Figures 8 and 9 demon-
strate a very good tracking performance. Observing
Figure 12, the feedback computation time at each
time step, fd, is not very sparse presenting simi-
lar averages of f̄d = 1.8ms for both experiments.
This consistency allows the execution to be smooth
with relatively small tracking errors, as observed in
Table 2. An increase in attitude error is also vis-
ible for the SC with payload. This can be viewed
as an attempt from the controller to minimize po-
sition tracking error by sacrificing attitude tracking
error, given that the higher system mass implies a
slower acceleration. In addition, the presence of the
payload makes the attitude control more difficult,
which introduces errors in position as well.

Figure 8: 3D visualization of single obstacle trajec-
tory execution.

The single SC with two obstacles trajectory ex-
ecution visible in Figure 10 still presents a good
tracking performance with a small loss when flying
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Figure 9: 3D visualization of single obstacle single
SC with payload trajectory execution.

between the obstacles. Here the opposite to the pre-
vious experiments happens. The controller appears
to sacrifice position tracking for attitude tracking
as visible in Table 2. This loss is not a result of
fd values as they present a similar distribution to
previous experiments as can be observed in Figure
12.

Figure 10: 3D visualization of two obstacles single
Space CoBot trajectory execution.

Lastly, the execution of the formation trajectory
also presents a reasonable smooth execution. Both
vehicles present similar tracking errors as visible in
Table 2. However, this comes at the cost of signifi-
cantly higher control inputs. As mentioned before,
control bounds (49) are applied to the trajectory
generation problem. This execution greatly exceeds
the expected control bounds.

Figure 11: 3D visualization of full formation trajec-
tory execution.

Observing figure 12, the reason becomes apparent
as fd not only present a sparse distribution but also
a significantly higher f̄d = 12.5ms. This causes

delays in tracking that are compensated by more
aggressive corrections.

Figure 12: fd distribution for different configura-
tions.

Conclusions

This work presents a study regarding the perfor-
mance of a NMPC controller for the Space CoBot
robot and its possible applications. This was
achieved by testing the limits of the real-time for-
mulation to the fullest while trying to perform Con-
trol and Guidance tasks in a single formulation,
which proved to be unreliable.

The biggest limitation remains the computation
time required to obtain control solutions. To miti-
gate this, a trajectory optimization method was in-
tegrated, which allowed better and more complete
solutions. However, this method also presents a se-
vere delay in computation and had to be considered
as an offline step.

The tests performed throughout this work show-
ing the performance of the NMPC controller define
its apparent limitations. Hence, proving that un-
der less complex scenarios the controller should also
present a good performance.

Achievements

A good exploration of the NMPC limits was con-
ducted to obtain a controller capable of operating
in a real-time frame very close to the microsecond
range.

Extensive experimentation was performed to ob-
tain good configurations for different scenarios and
different missions. This allows a more detailed
model parameterization for each considered config-
uration. This information can be used to formulate
a single model that can be interacted with through
a few parameters in order to better adjust to differ-
ent situations. This means that the same controller
can operate with different models without recurring
to weighting costs tuning or recompiling any code.

Integrated a trajectory optimization method to
take on the Guidance task, that generates feasible
trajectories in highly constrained environments.
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Future work

The present work can benefit from several further
developments to its parts. Experimentation with
different error functions could yield interesting re-
sults. Better approximations for the model param-
eters such as K1 and K2 can be achieved. Different
control architectures, such as a faster NMPC con-
trol within a much slower NMPC for trajectory gen-
eration as in [16], to allow an increase of the predic-
tion horizon and more importantly, the elimination
of the dependence on offline trajectory generation.

Obstacle identification methods would signifi-
cantly improve the functionalities of the NMPC.
For static obstacles and general mapping integrat-
ing Octomaps [35] or a similar package would pro-
vide means of identifying bounds and obstacles to
constrain the trajectory optimization generation.
Other vision methods can also be studied to iden-
tify additional obstacles that may not be stationary
to increase navigation awareness.

Integrating other developing projects such as a
robotic arm or similar to provide means of interac-
tion with the surrounding environment would allow
more realistic simulation environments.

It would be interesting to perform a study on the
energy spent by this NMPC controller when com-
pared to other control methods, as a NMPC might
provide close to optimal control where energy us-
age is minimized, but requires significantly higher
computation power.
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