
A Nonlinear Model Predictive Control for payload
transportation and formation flying by a free-flyer robot

Rui Filipe Freitas Correia

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisor: Prof. Rodrigo Martins de Matos Ventura

Examination Committee

Chairperson: Prof. Paulo Jorge Coelho Ramalho Oliveira
Supervisor: Prof. Rodrigo Martins de Matos Ventura

Member of the Committee: Prof. Rita Maria Mendes de Almeida Correia da Cunha

October 2020

ii

Dedicated to my parents

iii

iv

Acknowledgments

This thesis marks the end of a long and challenging academic journey. This was accomplished with the

support and contribution of several people to whom I am grateful and dedicate this section.

I thank my supervisor Prof. Rodrigo Ventura for providing me the opportunity to work in this project.

His insights and expertise during this project were key to ensure the success of this thesis.

To Diana Peixoto for being the unconditional support and never ending source of inspiration and

motivation, I am extremely grateful.

For reading and thoroughly reviewing my entire thesis, and providing me with much needed motiva-

tion during challenging times, I would like to express my gratitude to Francisco Formigão.

I would also like to thank my colleague Francisco Gomes who worked alongside me in ISR in whom

I could rely on for critical thinking whenever necessary.

For inciting my curiosity and pushing me to pursue my dreams in uncertain times, I thank Prof.

Joaquim Marques.

To my parents for not only prioritizing my education and providing the resources to achieve it but also

for the unconditional support throughout my entire academic journey.

Lastly, I thank the rest of my family and friends for providing me happy moments during all these

years.

v

vi

Resumo

O uso de robôs free-flyer em aplicações espaciais tem vindo a aumentar nos últimos anos. Várias

agências espaciais, como a NASA, DLR e JAXA, têm neste momento ou planeiam ter projetos rela-

cionados com este tipo de robôs.

O aumento do interesse neste tipo de robôs pode ser correlacionado com o desejo de expandir os

limites da exploração espacial. Inerente a este interesse está a necessidade de desenvolver técnicas de

controlo capazes de navegar e efetuar tarefas autonomamente mantendo em mente um gasto mı́nimo

de energia.

Esta tese apresenta um estudo de desempenho de um controlador baseado em controlo preditivo

não linear aplicado ao free-flyer Space CoBot, desenvolvido no ISR-Lisboa, num contexto de operação

em tempo real, sujeito a diferentes condições de missão que exploram os limites do seu funcionamento

e as margens de operação estável e viável.

Para guiamento foi integrado um método offline de geração de trajetórias factı́veis, capaz de lidar

não só com um ambiente fortemente condicionado por paredes e obstáculos mas também por restrições

nos atuadores e dinâmica do sistema. Estas trajetórias são fornecidas ao controlador como referências.

Todos os testes conduzidos neste trabalho são obtidos exclusivamente através de um ambiente de

simulação baseado em ROS e Gazebo/RotorS.

Palavras-chave: Robôs free-flyer, Controlo Preditivo Não Linear Rápido, Otimização de

Trajetórias offline, Controlo, Guiamento, Simulação

vii

viii

Abstract

The use of free-flyer robots in space applications has been increasing in recent years. Several space

agencies, such as NASA, DLR and JAXA, have at this moment, or intend to have, projects involving this

type of robots.

The increasing interest in these robots can be associated with the desire to expand the limits of

present space exploration. Inherent to this interest is the necessity to develop control systems capable

of autonomous navigation and task execution while considering a minimum energy expenditure.

This thesis presents a performance study of nonlinear model predictive control applied to the free-

flyer Space CoBot, developed by ISR-Lisboa, within a real-time operation context, subjected to different

mission conditions which aim to explore the limits of its operational stability and reliability.

For performing guidance tasks, an offline trajectory generation method was integrated, capable of

handling not only highly confined spaces, composed by walls and obstacles but also additional con-

straints such as control actuation limitations and system dynamics. These trajectories are provided to

the controller as references.

All tests conducted in this work are obtained exclusively through a simulation environment based in

ROS and Gazebo/RotorS.

Keywords: Free flyer robots, Fast NMPC, Offline Trajectory Optimization, Control, Guidance,

Simulation

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xv

List of Figures . xvii

Nomenclature . xxi

Acronyms . xxv

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.2.1 Guidance, Navigation and Control . 2

1.2.2 Validation . 3

1.3 Contributions . 3

1.4 Thesis outline . 4

2 State-of-Art 5

2.1 Free flying robots . 5

2.2 Nonlinear Control . 6

2.2.1 Linear methods . 6

2.2.2 Nonlinear methods . 7

2.2.3 Learning methods . 7

2.2.4 Optimal Control methods . 7

2.2.5 Model Predictive Control . 8

2.2.6 Nonlinear Model Predictive Control . 8

2.3 Trajectory Optimization . 9

2.4 Simulation . 10

3 Background 11

3.1 Optimal control methods . 11

3.2 Nonlinear Programing . 12

3.2.1 Newton’s method . 12

xi

3.2.2 Unconstrained problem . 13

3.2.3 Constrained problem . 13

3.2.4 Direct Multiple Shooting . 14

3.2.5 Sequential Quadratic Programming . 16

3.3 Nonlinear Model Predictive Control . 17

3.3.1 Basic algorithm . 17

4 Proposed Approach 19

4.1 Models . 19

4.1.1 Space CoBot model . 19

4.1.2 Space CoBot with payload model . 23

4.1.3 Formation with payload model . 25

4.1.4 Formation flight without payload . 27

4.2 Nonlinear Model Predictive Control . 28

4.2.1 Problem formulation . 28

4.2.2 Sequential Quadratic Programming . 29

4.3 Trajectory Optimization . 30

4.3.1 Problem formulation . 31

4.3.2 Iterative LQR . 31

4.3.3 Augmented Lagrangian iLQR . 31

4.3.4 Active-Set Projection Method . 32

4.3.5 Infeasible state trajectory initialization . 32

5 Implementation 33

5.1 Space Cobot parameters . 33

5.1.1 Design parameters . 34

5.2 Payload parameters . 36

5.3 Formation parameters . 36

5.4 Simulation environment . 36

5.4.1 Gazebo . 37

5.4.2 RotorS simulator . 37

5.4.3 Simulation parameters . 38

5.4.4 Payload grasping . 39

5.5 NMPC controller . 40

5.5.1 Actuation . 40

5.5.2 Objective function . 43

5.5.3 Initialization, state and control variables constraints 44

5.5.4 Solver settings . 44

5.6 Trajectory Optimization . 45

xii

6 Results 49

6.1 Model verification . 49

6.2 NMPC controller configuration . 50

6.2.1 Prediction horizon . 50

6.2.2 Weighting matrices . 51

6.2.3 Control constraints . 54

6.3 Offline trajectory generation . 55

6.3.1 Problems formulation . 55

6.3.2 Trajectory execution . 56

6.4 Single Space CoBot . 57

6.4.1 Payload carrying . 59

6.5 Object avoidance . 62

6.5.1 Single Space CoBot single obstacle trajectory . 63

6.5.2 Single Space CoBot with payload single obstacle trajectory 66

6.5.3 Two obstacles trajectory . 69

6.6 Formation with payload object avoidance . 73

6.6.1 Approach phase . 74

6.6.2 Transport phase . 75

7 Conclusions 79

7.1 Achievements . 79

7.1.1 Control and guidance . 79

7.1.2 Simulation . 80

7.2 Future work . 80

Bibliography 81

A Quaternions 87

A.1 Quaternion operations . 87

A.1.1 Multiplication between vector and quaternion . 87

A.2 Attitude error approach comparison . 88

xiii

xiv

List of Tables

5.1 Space CoBot design parameters . 34

5.2 HQ 4x4.5-BN performance data . 34

5.3 RotorS model parameters . 39

5.4 ACADO solver settings . 45

6.1 Trajectory optimization computation time . 55

6.2 ALTRO solver settings . 56

6.3 Single Space Cobot step problem formulation . 57

6.4 Single Space CoBot with payload step formulation . 60

6.5 Single Space CoBot single obstacle problem formulation 63

6.6 Single obstacle single Space CoBot with payload problem formulation 67

6.7 Two obstacles single Space CoBot problem formulation 70

6.8 Formation configuration obstacle problem formulation . 73

xv

xvi

List of Figures

2.1 Existing free-flyers . 6

4.1 Space CoBot 3D model . 20

4.2 Notation used for single propeller model with respect to the body frame B 22

4.3 Space CoBot with payload configuration . 23

4.4 Visualization of vector operation to obtain rotor positions with payload 24

4.5 Formation with payload configuration . 25

4.6 Visualization of vector operation to obtain rotor positions in formation 26

5.1 Space CoBot prototype . 33

5.2 Visualization of RotorS framework . 38

5.3 Simulation environment framework . 39

5.4 ACADO implementation scheme . 41

5.5 Visualization of the controller node . 42

5.6 Simulation environment with controller node scheme . 45

5.7 Complete simulation environment scheme . 47

6.1 Verification results. 50

6.2 Position step reference for different ts values . 51

6.3 Average feedback delay vs N . 52

6.4 NMPC controller step response . 52

6.5 Standalone NMPC step solution evaluation. 53

6.6 Prediction horizons for y axis during step response . 53

6.7 Variation induced in z axis during step . 54

6.8 Rotors angular velocity during step response . 54

6.9 Generated step trajectory for single Space CoBot . 58

6.10 Step tracking error of position and linear velocity for single Space CoBot 58

6.11 Step tracking error of attitude and angular velocity for single Space CoBot 58

6.12 Feedback delay for single Space CoBot step trajectory. 59

6.13 NMPC performance with step trajectory for single Space CoBot 59

6.14 NMPC response to step reference with unmodelled payload 60

6.15 Generated step trajectory for single Space CoBot with payload 61

xvii

6.16 Step tracking error of position and linear velocity for single Space CoBot with payload . . 61

6.17 Step tracking error of attitude and angular velocity for single Space CoBot with payload . 61

6.18 NMPC performance with step trajectory for single Space CoBot with payload 62

6.19 Collision safety barrier created by constraint . 63

6.20 Single obstacle problem simulation environment. 63

6.21 Single obstacle generated trajectory . 64

6.22 Single obstacle tracking error of position and linear velocity 64

6.23 Single obstacle tracking error of attitude and angular velocity 64

6.24 Feedback delay for single obstacle trajectory . 65

6.25 NMPC performance with single obstacle trajectory . 65

6.26 Single obstacle trajectory execution control inputs . 66

6.27 3D visualization of single obstacle trajectory execution . 66

6.28 Single obstacle single Space CoBot with payload generated trajectory 67

6.29 Single obstacle single Space CoBot with payload tracking error of position and linear velocity 68

6.30 Single obstacle single Space CoBot with payload tracking error of attitude and angular

velocity . 68

6.31 NMPC performance with single obstacle single Space CoBot with payload trajectory . . . 68

6.32 Single obstacle single Space CoBot trajectory execution control inputs 69

6.33 3D visualization of single obstacle single Space CoBot with payload trajectory execution . 69

6.34 Two obstacles problem simulation environment. 69

6.35 Two obstacles single Space CoBot generated trajectory 70

6.36 Two obstacles single Space CoBot tracking error of position and linear velocity 71

6.37 Two obstacles single Space CoBot tracking error of attitude and angular velocity 71

6.38 NMPC performance with two obstacles single Space CoBot trajectory 72

6.39 Feedback delay for two obstacles single Space CoBot trajectory 72

6.40 3D visualization of two obstacles single Space CoBot trajectory execution 72

6.41 Formation problem simulation environment . 73

6.42 Approach in formation tracking error of position and linear velocity for both Space CoBot

vehicles . 74

6.43 Approach in formation tracking error of attitude and angular velocity for both Space CoBot

vehicles . 75

6.44 NMPC performance with approach in formation trajectory for both Space CoBot vehicles . 75

6.45 Formation payload transport tracking error of position and linear velocity for both Space

CoBot vehicles . 76

6.46 Formation payload transport tracking error of attitude and angular velocity for both Space

CoBot vehicles . 76

6.47 Controller performance with generated trajectory . 77

6.48 Single obstacle formation with payload trajectory execution control inputs 77

6.49 Feedback delay for single obstacle formation with payload trajectory 78

xviii

6.50 3D visualization of full formation trajectory execution . 78

A.1 Comparison between attitude error vectors . 89

A.2 Comparison between attitude error magnitude . 89

xix

xx

Nomenclature

Greek symbols

α Angular acceleration vector.

ω Angular velocity vector.

∆Θ Attitude error vector.

∆ Interval or variation.

λ Lagrange multiplier.

µ Penalty multiplier.

Ω Rotation velocity.

φ, θ, ψ Euler angles.

ρ Density.

τ Rotor reaction torque.

Roman symbols

p Position vector.

u Control input vector.

v Linear velocity vector.

x State vector.

a Linear accelration vector.

coff Space CoBot relative position to formation Center of Mass.

F Thrust force vector in body frame.

J Inertia matrix.

M Moment vector in body frame.

Q Intermediate quaternion multiplication matrix.

xxi

q Attitude quaternion.

qe Quaternion error.

R Rotation matrix.

Wk, WN , Q, Qf , Ru, Weighting matrices.

` Cost function.

A Active constraints set.

I, B Inertial and body frames.

L Lagrange function.

CD Rotor drag constant.

CM Rotor drag moment constant.

Cp Power coefficient.

CR Rotor rolling moment constant.

CT Rotor thrust constant.

Ct Thrust coefficient.

D Rotor diameter.

FD Drag force.

FT Thrust force.

fd Feedback delay.

Gi Equality constraints set.

H Objective function.

Hi Inequality constraints set.

I Identity matrix.

K1, K2 Rotor modelling constants.

m Mass.

MD Drag moment.

MR Rolling moment.

N Prediction horizon length.

t Time instant.

xxii

ts Time step.

wi, θi, φi Space CoBot design parameters.

Subscripts

0 Current instant.

i, j, k, n Computational indexes.

opt Optimal condition.

ref Reference condition.

u Predicted vector component.

x, y, z Cartesian components.

Superscripts

−1 Inverse.

⊥ Parallel.

opt Optimal condition.

* Conjugate.

T Transpose.

xxiii

xxiv

Acronyms

ALTRO Augmented Lagrangian TRajectory Optimizer

BVP Boundary Value Problem

CBC Classical Backstepping Control

CIMON Crew Interactive MObile companioN

CoM Center of Mass

DDP Differential Dynamic Programming

DDS Data Distribution Service

DIRCOL Direct Collocation

DIRTRAN Direct Transcription

DLR Deutsches Zentrum für Luft- und Raumfahrt

GNC Guidance Navigation and Control

iLQR Iterative Linear Quadratic Regulator

IP Interior Point

ISR-Lisboa Institute For Systems and Robotics

ISS International Space Station

IVA Intravehicular Activity

JAXA Japan Aerospace Exploration Agency

KKT Karush-Kuhn-Tucker Conditions

LQG Linear Quadratic Gaussian

LQR Linear Quadratic Regulator

MDT Multi-Directional Thrust

xxv

MHC Moving Horizon Control

MPC Model Predictive Control

MRAV Multi-rotor Aerial Vehicle

NASA National Aeronautics and Space Administration

NDI Nonlinear Dynamics Inversion

NLP Nonlinear Programming

NMPC Nonlinear Model Predictive Control

OCP Optimal Control Problem

ODE Ordinary Differential Equations

PID Proportial Integral Derivative

QP Quadratic Programming

ROS Robot Operating System

SDF Simulation Description Format

SPHERES Synchronized Position Hold Engage Reorient

Experimental Satellites

SQP Sequential Quadratic Programming

UAV Unmanned Aerial Vehicle

URDF Unified Robotic Description Format

xxvi

Chapter 1

Introduction

This chapter will present the main objectives of this thesis as well as the motivation behind it. Firstly

the motivation for this work is presented in Section 1.1. Section 1.2 sets the objectives of this thesis. In

Section 1.3 the contributions of this thesis are enumerated. Lastly, the outline of the thesis is presented

in Section 1.4 detailing its structure.

1.1 Motivation

In recent decades, the interest in Unmanned Aerial Vehicles (UAV) has experienced considerable in-

creases. This is mainly due to the ability to execute actions without an onboard pilot, whether it is

controlled remotely or by an autopilot system, commonly composed by several onboard elements that

originate Guidance, Navigation and Control (GNC) systems [1]. This allows a vast range of applications

that reduce operating costs, operations with no risk to human life or even tasks that would be otherwise

impossible to manned vehicles. An even more recent trend is the use of small robots in the International

Space Station (ISS). National Aeronautics and Space Administration (NASA) free-flyer robots are one

example and they have been onboard the ISS for over a decade. Initially they were a platform used for

many experiments from flight directors and researchers on the ground that aimed at improving formation

flying and docking algorithms [2]. This research has since allowed the development of new free-flyer

robots that include more features and can perform a variety of Intravehicular Activity (IVA) work in the

ISS [3]. The Institute For Systems and Robotics (ISR-Lisboa) has also developed a highly maneuver-

able holonomic free-flyer robot designated Space CoBot [4, 5], which provides a similar platform for

conducting research in this type of robots.

Space exploration has been experimenting a few changes in recent years as both private companies

and public institutions are starting to make advancements towards deep space exploration. This endeav-

our will require a significant amount of research to make manned missions viable. One can imagine that

infrastructures will also be necessary, such as refilling stations, or even temporary stations where crews

can rest or perform repairs before continuing a journey. Using the ISS as reference, a station capable

of housing humans is an incredible complex place that requires extensive monitoring and maintenance

1

to remain habitable [6]. It becomes apparent then the importance of developing capable autonomous

free-flyer robots to perform these tasks in uninhabited stations.

Currently, robotic arms are already used to assist humans in maintenance tasks in the ISS, namely

the Canadarm2 [7]. However, in a remote space station there could be significant limitations to these

systems. Free-flyer robots will allow more complex operations without human presence. In order to

achieve this level of autonomy and unsupervised operation, several aspects have to be extensively

studied, such as the vehicle interaction with the station, objects, tools, and astronauts, in the case of a

manned station. Its navigation system must guarantee high awareness and risk-free maneuvers. Lastly,

but definitely not less important, the control system must use the least amount of energy possible as

access to energy might be severely restricted.

Almost all resources in space, such as propellant or fuel are limited. Solar power can also be limited

as we stray away from the solar system, which limits electrical energy storage. Consequently, optimal

navigation solutions are preferable. Model Predictive Control (MPC) is a well known field that aims to

provide optimal control feedback laws, while respecting control bounds and any given constraints, for

example, limitations to fuel consumption [8].

The two major motivations behind this thesis are then the desire to contribute to the improvement

of the Space CoBot free-flyer robot while exploring the limits and applicability of MPC in the real-time

context.

1.2 Objectives

The main objective of the present thesis is to integrate a Nonlinear Model Predictive Control (NMPC)

controller for the Space CoBot and test its applicability when subjected to different situations.

1.2.1 Guidance, Navigation and Control

Typically, a flight system can be segmented in three distinct subsystems often denominated as Guidance,

Navigation and Control subsystems. According to [9], the function of each subsystem can be classically

defined by the determination of the desired state for the Guidance subsystem, the determination of the

estimated state for the Navigation subsystem and the derivation of control commands for the Control

subsystem. The focus of this thesis will be in Control and Guidance tasks. Therefore, no Navigation

methods will be studied or implemented. This means that the resulting control architecture should not

only control the actuation of the system, which comprises the Control task, but also find the best way

of performing specific tasks, which will comprise the Guidance task. The aim is to find the limits of the

applications of NMPC in the real-time operations.

Control

The controller takes on the task of controlling the actuators directly, representing a low-level controller.

2

A controller of this type must ensure a stable and fast computation time. It must be able to converge

to the desired reference in a quick, robust and stable manner. The reference can originate from an

attitude tracking task, a waypoint reference, a specific trajectory, among others. The behavior of the

controller in these different situations should be analyzed.

Previous research was conducted regarding control behavior with an unmodeled payload within the

Space CoBot project [4], which concluded that even though convergence to a given position reference

is obtained, the addition of a heavy load causes a significant variation in attitude. This is undesirable

and states the need for more robust control methods. This thesis aims to extend the previous work

and introduce control solutions that take in consideration the model of the payload. Consequently, an

additional objective is to explore the possibility of changing the considered models while operating. This

means, for example, if a payload is to be carried by the Space CoBot system, from the point it grabs the

payload, the controller considers it part of the system and not some external perturbation.

Guidance

In order to achieve autonomy, the controller has to be able to perform safe, constraint free maneuvers to

achieve a given objective. This enters the realm of trajectory planning and obstacle avoidance. As this

increases the complexity of the control problem, the controller is expected to struggle. The objective is

to explore the NMPC limitations and observe when the controller becomes unreliable.

Environment constraints will result from adding bounds to the control inputs and state variables.

Additionally, obstacles will be considered as additional space constraints.

If the NMPC becomes unreliable for a given problem complexity, additional methods should be used

to compensate the NMPC limitations by separating the Control and Guidance tasks.

Ultimately, the resulting controller should be able to provide a base framework to continue NMPC

research in the future.

1.2.2 Validation

Testing free-flyer vehicles is very limited as accessing a microgravity environment is difficult. Access to

the ISS is not possible. Microgravity testbeds, such as parabolic flights are also very limited and would

require a special setup in the airplane. Alternatively, it is possible to perform 2D motion validation using

frictionless tables. One is being constructed by the ISR-Lisboa, however, it is not yet available. There-

fore, creating an accurate simulation environment is extremely important as all tests will be conducted

exclusively in simulation.

1.3 Contributions

In order to achieve the objectives mentioned in the previous section, several methods were implemented

and analyzed during this thesis and they can be sectioned as follows:

3

• Control: Implementation of a real-time NMPC controller that can operate with different model

configurations involving free-flyer robots.

• Guidance: Implementation of a Trajectory Optimization method for offline trajectory generation

capable of handling several constraints including obstacle avoidance.

• Simulation: Development of a simulation composed by the RotorS simulator integrated within

Gazebo; Integration of tools to provide grasping actions.

• Experiments: Elaboration of several experiments with varying conditions, in a simulation environ-

ment.

1.4 Thesis outline

The following work presented in this thesis is structured as follows: First, through Chapter 2 differ-

ent control solutions to nonlinear problems are briefly explored in order to understand how the control

method selected for this work can improve or contribute to the field. A brief review on trajectory op-

timization methods and available simulators is also conducted in this Chapter. Following, in Chapter

3, the theoretical background behind this work is presented in detail in order to provide insight on the

topics discussed in this thesis. Chapter 4 provides a deeper exploration on how the selected algorithms

were tailored to this project. Chapter 5 presents detailed information regarding the implementation of all

subsystems involved in this work. In Chapter 6, the obtained results are demonstrated and discussed.

Finally, in Chapter 7 the objectives of this thesis are evaluated and possible future work improvements

are discussed.

4

Chapter 2

State-of-Art

In this chapter, a brief review is conducted on available material regarding Multi-rotor Aerial Vehicles

(MRAV) control methods with the objective of understanding where the present work could be beneficial

for free flyer platforms. In Section 2.1, existing free flyer platforms are introduced to understand the

importance and applicability of this type of vehicles. In Section 2.2 a general review of existing control

methods used in nonlinear systems is performed to a allow a better understanding of how NMPC is

relevant in this field. Section 2.3 extends the base of knowledge on optimization based methods used in

the trajectory optimization field. Finally in Section 2.4 available simulators are briefly analyzed in order

to obtain a good approximation to a real micro-gravity environment.

2.1 Free flying robots

To the author’s knowledge, the free-flyer robots that are or have been onboard the ISS are depicted in

Figure 2.1.

NASA has been using free flyers as research platforms on board the ISS as early as 2006 through

Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) [2]. SPHERES is a

formation flight testing facility consisting of three satellites operating onboard the ISS. During its oper-

ation, it used the microgravity environment to further develop formation flight and docking algorithms,

fault detection and path planning in an incremental manner. However, this facility lacked a truth sensor

of higher fidelity. SPHERES tests had to resort to at least two perpendicular mounted cameras so that

researchers could have truth sensing of 3D operations [2].

Astrobee [3] is a similar platform that replaced SPHERES as a testbed onboard the ISS. Astrobee

is expected to increase and improve SPHERES features, specially when it comes to navigation as

these robots have better sensors such as depth cameras, color cameras, several processors and a

collections o mapping and planning algorithms [10]. They are also equipped with a robotic arm that allow

interactions with its surroundings, such as cargo transfers and maintenance tasks. A major advantage

to researchers is the fact that the software in Astrobee is largely implemented within Robot Operating

System (ROS) which facilitates integrations.

5

Japan Aerospace Exploration Agency (JAXA) has developed Int-Ball [11], which is able to move

autonomously inside the ISS. It is mainly used for shooting image and video. It is particularly useful for

compensating the blind spots that wall mounted cameras have.

German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt) (DLR) has also developed

a free flyer designated Crew Interactive MObile companioN (CIMON) [12] which is currently on the

second iteration, CIMON-2, and is the latest addition to the ISS as it is onboard as of 2020. The project

aims to develop autonomous astronaut assistance through artificial intelligence. It is able to see, hear,

understand, speak and fly. One of the main objectives of the project is to assist astronauts during high

workloads in order to reducing their exposure to stress [12].

(a) SPHERES (b) Astrobee (c) Int-Ball (d) CIMON

Figure 2.1: Existing free-flyers. Credits from left to right: [2], NASA / Anne McClain, [11], DLR/T.
Bourry/ESA.

2.2 Nonlinear Control

A controller is the element in a controlled system that commands or regulates the behavior of the system

through the interaction with its sensors and actuators.

2.2.1 Linear methods

Linear control methods resort to approximate linearized models of the system whereas nonlinear meth-

ods can use the the complete dynamics model. One of the most widely used linear controllers is the

Proportial Integral Derivative (PID) controller [13]. Linear Quadratic Gaussian (LQG) control, particu-

larly the Linear Quadratic Regulator (LQR) comprise several popular optimal control techniques which

can be used to achieve stable feedback control laws or implemented with several other control architec-

tures such as in [14]. Gain scheduling is used to extend the capabilities of linear controllers. Nonlinear

systems are often modeled as a set of simplified linear models, representing different operating points

where the gains of the feedback control laws are tuned accordingly as in [15].

These methods are common but often limit the operation of MRAV to simple maneuvers and basic

flight.

6

2.2.2 Nonlinear methods

To overcome some of the limitations of linear approaches, there is a broad list of techniques that resort

to the nonlinear model of the system. Nonlinear Dynamics Inversion (NDI), also known as feedback

linearization, comprises a group of methods that allow the use of linear tools to control a nonlinear

system, as in [16]. Adaptive control is a very common method used to improve robustness of a variety

of controller architectures that range from PID to NDI controllers [17]. Backstepping is a well-known

recursive methodology for nonlinear systems. Generally, this method is based in Lyapunov theory,

which is referred to as Classical Backstepping Control (CBC). However, several other methods have

been proposed based on backstepping [18].

Also, as presented in [16], a control scheme may use different control methods to different state

components.

When compared with each other, all these solutions present advantages and disadvantages regard-

ing stability, robustness and resistance to model uncertainties, which will depend on the objective of

the design. However, when handling operational constraints is a requirement, it is often necessary to

augment the controller design or redesign it entirely. Anti-windup compensation [19], the augmentation

of Lyapunov controllers with barrier functions [20] and reference and command governors [21] are some

examples of how a controller can be augmented.

Constraints in real-world applications can take several forms that go beyond obvious actuator limits

and stability constraints. They can be bounds imposed on process variables to enforce safety and

efficiency, collision avoidance requirements, limited energy usage, possible failures that can reduce the

functionality of a system or even time constraints.

2.2.3 Learning methods

The main characteristic of this control scheme is that a mathematical model of the system dynamics is

not used. Instead, flight data is used to train a model that will represent the system. Popular methods

rely on the use of Artificial Neural Networks architectures, where a model is trained trough simulation

data [22]. Another learning method is the Human-based approach, where a pilot’s execution of complex

maneuvers is used as training data for the model [23].

2.2.4 Optimal Control methods

Optimal control aims to find an optimal control sequence for a given system such that a certain optimality

criterion is achieved. Optimality is defined as the minimization or maximization of an objective function

without violating any specified constraints [24]. An Optimal Control Problem (OCP) includes a cost

function, containing state and control variables and a set of variables that are used to minimize the cost

function, denominated optimizations variables, which are usually the control inputs of the system. These

methods are often used in more complex problems with several constraints such as the rendezvous of

two satellites with limited fuel or time as in [25] or systems composed by different elements such as a

7

satellite with a robotic arm as in [26]. Optimal control can be applied to linear or nonlinear systems.

However, the implementation and algorithms involved vary significantly.

2.2.5 Model Predictive Control

MPC is an extension of optimal control methods, which consists in solving an OCP repeatedly at each

time step. The feedback control law is obtained by applying the first element of the solution at each

time step to the system and discarding the rest. Controllers designed with this architecture use a linear

approximation of the system around an equilibrium point as presented in these works [27, 28]. By

computing a new solution at each time step, linear MPC is resistant to possible perturbations and model

uncertainty.

Relying on an optimization stage at each time step, MPC controllers are very dependent on the

complexity of the system and computational power available, making these kind of controllers ideal for

slow evolving systems, such as chemical industrial processes as in [29] or in biological processes as in

[30].

In recent years, improvements in processing speeds and developments of new numerical optimiza-

tion methods are allowing MPC to be considered in faster dynamic systems, such as an UAV as in

[31].

2.2.6 Nonlinear Model Predictive Control

Similarly to MPC, NMPC relies on a model of the system in order to predict its evolution along a given

prediction horizon. However, the full dynamic system is considered instead of a linearized model, which

increases the control problem complexity significantly. When it comes to the optimization problem formu-

lation, that is when the major differences between the two approaches become clearer. NMPC cannot

rely on analytical control laws. Alternatively, it relies on discretization techniques that transform the

OCP into a standard Nonlinear Programming (NLP) problem that can be solved through general NLP

solvers [32]. There are two main families of NLP solvers, Interior Point (IP) and Sequential Quadratic

Programming (SQP) solvers.

Currently, there is a wide variety of algorithms available based in both solver families. Recent devel-

opments are briefly presented and compared in [33], where an effort to close the gap to the real-time

frame is visible. Methods that are worth mention for their extensive presence in literature as benchmark

methods are the SQP based SNOPT [34] and the IP based IPOPT [35]. Many performance studies

of these methods have been performed regarding computation times and solution quality while solving

several tasks, such as simple steps, obstacle avoidance and operation under state bounds constraints

[36]. This provides information on what to expect from these types of solvers. Additionally, to close the

gap to real-time applications, variants of SQP and IP methods that take the different approach of finding

approximate solutions to the NLP by stopping the process prematurely at a given time instead of iterating

until convergence have been proposed in [37, 38].

NMPC is very versatile as it can take several roles within the control system.

8

Guidance tasks such as trajectory planning as in [39], where a NMPC is proposed to adjust a trajec-

tory in the presence of obstacles by incorporating new constraints during operation.

Interestingly, NMPC are being considered to perform low level control tasks, which requires fast and

stable rates of operation.

The hierarchical controller implemented in [40] uses a NMPC controller for the attitude of a MRAV

and registered execution averages of 1ms while operating at a 5ms sampling time. Although it only

controls the attitude component of the system, it represents a very reasonable computation delay.

In [41], a single non-hierarchical real-time NMPC controller implemented in a fixed wing aircraft is

used to control both position and attitude for tracking a given reference trajectory while avoiding obsta-

cles and respecting actuator bounds. The execution time required by the NMPC controller averages at

30ms while operating at a sampling time of 500ms. This can be an indication of the impact of system

complexity on execution time.

Also implemented in a MRAV, in [42], a hierarchical controller is used to track a feasible trajectory

generated offline. A position NMPC controller computes attitude references feeding a second attitude

NMPC controller, operating with sampling times of 200ms and 2ms, respectively.

The application of NMPC in a MRAV with Multi-Directional Thrust (MDT) capability is studied in [43].

A NMPC controller is used to compute force inputs for each rotor to track both position and attitude

references.

2.3 Trajectory Optimization

Trajectory optimization refers to a set of methods that are used to find the best choice of trajectory,

usually by selecting the control inputs to the system, as functions of time [44]. In this definition, a

trajectory is composed by a sequence of states or control inputs during a given time interval, starting

from an initial state and ending in a desired state.

In this type of optimization, numerical algorithms solve variations of the same OCP mentioned in the

previous section. However, the focus in this field is to obtain feasible trajectories instead of control inputs

to apply directly to the system.

These problems can be solved with direct methods that discretize state and control trajectories in

order to formulate a NLP problem as mentioned in Section 2.2.6, which tend to be versatile and robust.

Common direct methods are Direct Transcription (DIRTRAN) [36] and Direct Collocation (DIRCOL) [45],

which comprise different methods to transcribe the dynamics into the NLP formulation. However, the

versatility and somewhat faster computations come at the cost of less accurate solutions and possible

losses of dynamic feasibility. Additionally, direct methods treat both states and control variables as

optimization variables which for complex system can increase the size of the NLP significantly.

Alternatively, indirect methods often treat only control inputs as optimization variables, while implicitly

enforcing dynamic constraints through the system’s simulation [46]. This means that in a predicted

trajectory, any given state is the result of a system simulation using the previous state and respective

control input. This implies that solutions obtained though these methods will be dynamically feasible.

9

The solvers used in this approach are highly conditioned by the initial guess. When dealing with complex

systems or problems, finding solutions becomes more difficult and may require significant computation

time to achieve a feasible solution.

Differential Dynamic Programming (DDP) [47] and iterative Linear Quadratic Regulator (iLQR) [48]

are two indirect methods that solve the OCP by breaking it into smaller subproblems. While these

methods are fast, they tend to be less robust and due to their strict enforcement of dynamic feasibility, it

is often difficult to find a control sequence that produces a reasonable initialization of the problem.

An initial guess generation approach has been proposed in [49] that aims at decreasing the sensitivity

of the initial guess. This could be applied to both direct and indirect methods.

Augmented Lagrangian TRajectory Optimizer (ALTRO) [46] comprises a few solvers for constrained

trajectory optimization problems that aims to achieve the advantages of direct and indirect methods.

It combines the introduction of slack variables that provide a relaxation of the initial problem, allowing

initializations with unfeasible trajectories. An Augmented Lagrangian combined with an iLQR to quickly

compute a first approximate solution and a line-search method, that takes the approximate solution and

enforces the satisfaction of the dynamics and constraints. This solver is then an hybrid approach with

fast computation speeds, numerical robustness, constraints handling and initialization with infeasible

state trajectories. Additionally, all of these methods can be used separately.

2.4 Simulation

Performing tests with free flyers in a microgravity environment is a rather difficult task. Therefore, a good

simulator is extremely important in the development of these vehicles.

The RotorS simulator [50] contains tools that allow the modeling, control and simulation of MRAV.

It is a Gazebo based open source simulator implemented within the ROS environment. This package

makes it relatively easy to create, test, and modify MRAV models. Furthermore, RotorS provides a fairly

accurate modeling of aerodynamic elements present in MRAV, and provides the simulation of several

onboard sensors, example controllers and simulation scenarios.

The NASA Astrobee Robot Software and Simulator [10] are available to the public. Its simulator is

also Gazebo based running a custom propulsion system and sensors. It uses a combination of ROS,

for onboard communication and Data Distribution Service (DDS), for remote messaging. This package

also provides a variety of navigation and localization methods to experiment with.

As RotorS is easier to get acquainted with, it can be viewed as a first choice to develop control

methods while aiming to switch to the Astrobee simulator, given that both simulators are based Gazebo

within the same ROS framework.

10

Chapter 3

Background

In this chapter, the background theory regarding the topics required to understand the remainder of this

thesis is presented. In Section 3.1, the general OCP is presented and common optimization methods

are discussed. In Section 3.2, the optimization methods considered to solve general NLP problems with

interest to NMPC are presented with detail. In Section 3.3, the theory regarding NMPC formulation is

presented.

3.1 Optimal control methods

Optimization methods are one of the best ways to operate complex dynamic systems while satisfying

certain optimality criterion. These methods allow the formulation of an OCP that can be solved by

numerical and optimization solvers. Optimality is defined as the minimization or maximization of an

objective function, that can be defined arbitrarily to describe the optimal solution, without violating any

specified constraints. The optimal state is achieved through the selection of optimal values for the

optimization variables, which are normally composed by control inputs to the system [24].

In general, an objective function includes two terms: a boundary objective J and a path integral along

the entire optimization horizon, visible in (3.1). A problem with both terms is said to be in Bolza form. A

problem with only the integral term is said to be in Lagrange form, and a problem with only a boundary

term is said to be in Mayer form [44].

The terms optimization variables or decision variables are used to describe the variables that the

optimization solver adjusts to minimize the objective function. These can be the initial and final time, t0

and tf , as well as state and control variables, x(t) and u(t), respectively [44]. The set of optimization

variables will be henceforth designated by z := (to, tf ,x(t),u(t)).

The optimization is subject to a variety of limits and constraints, namely dynamic constraints (3.2),

path constraints (3.3), and boundary constraints (3.4).

11

This concludes the formulation of a general continuous-time OCP

min
t0,tf ,x(t),u(t)

FJ = J(tf ,x(tf)) +

∫ tf

t0

`(x(t),u(t), t)dt (3.1)

subject to ẋ = f(x(t),u(t), t), (3.2)

h(x(t),u(t), t) ≤ 0 (3.3)

g(t0, tf ,x(t0),x(tf)) ≤ 0 (3.4)

There are several ways to approach an OCP. The two main approaches are indirect and direct

methods.

Indirect Methods use the necessary conditions of optimality of the continuous problem to derive a

Boundary Value Problem (BVP) in Ordinary Differential Equations (ODE) [51]. This BVP must be nu-

merically solved, and the approach is often viewed as ”first optimize, then discretize”. The class of

indirect methods encompasses the well known calculus of variations and the Pontryagin Maximum Prin-

ciple. These methods often treat only control inputs as optimization variables while implicitly enforcing

dynamic constraints through the system’s simulation from the beginning to the end using an integrator

[46]. This propagation is highly dependent on the initial state value. For this reason, producing rea-

sonable initializations, and consequently finding a solution is often difficult. Errors introduced in the

beginning of a trajectory also tend to propagate along the prediction horizon.

Direct methods transform the original infinite OCP into a finite NLP. This NLP is then solved by

variants of numerical optimization methods [24]. It is often viewed as ”first discretize, then optimize”,

which is an intuitive way of distinguishing direct and indirect methods. All direct methods are based on

a finite dimensional parameterization of the control trajectory, but differ in the way the state trajectory is

handled [51]. Nowadays, direct methods are the most widespread and successfully used techniques,

and will be the focus of the next section.

3.2 Nonlinear Programing

The interest when using optimization methods is to find global minimizers. However, for general non-

linear problems, and in particular nonconvex problems, such global minimizers are very hard to find in

practice, as it is very unpractical to evaluate the objective function FJ in all its definition space. Never-

theless, general optimization methods are able to find local minimizers [32]. For this reason, good initial

guesses are often required to achieve good solutions.

3.2.1 Newton’s method

Essentially all numerical methods for solving nonlinear optimization problems resort to some type of

iteration with a finite set of unknowns. The fundamental approach to most iterative schemes was sug-

gested by Newton over 300 years ago [52]. Therefore, a brief overview of this approach is essential to

understand how nonlinear solvers work and how a problem can be formulated.

12

Following [52], assuming the objective of solving the nonlinear algebraic equations a(z) = 0, a ∈ Rm

for the root z∗, starting from an estimate z, z ∈ Rn, a new estimate z̄ can be computed according to

z̄ = z + α∆z (3.5)

where α is a scalar step length and ∆z is called the search direction, which is computed by solving the

linear system

∇za(z)∆z = −a(z) (3.6)

where ∇za(z) is a m× n matrix of first derivatives of a(z).

Depending on the considered optimal problem, the conditions that define an optimal solution can

vary. These conditions are used to provide information about the problem to the solver.

3.2.2 Unconstrained problem

In unconstrained problems, local extrema points can be found in stationary points, where the first deriva-

tive of the objective function or the matrix of first derivatives, called Jacobian matrix ∇zFJ(z), is equal to

zero.

∇zFJ(z) = 0 (3.7)

Additionally, considering z∗ a local minimizer of FJ , to distinguish minimum points from maximum

points, the second derivative of the objective function or the matrix of second derivatives, called Hessian

matrix ∇2
zzFJ(z), needs to be positive definite in an open neighborhood of z∗ [32]. This ensures that

for a vector d ∈ Rnz with ||d|| < r, where r is a radius such that ∇2
zzFJ(z) is positive definite for all

z ∈ {z | ||z− z∗|| < r}, the following holds

FJ(z∗ + d) > FJ(z∗) (3.8)

These are the necessary and sufficient conditions to consider a given local minimizer z∗ as an optimal

local minimum zopt [32].

3.2.3 Constrained problem

In problems with constraints, optimal points can be found by the Lagrangian multiplier method, which

augments the objective function FJ to take in consideration the equality and inequality constraints

G(z) = 0 (3.9)

H(z) ≥ 0 (3.10)

13

for simplicity both constraints are combined into C via

C(z) :=

G(z)

H(z)

 (3.11)

and the Lagrangian is then given by

L(z,λ) = FJ(z)− λTC(z) (3.12)

where λ are Lagrange multipliers. Following [52], necessary conditions for the point (z∗,λ∗) to be a

constrained optimum point require finding a stationary point of the Lagrangian that is defined by

∇zL(z,λ) = ∇zFJ(z)−∇zC(z)Tλ = 0 (3.13)

and

∇λL(z,λ) = −C(z) = 0 (3.14)

These first-order necessary optimality conditions are usually called Karush-Kuhn-Tucker (KKT) condi-

tions [52].

It is important to note that a generalization of constrained problems occurs when inequality con-

straints H(z) ≥ 0 are imposed. For a given minimizer z∗, the constraints will fall into one of two classes.

Strictly satisfied constraints, Hi(z
∗) > 0, which are called inactive constraints. The remaining active

constraints are on their bounds, Hi(z
∗) = 0 [52]. Constraints restrict the feasible direction of the next it-

erate z̄ in (3.5). All equality constraints restrict feasible directions. However, not all inequality constraints

restrict feasible directions. Only when a given minimizer z∗ implies Hi(z) = 0 are feasible directions

restricted by inequality constraints [32]. The active set A(z) of any given feasible point z consists of

the equality and inequality constraints that restrict the feasible directions of that particular point. If A

is known, then the remaining inactive constraints can be ignored and the problem can be solved as

an equality constrained problem. However, as constraints can become active of inactive, an algorithm

needs to compute A, which is not a trivial problem [52].

Apart from this generalization regarding inequality constraints, the same first-order optimality condi-

tions (3.13) and (3.14) apply to equality and inequality constrained problems [52].

3.2.4 Direct Multiple Shooting

There are several direct methods to reformulate the infinite OCP into a finite NLP and each one can

have variants or differ in terms of implementation. Therefore, for brevity only Direct Multiple Shooting

will be detailed as it presents the most relevance for this work.

14

According to [32] a NLP problem takes the following form

minimize
z

FJ(z) (3.15)

subject to G(z) = 0, (3.15a)

H(z) ≥ 0 (3.15b)

with maps F : Rnz → R, G : Rnz → Rng and H : Rnz → Rnh . The function G(z) comprises all

equality constraints, the function H(z) comprises all inequality constraints and z represents the set of

the optimization variables. Similarly to previous sections, the function FJ(z) is a cost function.

Here and in the following, state and control constraints sets will be characterized by a set of functions

GSi : X × U → R, i ∈ ES = {1, ... , pg}, and HS
i : X × U → R, i ∈ IS = {pg + 1, ... , pg + ph} via the

equality and inequality constraints presented in (3.15a) and (3.15b).

In order to reformulate an OCP into a NLP, the dynamics need to be transformed into equality and in-

equality constraints, via a discretization method such as multiple shooting or full discretization [32]. Note

that even though discrete time is considered, within this context, the continuous time system equations

are used which are mapped by f in (3.2). This map is obtained through numerical integration methods.

This mapping is used to compute the predicted trajectory xu.

Evidently, the control input u(k) will be an optimization variable in the NLP. The multiple shooting

discretization includes some components of the state vector xu(k, x0), at certain k time instants, as

independent optimization variables in the problem, as opposed to the full discretization method which

would include all xu(k, x0) elements at all k ∈ {0, ... , N − 1} in the NLP [32]. These new variables are

called shooting nodes and the respective times will be called shooting times. In the formal description,

the vector of multiple shooting nodes will be defined by s := (s1, ... , srs) ∈ Rrs where si is the ith multiple

shooting node. The shooting times ς : {1, ... , rs} → {0, ... , N} and indices ι : {1, ... , rs} → {1, ... , d}

define the time and component of the state vector xu corresponding to si through

xu(ς(j), x0)ι(j) = sj (3.16)

This implies that the components xu(k, x0)i, i = 1, ... , d are determined by the iteration

xu(k + 1, x0)i = sj (3.17)

if there exists j ∈ {1, ... , rs} with ς(j) = k + 1, ι(j) = i and

xu(k + 1, x0)i = f(xu(k, x0), u(k))i (3.18)

with initial condition xu(0, x0)i = sj if j ∈ {1, ... , rs} with ς(j) = 0 and ι(j) = i, or xu(0, x0)i = (x0)i,

otherwise. The shooting nodes si become part of the set of optimization variables z, which reads

z := (u(0), ... , u(N − 1), sT)T (3.19)

15

To ensure that the NLP solution leads to values of si for which the state vector xu(k, x0) then defined

forms a trajectory of (3.26). To achieve this, following [32] a continuity condition is defined for all shooting

nodes sj with ς(j) ≥ 1 as

sj − f(xu(ς(j)− 1, x0), u(ς(j)− 1))ι(j) = 0 (3.20)

and for all shooting nodes sj with ς(j) = 0 as

sj − (x0)ι(j) = 0 (3.21)

These constraints are included as equality constraints in the NLP (3.15). Its final formulation is then

minimize FJ(z) :=

N−1∑
k=0

Wk`(n+ k, xu(k, x0), u(k)) +WN`N (n+N, xu(N, x0)) (3.22)

with respect to z :=(u(0), ... , u(N − 1), s) ∈ Rnz (3.22a)

subject to G(z) =


[
GSi (xu(k, x0), u(k))

]
i∈ES ,k∈Ki[

sj − f(xu(ς(j)− 1, x0), u(ς(j)− 1))ι(j)
]
j∈{1,,,,rs},ς(j)≥1[

sj − (x0)ι(j)
]
j∈{1,...,rs},ς(j)=0

 = 0 (3.22b)

H(z) =
[
HS
i (xu(k, x0), u(k))

]
i∈IS ,k∈Ki

≥ 0 (3.22c)

where W is a weighting matrix. The index sets Ki, i ∈ ES ∪ IS in these constraints indicate that some

of the conditions may not be applied to all times k ∈ {0, ... , N}. These constraints induce the feasible

set Ω described by

Ω = {z |Gi(z) = 0, i ∈ E ;Hi(z) ≥ 0, i ∈ I} (3.23)

where z ∈ Ω are called feasible points.

This means that any minimizer zopt of the NLP must be an element of Ω by definition [32].

3.2.5 Sequential Quadratic Programming

To solve any NLP of the form (3.15) SQP are common approaches. Recalling the Lagrangian function

L in (3.12), the objective of methods based in SQP is to iteratively approximate z and λ to zopt and λopt

such that the KKT conditions (3.13) and (3.14) hold [51].

A SQP method achieves this by applying the Newton’s method to the KKT conditions to formulate an

approximation of the nonlinear problem around the current iterate, which will be denoted by zk [32]. The

objective is to iterate

zk+1 = zk + αk∆zk (3.24)

where z represents the vector of optimization variables defined in (3.19), αk is the step length and the

16

search direction ∆zk is the solution of the Quadratic Programming (QP) subproblem that results from

the application of the Newton’s method according to [32] and formulated by

minimize FQP (zk)+∇FQP (zk)T∆zk +
1

2
∆zTk∇2

zzL(zk,λk)∆zk (3.25)

with respect to ∆zk ∈ Rnz (3.25a)

subject to Ci(zk) +∇Ci(zk)T∆zk = 0 for all i ∈ Wk (3.25b)

whereWk can be seen as an approximation to the active set A(zk) and is updated in each iteration step.

This method can then handle inequality constraints.

3.3 Nonlinear Model Predictive Control

NMPC is an optimization based control method which provides feedback control laws for nonlinear sys-

tems. NMPC originated as an extension of optimal control theory to improve robustness and resistance

to model uncertainties and has become a very popular technique for difficult control problems [24].

3.3.1 Basic algorithm

Given a system with state x(n) ∈ X → Rd, which is measured at discrete time instants tn, n =

0, 1, 2, ..., N − 1, it is considered a controlled system if at each time instant a control input u(n) ∈ U → Rm

can influence the future behavior of the state of the system. The general objective is to obtain the control

inputs u(n) such that x(n) follows a given reference xref ∈ X as good as possible [32]. The objective

of model predictive control, linear or nonlinear, is to use a model of the process in order to predict and

optimize the future system behavior. In this work, models will take the form

x(n+ 1) = f(x(n), u(n)) (3.26)

where f : X × U → X is a known and nonlinear map which assigns to a state x(n) and a control value

u(n) the successor state x(n+ 1) at the next time instant.

Achieving the optimal input sequence will be an iterative process. Starting from the current state

x(n), for a given control sequence u(0), ..., u(N − 1) with horizon length N ≥ 2, the expression (3.26) is

iterated in order to obtain the predicted trajectory xu defined by

xu(0) = x(n), xu(k + 1) = f(xu(k), u(k)), k = 0, ..., N − 1 (3.27)

At this stage, a prediction for the behavior of the system is obtained on the discrete interval tn, ..., tn+N ,

based on the given control sequence u. Optimal control methods are then applied to determine the

sequence u(0), ..., u(N − 1) such that xu is as close as possible to xref [24]. To this end, there must be

a function `(xu(k)) that measures the difference between xu(k) and xref (k) for k = 0, ... , N − 1, that is

denominated as the cost function. To allow penalization of control inputs, the cost function can be of the

17

form `(xu(k), u(k)). In this case, both the distance from a reference state and reference control input are

penalized. Following [32], a common choice for this purpose is the quadratic function

`(xu(k), u(k)) = Q||xu(k)− xref (k)||2 +R||u(k)||2 (3.28)

where Q and R are weighting parameters for the state and control, respectively. A general form of an

optimal control problem is the following

minimize FJ(xu(.), u(.)) :=

N−1∑
k=0

`(xu(k), u(k)) (3.29)

Assuming that this optimal control problem has a solution, it is given by the minimizing control se-

quence uopt(0), ... , uopt(N − 1), i.e.,

min
u(0),...,u(N−1)

FJ(x(.), u(.)) =

N−1∑
k=0

`(xuopt(k), uopt(k)) (3.30)

To achieve the feedback form, u(n) will be defined in feedback form as u(n) = µ(x(n)) where µ

maps the state x ∈ X into the set U of control values. Obtaining the desired feedback value µ(x(n)) is

achieved by setting µ(x(n)) := uopt(0), i.e., the first element of the optimal control sequence is applied

as feedback. At the following instant tn+1, the process is repeated from the prediction step, meaning that

the remaining control inputs from the current solution, uopt(1), ... , uopt(N−1), are discarded [32]. In con-

clusion, the feedback law is obtained by an online iterative optimization over the predictions generated

by the model of the system (3.26).

At each time instant t, a prediction is generated for the following N − 1 instants, maintaining the

prediction horizon constant, meaning that the horizon is advancing through time. For this reason, MPC

is often referred to as Moving Horizon Control (MHC) [32].

18

Chapter 4

Proposed Approach

In this chapter, the formulation of the selected methods to achieve the objectives of this work are ex-

plored. In Section 4.1, the models considered throughout this work, based in the Space CoBot, will be

derived. In Section 4.2 the methods considered to formulate the NMPC controller integrated in this thesis

are described. Lastly, in Section 4.3, the method used to perform guidance tasks, such as generating

feasible trajectories for the NMPC is detailed.

4.1 Models

Throughout this thesis, three system configurations were considered. A single Space CoBot system,

a Space CoBot carrying a payload system and a formation system comprising two Space CoBots and

a shared payload. An additional formation configuration without payload is considered. However, the

involved vehicles are described by the single Space CoBot dynamic model. The only difference is a

transformation of the provided references, as will be detailed further below.

4.1.1 Space CoBot model

The Space CoBot is an hexarotor UAV with a special rotor design configuration, that can be visualized

in Figure 4.1. All propellers are represented with a blue color with the exception of one represented by

the color red and serves for visual reference of the attitude of the Space CoBot.

It is modelled based on the nonlinear dynamic model described in [5], which is defined through

the Newton-Euler equations of motion. However, in this work quaternions are used to describe rota-

tion instead of Euler angles. The quaternions approach is often used not only to avoid discontinuities

and gimbal-locks but also to allow faster computations, which is essential when dealing with numerical

19

Figure 4.1: Space CoBot 3D model.

methods. The resulting model is described by

ṗ = v

v̇ = (1/m) R(q) F

q̇ = (1/2) Q(q)ω

ω̇ = J−1(M− ω × Jω)

(4.1)

where p = [x , y , z] is the position, v = [u , v , w] corresponds to linear velocity, and q = [qw , qx , qy , qz]

is the attitude quaternion, where qw is a scalar and [qx , qy , qz] are vector components which represent

the rotation axis. These components are described with respect to (w.r.t.) the inertial frame I, and

ω = [ωx, ωy, ωz] is the angular velocity described w.r.t. the body frame B. These elements constitute

the state vector x = [p,v,q,ω]. The scalar m is the system’s mass, J is the moments of inertia matrix

and F and M are vectors representing the thrust force and torque generated by the rotors w.r.t. the body

frame. R ∈ SO(3) is the rotation matrix obtained by considering right-hand rotation and defined by

R(q) =


1− 2q2

y − 2q2
z 2qxqy − 2qzqw 2qxqz + 2qyqw

2qxqy + 2qzqw 1− 2q2
x − 2q2

z 2qyqz − 2qxqw

2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2
x − 2q2

y

 (4.2)

and Q is a 4× 3 matrix defined by

Q(q) =


qw −qz qy

qz qw −qx
−qy qx qw

−qx −qy −qz

 (4.3)

Note that the dot product Q(q)ω results from a simplification step of the multiplication between a vector

and a quaternion q⊗ ω. Details regarding operations with quaternions are detailed in appendix A.1.

20

Propulsive system model

A common approach to model a UAV rotor is to consider the relationships that result from the momentum-

blade theory [53],

Ct =
T

ρn2D4
and Cp =

P

ρn3D5
(4.4)

where Ct is the thrust coefficient, Cp is the power coefficient, ρ represents the air density, D is the rotor

diameter, n is the rotation velocity of the blade expressed in rps (revolutions per second), and T and

P are the thrust and power, respectively. These two parameters are used to describe rotors once they

are often used to present propeller performance test results. Obtaining this experimental information for

a specific propeller can be a significant challenge. Alternatively, a performance study was conducted

for small-scale propellers of different shapes and sizes in [54]. This allows the observation of a similar

propeller and the use of approximations for the coefficients.

For modeling purposes, it is useful to describe the motor model as a function of thrust and torque.

Therefore, starting from the expression (4.4) and considering that the power of a moving body, P , is ex-

pressed by P = 2πτn, where τ represents the generated torque, the following expressions are obtained

T = ρD4Ctn
2 and τ =

ρD5Cp
2π

n2 (4.5)

Note that ρ, Ct and Cp are not constant parameters and vary with the propeller rotational speed

and environment conditions such as pressure and temperature. However, the scenarios considered in

this work do not involve high variations of environmental conditions. Furthermore, the relation Cp/Ct

tends to present a small variation when the rotational speed suffers high variations according to [54].

Consequently, this relation can be considered constant without significant loss of accuracy. For simplicity

sake, the constants K1 and K2 are defined by

K1 = ρD4CT K2 =
ρD5CP

2π
(4.6)

Considering a single propeller i whose motor is rigidly linked to the body frame B, depicted in Figure

4.2, this rotor generates a scalar thrust fi and a torque τi described by

fi = K1ui τi = wiK2ui, i ∈ {1, ... , 6} (4.7)

where wi is either -1 or 1 depending on whether the propeller rotates clockwise or anti-clockwise for a

positive forward thrust fi > 0. The actuation signal ui is defined by ui = sgn(ni)n
2
i , where sgn() is a

sign function, to achieve a linear relation between the actuation and forces/moments.

The orientation of a propeller w.r.t. the body frame B is represented by the unit vector ûi. Conse-

quently, the thrust Fi and total torque Mi, caused by the displacement of thrust from the Center of Mass

21

Figure 4.2: Single propeller notation. Figure from [4]

(CoM) and the propeller reaction torque τ i are defined by

Fi = fiûi Mi = ri ×Ti − τiûi, i ∈ {1, ... , 6} (4.8)

Each rotor is represented by a relative position to the CoM, expressed by the vector ri, orthogonal to

the Z axis, and the unit vector ûi, aligned with the propeller orientation axis. Both are uniquely defined

by the angles θi and φi through the following expressions

ri =


d cos(θi)

d sin(θi)

0

 ûi =


sin(θi) sin(φi)

− cos(θi) sin(φi)

cos(θi)

 , i ∈ {1, ... , 6} (4.9)

where d = ||ri|| is the distance from the propeller to the CoM. All these elements can be visualized in

Figure 4.2.

The resulting thrust Fi and torque Mi are obtainedFi

Mi

 = aiui ai =

 K1ûi

K1ri × ûi − wiK2ûi

 , i ∈ {1, ... , 6} (4.10)

where ai represents the components of force and torque of the i-th rotor described by

ai =



K1 sin(θi) sin(φi)

−K1 cos(θi) sin(φi)

K1 cos(φi)

[K1d cos(φi)− wiK2 sin(φi)] sin(θi)

− [K1d cos(φi)− wiK2 sin(φi)] cos(θi)

−K1d sin(φi)− wiK2 cos(φi)


(4.11)

The resulting net force and torque will be the sum of the contributions of the 6 rotors. In matrix formF

M

 = Au (4.12)

22

where A = [a1 ... a6] is a square matrix hereby called actuation matrix and u = [u1 ... u6]
T is the actua-

tion input.

4.1.2 Space CoBot with payload model

One of the objectives of the Space CoBot project is to provide assistance to humans. To that end, the

integration of a robotic arm can be considered to provide means of interaction with the environment. This

integration is outside the scope of this thesis. Any addition to the Space CoBot system, such as an arm

or a payload, will require modifications of the model defined in the previous section, due to the change

in CoM. To redefine the model, one can resort to the Parallel axis theorem to compute the resulting

inertial matrix around the CoM of the resulting system. In order to perform this modification, rigid body

conditions are considered, meaning that the payload is rigidly linked to the Space CoBot. An illustration

of the considered system can be observed in Figure 4.3 below.

Figure 4.3: Space CoBot with payload configuration.

The new CoM represented by point S presents a displacement in the z axis only, in the body frame

of reference. In general, the CoM can be found by vector addition of the weighted position vectors which

point to the CoM of each object in a system. Therefore the components of the new CoM can be trivially

calculated by

xS = xSC (4.13)

yS = ySC (4.14)

zS =
mspace cobotzSC +mpayloadzP

mspace cobot +mpayload
(4.15)

Should the payload be asymmetrical, this computation has to be performed for every axis.

Following [55], the Parallel axis theorem states

JA = JG +msystem

(
rTGrGI− rGrTG

)
(4.16)

where JG and JA represent the system’s moments of inertia matrices around the CoM and an arbitrary

point A, respectively. The constant msystem represents the mass of the system, I is the identity matrix

23

and rG is a vector representing the position of point G relative to point A.

As mentioned earlier, the objective is to obtain the total inertia of the system expressed around the

CoM of the system, JS , which is defined by

JS = JT1 + JT2 (4.17)

where JT1 and JT2 are defined by

JT1 = JSC +mspace cobot

(
rTSCrSCI− rSCrSC

)
(4.18)

JT2 = JP +mpayload

(
rTP rP I− rP rP

)
(4.19)

Additionally, the actuation model is modified to considered the deviation of the CoM as seen in Figure

4.4, via

rpi = coff + ri (4.20)

Figure 4.4: Visualization of vector operation to obtain rotor positions with payload.

The resulting actuation model can then be redefined byFi

Mi

 = aiui ai =

 K1ûi

K1rpi × ûi − wiK2ûi

 (4.21)

The resulting dynamics model is then

24



ṗ = v

v̇ = (1/msystem) R(q) F

q̇ = (1/2) Q(q)ω

ω̇ = J−1
S (M− ω × JSω)

(4.22)

where

msystem = mspace cobot +mpayload (4.23)

4.1.3 Formation with payload model

To increase the applications of the Space CoBot project, a formation configuration while carrying a

payload is also considered. This formation will be considered as a single system where all elements

are rigidly linked, comprising a rigid body. In this case, the model will be defined around the CoM of the

complete system. The resulting configuration can be observed in Figure 4.5.

Figure 4.5: Formation with payload configuration.

Similarly to the single Space CoBot with payload configuration, the new CoM, represented by point

S, can be computed by

xS = xSC1 ∨ xS = xSC2 (4.24)

yS =
mspace cobot 1ySC1 +mspace cobot 2ySC2 +mpayloadyP

mspace cobot 1 +mspace cobot 2 +mpayload
(4.25)

zS =
mspace cobot 1zSC1 +mspace cobot 2zSC2 +mpayloadzP

mspace cobot 1 +mspace cobot 2 +mpayload
(4.26)

The total inertia of the system can be calculated by summing the inertia of each element expressed

around point S, the CoM of the system, using the same method mentioned in the previous section

resulting in the following expression

JS = JT1 + JT2 + JT3 (4.27)

25

with

JT1 = JSC1 +mspace cobot 1

(
rTSC1rSC1I− rSC1rSC1

)
(4.28)

JT2 = JSC2 +mspace cobot 2

(
rTSC2rSC2I− rSC2rSC2

)
(4.29)

JT3 = JP +mpayload

(
rTP rP I− rP rP

)
(4.30)

Actuation forces must take into account the new CoM. This is solved by modifying the actuation matrix

A of each Space CoBot to account for the new positions of each rotor relative to the new CoM. Observing

Figure 4.6 for reference, let us consider one Space CoBot from the formation. The modification to its

actuation matrix can be quickly implemented by registering the displacement of the CoM of the Space

CoBot relative to the CoM of the system. This offset will be designated by coff as depicted in Figure

4.6.

Figure 4.6: Visualization of vector operation to obtain rotor positions in formation.

By performing a simple addition of the position of each rotor, ri in (4.9) to coff , the position of each

rotor relative to the CoM of the system emerges, designated by rfi and defined by

rfi = ri + coff (4.31)

The resulting actuation model of the individual Space CoBot can then be defined byFi

Mi

 = aiui ai =

 K1ûi

K1rfi × ûi − wiK2ûi

 (4.32)

The resulting force and torque will be the sum of the contributions of all 12 rotors in the formation. In

matrix form  F1 + F2

M1 + M2

 = A1u1 + A2u2 (4.33)

where Ai = [ai1 ... ai6] are the actuation matrices of each Space CoBot and u1 and u2 are individual

26

control inputs corresponding to each Space CoBot, which compose the actuation input u =
[
uT1 uT2

]T .

The dynamics of the system described through the CoM of the system is then obtained by summing

the contributions of each Space CoBot and are defined by

ṗ = v

v̇ = (1/mtotal) R(q) (F1 + F2)

q̇ = (1/2) Q(q)ω

ω̇ = J−1
S (M1 + M2 − ω × JSω)

(4.34)

where

mtotal = 2mSpaceCoBot +mpayload (4.35)

Note that the states of the model mentioned above in (4.34) are described in the CoM of the formation

while each Space CoBot has sensors positioned in their own CoM. Therefore, this information needs

to be transformed to the CoM of the formation. This is achieved by following Euler’s equations for rigid

body dynamics. Considering the formation system as a rigid body, the linear velocity and acceleration of

any point A in the body, vA and aA, relative to the inertial frame, can be calculated given that the linear

velocity and acceleration of any point B in the body, vB and aB , relative to the inertial frame, as well as

the body’s angular velocity and acceleration also expressed in the inertial frame, ωb/i and αb/i, and the

position of point A in relation to point B, rBA = pA−pB , are known. The relations that result from these

equations follow the expressions below

pA = pB + rBA (4.36)

vA = vB + ωb/i × rBA (4.37)

aA = aB +αb/i × rBA + ωb/i × (ωb/i × rBA) (4.38)

Given that the angular velocity and acceleration, ωb/i and αb/i, are equal at any given point of the

body, it is fairly easy to transform position, velocity and acceleration data between body points.

4.1.4 Formation flight without payload

Formation flying comprises the flight of multiple objects in a synchronized manner while maintaining

constant relative positions between each element of the formation. Flying in formation without a pay-

load does not require a specific model. For simple operations, flying in formation can be achieved by

making all formation elements track a specific point and a common orientation. Considering a formation

comprising two Space CoBot vehicles, by resorting to (4.36) and opposing relative position references,

the same path can be provided to both vehicles which will be followed via the respective transformations

originated from (4.36). By providing the same orientation, possible collisions are avoided given that both

will follow a unique path.

27

It is important to note that until this point, starting from the single Space CoBot model, one can derive

the payload carrying model by altering two parameters, system mass and inertia matrix. One can also

derive a formation carrying model by providing three parameters, system mass, inertia matrix and a set

of relative positions that define the formation shape and the payload positioning in the formation.

Throughout this thesis, the set of relative positions corresponding to the formation are all known

beforehand and considered to be constant. Regarding the payload parameters such as mass, inertia

matrix and position relative to the carrying system, they are all known beforehand as their estimation is

not within the scope of this work. In addition, research on how to perform such estimations has already

been conducted within the Space CoBot project in [56].

4.2 Nonlinear Model Predictive Control

To achieve a NMPC formulation, an NLP must be formulated to allow NLP solvers to find control solutions

at each time step while satisfying any additional imposed constraints. In this section, this problem

formulation and solution are detailed.

4.2.1 Problem formulation

To perform the problem discretization, multiple shooting is used.

First the controls are discretized piecewise on a given time grid

u(t) = qi for t ∈ [ti, ti+1] (4.39)

Then the ODE is solved on each interval [ti, ti+1] independently, starting with an artificial initial value si,

the so-called shooting node [32]

ẋ(t) =f(xi(t),qi), t ∈ [ti, ti+1], (4.40)

xi =si (4.41)

By numerically solving these initial value problems, the state trajectory pieces xi(t, si,qi) are ob-

tained [51].

Simultaneously with the decoupled ODE solution, the finite differences in the cost function (3.28) are

also numerically computed at each point of the grid

li(si,qi) :=

∫ ti+1

ti

`(xi(ti, si,qi),qi)dt (4.42)

In order to ensure dynamic feasibility, the continuity conditions si+1 = xi(ti+1, si,qi) are imposed.

28

The 4th order Runge-Kutta integration method applied and described in [57] is used to numerically

solve the integrals.

∫ ti+1

ti

ẋdt =

∫ ti+1

ti

f(x,u)dt→ xt+1 − xi ≈
1

6
(F1 + 2F2 + 2F3 + F4) (4.43)

where

F1 =hf(x,u) (4.44)

F2 =hf

(
x +

h

2
,u +

F1

2

)
(4.45)

F3 =hf

(
x +

h

2
,u +

F2

2

)
(4.46)

F4 =hf(x + h,u + F3) (4.47)

and h is the time interval. Thus, arriving at the following NLP formulation

minimize
s,q

N∑
i=0

li(si,qi) + J(sN+1) (4.48)

subject to s0 − x0 = 0, (4.49)

si+1 − xi(ti+1, si,qi) = 0, i = 0, ..., N, (4.50)

h(si,qi) ≥ 0, i = 0, ..., N, (4.51)

g(sN+1) = 0. (4.52)

All optimization variables can be summarized as z := (s0,q0, ..., sN+1,qN).

4.2.2 Sequential Quadratic Programming

In order to use NMPC in real-time applications involving fast dynamic processes, solution computation

times must approach at least the millisecond range. Of-the-shelf algorithms are not able to accomplish

this in a stable manner, meaning that certain problems can be solved near the 1 s mark while increas-

ing the complexity of the task increases the computation time to 10 s or no solution is found at all, as

observed in [36].

The SQP considered now, augments the objective function through the Lagrangian function L as in

(3.12). The objective is to apply Newton’s method to the KKT conditions (3.13) and (3.14) as in [52]

resulting in the following linear system

 HL ∇zCT

∇zC 0

∆z

−λ

 =

−∇zFJ
−C

 (4.53)

where HL is the Hessian matrix of the Lagrangian, C is the set of equality and inequality constraints and

29

FJ is the objective function being augmented.

HL = ∇2
zFJ −

b∑
i=1

λi∇2
zCi (4.54)

where b is the size of the set of variables (z,λ) being iterated. According to [52], in this approach the

search direction ∆z can be computed by solving the QP subproblem

minimize
1

2
∆zTHL∆z +∇zFTJ ∆z (4.55)

with respect to ∆z ∈ Rnz (4.56)

subject to ∇zC∆z = −C (4.57)

Note that approximations of the constraints C are used (4.57). To increase the computation speed,

an approximation of HL is computed via the Gauss-Newton approach [57].

Real-time scheme

In order to reduce this feedback delay and the computation time in general, an real-time embedding

strategy proposed in [37] is used. This method performs only one SQP iteration per time step and di-

vides the calculations in two separate steps, a preparation step and a feedback step. All operations

that are independent of the current state measurement are included in the preparation step and can be

carried out offline. Upon the observation of the current state values the QP subproblem is constructed

and solved yielding ∆u and ∆x. This provides a control input via u = uguess + ∆u that can be immedi-

ately applied to the system [58]. The control input is maintained during a certain duration in which the

preparation step takes place, where the solution obtained in the previous step ∆x is shifted in time and

used to provide a good initial guess for the next iteration. The feedback step includes the initial value

embedding and the solving of the QP problem, which is typically faster [57]. Consequently, the feedback

delay is reduced to just the computation time of the QP solver.

In this scheme, no globalization strategy is used, under the assumption that approximated solutions

are enough to achieve convergence.

4.3 Trajectory Optimization

In the context of this thesis, for the NMPC to work as efficiently as possible, feasible trajectories will

be provided as references instead of general references. To achieve this, the numerical trajectory op-

timization algorithm ALTRO proposed in [46] will be integrated in this work. This algorithm takes an

indirect optimization approach to solve variations of an OCP such as 3.1 which is known for achieving

dynamically feasible solutions. It comprises several optimization algorithm that can be used together or

individually.

30

4.3.1 Problem formulation

The cost function ` is augmented to consider constraints forming a Lagrangian function L defined by

L = `(xk, uk) + λT ck(xk, uk) +
1

2
ck(xk, uk)T Iµck(xk, uk) (4.58)

where ck is the concatenated set of equality and inequality constraints, c = (gk, hk), with index sets Ek
and Ik, respectively, λ are Lagrangian multipliers, µ are the penalty multipliers, and Iµ is a diagonal

matrix defined by

Iµ =

 0 if cki(xk, uk) < 0 ∧ λki = 0, i ∈ I

µi otherwise,
(4.59)

where ki denotes the ith constraint at time step k.

Two main steps are considered to solve this problem. The iLQR iteration and the Augmented La-

grangian update.

4.3.2 Iterative LQR

The objective of this method is to approximate all nonlinear constraints and objective using first or second

order Taylor series expansions at each iteration in order to operate on deviations around the nominal

trajectory defined by δuk. A iLQR iteration has two major steps, a backward pass that minimizes (4.58)

with respect to deviations δuk and a forward pass that updates the nominal trajectories X = {x0, ... , xn}

and U = {u0, ...1, , uN−1} by simulating the dynamics forward with the optimal corrective deviations δuoptk

starting from the fixed initial state x0 [46]. This can be summarized by the following

unewk = uk + δuoptk (4.60)

xnewk+1 = f(xnewk , unewk) (4.60a)

This iLQR section iterates continuously until one of two conditions are reached. Either an iteration

limit is achieved or a given tolerance is satisfied for the improvement of the objective function relative to

the previous iteration objective function, defined by |L − Lprev| < tolerance [46].

4.3.3 Augmented Lagrangian iLQR

To improve the convergence rate and quality of the solution, after an iLQR step, with λ and µ held

constant, both variables can be updated according to

λ+
ki

=

 λki + µkicki(x
opt
k , uoptk) i ∈ Ek

max(0, λki + µkicki(x
opt
k , uoptk)) i ∈ Ik

(4.61)

31

and

µ+
ki

= φµki (4.62)

where φ > 1 is a scaling factor. A new iLQR step is then started. This step will keep updating these

values until one of two conditions is met. Either an iteration limit is reached or a minimal constraint

violation value is satisfied [46].

Both iLQR and Augmented Lagrange parameters can be tuned by the user.

4.3.4 Active-Set Projection Method

The solution from the Augmented Lagrangian-iLQR stage provides a coarse solution, described in this

section by Y ← X,U, λ for simplicity. For this reason, an active-set projection method is also imple-

mented in ALTRO [46]. It uses this coarse solution as a warm start solution in order to find a solution

that strictly satisfies the dynamics and constraints, rendering the resulting trajectories feasible. This

approach takes the AL-iLQR solution and projects it onto the manifold associated with the active con-

straints, already presented in this work as active set A. Then the algorithm uses a Newton method,

already described in this work, and takes successive steps δY until reaching a desired constraint toler-

ance. From this point on, this method will be referred to as the ALTRO algorithm.

4.3.5 Infeasible state trajectory initialization

As mentioned before, optimization algorithms often rely on a good initial guess, or at least a feasible

initial guess. This is even more evident in indirect methods such as this one, where dynamics are strictly

enforced by forward simulation. In [46], dynamically infeasible state trajectory initialization is possible by

introducing additional modifications to the dynamics with slack controls sk ∈ Rn that provide an initial

relaxation of the problem. The dynamics are then replaced by

xk+1 = f(xk, uk) + sk (4.63)

Following [46], the optimization problem is also modified by adding the cost term

N−1∑
k=0

1

2
sTkRssk (4.64)

and the constraints

sk = 0, k = 0, ..., N − 1 (4.65)

Since at convergence sk = 0 is supposedly achieved, a dynamically feasible solution is still obtained.

32

Chapter 5

Implementation

In this chapter, details are presented regarding the implementation of all subsystems within the ROS

framework, namely the simulation environment, the NMPC controller and the trajectory optimization

algorithm. First, Sections 5.1, 5.2 and 5.3 detail all the model parameters used in this work. In Section

5.4 the chosen simulation environment to perform tests on the developed methods is presented in detail.

The integration of the NMPC controller is detailed in section 5.5. Finally, in Section 5.6 the integration of

the trajectory generation algorithm is described.

5.1 Space Cobot parameters

Although this thesis mainly relies on a simulation of the Space Cobot to test and evaluate the control

system developed, the ISR-Lisboa has manufactured a working prototype of the vehicle visible in Figure

5.1. Therefore, the model described in 4.1 will now be parameterized to represent as accurately as

possible the real prototype. This way, future validations on the real prototype can be compared, to some

extent, with the work presented throughout this thesis.

Figure 5.1: Space CoBot prototype.

33

5.1.1 Design parameters

The real prototype follows the design proposed in [4] and so shall the model used for simulation. The

Space Cobot comprises six rotors equally distanced to the CoM by d = 0.16m and equally spaced

between each other.

Table 5.1: Design parameters. Angles are expressed in degrees. Table from [4].
i-th rotor 1 2 3 4 5 6

θi 0 60 120 180 240 300
φi 55 -55 55 -55 55 -55
wi -1 1 -1 1 -1 1

The actuation matrix A from (4.12), depends on the vehicle’s design parameters θi, φi, wi, d, K1 and

K2. The first three are presented in Table 5.1.

To define the constants K1 and K2 the desirable option would be to use propeller performance data

from [54] for the propeller used in the prototype, which is designated HQ 4x4.5-BN. However, this specific

propeller is not included in this database. Fortunately, this performance study is not entirely useless. As

mentioned before, the relation Cp/Ct can be considered constant for varying rotor angular velocity and

tends to present little difference between similar propellers. Therefore, a value for this relation will be

assumed and, consequently, K2/K1 can also be calculated, which will be relevant to the work that

follows.

Motor vendors usually provide performance data and technical specifications of the motor when

coupled with different propellers. This information1 is available for the Cobra 2204 motor and HQ 4x4.5-

BN propeller, both used in the prototype. This information will allow the extraction of the K1 constant.

Table 5.2: HQ 4x4.5-BN performance data when coupled with Cobra 2204/2300Kv motor.

Propeller Ω[rpm] thrust [g] thrust [N]

HQ 4x4.5-BN 23754 543 5.32

Considering the scalar thrust produced by a single propeller fi = K1ui, where ui is expressed in

rps2. The relevant performance data of the used propeller is condensed in Table (5.2). It is then trivial

to obtain the K1 constant if a conversion from rpm to rps is performed, given that angular velocity data

in Table (5.2) is expressed in rpm. Consequently, K1 is simply computed by solving the following

fi = K1ui ⇔ (5.1)

5.32 = K1

(
23754

60

)2

⇔ (5.2)

K1 = 3.39× 10−5 (5.3)

where dividing the angular velocity by 60 performs the conversion to rps.

1https://www.innov8tivedesigns.com/images/specs/Cobra CM-2204-28 Specs.htm

34

As stated earlier, an approximate relation K2/K1 can be computed by resorting to the relation Cp/Ct

of a similar propeller2. Although this relation tends to present a small variation with angular velocity,

the selected value, Cp/Ct = 0.397, corresponds to relatively slow velocities (≤ 9000 rpm). Given the

propeller diameter, D = 0.1016m, the relation K2/K1 is then computed by

K2

K1
=
CpD

Ct2π
≈ 6.4× 10−3 (5.4)

The relation in (5.4) is useful once it allows the modification of the actuation matrix A from (4.12)

to be dependent on K2/K1 instead of the individual constants K1 and K2. This is accomplished by

factorizing the constant K1 resulting in the following

A = K1AN (5.5)

where AN = [aN1
... aN6

] which will be hereafter designated by normalized actuation matrix and

aNi =

 ûi

ri × ûi − wi K2

K1
ûi

 , i ∈ {1, ... , 6} (5.6)

The modified forces/moments expression is then described byF

M

 = λrpmANu (5.7)

where λrpm is used to simplify the resulting expression and comprises the K1 constant and a conversion

factor that allows the control input ui to be expressed in rpm2 from this point further. It is defined by

λrpm =
K1

602
= 9.428× 10−9 (5.8)

Other parameter such as mass, m, and inertia matrix, J, were obtained experimentally in the ISR-

Lisboa laboratory and are introduced below

m = 6.047 kg J =


0.0376245 0 0

0 0.0426381 0

0 0 0.0678863

 (5.9)

This concludes the definition of all Space CoBot’s design parameters that will be used in the following

sections.

2https://m-selig.ae.illinois.edu/props/volume-2/data/gwsdd 5x3 static 0323rd.txt

35

5.2 Payload parameters

As visible in Figure 4.3, a 6 kg spherical payload with a diameter of 0.1m is considered. Its CoM presents

a displacement of −0.2m in the z axis relative to the CoM of the Space CoBot. With this information,

relative positions in (4.18) and (4.19) can be calculated

rSC → (0, 0, 0.09961) (5.10)

rP → (0, 0, −0.10039) (5.11)

The system mass and inertia matrix then become

msystem = 12.047 kg JS =


0.1774 0 0

0 0.1825 0

0 0 0.073886

 (5.12)

5.3 Formation parameters

To form a flying formation two Space CoBot vehicles are considered in this work. However, the present

approach allows this number to be increased. The payload considered now takes a cuboid shape as

seen in Figure 4.5, which measures 0.5× 0.8× 0.1m. The CoM of each Space CoBot present a relative

displacement of 0.8m in the y axis. The payload is kept at 6 kg to allow possible comparisons to the

single Space CoBot with payload configuration. Its CoM presents a displacement of −0.2m in the z axis

relative to the plane that contains both Space CoBot robots (xy plane). With this information, the CoM

of the resulting system and relative positions in (4.28), (4.29) and (4.30) can be calculated.

rSC1 → (0, −0.4, 0.06632) (5.13)

rSC2 → (0, 0.4, 0.06632) (5.14)

rP → (0, 0, −0.13368) (5.15)

The system mass and inertia matrix then become

msystem = 18.094 kg JS =


2.4957 0 0

0 0.37569 0

0 0 2.5158

 (5.16)

5.4 Simulation environment

The Space CoBot was designed to operate in the absence of gravity. Consequently, it is not easy to

experiment or perform full validations on a real prototype.

36

There are several open source simulators available that are easy to use and allow a quick start after

a few tutorials. Most simulators have intuitive ways of implementing a certain desired model and will

automatically define kinematic and dynamic relations based on a few properties, without the need to

specify any equations. However, there are several effects that are not simulated, namely aerodynamic

forces generated by moving bodies. Particularly, moving rotors generate complex aerodynamic forces,

due to their shape, which are essential to accurately model a rotor based vehicle and reduce the gap

between simulation and reality. These effects are strongly dependent on the propeller properties and are

often defined using experimental methods. Therefore, one would have to model these effects manually

or build plug-ins that achieve the same result.

5.4.1 Gazebo

The simulation environment used this work is based in the Gazebo simulator. It provides extensive

documentation and several detailed tutorials that allow a quick introduction to this software. Gazebo uses

Simulation Description Format (SDF) files to describe its models and world environments. Objects are

described through links, which are characterized by mass and moments of inertia, and have geometric

representation for visual and collision purposes. The links can be connected through joints to define

specific kinematics properties. The joints are just a representation of motion and do not possess mass

or inertia.

Motion simulation is performed through Newton-Euler equations together with a first order integrator

which comprises the physics engine Open Dynamics Engine1. Evidently, it simulates only rigid body

dynamics. One of the main reasons to use this simulator is the fact it can be used effortlessly with ROS,

and it already is used as a base for more complex simulators.

5.4.2 RotorS simulator

The RotorS simulator provides tools to model MRAVs with a good level of precision. Unified Robotic

Description Format (URDF) is used to define the MRAV models considered in this work through the po-

sition and orientation of individual elements while using built-in tools to automatically calculate moments

of inertia and to convert the resulting models to SDF, the format used by Gazebo.

Included in this package is a plug-in that computes the lacking aerodynamic forces generated by

propellers mentioned previously. The additional elements simulated for each rotor are the thrust force

FT , the drag force FD, the rolling moment MR and the moment originating from the drag of a propeller

MD following [59] and defined by

1https://bitbucket.org/odedevs/ode/src/master/

37

FT = Ω2CT ezB (5.17)

FD = −ΩCDv
⊥
A (5.18)

MR = ΩCRv
⊥
A (5.19)

MD = −wCMFT (5.20)

where Ω is the positive angular velocity of the propeller, CT is the rotor thrust constant, CD is the rotor

drag constant, CR is the rolling moment constant and CM is the rotor drag moment constant. These

constants are all positive. w denotes the turning direction of the rotor for which the thrust produced is

positive, it can be +1 (counter clockwise) or -1 (clockwise). ezB corresponds to the unit vector pointing

in the z-direction of the rotor’s body frame. v⊥A represents the velocity of the rotor projected in the rotor

plane, described by the the same vector ezB .

RotorS provides other tools such as controllers, state estimators, sensor data simulation, wind simu-

lation, among others. A visualization of the RotorS framework is presented in Figure 5.2.

Figure 5.2: Visualization of RotorS framework. Figure from [50].

Darker blocks represent the available tools provided by this simulator. In this work, the MAV Control

block in Figure 5.2 is replaced by the NMPC controller developed for this work.

5.4.3 Simulation parameters

To achieve an accurate model, the parameters CT , CD, CR and CM , corresponding to the constants

in (5.17)-(5.20), mass, m, and moments of inertia matrix, J, are defined in accordance with the Space

CoBot design parameters presented in Section 5.1. Therefore, all elements computed by the RotorS

38

plug-in are modified by changing the respective constants in such a way that angular velocity can be

expressed in rpm. This is already described in (5.7). Hence, to match this model the moments of inertia

matrix J in (5.9) is manually inserted into the parameters instead of using RotorS built-in methods. This

is necessary to avoid possible differences between the two models that might cause simulation errors.

Given that RotorS computes the inertia of each individual element of the model separately, this can

result in small inertia values and Gazebo has proven to be unpredictable when dealing with these small

values.

Table 5.3: RotorS model parameters.
Thrust constant CT 9.428× 10−9

Drag constant CD 1.344× 10−6

Rolling moment constant MR 1.667× 10−8

Drag moment constant MD 6.400× 10−3

Rotor radius [m] r 5.086× 10−2

Arm length [m] d 1.600× 10−1

All required parameters are then presented in Table 5.3. Note that although Space CoBot does not

comprise arms as a typical MRAV, the designation Arm length is used to describe the rotor’s distance

to the CoM.

The RotorS plug-in requires the rotors’ angular velocities in order to compute the forces and moments

to apply to the respective links and for setting the visual velocity of the joints in the Gazebo simulator. The

visual velocity computation in RotorS is necessary given that angular velocity in Gazebo is expressed in

rad/s. This conversion is also regulated by a constant defined in the model parameters. Note that this

parameter has visual purposes only. The resulting simulation environment can be visualized through

Figure 5.3.

Figure 5.3: Simulation environment framework.

5.4.4 Payload grasping

In order to form a configuration with several MRAVs, each with an independent controller, RotorS initial-

izes MRAVs individually. Therefore, there is no built-in function to create connections between objects

39

during simulation. Considering a formation with a payload, or the act of grasping an object, such as a

payload, is then impossible with the base simulator. To allow these actions, a grasping plug-in2 was inte-

grated into the simulation environment. This addition allows the individual initialization of all elements of

a simulation and the creation of additional Gazebo joints between objects when desired to perform an

attachment, and the respective destruction as well, to perform a detachment. Achieving the formation

with payload configuration is then performed by creating two additional joints between the vehicles and

the payload, creating what can be considered a single rigid body.

5.5 NMPC controller

In order to integrate a NMPC in real-time applications, there are several open source options available.

In this thesis the ACADO toolkit [60] was used to generate the real-time solver described in Section

4.2.2. This toolkit comprises several optimization methods for control and estimation, integrators, mul-

tiple shooting discretization and includes some QP solvers, such as qpoases [61], which is the one

selected to solve the SQP subproblems (3.25) in this work.

One major advantage of this toolkit, is the ability to generate highly efficient C code of the selected

solver. This eliminates much of the complexity involved in the integration of different software in ROS,

which is run in C++ in this work. Also, a MATLAB interface is available that allows the configuration and

testing of the selected solver. A simulation in the loop is also possible within MATLAB, which allows

some testing of the solver and the respective analysis using MATLAB tools before performing the ROS

integration.

The ACADO toolkit generates a set of files, which are included in a ROS node, hereafter designated

by controller node, and comprises several functions that are used to interact with the generated solver.

Other libraries required to run the solver are also exported and integrated within these files, such as

the qpoases solver and an integrator. The most relevant functions are the acado feedbackStep and

acado preparationStep functions that represent, as their names indicate, the preparation and feedback

steps described in Section 4.2.2. Figure 5.4 presents a visualization of these steps and how the solver

works internally.

5.5.1 Actuation

It is important to note some details regarding the integration of the ACADO solver. If the optimal control

input to be found by the solver is expressed in rpm2, the set of possible solutions will be significantly big.

Consider the angular velocity limit |u| ≤ 100002 rpm2, the set of possible solutions is then

u ∈ [−1× 108, 1× 108] (5.21)

In order to remove some complexity of the model provided to the solver, the optimal control input to be

found by the solver will be expressed in force, N , and converted to angular velocity, rpm, afterwards.

2https://github.com/pal-robotics/gazebo ros link attacher

40

Figure 5.4: ACADO implementation scheme.

This is achieved by modifying the actuation model and defining the force control input uf as follows

uf = λrpmu (5.22)

resulting in the actuation model F

M

 = ANuf (5.23)

The possible solution set, for the same angular velocity limit example as in (5.21), is then

uf ∈ [−0.9428, 0.9428] (5.24)

This showed a dramatic improvement in computation speed and solution accuracy. This is much

faster due to the way the newton method works. The resulting controller node is now represented by

Figure 5.5.

The control input uf is then converted to angular velocity, urpm, via

urpm = sgn(uf)

√
|uf |
λrpm

(5.25)

The controller node is also responsible for receiving and processing sensor data from the simulator

and sending control inputs to the simulator through ROS topics.

The models provided to ACADO are based in (4.1), (4.22) and (4.34) for the respective configura-

tions. The parameterization of each model is detailed below. ACADO will use these models to generate

the integrator, which will be responsible for predicting future steps.

41

Figure 5.5: Visualization of the controller node.

Actuation matrices

The single Space CoBot configuration is parameterized by the following actuation matrix

AN =



0 −0.7094 0.7094 0 −0.7094 0.7094

−0.8192 0.4096 0.4096 −0.8192 0.4096 0.4096

0.5736 0.5736 0.5736 0.5736 0.5736 0.5736

0 0.0837 0.0837 0 −0.0837 −0.0837

−0.0967 −0.0483 0.0483 0.0967 0.0483 −0.0483

−0.1276 0.1276 −0.1276 0.1276 −0.1276 0.1276


(5.26)

while the single Space CoBot with payload configuration is parameterized by

AN =



0 −0.7094 0.7094 0 −0.7094 0.7094

−0.8192 0.4096 0.4096 −0.8192 0.4096 0.4096

0.5736 0.5736 0.5736 0.5736 0.5736 0.5736

0.8159 −0.3239 −0.3239 0.8159 −0.4920 −0.4920

−0.0970 −0.7551 0.7551 0.0970 −0.6581 0.6581

−0.1274 0.1274 −0.1274 0.1274 −0.1274 0.1274


(5.27)

Mass and moments of inertia matrix considered for the Space CoBot with and without payload are

defined in (5.9) and (5.12), respectively.

The formation configuration with two Space CoBot vehicles is parameterized by the individual actu-

ation matrices

AN1 =



0 −0.70941 0.70941 0 −0.70941 0.70941

−0.81915 0.40958 0.40958 −0.81915 0.40958 0.40958

0.57358 0.57358 0.57358 0.57358 0.57358 0.57358

−0.1751 −0.17258 −0.17258 −0.1751 −0.34061 −0.34061

−0.097015 −0.095555 0.095555 0.097015 0.0014593 −0.0014593

−0.12739 −0.15637 0.15637 0.12739 −0.41116 0.41116


(5.28)

42

for Space CoBot number 1 and

AN2 =



0 −0.70941 0.70941 0 −0.70941 0.70941

−0.81915 0.40958 0.40958 −0.81915 0.40958 0.40958

0.57358 0.57358 0.57358 0.57358 0.57358 0.57358

0.24194 0.30719 0.30719 0.24194 0.13916 0.13916

−0.097015 −0.059343 0.059343 0.097015 0.037672 −0.037672

−0.12739 0.41116 −0.41116 0.12739 0.15637 −0.15637


(5.29)

for Space CoBot number 2. Mass and moments of inertia matrix are defined in (5.16).

5.5.2 Objective function

To define the objective function to be minimized by the solver, a built-in function of the ACADO toolkit

[62] is used to generate the following

N−1∑
k=0

[h(xk,uk)− yk]Wk[h(xk,uk)− yk]T + hN (xN ,uN)− yNWN [hN (xN ,uN)− yN]T (5.30)

where h are called reference functions and are denoted with h ∈ Rny and hN ∈ Rny,N , yk ∈ Rny and

yN ∈ Rny,N denote minimizing reference values that can be fixed or time-varying, and Wk ∈ Rny and

WN ∈ Rny,N are the weighting matrices.

To form the reference functions h and hN , error functions composed by the differences between

current state values and desired references are used. Note that the desired references are not the

minimizing references y0,...,N−1 and yN mentioned above. Position and attitude errors along with control

inputs are selected to construct h and hN . The objective is to set y0,...,N = 0 so that minimizing the

objective function implies reducing the position and attitude errors and selecting low control inputs.

The position error vector ∆p ∈ R3 can be trivially obtained by subtraction

∆p = p− pref (5.31)

The attitude difference, ∆Θ ∈ R3, is obtained by computing a truncated version of the quaternion

error, qe described in [63], yielding

∆Θ =


qrefw qx + qrefz qy − qrefy qz − qrefx qw

−qrefz qx + qrefw qy + qrefx qz − qrefy qw

qrefy qx − qrefx qy + qrefw qz − qrefz qw

 (5.32)

Details on the selection of this method to compute the attitude error vector are provided in the ap-

pendix A.2.

The control inputs are used as is. Recalling that y0,...,N = 0 the following objective function is formed

43

N−1∑
k=0

[∆pk,∆ΘT
k ,u

T
k]Wk[∆pk,∆ΘT

k ,u
T
k]T + [∆pN ,∆ΘT

N]WN [∆pN ,∆ΘT
N]T (5.33)

where Wk is a 12× 12 diagonal matrix defined by

Wk = diag(Wp, Wp, Wp, WΘ, WΘ, WΘ, Wu, Wu, Wu, Wu, Wu, Wu) (5.34)

and WN is a 6× 6 diagonal matrix defined by

WN = diag(WpN , WpN , WpN , WΘN
, WΘN

, WΘN
) (5.35)

where Wp and WpN , WΘ and WΘN
, and Wu are scalar values associated with position, attitude and

control, respectively.

Note that for the formation with payload configuration, the weighting matrix Wk is 18× 18, where the

additional diagonal elements, associated with control inputs, are also defined with the scalar Wu.

5.5.3 Initialization, state and control variables constraints

The ACADO auto-initialization routine uses the provided bounds on state and control variables to gen-

erate initial guesses. If upper and a lower bounds are provided, the initial guess will be the result of an

arithmetic mean. If only one of these bounds is specified the initial guess will be equal to this bound. If

there is a variable for which no bounds are specified, the initial guess will simply set to 0. This applies to

the first iteration. Consequent iterations will shift the previous control solution uopt0,...,N−1 and obtain a new

initial guess via uguess0,...,N−2 = uopt1,...,N−2, where the last node uguessN−1 takes the same value as uguessN−2 or is

computed through simulation [64]. The same shift applies for the state solution xguess0,...,N . The initial values

for the differential equations are also generated from their bounds. However, these values are obtained

by a simulation of the differential system with the initial guess computed for the controls, parameters,

and initial states.

When one of the state bounds is violated, the shooting nodes will be projected into the feasible

set enforcing the bounds. Therefore, providing these bounds can be beneficial for the initial guess

generation. However, it can also originate dynamic violations as shooting nodes are not coupled in time

[51].

5.5.4 Solver settings

The resulting controller is now presented.

All selected parameters for the exported NMPC controller are detailed in Table 5.4. Note that several

horizon lengths N were tested during this work.

The resulting simulated environment can now be viewed as in Figure 5.6.

44

Table 5.4: ACADO solver settings.
Time Step ts 0.1
Horizon intervals N 20
Shooting nodes rs 21

Discretization type Multiple Shooting
Sparse QP solution Full Condensing
QP solver qpoases
Hotstart QP YES
Shift solution states YES
Shift solution control YES

Figure 5.6: Simulation environment with controller node scheme.

5.6 Trajectory Optimization

General references such as a simple terminal waypoint or even paths composed by waypoints proved to

be insufficient in obtaining a smooth and accurate solution for more complex trajectories or maneuvers.

This is due to the fact that the prediction time window is too short, 2 s, which implies that when a desired

waypoint is well outside this window, the initialization of shooting nodes causes severe discontinuities in

the state trajectory. Together with the fact the considered solver only performs one iteration, it is difficult

find good control solutions.

For this reason, a feasible trajectory is computed offline and fed to the NMPC controller as a reference

trajectory which in theory should reduce significantly the objective function value along N , and allow

better solutions. Given that this computation will occur offline, not included in the real-time framework,

a different optimization approach is considered. The aim here is to obtain the best solution possible

meaning that there is not an express concern regarding fast computations times.

TrajectoryOptimization.jl3 is an open source library implemented in JULIA [65] that is used in this

work to achieve offline trajectory generation capabilities.

The same system models provided to ACADO in Section 5.5.1 are used in this approach to perform

the forward simulation in (4.60a). Note that in this section the full state x = [p,v,q,ω] is considered in

the objective function of an optimization along a given amount of knots NTO. The time step t is selected

to match the time step of the NMPC controller ts.

3https://github.com/RoboticExplorationLab/TrajectoryOptimization.jl

45

The costs are defined by a built-in function and follows the LQR tracking formulation

(xNTO
− xf)TQf (xNTO

− xf) +

NTO−1∑
k=1

(xk − xf)TQ(xk − xf) + uTkRuuk (5.36)

where Qf , Q and Ru are 13× 13 diagonal weighting matrices, associated to states and control, respec-

tively. For clarity purposes, the weighting matrices Q will be defined by

Q = diag(Qp, Qp, Qp, Qp, Qp, Qp, QΘ, QΘ, QΘ, QΘ, QΘ, QΘ, QΘ) (5.37)

the weighting matrix Qf is defined by

Qf = diag(QpN , QpN , QpN , QpN , QpN , QpN , QΘN
, QΘN

, QΘN
, QΘN

, QΘN
, QΘN

, QΘN
) (5.38)

and the weighting matrix Ru is defined by

Ru = diag(R, R, R, R, R, R) (5.39)

where Qp and QpN , QΘ and QΘN
, and R are scalar values associated with position, attitude and control,

respectively. Independent calibration of the matrices is now possible. It is important to note that for the

formation with payload configuration, the weighting matrix Ru is 12 × 12, where the diagonal elements

are also defined with the scalar R. This choice of cost function implies that the only reference parameter

the cost function requires from the user is the terminal desired state xf .

Several constraints types are considered in this approach:

Goal constraints,

xNTO
= a (5.40)

State bounds constraints,

min ≤ xk ≤ max, k = 1, ... , NTO (5.41)

Control bounds constraints,

min ≤ uk ≤ max, k = 1, ... , NTO − 1 (5.42)

Sphere constraints,

(xk − xc)2 + (yk − yc)2 + (zk − zc)2 ≥ r2, k = 1, ... , NTO (5.43)

The resulting objective function is the sum of all cost functions and Lagrangian terms originating from

the constraints as defined in (4.58).

46

The optimal trajectory xopt ∈ R13×NTO achieved by this method is saved in a .txt file. The NMPC

controller will load this trajectory into an array to serve as references. As the NMPC prediction horizon

is significantly smaller than the obtained trajectory, the references will be updated at each time step

N intervals at a time. The resulting and complete simulation environment then follows the scheme

presented in Figure 5.7.

Figure 5.7: Complete simulation environment scheme.

47

48

Chapter 6

Results

In this chapter, the optimal settings for the NMPC controller are explored through simulation results.

The resulting NMPC controller is then evaluated with different system configurations. All involved parts

will be tested in an incremental manner from individual algorithms to the full control scheme. First, in

Section 6.1, the verification of the model used by the simulator is presented. In Section 6.2 the effect

of different solver settings is analyzed along with the behavior caused by the weighting matrices and

addition of variable bounds. Section 6.3 presents the trajectory generation performance and how the

NMPC controller tracking will be evaluated. Sections 6.4, 6.5 and 6.6 present trajectory execution results

divided in three major groups problems, unconstrained flight, flight with obstacles and formation flying,

respectively. All results were obtained in a laptop computer with an Intel Core i7-4710HQ @ 2.50GHz.

6.1 Model verification

In order to verify the implicit model generated by RotorS, the simulated system response to several

control inputs is evaluated. For comparison, a Space CoBot model is simulated in MATLAB through its

mathematical model. The approach selected to these tests is to provide control inputs to the simulator

and compare the response with the expected value, computed in MATLAB. The results can be observed

in Figure 6.1.

Note that a function of the type y = x is added to provide a reference for the expected values. Linear

acceleration is expressed in m/s2 and angular acceleration is expressed in rad/s2.

Regarding linear acceleration, the RotorS simulator produces very similar responses. However, when

it comes to angular acceleration, there is a small disparity visible in the results in the x and z axes. This

error increases with angular acceleration, which means that the model loses accuracy. In this work, such

high angular velocities are not expected to be reached during operation. Therefore, the model can still

be considered accurate. Nonetheless, this could be an indication of possible errors within the simulation,

which has to kept in mind.

49

(a) Linear acceleration x-axis (b) Linear acceleration y-axis

(c) Linear acceleration z-axis (d) Angular acceleration x-axis

(e) Angular acceleration y-axis (f) Angular acceleration z-axis

Figure 6.1: Verification results.

6.2 NMPC controller configuration

It is difficult to predict how OCP settings affect the real-time controller and one can not look at a specific

setting as being independent from the rest. Typically, the time step is a crucial parameter and should

be the first to be set. The faster the dynamic system, the shorter the time step should be [66]. This is

taken as the starting point to find a good initial configuration. Simple waypoints will be considered as

references during this section, reproducing step references.

6.2.1 Prediction horizon

Computation time is essential. Therefore, the selected settings should reflect a tendency to minimize the

solver’s complexity. The objective is to maximize the prediction time window in order to exploit the MPC

50

formulation to the fullest. This is accomplished by choosing the longest prediction horizon N that does

not compromise the controller operation, meaning that the computation time fits within the controller time

step. Other concern to have in mind is the NMPC feedback delay, fd, that measures the interval of time

between the acquisition of the current state x0 and the application of the resulting control solution uopt to

the system, this corresponds to the feedback step in Figure 5.4. This delay should be as low as possible

and takes priority over N and ts. It is important to note that ts should be orders of magnitude superior to

fd.

Therefore, a compromise between N and ts has to be achieved while minimizing fd. Evidently

for small ts values, the prediction time window is relatively small, and may cause overshoot problems.

Higher ts values can also cause overshoot and instability, because the control inputs lose resolution and

corrective actions may take longer to achieve the objective reference.

A step reference is used to observe the behavior caused by different ts while holding N = 60. The

results can be visualized in Figure 6.2 below. As expected there is an interval of ts values where no

overshoot occurs.

Figure 6.2: System response to different ts values.

This is a good point to start exploring the effects of N on fd. Resorting to the same step test,

different N values were used to measure fd while holding ts = 0.1. The results can be observed

below in Figure 6.3. Values over 60 were not considered for N given that the ACADO exporting tool

allows a maximum of 61 nodes. Nonetheless, for N = 60, the average feedback delay f̄d represents

over 30% of ts which is extremely high. Higher values for ts would mitigate this percentage. However,

sacrificing control resolution would limit the NMPC controller applicability to very slow operations and

reduce tracking precision.

N = 20 will then be considered for the remainder of this work. It is difficult to state if the selected ts

and N will be the best in all cases, given that weighting matrices can influence the system behavior as

well and have been kept constant until this point. The prediction time window is 2 s.

6.2.2 Weighting matrices

There is a lot of room for experimentation in this topic. The weighting matrices Wk and WN in (5.34)

and (5.35), will be individually tuned through the scalars Wp, WΘ and Wu. Evidently, different problems

51

Figure 6.3: Average feedback delay for different N .

will benefit from different weighting values depending on the goal. For example, general navigation can

have higher weights for position Wp = 20, WΘ = 1, Wu = 1. On the other hand, operations requiring

precise attitude tracking can have higher weights for attitude Wp = 1, WΘ = 20, Wu = 1. Similarly,

operations requiring the least amount of energy possible can use high weights for control Wp = 1,

WΘ = 1, Wu = 20.

For the time being these matrices will be defined as Wp = 1, WΘ = 10, Wu = 20, WΘN
= 1000WΘ

and WpN = 1000Wp. However, several experiments with different values will take place during this work.

Considering now a time step in the position reference in the y axis of 1m, presented in Figure 6.4,

the importance of a good prediction time window becomes apparent.

Figure 6.4: NMPC controller step response.

It is visible that the reference is reached with considerable overshoot, meaning finding a solution was

more difficult. This difficulty can be evaluated through the KKT conditions violation and the Objective

function evaluation along time. These results can be observed in Figure 6.5.

Throughout these next sections, solutions generated by the NMPC controller will be evaluated through

the KKT and the Objective evaluation values at each iteration. Low KKT values imply that the solution

obtained at each iteration presents a smooth trajectory to the desired state, which can be interpreted in

this context as a good convergence indicator. In contrast, high KKT values indicate poor continuity con-

ditions that are reflected in a non-smooth trajectory. In the real-time context, an increasing KKT value

presentation, indicates that convergence capability will be eventually lost, given that at each iteration

52

(a) KKT values (b) Objective evaluation

Figure 6.5: Standalone NMPC step solution evaluation.

solutions become worse. Regarding the Objective evaluation, intuitively, a high value indicates loss of

tracking and/or presence of high control inputs, given that the reference for all control inputs is set zero.

Consequently, the Objective evaluation can only truly reach near zero values once it is stationary at the

desired states.

Observing Figure 6.5, around t = 8 s, when the reference approaches, the KKT and Objective evalua-

tion values increase significantly. Solutions obtained during this phase might be poor. This is happening

with a simple step reference due to the small prediction horizon. This means the reference can not

be reached within the current prediction horizon. Consequently, the controller simply tries to get closer

to the reference fast. When the reference enters the prediction horizon, the system simply does not

possess the optimal velocity to approach it and overshoots. Observing the prediction horizon for certain

iterations of the position state y in Figure 6.6, note that the predicted trajectory does not reach the ref-

erence until approximately t = 8 s in the simulation. Nonetheless, in this particular case, the controller

is able to approach the reference and eventually converge, as seen in Figure 6.4. This might not be the

case when considering more complex trajectories.

Figure 6.6: Prediction horizons for y state.

This example serves to demonstrate that it would be ideal for references to be closer to the current

state. Evidently, providing simple waypoints as references to the control system will severely limit navi-

gation capabilities. Even if a waypoint is close to the current state, a solution may be hard to find given

that waypoints do not consider possible constraints or even the system’s dynamics.

53

It is worth mentioning that during this step, a significant variation occurs in the position state z visible

in Figure 6.7. This is a consequence of operating with coupled dynamics, meaning that position and

attitude are controlled at the same rate. Given that the Space CoBot was designed to maximize the

thrust in the z axis of the body frame, the controller might temporarily sacrifice attitude tracking or

position tracking to obtain higher accelerations. This can be minimized by carefully adjusting the weight

matrices.

Figure 6.7: Variation induced in z axis during step.

6.2.3 Control constraints

Until this point, no additional constraints were considered, apart from dynamic constraints. The behavior

of the controller is now analyzed with the additional control constraint:

−4000 ≤ u ≤ 4000 (6.1)

Note that u is expressed in force within the controller framework, however, for clarity, control input results

will be presented in rpm.

The same step reference is used to verify if the control bounds are respected, presented in Figure

6.8.

Figure 6.8: Control inputs during step response.

No significant changes are visible with the addition of control bounds. When it comes to f̄d values,

bounded and unbounded control produce similar values presenting averages around 3.6ms.

54

6.3 Offline trajectory generation

Waypoint navigation or path following approaches will not yield sufficiently good results to consider the

NMPC controller precise and robust. An offline generation of a feasible trajectory is now considered by

taking in consideration the dynamics of each configuration. As mentioned previously, ALTRO enforces

strict dynamic feasibility, meaning the solution will be as precise as desired, and not just an approxima-

tion. However, this comes at the cost of increased computation times.

Table 6.1: Trajectory optimization computation time.
Trajectory AL-iLQR ALTRO

Unconstrained 59 s 66 s
State/control bounds 86 s 739 s
One obstacle 134 s 892 s
One obstacle w/payload 1732 s 2903 s
Two obstacles 1557 s 2732 s
Formation 260 s 902 s
Formation w/ payload 1198 s 2601 s

To form an idea around the required time for generating a feasible trajectory, a summary of ap-

proximated computation times corresponding to the trajectories generated and analyzed in this work is

presented in Table 6.1. These are approximated times due to the fact that solving the same problem

might produce slightly different computation times. A comparison between the AL-iLQR and ALTRO is

performed to understand the time difference magnitude. This is relevant given that initial guesses can

be provided to the algorithm. One can provide a previously computed ALTRO solution as an initial guess

to warm-start a similar AL-iLQR problem and achieve good feasibility in considerable less time. The

study of the compromise between tolerable feasibility and computation time is out of the scope of this

thesis. Therefore, only ALTRO solutions are used as references, to maximize feasibility regardless of

computation time.

6.3.1 Problems formulation

To generate the offline trajectory, a control bound is formulated to reflect (6.1). Additional bounds are

added to some state variables, namely linear velocities and angular velocities to avoid extreme values.

Given that at the controller level, these bounds result in poor solutions, they will be implemented at the

trajectory generation level which imposes the bounds indirectly.

Applied bounds reflect the following

−4000 ≤ u ≤ 4000 (6.2)

−0.4 ≤ v ≤ 0.4 (6.3)

−0.3 ≤ ω ≤ 0.3 (6.4)

Bounds are also imposed to the position state in order to simulate permanent walls, as if the simula-

tion takes place inside a corridor shaped room 4× 16× 4m, formulated by

55

−2 ≤ px ≤ 2 (6.5)

−1 ≤ py ≤ 15 (6.6)

3 ≤ pz ≤ 7 (6.7)

Table 6.2: ALTRO solver settings.
Time Step t 0.1
Number of knots NTO 1001
Penalty scaling φ 2
Constraint tolerance Ctol 1× 10−5

Feasibility tolerance Dtol 1× 10−4

iLQR iterations 500
AL iterations 40

The selected parameters for the trajectory generation algorithm are detailed in Table 6.2. These

were achieved by significantly increasing the number of iterations until feasible solutions are obtained.

Then gradually reduce the iteration and observing the solution feasibility. This represents an attempt

to reach a compromise between the solutions feasibility and computation time. If a generated solution

presents a considerably high feasibility violation, a first approach to solve this problem is to simply

increase the number of iterations performed by the algorithm, at the expense of extra computation time.

As mentioned earlier, computation time is not the primary concern. However, faster computations times

allow less waiting time and unnecessary computation use. The default penalty scaling was also reduced

to allow a more gradual constraints penalization. Therefore, as long as the resulting trajectory is feasible,

settings are not changed.

The ALTRO weighting matrices will also be individually tuned through the respective diagonal ele-

ments, Qp, QΘ and R. The terminal cost weights are defined by the same scalar values multiplied by a

factor of 10, QpN = 10Qp and QΘN
= 10QΘ. Note that weighting matrices will be defined independently

for each problem.

The obtained trajectory comprises all system states x = [p,q,v,ω].

Given that the generated trajectory is feasible, the control bounds in the NMPC formulation will be

removed. Such bounds can be kept as an extra safety measure, which can also help generate a better

first guess through auto-initialization. However, without control bounds, the controller response can be

analyzed in cases where the implicit bounds are not respected, which in theory should not happen under

normal conditions.

6.3.2 Trajectory execution

In order to guarantee good trajectory tracking, the weighting matrices Wk and WN are tuned to reflect

a lower control cost and higher position and attitude costs as a starting point. The weights are then

defined as Wp = 20, WΘ = 20, Wu = 1, WΘN
= WΘ and WpN = Wp. Terminal weights are no longer

56

superior as the objective is to follow a given trajectory and not a specific single reference. Changes

applied to these values for different trajectories will be described prior to tracking analysis.

The tracking error of the NMPC controller is analyzed through the following errors

||p||e = ||ptraj − p|| (6.8)

||∆Θ||e = ||∆Θ (qtraj ,q)|| (6.9)

||v||e = ||vtraj − v|| (6.10)

||ω||e = ||ωtraj − ω|| (6.11)

where ∆Θ is defined in (5.32). The values considered for each state correspond to ground truth

data, obtained from Gazebo, and states with subscript traj are the generated trajectory state values.

Note that tracking errors defined by a simple difference are practically unbounded while the attitude

tracking error ||∆Θ||e is bounded between 0 and 1. This has to be taken in consideration when tuning

the weights of the quadratic costs.

6.4 Single Space CoBot

Given that the problem solved by the trajectory optimization algorithm is considerably constrained, the

generated trajectory is evaluated through the maximum violation, Cmax, which corresponds to the max-

imum between constraints and feasibility violations. Space CoBot will also be henceforth referred to by

the abbreviation SC.

Table 6.3: Single SC step problem formulation.
Initial condition Terminal condition

p [0, 0, 5] [0, 5, 5]
q [1, 0, 0, 0] [1, 0, 0, 0]
v [0, 0, 0] [0, 0, 0]
ω [0, 0, 0] [0, 0, 0]

Control weight R 100
Position weight Qp 10
Attitude weight QΘ 400

The problem solved by ALTRO is formulated in Table 6.3. A relatively high weight is selected for

attitude related states to prevent variations in attitude during the step. The control weight also has a

superior value when compared to the position weight matrix. The obtained trajectory can be visualized

in Figure 6.9. Note that even though a trajectory is generated for the entire state x, for simplicity, only the

position and attitude trajectories are presented. A presentation of all states would yield a significantly

high amount of figures that may not be relevant for analysis purposes.

This trajectory yields Cmax = 8.97× 10−5.

As expected, the generated trajectory presents variations in states not directly involved with the

57

(a) Position trajectory (b) Attitude trajectory

Figure 6.9: Generated step trajectory for single SC.

desired final state, namely a variation in the z axis and a slight variation in the roll angle, φ. Increasing

the weights associated with the position would likely reproduce the same variations, given that all position

state weights receive the same values. To obtain a trajectory without any undesired variation, the weights

associated with the variations would have to be individually tuned.

The NMPC controller tracking error can be visualized in Figures 6.10 and 6.11 for all states of the

system. Overall, the tracking errors are relatively low. However, a distinct surge in the position tracking

error is visible which eventually disappears as the error converges to zero. This could be a consequence

of the error introduced by the first iteration initialization where there is no information from a previous

solution. Further experiments are required to verify this.

(a) Position tracking error (b) Linear velocity tracking error

Figure 6.10: Step tracking errors ||p||e and ||v||e for single SC.

(a) Attitude tracking error (b) Angular velocity tracking error

Figure 6.11: Step tracking errors ||∆Θ||e and ||ω||e for single SC.

The tracking errors presented for this step trajectory will serve as baseline for comparison with in-

58

creasingly more complex trajectories.

Additional conclusions regarding the performance of the controller can also be achieved through the

KKT and Objective evaluation values in Figure 6.13 and a distribution of fd during execution in Figure

6.12. Observing the KKT values during the surge in position tracking error, it does present several spikes

that indicate discontinuities between solutions, which can result in poor control inputs. Objectives values

also increase during the error surge, which is expected given that higher errors will result in higher

Objective evaluations.

Figure 6.12: fd for single SC step trajectory.

Observing Figure 6.12, fd values do not present a sparse distribution, achieving f̄d = 1.8ms. This

value will also serve as baseline to compare with subsequent results. A slight improvement is visible

when compared to the standalone NMPC f̄d = 3.6ms during a shorter step reference, which already

shows evidence that providing feasible trajectories to the NMPC is better. This delay does not seem to

affect tracking performance in any noticeable way, as convergence is obtained.

In addition to the decrease of f̄d, providing a feasible trajectory to the controller as reference causes

a significant drop in the effort of finding solutions. This is very clear in Figure 6.13 as KKT and Objective

evaluation values present very small values along the trajectory.

(a) KKT value (b) Objective evaluation

Figure 6.13: NMPC performance with step trajectory for single SC.

6.4.1 Payload carrying

One objective of this thesis is to explore payload carrying with modelled payloads. This means that the

system model is modified to accommodate the changes caused by the payload. Previous work within

59

the Space CoBot project in [4] verified that loss of attitude tracking occurs when dealing with unmodelled

payloads visible in Figure 6.14, alongside with significant oscillation regarding position tracking.

(a) Start position (b) Acceleration phase (c) Deceleration phase

Figure 6.14: NMPC response to step reference with unmodelled payload.

Due to the system’s CoM displacement caused by the payload, which the controller is not aware,

both attitude and position tracking are severely affected even though convergence is still obtained.

With the present controller, one way to circumvent this effect could be to significantly increase the

weight values related to attitude tracking. However this is not desirable as it increases the time required

time to converge to the desired position, meaning position tracking is considerably reduced.

A spherical 6 kg payload is considered in this scenario. The model provided to the NMPC controller

and the trajectory optimization algorithm is now described by (4.22). The ability to control the system

is significantly improved. Following (4.36) it is possible to provide the desired position for the payload

and transform that position into the equivalent position of the Space CoBot’s CoM. This is necessary

given that both the controller and trajectory optimization algorithm express position at this point. Without

further modifications, the controller can be used as is.

Table 6.4: Single SC with payload step formulation.
Initial condition Terminal condition

p [0, 0, 5] [0, 5, 5]
q [1, 0, 0, 0] [1, 0, 0, 0]

Control weight R 100
Position weight Qp 10
Attitude weight QΘ 400

The trajectory optimization problem is formulated with the parameters presented in Table 6.4. Note

that information regarding v and ω is omitted from this point forward as it will never change.

Even with such high attitude costs, a trajectory with variation in attitude will still yield lower overall

cost, as it can be seen in the generated trajectory in Figure 6.15. Given the additional mass from the

payload, the overall cost is minimized by facing the vehicle’s z axis towards the desired direction. As

mentioned before, the produced thrust is maximized in the z axis of the body frame of the Space CoBot.

This trajectory yields Cmax = 1.6× 10−2.

The controller performance is worse when compared to the step without payload, although it still

achieves the goal. In order to improve tracking, the cost weights are increased for both position and

60

(a) Position trajectory (b) Attitude trajectory

Figure 6.15: Generated step trajectory for single SC with payload.

attitude, Wp = 50, WΘ = 50, Wu = 1 . The resulting tracking error can be evaluated through Figures

6.16 and 6.17.

(a) Position tracking error (b) Linear velocity tracking error

Figure 6.16: Step tracking errors ||p||e and ||v||e for single SC with payload.

(a) Attitude tracking error (b) Angular velocity tracking error

Figure 6.17: Step tracking errors ||∆Θ||e and ||ω||e for single SC with payload.

There is a visible increase in tracking errors in this experiment. This could be an indication that the

presence of the payload deteriorates the quality of the solutions. The attitude error i relatively small and

comparable to previous experiments. However, higher errors in the position are verified.

Regarding the controller performance presented in Figure 6.18, although KKT values have an os-

cillating display, they present a visible increase, which further verifies the bad quality of the solutions

obtained. The oscillating nature of the KKT and high Objective values can be attributed to the fact that

the nodes where the evaluations occur are not coupled in time.

61

Note that increasing the costs at the controller level present a tendency to increase the KKT values.

This requires some attention once higher KKT values can cause instability in the controller feedback

response and quality of the solution.

(a) KKT value (b) Objective evaluation

Figure 6.18: NMPC performance with step trajectory for single SC with payload.

6.5 Object avoidance

To consider obstacles, first they are modelled and introduced in the simulation environment. Obsta-

cles navigation is outside the scope of this work. Therefore, the NMPC controller is oblivious to their

presence. However, constraints will be added to the trajectory optimization problem to represent these

obstacles, namely spherical constraints (5.43). This addition is performed manually, meaning no algo-

rithm takes part in identifying obstacles. This allows a performance study of the trajectory optimization

algorithm in the presence of obstacles while leaving out the obstacle identification problem, that can be

solved in future work. From the controller point of view, there is no difference from any other generated

trajectory. This reflects the focus in Guidance and Control and not Navigation as stated previously.

The considered sphere obstacles have a radius of 1m. Considering that position measurements are

taken at the Space CoBot’s CoM, a clearance radius has to be considered according to each system

configuration, rclear. This radius defines a sphere that comprises the system. Considering a sphere

instead of exact clearance distances in all 3 axes allows a collision verification based on a single position,

such as the system’s CoM, regardless of the system orientation. A safety margin of 0.5m is also included

in the spherical constraint to obtain a safety barrier that can be visualized in Figure 6.19.

The spherical obstacle constraint is then formulated by

(xk + yc)
2 + (yk − yc)2 + (zk − zc)2 ≥ (1 + 0.5 + rclear)

2, k = 1, ... , N (6.12)

where (xc, yc , zc) corresponds to the sphere’s center point.

62

Figure 6.19: Collision safety barrier created by constraint.

6.5.1 Single Space CoBot single obstacle trajectory

A single obstacle is considered to form the first obstacle avoidance problem. The clearance radius of

the Space CoBot considered is rclear = 0.5m. The simulation environment can be visualized in Figure

6.20.

Figure 6.20: Single obstacle problem simulation environment.

Table 6.5: Single SC single obstacle problem formulation.
Initial condition Terminal condition

p [0, 0, 5] [0, 10, 5]
q [1, 0, 0, 0] [1, 0, 0, 0]

Control weight R 100
Position weight Qp 10
Attitude weight QΘ 400

Obstacles (0, 5, 5)

The problem is formulated through the parameters presented in Table 6.5. The obstacle parameter

in Table 6.5 indicates the center point of the sphere.

As mentioned before, the tendency to sacrifice attitude tracking to favor faster position convergence

is minimized by increasing the weight costs associated with attitude tracking. However, observing Figure

6.21, the generated trajectory shows a noticeable attitude deviation from the provided reference. This

is not harmful given that the objective of this solution is to converge to the final position while avoiding

63

the obstacle. Should the goal be to accurately maintain a given attitude, the respective costs have to be

further increased.

It is also worth noting that produced thrust in the y axis of the body frame is higher than the produced

thrust in the x axis of the body frame. This is visible in Figure 6.21 as the yaw angle presents two distinct

variations that consist with the orientation of the Space CoBot to the direction of motion.

(a) Position trajectory (b) Attitude trajectory

Figure 6.21: Single obstacle generated trajectory.

This trajectory yields Cmax = 1.21× 10−4.

Regarding the controller tracking capabilities, presented in Figures 6.22 and 6.23, slightly higher

errors can be observed when compared to the step trajectory tracking, Figures 6.10 and 6.11. Since the

controller cost weights are kept constant, this slight variation can be attributed to several causes.

(a) Position tracking error (b) Linear velocity tracking error

Figure 6.22: Single obstacle tracking errors ||p||e and ||v||e.

(a) Attitude tracking error (b) Angular velocity tracking error

Figure 6.23: Single obstacle tracking errors ||∆Θ||e and ||ω||e.

Important to note is the fact that attitude tracking is more demanding in this trajectory. Trying to

find optimal solutions that satisfy both position and attitude convergence increases the difficulty. This is

64

visible as the two main surges in ‖p‖e coincide with the main variations of attitude. Time delays can be

excluded as a cause. Observing Figure 6.24, the distribution of the controller computation is similar to

previous cases with f̄d = 1.8m. Even considering the cumulative delay in the control input feedback,

the controller should be able to predict necessary corrections in order to keep an accurate tracking.

Figure 6.24: fd for single obstacle trajectory.

Observing Figure 6.25, the KKT values increase very slightly and presents significant spikes along

the entire duration of the execution. This indicates the solutions being computed are worse than in

previous experiments when it comes to discontinuities. Although the general tendency is to converge,

which eventually happens, bad solutions are being applied when these significant variations in KKT

values occur. This is further confirmed by the increase in the objective value and the visible spikes,

which is expected if the tracking ability is lost. Nonetheless, this small loss of tracking is visible in the

beginning of the trajectory, which means the controller is able react in order to resume an accurate

tracking.

(a) KKT value (b) Objective evaluation

Figure 6.25: NMPC performance with single obstacle trajectory.

Once again the suspicion is that this loss of tracking can then be attributed to initial poor solutions.

Given a slower trajectory, the loss of tracking should be lower as the controller has more time to apply

corrections.

It is important to note that the controller is able to resume tracking effortlessly which might involve

using higher control inputs than the bounds imposed by the trajectory, which indeed happens as can be

visualized in Figure 6.26. This is possible once the NMPC control bounds were removed. Although this

should not happen, it has a positive effect in this context, meaning that when tracking errors increase or

the system is perturbed, higher control inputs can be used to apply the necessary corrections to resume

65

tracking. Figure 6.26 also appears to confirm the suspicion that bad solutions are provided along the

execution as the control trajectory is not very smooth.

Figure 6.26: Single obstacle trajectory execution control inputs.

A 3D visualization of the trajectory execution can be observed in Figure 6.27 for visual reference.

The execution is smooth and demonstrates little deviation from the reference trajectory.

Figure 6.27: 3D visualization of single obstacle trajectory execution.

6.5.2 Single Space CoBot with payload single obstacle trajectory

The same scenario as presented in Figure 6.20 is now considered for a single Space CoBot while

carrying a payload.

The problem is formulated based in the parameters presented in Table 6.6. As variations in attitude

were visible in the previous cases, the attitude associated cost is increased once again.

Similarly to previous cases, the generated trajectory, visible in Figure 6.28, presents a significant vari-

ation in attitude. The attitude tracking cost has been increased through different trajectories to observe

if this attitude can be maintained constant. However, the optimized trajectory once again favors a loss

of attitude tracking, but not in the same way as previous experiments. In this case, as attitude weights

66

Table 6.6: Single obstacle single SC with payload problem formulation.
Initial condition Terminal condition

p [0, 0, 5] [0, 10, 5]
q [1, 0, 0, 0] [1, 0, 0, 0]

Control weight R 100
Position weight Qp 10
Attitude weight QΘ 800

Obstacles (0, 5, 5)

are increased, an initial orientation is performed to maximize thrust and perform an initial acceleration.

Quickly after, the orientation returns to the reference. This is an indication that it costs less to sacrifice

initial attitude tracking in favor of better acceleration. This can also be associated with the fact that with

the addition of a payload, and bounds on actuation, the acceleration achieved is lower when compared

with the same experiment without payload, which makes the loss of attitude worth it.

Further increases to attitude weights that guarantee that sacrificing attitude tracking costs more are

required to maintain the attitude constant. Note that in this particular case, the generated trajectory

presents a left deviation from the obstacle. This is normal given that there might be different solutions to

the problem that present the same overall cost and Cmax. This implies that running the same problem

with different initial guesses might result in different optimal trajectories.

(a) Position trajectory (b) Attitude trajectory

Figure 6.28: Single obstacle single SC with payload generated trajectory.

This trajectory yields Cmax = 6.1× 10−5.

Regarding tracking performance presented in Figures 6.29 and 6.30, the observed error is signifi-

cantly higher when compared with the case without payload. There is a characteristic initial surge in both

position and attitude related errors present in all experiments so far followed by an eventual convergence

to zero. However, in this experiment, errors in position are visible throughout the trajectory. This could

be an indication that the presence of the payload causes the quality of the solutions to drop. The attitude

error is considerable and may be causing errors in the position as well.

When analyzing the KKT and Objective evaluation values in Figure 6.31, there is an increase in the

Objective evaluation. This is expected given that the same NMPC cost weights are being used and

control inputs are part of the objective function. Therefore, as the total mass of the system is much

higher due to the payload so should be the control inputs. Visible in Figure 6.32 the controls are clearly

67

(a) Position tracking error (b) Linear velocity tracking error

Figure 6.29: Single obstacle single SC with payload tracking errors ||p||e and ||v||e.

(a) Attitude tracking error (b) Angular velocity tracking error

Figure 6.30: Single obstacle single SC with payload tracking errors ||∆Θ||e and ||ω||e.

operated closely to the implicit bounds, which is not observed in the case without payload. The very non

smooth control trajectory also shows the discontinuities present between each time step. Recalling that

the solver within the NMPC controller only performs one iteration, obtaining smooth control trajectories

becomes more difficult with increases in system complexity.

The fd values present a similar distribution to previous experiments and f̄d = 1.8ms which is also

similar to previous experiments.

(a) KKT value (b) Objective evaluation

Figure 6.31: NMPC performance with single obstacle single SC with payload trajectory.

A 3D visualization of the trajectory execution can be observed in Figure 6.33 for visual reference.

Note that the execution is not as smooth as previous experiments. There are also visible deviations from

the reference trajectory at the beginning and end of the trajectory.

68

Figure 6.32: Single obstacle single SC trajectory execution control inputs.

Figure 6.33: 3D visualization of single obstacle single SC with payload trajectory execution.

6.5.3 Two obstacles trajectory

Two spherical obstacles are now considered. This test is performed to evaluate the trajectory optimiza-

tion algorithm capability of dealing with highly constrained problems. Therefore, this scenario is only

considered once and uses the single Space CoBot configuration. The simulation environment can be

visualized below in Figure 6.34.

(a) Top view (b) Side view

Figure 6.34: Two obstacles problem simulation environment.

69

Table 6.7: Two obstacles single SC problem formulation.
Initial condition Terminal condition

p [0, 0, 5] [0, 12, 5]
q [1, 0, 0, 0] [1, 0, 0, 0]

Control weight R 100
Position weight Qp 10
Attitude weight QΘ 1000

Obstacles (−1, 3, 5) (1, 8, 5)

It is considered a problem with several constraints due to the fact that, with the exception of the

attitude quaternion, all states are bounded. Control is also bounded and two obstacles are considered,

formulated by two constraints of the form (6.12). Additionally, the attitude associated costs were in-

creased to limit the variation in attitude. The attitude costs are now 100 times superior to position costs.

In Table 6.7, the parameters used to formulate this problem are presented.

Initial attempts to generate a solution yielded poor results, characterized by considerable high Cmax

values. The initial number of iLQR iterations is then raised to 800, which is sufficient to achieve a good

feasible trajectory, presented in Figure 6.35.

(a) Position trajectory (b) Attitude trajectory

Figure 6.35: Two obstacle single SC generated trajectory.

This trajectory yields Cmax = 4.29× 10−4.

It still shows significant variation in the attitude trajectory. It is even more evident in this scenario.

It becomes apparent that a significant increase in the attitude is required to maintain a steady attitude

throughout the entire trajectory. It has already been mentioned several times that attitude variations that

benefit faster convergences are expected. This serves to demonstrate the order of magnitude required

for the attitude cost when compared to position or control costs in order to achieve accurate attitude

tracking. Another reason for this to be the case is that the position error is practically unlimited while

the attitude error is bounded as mentioned in Section 6.3.2. Evidently, the quadratic cost formulation

does not suit well this attitude error computation as costs can not be tuned proportionately to each

other. Sufficiently high attitude costs will generate a trajectory without undesired variations. Meanwhile,

a trajectory with several variations poses a more demanding task for the NMPC, which is the subject of

study of this work.

The cost weights at the controller level corresponding to position and attitude are also increased.

70

The aim is to force a faster convergence to the desired trajectory. This change is necessary given

the significant error present in first attempts with the previous cost weights. The NMPC now reflects

Wp = 200, WΘ = 200, Wu = 1.

Observing Figures 6.36, the position tracking error presents a visible surge of high values.

(a) Position tracking error (b) Linear velocity tracking error

Figure 6.36: Two obstacles single SC tracking errors ||p||e and ||v||e.

Other phenomenon can be identified while observing the equally high values of the linear velocity

tracking error. When the controller deviates from the desired trajectory, linear velocity references may

differ significantly from the velocities registered during the recuperation. Evidently this will originate

higher tracking errors for velocity, which makes this error a bad analysis source when deviations such as

these occur. If the linear velocity tracking error was included in the objective function of the controller, one

can extrapolate that if deviations occurred, convergence would probably be lost, given that conflicting

references would be provided to the objective function. However, this is not the case.

Similarly to position tracking, attitude tracking, in Figure 6.37, presents very little error while at the

same time showing slightly increased angular velocity tracking errors.

(a) Attitude tracking error (b) Angular velocity tracking error

Figure 6.37: Two obstacles single SC tracking errors ||∆Θ||e and ||ω||e.

The use of higher costs yields higher KKT values, as visible in Figure 6.38. However, it is mainly a

spike that soon ends and quickly returns to relatively low values. As mentioned before, if the KKT values

stayed high for too long, convergence could be lost, which was not the case. The Objective evaluation

value also shows higher values due to the increase in costs.

Regarding NMPC fd values, Figure 6.39 shows a different distribution when compared to previous

experiments with a significant amount of occurrences above 2ms. Consequently, f̄d = 1.9 s which can

almost be considered negligible when compared to previous scenarios considering the used time step.

71

(a) KKT value (b) Objective evaluation

Figure 6.38: NMPC performance with two obstacles single SC trajectory.

This small increase can be correlated with the increase of KKT values.

Figure 6.39: fd for two obstacles single SC trajectory.

Feedback delays appear to suffer little change when trajectory complexity increases.

A 3D visualization of the trajectory execution can be observed in Figure 6.40 for visual reference. It

also presents a good tracking performance with a small loss when flying between the obstacles execu-

tion. The controller appears to sacrifice position tracking for attitude tracking as attitude tracking error is

lower than previous experiments.

Figure 6.40: 3D visualization of two obstacles single Space CoBot trajectory execution.

72

6.6 Formation with payload object avoidance

The positions state bounds are modified to increase the size of the simulated corridor. Size is increased

to 8×16×4 [m]. This is necessary given that the formation requires a greater rclear compared to previous

configurations. The considered clearance radius is now rclear = 1m.

The problem considered at this stage comprises two phases, approaching a desired payload and

then transporting it back to the start position. A scenario with one obstacle similar to the one in Figure

6.20 is considered.

At the trajectory optimization level, this problem will be divided into the approach problem and the

transport problem. By doing this, one can apply different constraints to both phases. Additionally,

considering the problem as a whole would result in a very complex problem, given the size of the resulting

optimization horizon and amount of constraints. Consequently, it would require a significant amount of

time to achieve a good solution, which is already very high when compared to the real-time framework,

as presented in Table 6.1.

The simulation environment can then be visualized in Figure 6.41.

Figure 6.41: Formation problem simulation environment.

Table 6.8: Formation configuration obstacle problem formulation.
Initial condition Pickup condition Terminal condition

p [0, 0, 5] [0, 8, 5] [0, 0, 5]
q [1, 0, 0, 0] [1, 0, 0, 0] [1, 0, 0, 0]

R 100 100
Qp 10 10
QΘ 400 2000

In order to make the trajectories more interesting and visually easier to understand, both phases

are forced to take different deviations from the obstacle, meaning the approach phase will favor a right

deviation, and the transport phase will favor a left deviation, assuming a constant perspective on the

obstacle. This is enforced by altering the required position state bounds. Additionally, the approach

phase will be constrained to approach the payload from above. Both problems are formulated according

to the information provided in Table 6.8.

73

The position state bounds considered for this problem are described by

−4 ≤ px ≤ 4 (6.13)

−1 ≤ py ≤ 15 (6.14)

3 ≤ pz ≤ 7 (6.15)

and the remaining states and control are bounded as in (6.3) and (6.4), and (6.2), respectively.

6.6.1 Approach phase

The position state bounds corresponding to the z and x axes considered during this phase are modified

to reflect

4 ≤ pz ≤ 7 (6.16)

0 ≤ px ≤ 4 (6.17)

which is sufficient to guarantee an approach from above and a right deviation from the obstacle.

The generated trajectories yields Cmax = 2.12× 10−4.

The controller tracking errors are now analyzed for both Space CoBot vehicles. Observing Figures

6.42 and 6.43, there is small difference between both vehicles.

(a) Position tracking error (b) Linear velocity tracking error

Figure 6.42: Approach in formation tracking errors ||p||e and ||v||e for both SCs.

Note that during this phase, no payload is considered, and no rigid link exists between the two

vehicles. The individual controllers are operating with the single Space CoBot model. They are however

tracking the CoM that results from both vehicles and the orientation of the formation as a whole. This

is not strictly necessary, and simple trajectories based in the CoM of each vehicle could be sufficient.

However, this does not guarantee a collision free trajectory to the payload. By making both vehicles

follow a fictional point by a given distance, coincident with the resulting CoM of both vehicles, a collision

is much less likely to occur as both vehicles follow unique paths.

That being said, the observed tracking errors are very similar to the tests conducted with single

vehicles.

74

(a) Attitude tracking error (b) Angular velocity tracking error

Figure 6.43: Approach in formation tracking errors ||∆Θ||e and ||ω||e for both SCs.

Similarities with the single SC performance are also visible when observing the KKT and Objective

evaluation values presented in Figure 6.44.

(a) KKT value (b) Objective evaluation

Figure 6.44: NMPC performance with approach in formation trajectory for both SCs.

6.6.2 Transport phase

The position state bounds corresponding to the z and x axes considered in this phase are now described

by

3 ≤ pz ≤ 7 (6.18)

−4 ≤ px ≤ 0 (6.19)

The generated trajectory yields Cmax = 2.23× 10−4.

During this stage, the individual MPC controllers are now operating with the formation dynamic model

(4.34). This model considers the total system as a single rigid body which implies that substantial

errors in one vehicle’s tracking performance will reflect substantial tracking errors on the other. It is

also important to recall that the each controller comprises the computation of the actuation of both

vehicles, but only uses its respective actuation input. Therefore, the cost associated with the control

inputs must be further decreased while the position and attitude costs are increased. The NMPC now

reflects Wp = 500, WΘ = 500, Wu = 0.1. This changes were performed once again after the poor

performance of initial attempts to execute the trajectory. It is important to state that, intuitively speaking,

75

each vehicle expects an optimal action for the other member in the formation.

Indeed, observing Figures 6.45 and 6.46 the disparity between tracking errors of both vehicles is

even smaller when compared to the approach phase.

(a) Position tracking error (b) Linear velocity tracking error

Figure 6.45: Formation payload transport tracking errors ||p||e and ||v||e for both SCs.

The magnitude of the tracking errors presents a slight increase when compared to previous cases.

Particularly, there are two noticeable surges in the position tracking that can be attributed to acceleration

and deceleration phases. This could indicate that when higher control inputs are required, the controller

solutions become worse.

(a) Attitude tracking error (b) Angular velocity tracking error

Figure 6.46: Formation payload transport tracking errors ||∆Θ||e and ||ω||e for both SCs.

Observing the controller performance in Figure 6.47, a big spike in both the KKT and Objective

evaluation values are visible during the same time intervals corresponding to the mentioned phases.

The significantly high increase in KKT values indicates that the control inputs applied to the system as

feedback were far from optimal, which consequently increases the Objective evaluation. This can be

caused by an initial poor response to the errors registered by the controller and the consequent attempt

to return to the desired trajectory, by applying increasingly aggressive corrections to the control input.

This can be observed in both vehicles in Figure 6.48. Control inputs are significantly higher than implicit

bounds. It is important to note that even though two vehicles are used to move a payload with similar

mass to the single vehicle case, in the formation configuration, vehicles are further away from the total

system’s CoM, and maintaining a stable attitude while moving becomes a costly operation, requiring

significantly higher control inputs.

The corrective reaction can also be verified by the return of KKT values to significantly low values

after the first surge, even though considerable position tracking error is still present. This implies that

76

after the first surge, the controller is predicting convergence again. Note that the prediction horizon,

N , was reduced from 60 to 20 for performance sake. This means that if the controller loses tracking

performance too quickly, and, consequently, increases the gap to the reference, an overshoot situation

might occur, as already observed in Figure 6.4. Higher N values might result in better predictions when

this kind of tracking issues happen.

(a) KKT value (b) Objective evaluation

Figure 6.47: Controller performance with generated trajectory.

(a) Space Cobot 1 control inputs (b) Space Cobot 2 control inputs

Figure 6.48: Single obstacle formation with payload trajectory execution control inputs.

The considered model in this configuration is significantly more complex. This in turn increases fd

values as visible in Figure 6.49.

The NMPC controller operates with f̄d = 12.5ms compared to f̄d = 1.8ms for the single SC model.

This means that, at any given instant, not only the controller applies the optimal control input 12.5ms too

late, but also maintains the previous control input, creating a double source of error. This means that

increasing N is not an option in this particular case, given that it would increase fd even more. On the

contrary, reducing N might help in achieving faster responses. Further reducing N is also not desirable

as operating a NMPC controller with a small N defeats the purpose of using the controller at all.

Reiterating the problem at hand, high accelerations and decelerations phases will result in poor

tracking once the controller operates with considerable delay. This ought to be a problem in complex

maneuvers that require constant and quick changes to position and attitude. Such maneuvers don’t take

part in the applications of this vehicle. Regardless, it is important to note that explicit bounds need to

be applied at the controller level to prevent such high inputs. This will cause the tracking error to lower

much slower but converging nonetheless. Reducing linear velocity bounds in the trajectory optimization

will also help by generating slower trajectories, where fd can be mitigated, which would be ideal for high

77

Figure 6.49: fd for single obstacle formation with payload trajectory.

mass systems.

Lastly, a 3D visualization of the complete trajectory, comprising both segments of the problem, is

presented in Figure 6.50 for visual reference. The execution of the the approach phase is smooth

similar to previous experiments with the single Space CoBot. The execution of the transport phase also

presents a reasonable smooth execution with a small tracking error in the beginning of the trajectory.

Figure 6.50: 3D visualization of full formation trajectory execution.

78

Chapter 7

Conclusions

This work presents a study regarding the performance of a NMPC controller for the Space CoBot free-

flyer and its possible applications. This was achieved by testing the limits of the real-time formulation to

the fullest while trying to perform Control and Guidance tasks in a single formulation, which proved to be

unreliable.

The biggest limitation remains the computation time required to obtain control solutions. In order to

speed the computation, a significant portion of the prediction horizon of the NMPC is sacrificed. This

means that the controller requires another stage that can plan ahead of this horizon. To achieve this,

a trajectory optimization method was integrated, which allowed better and more complete solutions.

However, this method also presents a severe delay in computation and had to be considered as an

offline step.

The tests performed throughout this work showing the performance of the NMPC controller demon-

strate that often errors introduced in a given state will propagate to the entire state vector, as a result of

optimizing all states simultaneously. These experiments also define the NMPC controller apparent limi-

tations. Hence, under less complex scenarios the controller should also present a good performance.

7.1 Achievements

7.1.1 Control and guidance

A good exploration of the NMPC limits was conducted to obtain a controller capable of operating in a

real-time frame very close to the microsecond range.

Limitations of the NMPC controller to guidance capabilities were found when testing waypoints navi-

gation. A separate scheme was then considered with the NMPC controller responsible for Control tasks

only.

Extensive experimentation was performed to obtain good configurations for different scenarios and

different missions, such as weighting costs values. This allows a more detailed model parameterization

for each considered configuration. This information can be used to formulate a single model that can be

interacted with through a few parameters in order to better adjust to different situations. This means that

79

the same controller can operate with different models without recurring to weighting costs tuning or re-

compiling any code. Possible so far is the operation of the Space CoBot in three different configurations,

single, payload carrying or formation payload carrying, where switching between each one can be done

effortlessly through few parameters.

Integrated a trajectory optimization method to take on the Guidance task, that generates feasible

trajectories, even in a highly constrained environment.

7.1.2 Simulation

From this work results a simulation environment able to represent the Space CoBot with reasonable

accuracy and with means to interact with elements within the simulation, such as object grasping. This

can serve as a base simulation environment for future work.

7.2 Future work

The present work can benefit from several further developments to its parts. Experimentation with

different error functions could yield interesting results, for example a function that makes the attitude

tracking error unbounded. Better approximations for the model parameters such as K1 and K2 can be

achieved. Different control architectures, such as a faster NMPC control within a much slower NMPC for

trajectory generation as in [42], to allow an increase of the prediction horizon and more importantly, the

elimination of the dependence on offline trajectory generation.

Obstacle identification methods would significantly improve the functionalities of the NMPC. For static

obstacles and general mapping integrating Octomaps [67] or a similar package would provide means

of identifying bounds and obstacles to constrain the trajectory optimization generation. Other vision

methods can also be studied to identify additional obstacles that may not be stationary to increase

navigation awareness.

Integrating other developing projects such as a robotic arm or similar to provide means of interaction

with the surrounding environment would allow more realistic simulation environments.

It would be interesting to perform a study on the energy spent by this NMPC controller when com-

pared to other control methods, as a NMPC might provide close to optimal control where energy usage

is minimized, but requires significantly higher computation power.

80

Bibliography

[1] H. Chao, Y. Cao, and Y. Chen. Autopilots for small unmanned aerial vehicles: A survey. International

Journal of Control, Automation and Systems, 8(1):36–44, 2010. ISSN 15986446. doi: 10.1007/

s12555-010-0105-z.

[2] S. Mohan, A. Saenz-Otero, S. Nolet, D. W. Miller, and S. Sell. SPHERES flight operations testing

and execution. Acta Astronautica, 65(7-8):1121–1132, 2009. ISSN 00945765. doi: 10.1016/j.

actaastro.2009.03.039.

[3] M. Bualat, J. Barlow, T. Fong, C. Provencher, T. Smith, and A. Zuniga. Astrobee: Developing a

free-flying robot for the international space station. AIAA SPACE 2015 Conference and Exposition,

pages 1–10, 2015. doi: 10.2514/6.2015-4643.

[4] P. Roque and R. Ventura. Space CoBot: Modular design of an holonomic aerial robot for indoor mi-

crogravity environments. IEEE International Conference on Intelligent Robots and Systems, 2016-

Novem:4383–4390, 2016. ISSN 21530866. doi: 10.1109/IROS.2016.7759645.

[5] P. Roque and R. Ventura. A space CoBot for personal assistance in space stations. IJCAI Workshop

on Autonomous Mobile Service Robots, 2016.

[6] R. Rembala and C. Ower. Robotic assembly and maintenance of future space stations based on the

ISS mission operations experience. Acta Astronautica, 65(7-8):912–920, 2009. ISSN 00945765.

doi: 10.1016/j.actaastro.2009.03.064.

[7] S. Sachdev, B. Marcotte, and G. Gibbs. Canada and the international space station program:

Overview and status. International Astronautical Federation - 55th International Astronautical

Congress 2004, 11(1):7405–7415, 2004. doi: 10.2514/6.iac-03-t.1.04.

[8] K. A. Caldas and V. Grassi. Eco-cruise NMPC control for autonomous vehicles. 2019 19th In-

ternational Conference on Advanced Robotics, ICAR 2019, pages 356–361, 2019. doi: 10.1109/

ICAR46387.2019.8981639.

[9] E. S. Agency. Space Engineering – Control Engineering. European Cooperation for Space Stan-

dardization: Space Engineering – Control Engineering. 2004.

[10] L. Flückiger, K. Browne, B. Coltin, J. Fusco, T. Morse, and A. Symington. Astrobee Robot Software:

81

Enabling Mobile Autonomy on the ISS. Int. Symposium on Artificial Intelligence, Robotics and

Automation in Space (i-SAIRAS), 2018. URL https://github.com/nasa/astrobee.

[11] S. Mitani, M. Goto, R. Konomura, Y. Shoji, K. Hagiwara, S. Shigeto, and N. Tanishima. Int-Ball:

Crew-Supportive Autonomous Mobile Camera Robot on ISS/JEM. IEEE Aerospace Conference

Proceedings, 2019-March:1–15, 2019. ISSN 1095323X. doi: 10.1109/AERO.2019.8741689.

[12] DLR. ”CIMON - the intelligent astronaut assistant”, 2018. URL https://www.dlr.de/content/en/

articles/news/2018/1/20180302{_}cimon-the-intelligent-astronaut-assistant{_}26307.

html.

[13] G. Szafranski and R. Czyba. Approaches of PID Control UAV. Proceedings of the

International Micro Air Vehicles conference, pages 70–75, 2011. doi: 10.4233/uuid:

3517822b-0687-48bb-82a8-748191b97531.

[14] P. Foehn and D. Scaramuzza. Onboard State Dependent LQR for Agile Quadrotors. Proceedings

- IEEE International Conference on Robotics and Automation, pages 6566–6572, 2018. ISSN

10504729. doi: 10.1109/ICRA.2018.8460885.

[15] J. Shah, M. Okasha, and W. Faris. Gain scheduled integral linear quadratic control for quadcopter.

International Journal of Engineering and Technology(UAE), 7(4):81–85, 2018. ISSN 2227524X.

doi: 10.14419/ijet.v7i4.13.21334.

[16] E. Tal and S. Karaman. Accurate Tracking of Aggressive Quadrotor Trajectories Using Incremental

Nonlinear Dynamic Inversion and Differential Flatness. Proceedings of the IEEE Conference on

Decision and Control, 2019. ISSN 07431546. doi: 10.1109/CDC.2018.8619621.

[17] N. Xuan-Mung and S. K. Hong. Robust adaptive formation control of quadcopters based on a

leader–follower approach. International Journal of Advanced Robotic Systems, 16(4):1–11, 2019.

ISSN 17298814. doi: 10.1177/1729881419862733.

[18] L. Zhou, J. Zhang, H. She, and H. Jin. Quadrotor uav flight control via a novel saturation

integral backstepping controller. Automatika, 60(2):193–206, 2019. ISSN 00051144. doi:

10.1080/00051144.2019.1610838.

[19] Anon. Pep Computer Control System. IEEE Trans Nucl Sci, NS-26(3 pt 1):3268–3271, 1979. ISSN

00189499.

[20] K. P. Tee, S. S. Ge, and E. H. Tay. Barrier Lyapunov Functions for the control of output-constrained

nonlinear systems. Automatica, 45(4):918–927, 2009. ISSN 00051098. doi: 10.1016/j.automatica.

2008.11.017.

[21] E. Garone, S. D. Cairano, and I. Kolmanovsky. Automatica Reference and command governors for

systems with constraints : A survey on theory and applications. Automatica, 75:306–328, 2017.

ISSN 0005-1098. doi: 10.1016/j.automatica.2016.08.013.

82

https://github.com/nasa/astrobee
https://www.dlr.de/content/en/articles/news/2018/1/20180302{_}cimon-the-intelligent-astronaut-assistant{_}26307.html
https://www.dlr.de/content/en/articles/news/2018/1/20180302{_}cimon-the-intelligent-astronaut-assistant{_}26307.html
https://www.dlr.de/content/en/articles/news/2018/1/20180302{_}cimon-the-intelligent-astronaut-assistant{_}26307.html

[22] A. Broad, I. Abraham, T. Murphey, and B. Argall. Structured Neural Network Dynamics for Model-

based Control. arXiv preprint arXiv:1808.01184, 2018.

[23] V. Gavrilets, E. Frazzoli, B. Mettler, M. Piedmonte, and E. Feron. Aggressive maneuvering of small

autonomous helicopters: A human-centered approach. International Journal of Robotics Research,

20(10):795–807, 2001. ISSN 02783649. doi: 10.1177/02783640122068100.

[24] W. A. Poe and S. Mokhatab. Modeling, Control, and Optimization of Natural Gas Processing Plants.

2016. ISBN 9780128029619. doi: 10.1016/c2014-0-03765-3.

[25] Z. Ma, O. Ma, and B. N. Shashikanth. Optimal control for spacecraft to rendezvous with a tumbling

satellite in a close range. IEEE International Conference on Intelligent Robots and Systems, pages

4109–4114, 2006. doi: 10.1109/IROS.2006.281877.

[26] V. L. Coverstone-Carroll and N. M. Wilkey. Optimal control of a satellite-robot system using direct

collocation with non-linear programming. Acta Astronautica, 36(3):149–162, 1995. ISSN 00945765.

doi: 10.1016/0094-5765(95)00096-I.

[27] A. Bemporad, C. A. Pascucci, and C. Rocchi. Hierarchical and hybrid model predictive con-

trol of quadcopter air vehicles, volume 3. IFAC, 2009. ISBN 9783902661593. doi: 10.3182/

20090916-3-es-3003.00004.

[28] A. Bemporad and C. Rocchi. Decentralized hybrid model predictive control of a formation of un-

manned aerial vehicles. IFAC Proceedings Volumes (IFAC-PapersOnline), 44(1 PART 1):11900–

11906, 2011. ISSN 14746670. doi: 10.3182/20110828-6-IT-1002.00942.

[29] A. Marquez, C. Gomez, P. Deossa, and J. Espinosa. Infinite Horizon MPC and model reduction

applied to large scale chemical plant. 2011 IEEE 9th Latin American Robotics Symposium and

IEEE Colombian Conference on Automatic Control, LARC 2011 - Conference Proceedings, (65),

2011. doi: 10.1109/LARC.2011.6086842.

[30] J. B. Lee, E. Dassau, R. Gondhalekar, D. E. Seborg, J. E. Pinsker, and F. J. Doyle. Enhanced

model predictive control (eMPC) strategy for automated glucose control. Industrial and Engineering

Chemistry Research, 55(46):11857–11868, 2016. ISSN 15205045. doi: 10.1021/acs.iecr.6b02718.

[31] G. Ganga and M. M. Dharmana. MPC controller for trajectory tracking control of quadcopter. Pro-

ceedings of IEEE International Conference on Circuit, Power and Computing Technologies, IC-

CPCT 2017, 2017. doi: 10.1109/ICCPCT.2017.8074380.

[32] L. Grüne and J. Pannek. Nonlinear Model Predictive Control: Theory and Algorithms. 2011. ISBN

978-0-85729-500-2. doi: 10.1007/978-0-85729-501-9.

[33] D. Kouzoupis, G. Frison, A. Zanelli, and M. Diehl. Recent Advances in Quadratic Programming

Algorithms for Nonlinear Model Predictive Control. Vietnam Journal of Mathematics, 46(4):863–

882, 2018. ISSN 23052228. doi: 10.1007/s10013-018-0311-1.

83

[34] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale con-

strained optimization. SIAM Review, 47(1):99–131, 2005. ISSN 00361445. doi: 10.1137/

S0036144504446096.

[35] W. Andreas and Lorenz T. Biegler. Catalogue of an exhibition of the works of Dante Alighieri March

to October 1909, volume 57. 2006. ISBN 1010700405. doi: 10.1007/s10107-004-0559-y.

[36] D. Pardo, L. Moller, M. Neunert, A. W. Winkler, and J. Buchli. Evaluating Direct Transcription and

Nonlinear Optimization Methods for Robot Motion Planning. IEEE Robotics and Automation Letters,

1(2):946–953, 2016. ISSN 23773766. doi: 10.1109/LRA.2016.2527062.

[37] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer. Real-time optimization

and nonlinear model predictive control of processes governed by differential-algebraic equations.

Journal of Process Control, 12(4):577–585, 2002. ISSN 09591524. doi: 10.1016/S0959-1524(01)

00023-3.

[38] T. Ohtsuka. A continuation/GMRES method for fast computation of nonlinear receding horizon

control. Automatica, 40(4):563–574, 2004. ISSN 00051098. doi: 10.1016/j.automatica.2003.11.

005.

[39] D. H. Shim, H. Chung, H. J. Kim, and S. Sastry. Autonomous exploration in unknown urban environ-

ments for unmanned aerial vehicles. Collection of Technical Papers - AIAA Guidance, Navigation,

and Control Conference, 8:6381–6388, 2005.

[40] M. Kamel, K. Alexis, M. Achtelik, and R. Siegwart. Fast nonlinear model predictive control for

multicopter attitude tracking on SO(3). 2015 IEEE Conference on Control and Applications, CCA

2015 - Proceedings, (3):1160–1166, 2015. doi: 10.1109/CCA.2015.7320769.

[41] S. Gros, R. Quirynen, and M. Diehl. Aircraft control based on fast non-linear MPC & multiple-

shooting. Proceedings of the IEEE Conference on Decision and Control, 2012. ISSN 01912216.

doi: 10.1109/CDC.2012.6426439.

[42] P. Lin, S. Chen, and C. Liu. Model predictive control-based trajectory planning for quadrotors with

state and input constraints. International Conference on Control, Automation and Systems, 2016.

ISSN 15987833. doi: 10.1109/ICCAS.2016.7832517.

[43] D. Bicego, J. Mazzetto, R. Carli, M. Farina, and A. Franchi. Nonlinear Model Predictive Control with

Actuator Constraints for Multi-Rotor Aerial Vehicles. arXiv preprint arXiv:1911.08183, 2019.

[44] M. Kelly. An introduction to trajectory optimization: How to do your own direct collocation. SIAM

Review, 59(4):849–904, 2017. ISSN 00361445. doi: 10.1137/16M1062569.

[45] C. R. Hargraves and S. W. Paris. Direct trajectory optimization using nonlinear programming and

collocation. Astrodynamics Conference, 1986, (3), 1986. doi: 10.2514/6.1986-2000.

84

[46] T. A. Howell, B. E. Jackson, and Z. Manchester. ALTRO: A Fast Solver for Constrained Trajectory

Optimization. IEEE International Conference on Intelligent Robots and Systems, pages 7674–7679,

2019. ISSN 21530866. doi: 10.1109/IROS40897.2019.8967788.

[47] D. Q. Mayne. Differential Dynamic Programming–A Unified Approach to the Optimization of Dy-

namic Systems. Control and Dynamic Systems, 10(C):179–254, 1973. ISSN 00905267. doi:

10.1016/B978-0-12-012710-8.50010-8.

[48] S. Li, T. Liu, C. Zhang, D. Y. Yeung, and S. Shen. Learning unmanned aerial vehicle control for

autonomous target following. IJCAI International Joint Conference on Artificial Intelligence, 2018-

July:4936–4942, 2018. ISSN 10450823. doi: 10.24963/ijcai.2018/685.

[49] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, and Y. Xia. Trajectory Optimization of Space Maneuver

Vehicle Using a Hybrid Optimal Control Solver. IEEE Transactions on Cybernetics, 49(2):467–480,

2019. ISSN 21682267. doi: 10.1109/TCYB.2017.2778195Y.

[50] A. Koubaa. Operating, Robot System (ROS) The Complete Reference (Volume 1), volume 1. 2015.

ISBN 978-3-319-26052-5. doi: 10.1007/978-3-319-26054-9.

[51] M. Diehl and K. Mombaur. Fast motions in biomechanics and robotics: optimization and feedback

control. 2006. ISBN 978-3-540-36118-3. doi: 10.1002/oca.4660060112.

[52] J. T. Betts. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control,

and Dynamics, 21(2):193–207, 1998. ISSN 15333884. doi: 10.2514/2.4231.

[53] B. W. McCormick. Aerodynamics, Aeronautics and Flight Mechanics. 2nd edition, 1995. ISBN

9780471575061.

[54] R. W. Deters, G. K. Ananda, and M. S. Selig. Reynolds number effects on the performance of

small-scale propellers. 32nd AIAA Applied Aerodynamics Conference, (June):1–43, 2014. doi:

10.2514/6.2014-2151.

[55] C. G. Atkeson, C. H. An, and J. M. Hollerbach. Estimation of Inertial Parameters of Manipulator

Loads and Links Abstract. The International Journal of Robotics Research, pages 101–119, 1986.

[56] M. Ekal and R. Ventura. On the Accuracy of Inertial Parameter Estimation of a Free-Flying Robot

While Grasping an Object. Journal of Intelligent and Robotic Systems: Theory and Applications,

2019. ISSN 15730409. doi: 10.1007/s10846-019-01040-y.

[57] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl. From linear to nonlinear MPC:

bridging the gap via the real-time iteration. International Journal of Control, (October):1–19, 2016.

ISSN 13665820. doi: 10.1080/00207179.2016.1222553.

[58] M. Diehl, H. G. Bock, and J. P. Schlöder. A real-time iteration scheme for nonlinear optimization

in optimal feedback control. SIAM Journal on Control and Optimization, 43(5):1714–1736, 2005.

ISSN 03630129. doi: 10.1137/S0363012902400713.

85

[59] P. Martin and E. Salaün. The true role of accelerometer feedback in quadrotor control. Proceedings

- IEEE International Conference on Robotics and Automation, (June 2010):1623–1629, 2010. ISSN

10504729. doi: 10.1109/ROBOT.2010.5509980.

[60] B. Houska, H. J. Ferreau, and M. Diehl. Adjoints estimation methods for impulsive Moon-to-Earth

trajectories in the restricted three-body problem. Optimal Control Applications and Methods, 32(3):

298–312, 2011. ISSN 01432087. doi: 10.1002/oca.

[61] H. J. Ferreau. An Online Active Set Strategy for Fast Solution of Parametric Quadratic Programs

with Applications to Predictive Engine Control. PhD thesis, Heidelberg University, 2006.

[62] B. Houska and H. Joachim. ACADO Toolkit User ’ s Manual, 2011.

[63] A. B. Younes, D. Mortari Prof., J. D. Turner, and J. L. Junkins Prof. Attitude error kinematics. Journal

of Guidance, Control, and Dynamics, 37(1):330–335, 2014. ISSN 15333884. doi: 10.2514/1.60928.

[64] M. Diehl, H. J. Ferreau, and N. Haverbeke. Efficient numerical methods for nonlinear MPC and

moving horizon estimation. Lecture Notes in Control and Information Sciences, 384:391–417, 2009.

ISSN 01708643. doi: 10.1007/978-3-642-01094-1 32.

[65] T. Koolen and R. Deits. Julia for robotics: simulation and real-time control in a high-level program-

ming language. (May):604–611, 2019. ISSN 10504729. doi: 10.1109/icra.2019.8793875.

[66] A. Erfani, A. Rajabi-Ghahnaviyeh, and M. Boroushaki. Design and construction of a non-linear

model predictive controller for building’s cooling system. Building and Environment, 133(November

2017):237–245, 2018. ISSN 03601323. doi: 10.1016/j.buildenv.2018.02.022.

[67] S. Vanneste, B. Bellekens, and M. Weyn. 3DVFH+: Real-time three-dimensional obstacle avoid-

ance using an octomap. CEUR Workshop Proceedings, 1319:91–102, 2014. ISSN 16130073.

[68] N. Trawny and S. I. Roumeliotis. Indirect Kalman Filter for 3D Attitude Estimation A Tutorial for

Quaternion Algebra Multiple Autonomous. Technical Report 612, University of Minnesota, 2005.

[69] T. Lee. Exponential stability of an attitude tracking control system on SO(3) for large-angle rotational

maneuvers. Systems and Control Letters, 61(1):231–237, 2012. ISSN 01676911. doi: 10.1016/j.

sysconle.2011.10.017.

86

Appendix A

Quaternions

In this Appendix, some operations involving quaternions used throughout this thesis are detailed fol-

lowing [68]. Additionally, a comparison of methods to obtain attitude errors resorting to quaternions is

presented.

A.1 Quaternion operations

The quaternion considered in this work follows the notation q = [qw, qx, qy, qz], where qx, qy and qz are

the components of the rotation axis and qw is a scalar corresponding to the magnitude of the rotation. In

this appendix a quaternion will be represented formally as qw + qxi+ qyj + qzk, where qw, qz, qy and qz

are real numbers and the symbols i, j and k satisfy the following identities:

i2 = j2 = k2 = −1 (A.1)

ij = k, ji = −k (A.2)

jk = i, kj = −i (A.3)

ki = j, ik = −j (A.4)

(A.5)

A.1.1 Multiplication between vector and quaternion

ω ⊗ q =

ω
0

⊗ q (A.6)

=

−[ω×] ω

−ωT 0

q (A.7)

= Ω(ω)q (A.8)

= Q(q)ω (A.9)

87

where the skew-symetric matrix operator [ω×] for the vector ω is defined as:

[ω×] =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (A.10)

and matrices Ω and Q are defined as:

Ω(ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 , Q(q) =


qw −qz qy

qz qw −qx
−qy qx qw

−qx −qy −qz

 (A.11)

A.2 Attitude error approach comparison

Assuming the quaternion notation q = [qw, qx, qy, qz] the quaternion error qe, following [63], is defined

by:

qe =


qrefw qx + qrefz qy − qrefy qz − qrefx qw

−qrefz qx + qrefw qy + qrefx qz − qrefy qw

qrefy qx − qrefx qy + qrefw qz − qrefz qw

qrefx qx − qrefy qy + qrefz qz − qrefw qw

 (A.12)

where q represent the current attitude and qref corresponds to the desired attitude. The resulting

quaternion error can then be viewed as qe = [e1 e2 e3 e4] where e4 = ±1. For this reason, a truncated

version of the quaternion error will be used and henceforth be considered to describe attitude error vector

designated by∆Θ = [e1 e2 e3] and the norm function is used to describe the attitude error magnitude

||∆Θ||e.

To verify the properties of the attitude error vector ∆Θ and attitude error magnitude ||∆Θ||e, a com-

parison is performed with the attitude error approaches in [69] defined as:

The magnitude of the attitude error Ψ is defined by

Ψ(R,Rref) = 2−
√

1 + tr[RTrefR] (A.13)

and the attitude error vector eR is defined by

eR(R,Rref) =
1

2
√

1 + tr[RTrefR]
(RTrefR−RTref)∨ (A.14)

where ∨ corresponds to the inverse skew operator and tr to the trace of a matrix.

88

The following Figures A.1 and A.2 present the properties of both approaches for an error of ||x|| ∈

[0, 360] degrees in θ and ψ.

(a) Attitude error vector eR (b) Attitude error vector ∆Θ

Figure A.1: Comparison between attitude error vectors.

The attitude error vectors present practically the same properties. However, eR presents a disconti-

nuity at ||x|| = 180 degrees The magnitude error functions are both bounded. The Ψ is bounded between

(a) Attitude error magnitude Ψ (b) Attitude error magnitude ||∆Θ||e

Figure A.2: Comparison between attitude error magnitude.

0 and 2 while ||∆Θ||e is bounded between 0 and 1.

Both approaches present similar properties. The main advantage of the approach based in the

quaternion error is the simplicity of the required computations. Therefore, this method is selected to

minimize computation time within the NMPC.

89

90

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.2.1 Guidance, Navigation and Control
	1.2.2 Validation

	1.3 Contributions
	1.4 Thesis outline

	2 State-of-Art
	2.1 Free flying robots
	2.2 Nonlinear Control
	2.2.1 Linear methods
	2.2.2 Nonlinear methods
	2.2.3 Learning methods
	2.2.4 Optimal Control methods
	2.2.5 Model Predictive Control
	2.2.6 Nonlinear Model Predictive Control

	2.3 Trajectory Optimization
	2.4 Simulation

	3 Background
	3.1 Optimal control methods
	3.2 Nonlinear Programing
	3.2.1 Newton's method
	3.2.2 Unconstrained problem
	3.2.3 Constrained problem
	3.2.4 Direct Multiple Shooting
	3.2.5 Sequential Quadratic Programming

	3.3 Nonlinear Model Predictive Control
	3.3.1 Basic algorithm

	4 Proposed Approach
	4.1 Models
	4.1.1 Space CoBot model
	4.1.2 Space CoBot with payload model
	4.1.3 Formation with payload model
	4.1.4 Formation flight without payload

	4.2 Nonlinear Model Predictive Control
	4.2.1 Problem formulation
	4.2.2 Sequential Quadratic Programming

	4.3 Trajectory Optimization
	4.3.1 Problem formulation
	4.3.2 Iterative LQR
	4.3.3 Augmented Lagrangian iLQR
	4.3.4 Active-Set Projection Method
	4.3.5 Infeasible state trajectory initialization

	5 Implementation
	5.1 Space Cobot parameters
	5.1.1 Design parameters

	5.2 Payload parameters
	5.3 Formation parameters
	5.4 Simulation environment
	5.4.1 Gazebo
	5.4.2 RotorS simulator
	5.4.3 Simulation parameters
	5.4.4 Payload grasping

	5.5 NMPC controller
	5.5.1 Actuation
	5.5.2 Objective function
	5.5.3 Initialization, state and control variables constraints
	5.5.4 Solver settings

	5.6 Trajectory Optimization

	6 Results
	6.1 Model verification
	6.2 NMPC controller configuration
	6.2.1 Prediction horizon
	6.2.2 Weighting matrices
	6.2.3 Control constraints

	6.3 Offline trajectory generation
	6.3.1 Problems formulation
	6.3.2 Trajectory execution

	6.4 Single Space CoBot
	6.4.1 Payload carrying

	6.5 Object avoidance
	6.5.1 Single Space CoBot single obstacle trajectory
	6.5.2 Single Space CoBot with payload single obstacle trajectory
	6.5.3 Two obstacles trajectory

	6.6 Formation with payload object avoidance
	6.6.1 Approach phase
	6.6.2 Transport phase

	7 Conclusions
	7.1 Achievements
	7.1.1 Control and guidance
	7.1.2 Simulation

	7.2 Future work

	Bibliography
	A Quaternions
	A.1 Quaternion operations
	A.1.1 Multiplication between vector and quaternion

	A.2 Attitude error approach comparison

