
VITHEA-Kids 3.0

Sı́lvia Maria Matos Timóteo

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Maria Luı́sa Torres Ribeiro Marques da Silva Coheur
Prof. José Alberto Rodrigues Pereira Sardinha

Examination Committee

Chairperson: Prof. Francisco João Duarte Cordeiro Correia dos Santos

Supervisor: Prof. Maria Luı́sa Torres Ribeiro Marques da Silva Coheur

Member of the Committee: Prof. Alberto Abad Gareta

September 2020

ii

Abstract

Language disorders can make it difficult for kids to understand what people are saying or to express
their own thoughts and feelings through spoken and written language. Among others, Dyslexia and
Specific Language Impairment (SLI) are such language disorders. However, the skills affected by each
one are different. Whereas dyslexia is characterized by difficulties in word recognition, spelling, writing
and decoding with a genetic basis, SLI is characterized by difficulties in different aspects of language,
such as lexical retrieval, phonology, morphology, syntax, semantics and pragmatics. Individuals with
these disorders face numerous adversities in their daily life, which can be minimized by solving exercises
recommended by therapists. Some efforts have been made to develop applications that can provide
these exercises and be suitable for its users. An example of such application is VITHEA-kids 2.0, which
is an European Portuguese application for helping children with Autism Spectrum Disorder and their
caregivers. This application provides a way of creating exercises and allows the customization of some
aspects of the platform to make it more suitable for the children needs (e.g. show letter always in upper-
case), also has a talking animated character. Since this platform is a promising one, in this thesis,
we intend to extend VITHEA-kids 2.0 with new exercises in order to reach children with other learning
disabilities, namely dyslexia or SLI. Regarding dyslexia, a research of exercises to deal with reading and
spelling problems was made. Regarding SLI, the exercises to deal with relative clauses comprehension
were provided for a specialist in syntax acquisition. However, implementing new types of exercises in this
platform were not possible, since the code was not flexible to the addition of new types of exercises. This
way, the present thesis also focus on refactoring the whole plataform, back-end, caregiver’s application
and child’s application, in order to allow new exercises to be added to VITHEA-kids 2.0. Thus, in this
thesis we create VITHEA-kids 3.0 to support new types of exercises for children with dyslexia or SLI,
and also we make the addition of further types of exercise easier for developers.

Keywords: Learning disabilities, SLI, Dyslexia, refactorization, VITHEA Kids

iii

Resumo

As pertubações da aprendizagem pode provocar nas crianças uma maior dificuldade na com-
preensão ou até na expressão dos seus pensamentos e sentimentos. Estas dificuldades são notórias
tanto na expressão oral como escrita. A dislexia e a perturbação especı́fica da linguagem (PEL) são
exemplos de pertubações na aprendizagem. No entanto, as capacidades afetadas por cada uma são
diferentes. Enquanto a dislexia é caracterizada por dificuldades no reconhecimento, ortografia, es-
crita e decodificação de palavras com base genética, o PEL é caracterizado por dificuldades em di-
versos aspectos da linguagem, como recuperação lexical, fonologia, morfologia, sintaxe, semântica
e pragmática. Indivı́duos com esses transtornos enfrentam inúmeras adversidades no seu dia a dia,
que podem ser minimizadas com a resolução de exercı́cios recomendados por terapeutas. Alguns
esforços têm sido feitos para desenvolver aplicações com integração de exercicı́os adaptados às ne-
cessidades dos utilizadores. Um exemplo desse tipo de aplicação é o VITHEA-kids 2.0, que se trata de
uma aplicação em português europeu cuja finalidade é ajudar crianças com perturbação do espectro
do autismo bem comos os seus cuidadores. Esta aplicação oferece uma forma de criar exercı́cios e
permite a customização de alguns aspectos da plataforma para torná-la mais adaptada às necessi-
dades das crianças (por exemplo, mostrar a letra sempre em maiúsculas), também possui uma person-
agem animada falante. Por se tratar de uma plataforma promissora, nesta tese pretende-se estender
o VITHEA-kids 2.0 com novos exercı́cios para chegar a crianças com outras dificuldades de apren-
dizagem, nomeadamente dislexia ou PEL. Em relação à dislexia, foi feita uma pesquisa de exercı́cios
para lidar com problemas de leitura e ortografia. Em relação ao SLI, os exercı́cios para lidar com
a compreensão de orações relativas foram fornecidos por um especialista em aquisição de sintaxe.
No entanto, a implementação de novos tipos de exercı́cios nesta plataforma era bastante complexo,
uma vez que o código não era flexı́vel e extensı́vel. Desta forma, a presente tese foca-se também na
refactorização de toda a plataforma, back-end, aplicação do cuidador e aplicacão da criança, de forma
a permitir que novos exercı́cios sejam adicionados ao VITHEA-kids 2.0. Assim, nesta tese criamos o
VITHEA-kids 3.0 para suportar novos tipos de exercı́cios para crianças com dislexia ou SLI, e também
tornamos a adição de outros tipos de exercı́cios mais fácil para os programadores.

Palavras-chave: Perturbações na Aprendizagem, PEL, Dislexia, refactorização, VITHEA Kids

iv

Acknowledgments

This dissertation represents the final phase of my academic life, being the culmination of years of
many experiences and many learning not only at the academic and professional level, but also at the
personal level.

First of all, I want to thank my family, especially my parents, Fernando Marques and Luı́sa Matos for
all support and unconditional love, my dear brother, Ricardo Timóteo who always believed me and never
let me give up. My brother was always there to me listening my problems and making them smaller.
Also, I could not forget to thank my cousins, Samuel Machado and Bruno Machado who helped me
keeping in the line. They are simply wonderful. Without no doubt my family played a fundamental role in
making my dream of getting a master degree come true.

This work would not have been possible without my dissertation supervisors Prof. Maria Luı́sa Tor-
res Ribeiro Marques da Silva Coheur and Prof.José Alberto Rodrigues Pereira Sardinha who actively
provided me support, guidance, strength along this journey. Also, they have always believed me even
when I did not believe in myself and have taught me more that I could ever imagine.

The prof. Ana Lúcia deserves a great deal of thanks for giving me all the insights and background
related to Specific language impairment. Her help was crucial to find an exercise to help children with
SLI work out some of their impaired skills.

I am grateful to Vânia Mendonça and Soraia Alarcão who taught me a great deal about both scientific
research and life. They were absolutely tireless during the whole process. I am feeling so lucky for having
such a great friends.

I also want to thank Beatriz Santos for making me believe in myself and for being there when I need.
I could not have done this without her.

Last but not least, to my friends, my sincere and deepest thanks, for the presence, for the advice and
for the strength they gave me in the most difficult moments, but also for the celebration of the victories.

v

vi

To my parents: Lúısa Matos e Fernando Marques and to my dear brother:
Ricardo Timóteo

vii

viii

Contents

Abstract iii

Resumo iv

Acknowledgments v

List of Figures xi

List of Listings xiii

List of Tables xv

List of Acronyms xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals/ Contributions . 2
1.3 Document Structure . 2

2 Background 5
2.1 Specific Language Impairment . 5
2.2 Dyslexia . 5
2.3 VITHEA-Kids – Virtual Therapist for Teaching Children . 7
2.4 Discussion . 10

3 Related Work 11
3.1 Exercises to assess relative clauses comprehension in children with SLI 11
3.2 Dyslexia . 12

3.2.1 Orthon-Gillingham Approach . 13
3.2.2 Designing word exercises to children with dyslexia 14
3.2.3 Software for children with dyslexia . 15
3.2.4 Exercises from a book . 17

3.3 Discussion . 18

4 VITHEA-kids 3.0 19
4.1 Implementation of features . 19
4.2 Refactoring VITHEA-kids . 22

4.2.1 Back-end . 23
4.2.2 Database Schema . 24
4.2.3 Caregiver’s application . 26

ix

4.2.4 AddExercise Component . 28
4.2.5 Exercise Component . 29

4.3 Child’s application . 29
4.4 New type of exercise . 31
4.5 Discussion . 31

5 Evaluation 33
5.1 Selection image exercise . 33

5.1.1 Back-end . 33
5.1.2 Caregiver’s application . 35
5.1.3 Child’s application . 37

5.2 Selection in Image exercise . 39
5.2.1 Exercises for SLI . 39
5.2.2 Exercises for dyslexia . 39

5.3 Word Naming exercise . 39
5.4 Discussion . 40

6 Conclusions and Future Work 41
6.1 Conclusions . 41
6.2 Future work . 41

Bibliography 43

Appendices 45

Appendix A Current RM model 45

Appendix B Proposal RM model 47

Appendix C Register exercise controller 49

x

List of Figures

2.1 Caregiver’s module - Creating a new exercise. 7
2.2 VITHEA-kids - Child’s module. 8
2.3 Architectural changes from VITHEA-kids to VITHEA-kids 2.0 [20]. 9
2.4 Animated characters used . 9

3.1 Sentence-picture exercise [9]. 12
3.2 Sentence-scenario exercise [9]. 12
3.3 A possible image to use in exercises for children with SLI [19]. 13
3.4 Exercises of DysEggxia - (a) add a letter, (b) remove a letter (c) cut into words and (d)

change a letter [28] . 16
3.5 Left: lesson, right: training exercise [29]. 17
3.6 Found words starting with the letter A (left) and found images that contains the sound “LH”

(right) [30]. 17
3.7 Found the repeated drawing (left) and fill the blank spaces with the correct word (right) [30]. 17

4.1 Layout for exercises of multiple choice. 20
4.2 Button with the word ”Pêra” pressed . 20
4.3 Loading images . 21
4.4 Loading images . 21
4.5 Types of promptings . 22
4.6 Refactoring controller using Strategy design. 23
4.7 Differences between the current model and the proposed model concerning exercises . . 25
4.8 Front-end architecture . 27
4.9 Android activity layout . 30

5.1 Data structure for the new exercise using the previous architecture 34
5.2 Form to create selection on an image(left) exercise to be solved by a child (right). 38
5.3 Form filled with information of an exercise for childs with dislexia image(left) exercise to

be solved by a child (right). 39
5.4 Form to create a word naming exercise (left) exercise to be solved by a child (right). . . . 40

6.1 Tutor teaching SA syllable . 42
6.2 Syllable Exercise . 42

A.1 Class diagram of injection procedure in the service provider. 46

B.1 Class diagram of injection procedure in the service provider. 48

xi

xii

Listings

4.1 Using factory pattern to instantiate the operations for multiple choice exercises. 24
4.2 Anotations that allow inheritance . 26
4.3 addExecise component . 27
4.4 Current addExercise Component . 28
4.5 Current Exercise Component . 29
4.6 Deserialization anotations . 31
5.1 Method to register an exercise. 34
5.2 Factory to generate the object of concrete class based on the exercise type name. 35
5.3 Current Exercise Component. 35
5.4 AddExercise component’s HTML with the tag for selectionImage exercise 36
5.5 Exercise class of the child’s application with the new fields 37
5.6 Class Exercise changed to allow mapping. 38
C.1 Register exercise controller . 49

xiii

xiv

List of Tables

xv

xvi

List of Acronyms

ASD Autism Spectrum Disorder

INSIDE Intelligent Networked Robot Systems for Symbiotic

JPA Java Persistence API

RM Relational model

OG Orthon-Gillingham

ORM Object-relational mapping

L2F Spoken Language Systems Laboratory

MVC Model-view-controller

SLI Specific Language Impairment

TTS Text-To-Speech

VITHEA Virtual Therapist for Aphasia Treatment

VITHEA-kids Virtual Therapist for Teaching Children 2.0

VITHEA-kids 3.0 Virtual Therapist for Teaching Children 3.0

JSON JavaScript Object Notation)

GAIPS Intelligent Agents and Synthetic Characters Group

XML eXtensible Markup Language

GIF Graphics Interchange Format

API Application Programming Interface

HTTP Hypertext Transfer Protocol

xvii

xviii

1
Introduction

This thesis consists of extending an existing application inspired by the needs of children with
Autism Spectrum Disorder (ASD) and their caregivers: Virtual Therapist for Teaching Children 2.0
(VITHEA-kids) 2.0 in a way that could also help children with other learning disabilities, in particular
Specific Language Impairment (SLI) and dyslexia. However, to make this possible a profound reformu-
lation of VITHEA-kids 2.0 was needed.

In this section, we present the motivation behind this thesis, the goals that we intend to achieve and,
lastly, the structure of this thesis.

1.1 Motivation

The adequate development of language is one of the fundamental factors to childhood development,
since language is needed to understand others, to express our thoughts or make ourselves understood.
Worldwide, around 15-20% of the population has a language-based learning disability 1, which consists
of problems with age-appropriate reading, spelling, and/or writing. The symptoms may be visible since
the early years of life, which often makes people with a learning disability frustrated and, in extreme
levels, could lead to depression [12].

Many of the difficulties that have been identified in children with some impairment in learning could
be strongly connected to a language disorder, such as dyslexia and SLI. Dyslexia affects around 70-
80% of the population with a language-based learning disability, and consists of a specific learning
difficulty typically characterized by difficulties in word recognition, spelling, and decoding, with a genetic
basis1. In Portugal, according to an epidemiological study, 5.4% of the primary school-age children were
diagnosed with dyslexia [31].

SLI is characterized by difficulties with learning and usage of language, thus a child with SLI does
not develop speech and skills in the expected way. Grammar, vocabulary and, frequently, phonology are
learned with difficulty. Also, when reading or listening, they may only focus on a few content words and
then they deduce the meaning from them, thus contributing to a poor comprehension [4].

1 https://dyslexiaida.org/frequently-asked-questions-2/ last access 01/06/2020

1

Both dyslexia and SLI are disorders that require early interventions to minimize the inherent prob-
lems, such as for poor spelling and problems with syntax. This way, with appropriate support and
intervention, people with learning disabilities can achieve success in school, at work, in relationships,
and in the community. For many parents it is not always possible to get their children in contact with ther-
apists, often because they can not afford it. There are already IT solutions with the purpose of helping
children with their learning difficulties, however these solutions are paid or include paid features, mostly
applications are not in European Portuguese and have few customization options. In order to fulfill these
gaps, VITHEA-kids, an educational application for helping children, inspired by the needs of children
with ASD and their caregivers was developed. VITHEA-kids 2.0 was released where a deep reformu-
lation of the used technologies was made and new modules were implemented such as prompting and
reinforcement strategies [8], as described in Section 2.3.

Hence, the primary purpose of this work is to look for the main types of exercises that are used
to improve skills that children with SLI and dyslexia struggle with, and enrich VITHEA-kids 2.0 with
them. However, despite Vithea having an excellent infrastructure, the code developed to implement
the exercise does not allow adding new types. This issue is well described at chapter 1 and 4. In
this way, there will be a great focus on refactoring all modules that concern the exercises, to ease the
implementation of new types by developers.

1.2 Goals/ Contributions

The main purpose of this thesis is to provide an application that comprises exercises in European
Portuguese for children with dyslexia and SLI. These exercises should be free and customizable ac-
cording to its user’s needs/preferences.

VITHEA-kids 2.0 is a promising system to help us accomplish our main goal, since taking advantage
of its infrastructure will allow us to save time, helping us to focus on the implementation of exercises.
Among other aspects, VITHEA-kids is in European Portuguese, free, customizable and designed taking
into account feedback from therapists of individuals with ASD.

Considering our intention of providing helpful exercises for children with dyslexia and SLI, this thesis’s
goals are the following:

• Search for exercises that are normally used by specialists to help children with dyslexia and SLI to
cope with their difficulties. Regarding SLI, this work is being supervised by a specialist in syntax
acquisition who provided some exercises with the intention of dealing with difficulties that children
with SLI face. The main goal of these exercises consists of helping children in the comprehension
of relative clauses, since it is one of the main problems.

• Implement a solution that can be applied to different exercises used in therapies that could be as
useful for dyslexia as for SLI.

• Refactor VITHEA-kids 2.0 to turn this application in a more extensible one, and thus make the
implementation of new exercises, with focus in other learning disabilities, a less complex task. We
also intend to conclude incomplete features of VITHEA-kids 2.0.

• Make VITHEA-kids 2.0 more flexible and clean to allow other researchers understand the code
with less difficulty and also contribute to VITHEA-kids 3.0.

1.3 Document Structure

Firstly, we presented the motivation and the main goals of our proposal. In Chapter 2, we present
some background concepts in order to better understand the context of this work (Dyslexia and SLI).
In Chapter 3, relevant works about dyslexia and SLI, such as approaches and applications that deals

2

with these learning disabilities, are described. The purpose in this chapter consists of identifying which
kind of exercise could be created using the existing features of VITHEA-kids 2.0 and also, which ones
would require the implementation of a new type of exercise. In Chapter 4, We describe with detail which
features of VITHEA-kids 2.0 were not concluded prior to this thesis and what we did to conclude them,
as well as, bugs found and how they were fixed. Additionally, the process of refactoring VITHEA-kids
2.0 to achieve a flexible platform is described. In Chapter 5, an evaluation is presented, setting side
by side both versions of VITHEA-kids, when implementing a new type of exercise. In this chapter, we
also present feedback of a researcher of INSIDE, about her experience on implementing a word naming
exercise by taking advantage of the new architecture. Lastly, the document ends with the Chapter 6,
presenting some conclusions, highlights and future work.

3

4

2
Background

In this chapter, to fully understand the context around this project, we provide several concepts
related to SLI and dyslexia, which are the basis of this thesis. Therefore, in Section 2.1, we describe
what SLI consists of, and which are the underlying problems; the Section 2.2 provides a historical
context of dyslexia, the way it is currently seen and also the main difficulties identified in individuals with
this learning disability; in Section 2.3, we give an overview of the platform VITHEA-kids 2.0 since we
intend to integrate new exercises there.

2.1 Specific Language Impairment

According to Laurence B. Leonard [4] the term SLI “is applied to children who exhibit a significant
deficit in language ability yet display normal hearing, age-appropriate scores on tests of nonverbal intel-
ligence, and no obvious signs of neurological damage”.

The significant deficit in language showed by children diagnosed with SLI is linked to difficulties en-
countered in different aspects of language, such as lexical retrieval, phonology, morphology, syntax,
pragmatics, and semantics [17]. Therefore, they tend to show a severe deficit not only in speech pro-
duction, but also in sentence comprehension. Studies on the acquisition of relative clauses have shown
that children struggles with comprehension and production of relative clauses [21]. Relative clauses are
classified according to the syntactic movement. Subject relatives are derived by movement from the
subject as in (e.g. “The girl [that draws the grandmother]”), whereas object relatives implicates move-
ment from the object position (e.g. “The girl [that the grandmother draws]”) [21]. Comprehension and
production of subject relatives is better when comparing to object relatives by children with SLI [10].

2.2 Dyslexia

Dyslexia is a specific learning disability that interferes with the acquisition and processing of lan-
guage. It has been characterized by difficulties with accurate word recognition, poor spelling and decod-
ing abilities [18]. This way, children with dyslexia present a significant set of alterations in reading and
writing, which can lead to a negative impact in their school learning.

5

The first study of this problem was analyzed by an ophthalmologist, who believed that dyslexia was,
in some way, associated with a disease of the visual system [11] in the late 19th century, in Great Britain.
A British ophthalmologist, James Hinshelwood, also writing at the turn of the century, speculated that
such difficulties with reading and writing were due to “congenital word blindness”, and for many years
the dominant view was that dyslexia was caused by a cerebral disease or injury.

In 1887, a German ophthalmologist, Rudolf Berlin, was the first using the word “dyslexia” instead of
the word blindness. ”Dyslexia“ has a Greek origin, meaning “difficulty with words” [1].

The first case of developmental dyslexia was stated by Pringle-Morgan in the British Medical Journal
in 1896. Pringle-Morgan, a general practitioner, recognized as the father of developmental dyslexia,
mentioned a child, apparently with a typical development, without any brain damage, who presented
difficulties in reading. Based on this and other similar case, Morgan concluded that dyslexia has a
congenital nature that is a condition present at birth, whether inherited or caused by environment [11].
The following excerpt describes the situation of the child mentioned before.

“Percy F.— a well-grown lad, aged 14—is the eldest son of intelligent parents. . . He has
always been a bright and intelligent boy, quick at games, and in no way inferior to others of
his age. His greatest difficulty has been—and is now—his inability to learn to read. This
inability is so remarkable, and so pronounced, that I have no doubt it is due to some congen-
ital defect. . . the greatest efforts have been made to teach him to read, but, in spite of this
laborious and persistent training, he can only with difficulty spell out words of one syllable. . .
The schoolmaster who has taught him for some years says that he would be the smartest
lad in the school if the instruction were entirely oral. . . His father informs me that the greatest
difficulty was found in teaching the boy letters, and they thought he never would learn them.”
(Morgan, 1896, p. 1378)

In 1925, an American neurologist, Dr. Samuel T. Orton proposed the first theory about the causes that
could explain specific reading difficulties. He argued that these difficulties were caused by a dominance
of one side of the brain. Teaching strategies that he developed during his research are still in use
today [11]. Since then, the number of studies focused on understanding dyslexia has increased.

Currently the most consensual definition comes from the International Dyslexia Association (2003),
which states the following: 1

“Dyslexia is a specific learning disability that is neurobiological in origin. It is characterized
by difficulties with accurate and/or fluent word recognition and by poor spelling and decoding
abilities. These difficulties typically result from a deficit in the phonological component of
language that is often unexpected in relation to other cognitive abilities and the provision of
effective classroom instruction. Secondary consequences may include problems in reading
comprehension and reduced reading experience that can impede growth of vocabulary and
background knowledge.”

In a study conducted in 2012, Rodrigues [22] points out the main difficulties that characterizes
Dyslexia, as follows: inversion of letters in reading and writing, omission of words in reading and writing,
difficulty converting letters into sounds and words, difficulty recovering sounds and letters from memory,
difficulty learning meaning from letters and sounds.

1 https://dyslexiaida.org/definition-of-dyslexia/ last access 15/05/2018

6

2.3 VITHEA-Kids – Virtual Therapist for Teaching Children

VITHEA-kids [20], [8], developed at Spoken Language Systems Laboratory (L2F) 2 and also at
Intelligent Agents and Synthetic Characters Group (GAIPS), is an application for helping children with
ASD improving their language and skills. Furthermore, it is a tool that allows caregivers to create exer-
cises and perform a set of customizations to meet the needs of each child. These exercises are aimed at
improving vocabulary learning, word picture association or generalization, and emotions recognition. It
was developed using the infrastructure of an in-house award-winning platform: VITHEA [24], which has
the intention of helping people with aphasia through solving oral word naming exercises created by their
therapists, presented by a talking animated character, called Catarina, using Text-To-Speech (TTS) [23].
VITHEA has two different modules: one where the caregiver manage the exercises, as well as his/her
children, and another where people with aphasia can solve the exercises. So, the decision of using
VITHEA to build VITHEA-kids was motivated by the fact that it has these modules, which allows the
caregiver to create exercises and upload multimedia resources. Also, there are studies defending that
children with ASD have a better performance doing the exercises along with an animated character [5],
this way, choosing VITHEA was also motivated for having a talking animated character.

As VITHEA-kids is build on VITHEA, there are also two distinct modules, the caregiver’s module and
the child’s module. On the caregiver’s module, the caregiver can manage child users’ accounts and
exercises. There are also preference options, where the caregiver can customize some aspects of the
interaction between the child user and the child module. As for the exercises, they consist of multiple
choice characterized by a specific topic (e.g.,“Animals”), a difficulty level (e.g., Introductory, Intermediate
or Advanced), the question/instruction, the stimulus (optional), the correct answer and a set of incorrect
answers (distractors), between zero and three, as shown in Figure 2.1. There are two variations of this
multiple choice exercise: one in which the stimulus is an image and the answers are textual and another
in which the stimulus is textual and the answers are images.

Figure 2.1: Caregiver’s module - Creating a new exercise.

On the child’s module, the talking animated character called Catarina which presents the exercise
and also utters the greetings and the reinforcement message whenever the child answer correctly to
an exercise, was kept. Both greetings and congratulations can be set by the caregiver for each child.
Another customizable option is the set of reinforcement images to be used when the child answers
correctly.

The child can choose a sequence of exercises he/she wants to play (see Figure 6.2a)that was firstly
created by the caregiver specifically for this child. The chosen exercise is displayed on his/her device
screen. When a child is solving an exercise (see Figure 6.2b), if he/she picks the right answer on a first

2 https://www.l2f.inesc-id.pt/w/Welcome to the Spoken Language Systems Lab last access 30/05/2018

7

try, the reinforcement image is displayed; otherwise the distractor disappears and the right answer is
highlighted (prompting) to help the child choosing the right one.

(a) Choose an exercise. (b) Exercise

Figure 2.2: VITHEA-kids - Child’s module.

In spite of all promising features implemented in VITHEA-kids, in terms of architecture, some prob-
lems were identified. For example, errors were not easy to understand since search on a great dimen-
sion log file was necessary. Debugging was also a not trivial task given the large number of eXtensible
Markup Language (XML) configurations files, where a certain error would be hard to detect. Another
problem was the performance that was not the best since after some page requests, the system turned
very slow until it crashed. Also, every change in the code required a redeploy of the project, and each
redeploy takes a lot of time, what is not productive for the developer.

These problems pointed out led to a need for a software reengineering. As consequence, a new
version of VITHEA-kids, with a technological reformulation, took place to improve developer’s experience
[20]. Also, new features were introduced.

VITHEA-kids 2.0 follows a client server model, where the child’s application (Android) and the care-
giver’s application (Web App) work as clients. The server provides services to both of them, following a
Model-view-controller (MVC) pattern.

As for the technologies used, they have undergone significant changes, as can be seen in Figure
2.3. The server side uses Play framework3, which is an open source web application framework that
aims to optimize developer productivity, instead of Spring4. MySQL5 database was kept to store all the
information needed. Regarding to front-end, Angular framework was chosen6 , which makes it easier to
create appealing interfaces with fewer lines of code. For the child’s application, Android7 is used, as in
the previous version.

3 https://www.playframework.com/ last access 05/05/2018
4 https://spring.io/ last access 05/03/2019
5 https://www.mysql.com last access 03/03/2019
6 https://angular.io/docslast access 04/05/2020
7 https://developer.android.com/ndk/ last access 04/05/2020

8

(a) Vithea-kids.

(b) Vithea-kids 2.0.

Figure 2.3: Architectural changes from VITHEA-kids to VITHEA-kids 2.0 [20].

Besides the reformulation of the technologies used, VITHEA-kids was also extended: prompting was
extended, such as the possibility of changing the visual look of the set of answers, as well as prompting
strategies (the prompting is always given, the prompting is given when the child selects a wrong answer
or no prompting). Reinforcement strategies could also be customized (continuous reinforcement, the
reinforcer is always given, first attempt reinforcement, the reinforcer is given only when the child chooses
the correct answer at first attempt and no reinforcement). In the emotions’s module, the caregiver may
choose to enable or disable the animated character emotions when uttering its sentence. Also, it is
possible to select an animated character (between Catarina, Filipe and Edgar [7]) to be presented in the
child’s app.

(a) Catarina (b) Edgar (c) Filipe

Figure 2.4: Animated characters used

After this overview, given its architecture, it is possible to conclude that VITHEA-kids 2.0 appears to
be a promising system to achieve the main goal of this thesis. For this reason, our work will be focused

9

in extending this system to reach children with dyslexia and with SLI with studied exercises presented in
the next chapter. However, VITHEA-kids 2.0 still has a few bugs that needs to be solved, as well features
to be finished to achieve an usable platform, that does not affect directly the exercises, but could result
in a lack of interest, by the caregiver and children, in using VITHEA-kids. Also, adding new exercises
could become a big challenge by itself, given the way that the existing features are implemented, namely
there are a lack of modularization, repetitive code segments, which make the code harder to understand
and maintain. This way, a large part of this thesis focus on fix the bugs and on refactoring VITHEA-kids
2.0, thus contributing VITHEA-kids 3.0.

2.4 Discussion

To summarize, children with dyslexia struggle with word recognition, by poor spelling and decod-
ing abilities. Regarding SLI, children with this kind of disorder present troubles on comprehension and
on production of relative clauses. This way, we will provide children with this kind of disorders a cus-
tomizable type of exercise that allows them to practice skills that they struggles at, namely spelling
and relative clauses comprehension. We will use VITHEA-kids 2.0 that has proved to be a promising
platform to achieve this goal, especially because it is free and allow the caregivers to manage the ex-
ercises. However, the architecture of VITHEA-kids 2.0 is not prepared to be extend with new types of
exercises. Therefore, the first iteration of this thesis will consist of solving the identified bugs, as well,
refactoring the back-end, caregiver’s module and child’s module, contributing this way to the version 3.0
of VITHEA-kids.

10

3
Related Work

As we have seen in Chapter 2, children with SLI have troubles, among other areas, in the compre-
hension and production of relative clauses. Regarding dyslexia, we saw that children with this learn-
ing disability struggle with reading, spelling, math, among others. Additionally, these affected areas
could possibly be improved if children with theses learning disabilities were given tools for its develop-
ment [15], [3]. Having this in mind, several authors have searched for ways in which software solutions
could be useful and also therapists have applied approaches and exercises to improve the affected
abilities, as we will see in the next sections.

Hence, this chapter is focused on works and approaches used by therapists/researchers: in Sec-
tion 3.1, we will present two exercises which are used to assess subject and object relatives involving
children with SLI; in section 3.2 we will describe an approach commonly used to implement reading
programs. The way of how Luz Rello, a Spanish researcher, creates exercises to improve spelling will
be explained in detail. Some software solutions to address difficulties felt by children with dyslexia will
be present. We also present a sample of paper-based exercises used in therapies. Lastly, we give
a brief discussion about all approaches and exercises found to better understand which exercises are
possible to be created with VITHEA-kids 2.0 and which ones would require a profound modification to
the platform. With this discussion, we found a potential an exercise to be implemented in VITHEA-kids
2.0.

3.1 Exercises to assess relative clauses comprehension in chil-
dren with SLI

As we mention at the introduction of this thesis, the main goal, regarding the SLI, consists of helping
children with SLI in the comprehension of relative clauses. This way, we will present exercises used to
assess children with SLI. Friedmanna et al. (2006) conducted an experiment to test the comprehension
of relative clauses in Hebrew-speaking kinder-garden children where they have concluded, as already
mentioned at the Chapter 2, that children better understand subject relative clauses than object relative
clauses [21]. In that experiment, they used two types of exercises: sentence-picture matching and
sentence-scenario matching. In both exercises, the relative clause is presented orally. For the sentence-

11

picture matching, two pictures are presented: one of the pictures matches the sentence, and the other
picture has the two participants in the action reversed, as shown in Figure 3.1). For instance, if the
sentence is “Show me the elephant that the lion is wetting.”, the child should choose to the image
that matches this sentence. For the sentence-scenario matching exercise, two scenarios composed by
physical objects are presented by the experimenter, one of which matches the sentence and the other
involves a reversal of the two participants in the action (Figure 3.2). The children are asked to point at
the scenario that matches the sentence, such as “Show me the cow that is kissing the chicken”. In these
exercises, there is a special care with the choice of figures presented in the sentences. These should
always be of the same gender and number, for example, an elephant and a lion. This is done to keep
the noun phrases as similar as possible and to prevent an agreement cue on the verb.

An expert in the field hypothesized that a type of exercise similar to these, could be used for children
to train relative clauses. In that exercise, an image would be presented to the child, with three main
elements, two of which would be of the same type in order to induce some confusion for the child. That
image would be preceded by a question related with the image. For example, the question “Que cavalo
é que o boi mordeu” (“What horse did the ox bite?”) would be a good one (the Figure 3.3).

Figure 3.1: Sentence-picture exercise [9].

Figure 3.2: Sentence-scenario exercise [9].

3.2 Dyslexia

In this section we will describe some approaches to improve skills affected by dyslexia. We will also
present some applications, which aim at improving abilities affected by this learning disability.

12

Figure 3.3: A possible image to use in exercises for children with SLI [19].

3.2.1 Orthon-Gillingham Approach

Ortho-Gillingham [16] is an instructional approach commonly used to implement reading programs in
the United States for dyslexic students. A key characteristic of Orthon-Gillingham (OG) reading instruc-
tion is multisensory that involves the use of visual, auditory and kidenesthetic-tactile pathways, often
referred the Language Triangle [16]. Associations are consistently made between the visual (the lan-
guage we see), auditory (the language we hear) and kinesthetic-tactile (the language we feel) pathways
in learning to read and spell.

Additionally, OG approach is often characterized as being 1:

• Explicit: The rules and patterns of decoding and encoding are explicitly taught. As opposed to the
traditional learners that can understand these rules and patterns naturally, students with dyslexia
need to be taught every rule and pattern directly (or explicitly). Students also need to be taught
exceptions to the rules.

• Systematic and structured: Systematic instruction means that the new concepts should be
taught in the exact same way every time. This way the brain is not spending more energy try-
ing to figure out a new method, but rather expects the routine of learning and, therefore, it will only
focus on the new concept to be learnt. Structured instruction means that the concepts taught follow
an order that shows the relationship between what was previously learned and the new material to
be taught.

• Sequential and cumulative: The instructions must begin with the easiest and most basic con-
cepts and progress methodically to more difficult material. Concepts taught must be reviewed to
strengthen memory.

• Multisensory: Multisensory involves the use of visual, auditory and kinesthetic-tactile pathways
at the same time in order to help the information be stored in long term memory.

• Individualized: Teaching should follow an approach one on one in order to customize each lesson
to the student’s needs.

• Diagnostic and prescriptive: The lessons are diagnostic in the sense that the instructor con-
tinuously monitors the answers of the learner in order to identify and analyse both the student’s
problems and progress. That information is essential to plan the next lesson. Therefore, the lesson
is prescriptive since it is always prepared according to the problems found in previous lessons and
the progress obtained.

This approach is quite effective since students with dyslexia often reveal weaknesses in underly-

1 https://homeschoolingwithdyslexia.com/orton-gillingham-approach-teaching-reading/ last access 22/05/2018

13

ing language skills involving speech sound (phonological) and print (orthographic) processing, and in
creating brain pathways that connect speech and print. So, the key characteristic of this approach, mul-
tisensory, is a quite effective way to build the brain pathways used for reading and spelling once connect
many brain area and must transmit information with sufficient speed and accuracy.

Another problem present in Dyslexia consists in the lack of phonemic awareness 2.That is individuals
are aware of the sounds linked to the words. In consequence of this, learning to recognize words
automatically (“by sight”) or fast enough to allow comprehension becomes a quite difficult task.

Terry Orton3, who pioneered the study of learning disabilities, suggested that teaching the “funda-
mentals of phonic association with letter forms, both visually presented and reproduced in writing until
the correct associations were built up”, would help students of any age.

Usually, teachers who use this approach help students perceive the speech sounds in words
(phonemes) by looking in the mirror when they speak or exaggerating the movements of their mouths.

Having said this, the approach OG combines multisensory techniques with teaching the phonemes
(units of sound that distinguish one word from another), morphemes (smallest meaningful unit of a
language, such as prefixes, suffixes, and roots) and spelling rules.

3.2.2 Designing word exercises to children with dyslexia

Children with dyslexia present a problem in automatic letter writing and naming, which is related
to impaired inhibition and verbal fluency and may explain their spelling problems [2]. In light of this,
technology can play an important role since conventional methods of teaching, such as paper-based
exercises, are often not so effective [15], due to the fact that there are many limitations underlined, such
as the following ones [26]:

(a) Paper-based exercises present an unappealing format which means children may lose motivation
as they are doing their exercises.

(b) Children may face some difficulty with writing in paper.

(c) It is complicated to adapt each exercise to the particular need that a child could have.

Luz Rello, a spanish researcher, has focused her work on finding a solution for dyslexia, in a way that
could be integrated in an application. Rello and her team developed the app IDEAL ebook reader [14]
in order to assist reading. They also developed Dyseggxia [27] to improve the spelling of children (these
apps will be described in next section).

L. Rello et al published an article “Design of word exercises” [25], which presents a method of design-
ing word exercises to support children with dyslexia. This method is based on patterns found in errors
written by individuals with dyslexia. It comprises six stages which are: exercise type, word selection,
word modification, selection of distractors, creation of difficulty levels and text layout.

The definition of exercise type hinges on dyslexic errors, specific difficulties and the current peda-
gogical exercises which leads to six types of exercises:

• Insertion: the screen displays a word with a missing letter and the user is asked to insert a letter
from a set of possibilities displayed on the screen, e.g. *timestre r, m, n, s, p, (correct: trimestre).

• Omission: the screens display a word with an extra letter and the user is asked to identify it and
remove it, e.g. *asccessible, (correct: accessible).

• Substitution: A word with a wrong letter is displayed and the user has to identify and substitute
the wrong letter by another letter from a set of possibilities displayed on the screen, e.g. *abter
r,b,h,f, (correct: after).

2 https://en.wikipedia.org/wiki/Phonemic awareness, last access 24/05/2020
3 https://en.wikipedia.org/wiki/Samuel Orton, last access 24/05/2019

14

• Derivation: the root of a word is displayed with a set of suffixes, where only one is correct. The
user has to identify the correct suffix e.g. *blue able, age, ish, ment, (correct: blueish).

• Separation: The display presents a set of words without spaces. The user must to separate the
character chain into different words, e.g. *polarbear,(correct: polar bear).

For word selection, only the words that appear in the Royal Spanish Academy Dictionary and in
the New Oxford American Dictionary are taken into account. Also, it is used a “DysCorpus” (Spanish
corpus of texts written by children with dyslexia), to select only the words whose frequency is equal or
greater to a frequency threshold. Besides that, only words whose length is between 3 and 12 letters are
taken into account, since children encounter a few problems with very short and very long words. All
words are presented in lemmas, which mean they are presented in their canonical form. For example,
the adjective “guapo”/(“handsome”) would appear in its least-market form (singular masculine). So, the
words are presented in lemmas since morphological processes as inflection and conjugation occurs with
some regularity and therefore are processed differently than the rest of the lexicon acquisition. These
exercises have the goal of correcting words, therefore word modification implies that errors were made.
To determinate the errors two criteria are used, error letter selection which means select the letters
that appears more in errors, and error position that checks which insertion and omission of letters
happened more.

Distractors consists in wrong choices together with the right answer, in multiple choice item. So,
groups of phonetically and orthographically similar graphemes are used when selecting distractors.

3.2.3 Software for children with dyslexia

Spelling Abilities

Dyseggxia (A Computer-Based Method to Improve the Spelling of Children with Dyslexia) is a soft-
ware, where Luz Rello et al implemented the method explained above [28].

Besides its main goal, which consists of helping children to learn how to identify dyslexic errors (errors
made by children with dyslexia) in a way they could develop strategies to write better, the effectiveness
of the method previously mentioned was also tested. An experiment in a primary school was conducted.
As a control condition, Word Search4, a word puzzle game, was used. Two groups were formed, one
that played DysEggxia and another that played Word Search. Using a within-subject design, Rello et
al compared the evolution of reading and writing performance, as well as the subjective perceptions
of these two groups. It was found on the basis of this experiment that children improved their spelling
significantly compared to playing Word Search.

Visual spatial and calculation abilities

Although mastering written language is one of the main symptoms of dyslexia, other related skills
may be affected such as oral language, numeracy, notational and organizational skills. Games may play
an important role in improving these skills [13]. It is believed that such an impairment in these skills can
be overcomed by learning chess since we need them to play well. With this motivation, Rello et al. have
developed a platform (web based) to play chess with the goal of understanding if people with dyslexia
play chess in a different way, because once the hipothese is proved, they may conclude that chess could
improve affected abilities by dyslexia, such as visual spatial and calculation [29].

The platform has lessons on how to play chess and about chess theory, exercises to practice each
lesson learnt as shown in Figure 3.5, and also allows the child to play against an elementary opponent.
It comprises the following exercises:

4 http://thewordsearch.com/ last acces 29/05/2018

15

Figure 3.4: Exercises of DysEggxia - (a) add a letter, (b) remove a letter (c) cut into words and (d)
change a letter [28]

(a) Square exercise – In this exercise, the player has to click on a certain square of the chess board,
designated by their coordinates.

(b) Color exercise – the player is asked to identify the color of a a square where a certain piece is
located or a move takes place.

(c) Piece exercise – the player is asked to identify if in a certain square there is or will be a piece after
a move.

(d) Moving pieces exercise - the player has to move a piece according to the chess rules.

There is also an algorithm that plays elementary chess that allows the child to play a game against
the machine in order to practice the piece movements, as we can observe in Figure 3.5. This
part the lesson demands more skills, such planning and predicting at least two piece movements,
which are related to the executive functions, highly correlated with dyslexia.

In order to investigate if people with dyslexia play in a different way, a study was made with two
groups, one with and other without dyslexia, where they completed a chess lesson on-line. To compare
the evaluation of the groups, mouse tracking measures were used. The obtained results showed that
people with dyslexia spend more time reading the chess theory, doing training exercises and playing
chess than others which is normal considering to the fact that the theory is basically composed by text
and figures and people with dyslexia read significantly slower. The results also suggest that dyslexia
may have some impact on chess performance which could indicate that some skills needed to play
chess are highly related with dyslexia, such as visuospacial attention disorder. However there is still not
an evaluation in an educational environment, so it is not possible to conclude with accuracy that chess
may help in some skills highly related with dyslexia.

16

Figure 3.5: Left: lesson, right: training exercise [29].

3.2.4 Exercises from a book

Although there are some applications and approaches to develop domains affected by dyslexia, to
the best of our knowledge there are still no free applications in Portuguese. Currently, using exercise
manuals is the main method to address the problems identified in dyslexia. As such, in this subsection
will be exposed some of the exercises used in therapy [30].

In the book “Dislexia – Caderno de Reeducação Pedagógica” [30], there are several exercises that
follow this structure, varying only in terms of images, phrases and/or words used.

These exercises aim at training basic skills related to reading-writing and also to develop phonological
and psychomotor skills (laterality, spatiotemporal orientation), among others.

Figure 3.6: Found words starting with the letter A (left) and found images that contains the sound “LH”
(right) [30].

Figure 3.7: Found the repeated drawing (left) and fill the blank spaces with the correct word (right) [30].

Figure 3.6 presents two exercises: in the first, the child has to surround the words that starts with the

17

specified letter. In the second, in which the child has to surround the figure where the respective name
has the appointed sound.

With respect to Figure 5.4, in the exercise of the left side, the child has to mark the repeated image.
Regarding the exercise of the right side the child has to fill the blank space with the right words.

As we will in the next sections, the exercise that consists of filling the blank spaces is the only one
that could be created using VITHEA-kids 2.0.

3.3 Discussion

In Section 3.1, two exercises are presented to evaluate the comprehension of relative clauses. It was
hypothesized that a type of exercise similar could be used as training. This hypothesis should be verified
in a future work. In that exercise, a phrase would be presented orally such as “Que cavalo é que o boi
mordeu”(“What horse did the ox bite?”), as well as, an illustrative image of that sentence. To solve this
type of exercise, following the example, the child would only have to point to the horse that bites the ox.
Currently, there is a Portuguese research project in progress using this type of exercise to assess the
comprehension relative clauses

However, as described in the Background (Chapter 2), VITHEA-kids 2.0 only allows the creation of
multiple-choice exercises. Therefore, there is no support for this type of exercise, since this one requires
the identification of specific areas, the correct answers.

In Section 3.2.1, it was described the OG approach. As was mentioned, this approach combines
multisensory techniques with teaching the phonemes. Despite that any type exercise will not be imple-
mented in VITHEA-kids 3.0 related to this approach, it was worth to mentioned it, given the success that
it has achieved. After talking with an expert in the field, it was possible to find a few exercises, based in
this approach that it will be described at future work section.

As we could see at subsection 3.2.2, Rello developed a method of designing word exercises to
improve spelling. In this method, she presented four types (insertion, omission, substitution, separation).
Three of them could be accomplished using VITHEA-kids 2.0. For insertion, it would just be necessary
use as a question one word with a missing letter and the answers should be the possible letters. For
omission, a word with an extra letter could be used as a question and a set of letter could be used as
answers, containing the extra letter. And lastly, for the separation, it could be displayed as a question a
set of words without spaces, and the answers could comprise the various ways of separation. Regarding
the Substitution exercise, this is not possible to accomplish.

We present a xadrez game in subsection 3.2.3, also developed by Luz Rello et al.. This game was
implemented taking into account the needs of children with dyslexia and it aims to improve some abilities,
such as visual spacial and calculation. Although, it seems an attractive application, it would require too
much graphic computation, that so far is not supported by VITHEA-kids 2.0.

In subsection 3.2.3, we present four types of exercises, taken from a book used in therapies. The
one that consists of filling the blank space could be easily created using VITHEA-kids 2.0, since the
sentence with the blank space would be the question and the possible words the answers. The other
three exercises are not possible to create, since, like the exercises used in SLI, require the identification
of specific areas inside an image as correct.

In conclusion, an exercise where it could be possible to specify areas on an image it would be useful
for dyslexia, as well as for SLI. Therefore, our goal is to implement this type of exercise in VITHEA-kids
3.0.

18

4
VITHEA-kids 3.0

In Chapter 3, we identified an exercise to be implemented in VITHEA-kids. However, there were
still bugs to be solved, as well as features to finish to achieve an usable platform. Although these
issues does not affect directly the implementation of exercises, they could result in a lack of interest,
by the caregiver and the children, in using VITHEA-kids. Therefore, it was important to resolve the
identified problems, in a first iteration of this project. Moreover, adding new exercises had become a
big challenge by itself, given the way that the existing features were implemented. Generally, there was
a lack of modularization, repetitive code segments, the classes had too many code lines, not being
easy to implement new exercises. Additionally, there were few comments in code and also the technical
documentation was practically non-existent. Consequently, the code follows a steep learning curve, and
as a result, refactoring is needed. For these reasons, the present chapter describes all changes that
had lead to the production of a new version, VITHEA-kids 3.0.

4.1 Implementation of features

In this section, what we have done regarding the implementation of required features that were not
totally implemented or were not properly implemented will be described.

The solved issues mentioned below are related to the child application.

Support for GIF animations Whenever a child finish a set of exercises we would like to present him
with a Graphics Interchange Format (GIF) as a reinforcement. However every GIF we tried to insert
was always static in our application. For this reason, we integrated Glide 1 to make possible the proper
load of this format image into VITHEA-kids 3.0. Regarding Glide, this consist of a fast and efficient open
source media management and image loading framework for Android.

User Interface problems As mentioned before, a multiple choice exercise with textual answers may
include an image as an optional stimulus. Therefore, if no stimulus image is defined for a given exercise,

1 https://github.com/bumptech/glide last access 30/03/2020

19

(a) Previous layout. (b) Current layout.

Figure 4.1: Layout for exercises of multiple choice.

the space for the image should not exist. It was necessary to add a condition to verify whenever the
stimulus is empty and draw the view according with that.

The interface did not support long answers. We created new layouts that could accommodate long
answers like sentences, as can be seen in Figure 4.1. Also, there was no feedback when an answer but-
ton is pressed. To solve this, we opted for changing background color, whenever the button is pressed.
In order to set different colors, it was necessary to create two different backgrounds, one for pressed
state and another for unpressed state as we can see in Figure 4.2.

Figure 4.2: Button with the word ”Pêra” pressed

Feedback Since the platform should be able to help users recover from errors, an error message was
added whenever the user type their credentials incorrectly. Also, an encouraging message was added
for the users to create exercises and/or classes when there are no exercises.

Requested features Before this current version of VITHEA-kids a therapist had requested a button to
repeat the uttered sentences. So in VITHEA-kids 2.0 there was actually a button that when pressed, it
did what was expected. However, duo to the new version of Unity, that button was not there. Therefore,
it was necessary to add it again. Since the animated characters is an imported Unity project, it was
necessary to modify this project in order to add the button and also its behaviour.

In an exercise, each image was loaded immediately before being displayed. As a result, there were
network requests during the process of solving the exercises, making the user to wait in every exercise.
The same therapist that had requested the button, had also pointed out this as a problem. In order to
avoid this, all images are now loaded when selecting a new class of exercises, which often delayed it,
as shown in Figure 4.3.

20

Figure 4.3: Loading images

A confirmation dialog is now shown whenever the user tries to return to the main menu like in Figure
4.4 to assure if the user is sure about interrupting the class of exercises, since doing this way it will not
be saved any progress of the current class.

Figure 4.4: Loading images

Features conclusion VITHEA-kids 2.0 made available the following types of prompting for the multi-
ple choice exercises:

• Read the remaining answers
• Change color of the right answer
• Change size of the distractors
• Scratch the distractors
• Hide distractors

The caregiver could combine some types of prompting. However, these strategies was not imple-
mented for the multiple choice exercise whose answers were images. Therefore, it was necessary to
implement them in the child’s application, as well as the prompting strategies (the prompting is always
given or the prompting is given when the child selects a wrong answer), Figure 4.5.

Additional customization options In the first version of VITHEA-kids, there was the request of having
the exercises’s text in upper case. This way, it makes sense provide freedom of choice for caregivers
regarding the way in which the text is displayed in the child application. This type of customization has
been implemented in the first version of VITHEA-kids, however it was no longer available in the last
version. Therefore, we implemented it again. So now, the exercise’s text can be displayed in the way it
was typed or in upper case, regarding the caregiver’s choice. Also, in the first version of VITHEA-kids, it
was possible for the caregivers to sort the exercises of a class or choose to sort them in a random way.

21

(a) Scratch distractor. (b) Change color of the right answer.

(c) Change size of the distractors. (d) Hide distractors.

Figure 4.5: Types of promptings

However, as that customization was also no longer available we implemented again.

Other bugs During visualizations of VITHEA-kids and also during the development of the features
mentioned above, some bugs were identified, such as, the logout was not working properly, it was
possible at times to find the exercises and other informations of the child logged before. Sometimes,
after failing to login, the buttons did not answer to the user’s interaction. Theses bugs are now fixed in
the current version of VITHEA-kids.

Layout files The layout files in child’s application were organized, removing unused files and grouping
the used ones according to their function.

4.2 Refactoring VITHEA-kids

The present section describes the whole process of refactoring the different components of
VITHEA-kids 2.0 architecture such as database model, back-end, caregiver’s application and child’s
application to ease the implementation of new exercises.

22

4.2.1 Back-end

As mentioned in Chapter 2, VITHEA-kids 2.0 uses Play Framework to develop an Application Pro-
gramming Interface (API) in Java. Play’s architecture is RESTful by default, which means it uses HTTP
requests to GET, PUT, POST and Delete data. At its core, Play is based on the MVC pattern, that
separates an application into three main logical components: the model, the view, and the controllers.
Using this framework, to expose a REST API is simple as the developer just need to match an HTTP verb
(GET, PUT, POST and Delete) with an associated action defined in a custom controller in a configuration
file named ’routes’. In this subsection, the focus are the controllers, part of the system that handles the
requests from both caregiver’s application and child’s application, such as register an exercise, delete
an exercise, get all exercises and so on.

There is one main controller that deals with the exercises, which has the three following methods:

• Register exercise – called whenever the caregiver creates a new a exercise.
• Edit exercise – called whenever the caregiver wants to edit an existent exercise.
• Delete exercise – called whenever the caregiver decides to delete an existent exercise.

Each type of exercise has its own characteristics, which requires different implementations to register,
edit and delete exercises. However, in VITHEA-kids 2.0, the different implementations are handled by a
single method. In the Appendix C, we find the method to register the two types of exercises supported
by VITHEA-kids 2.0 (multiple choices with image answers and multiple choices with textual answers).
As we can verify, there is a conditional statement for each type of exercise, which is not a scalable
solution. The same happens with the other methods mentioned before. This way of implementation is
not desirable for the following reasons:

• For every new exercise, it will be necessary to include the code in each method to register, edit and
delete, which makes the method increasingly larger, and consequently the code becomes harder
to maintain.

• It is difficult to implement new types of exercises and vary existing ones since there was no inde-
pendence in the implementation of the various types of exercises.

It is possible to avoid these problems by defining classes that encapsulate different operations algo-
rithms. A design pattern that is encapsulated this way is called Strategy [6].

Therefore, following the Strategy design, the diagram shown in Figure 4.6 was obtained.

ExerciseOperations

+RegisterExercise()

+editExercise()

+deleteExercise()

McOperations

+RegisterExercise()

+editExercise()

+deleteExercise()

AdminExerciseCtrl
Use

Figure 4.6: Refactoring controller using Strategy design.

23

The AdminExerciseCtrl class is the controller and it is responsible for register, delete or
edit an exercise. These operations strategies are not implemented by the controller. Instead,
they are implemented separately by a subclass that implement the interface ExerciseOperations

class. ExerciseOperations’s subclasses may implement different strategies. For example,
mcOperations implements a strategy for creating, editing and deleting a multiple choice exercise.
Currently, to implement a new type of exercise, it is just necessary to create a class that implements
ExerciseOperations.

However, there was still a problem: the controller AdminExerciseCtrl cannot predict what sub-
class of ExerciseOperations should instantiate since it depends on the exercise type. The class only
knows when use the operations, not what kind of operations. This creates a dilemma: The class must in-
stantiate subclasses, but it only knows about interface, which it cannot instantiate. We solve this by using
the Factory Method pattern [6] since it encapsulates the knowledge of which ExerciseOperations’s
subclass to create and moves this knowledge out of the controller AdminExerciseCtrl.

public ExerciseOperations selectExerciseOperations(String exerciseType){

if(exerciseType.equals("text") || exerciseType.equals("image")){
return new McOperations();

}

Listing 4.1: Using factory pattern to instantiate the operations for multiple choice exercises.

4.2.2 Database Schema

Play framework comes with Ebean Object-relational mapping (ORM) 2 which allows to generate the
database schema based on model classes using Java Persistence API (JPA). Play also comes with
Evolutions, which is a tool for tracking database changes and generate change scripts. This means that
VITHEA-kids’s database schema is generated through model classes, along with JPA annotations.

In order to validate whether the VITHEA-kids 2.0 database supports the implementation of new types
of exercises, the corresponding relational model was created Appendix A.1.

New proposal for database scheme

By analysing the current relational model (Appendix A.1), the following problems were detected:

• The Exercise entity store all possibles fields of an exercise regardless if they are common to
all types of exercises or just specific to one. This leads to the existence of null values and have
therefore contributed to a non-normalized table.

• There is no flexibility for a new requirement, which consists in allowing more than one right answer.
This is not possible because there is only one-to-one relationship between the Exercise and the
Answer entities.

• There are some predefined levels and topics for all caregivers. However, they are replicated when-
ever a caregiver is created, as if they have been created by him, leading to redundant data.

In order to deal with the first problem pointed out, a solution decision would be to create special-
izations of the Exercise entity. Taking into account that VITHEA-kids allows the creation of two types of
multiple choice, as already mentioned, the solution would be to create a table for each type. These tables

2 http://ebean-orm.github.io/ last access 14/06/2020

24

would then be specializations of the exercise entity, just like any other exercise to be implemented. With
this solution, there is no need to have a relation between Question and Resource entities as shown
in Figure 4.7a. That should be only between the Resource and multiple choice text, remember-
ing that multiple choice img does not have image as stimulus as shown in Figure 4.7b. Also, the
type of answers are different for the two kind of multiple choice. For the multiple choice text the
answers are text and for the multiple choice image the answers are images. That said, instead of
having an answer table that includes both possibilities, there would be two tables, one containing the
textual response and another that is related to the Resource entity as shown in Figure 4.7b.

sequence_exercise

exercise_id
sequence_id
exercise_order

exercise

id

topic_id

level_id
author_id

type

name
default_exercise

question

id <PK>

stimulus_id <FK>

exercise_id

question_description
stimulus_text

exercise_answer

exercise_id <PK>
answer_id <PK>

answer

id <PK>

exercise_id <FK>

answer_description
stimulus_id

1

1

resource

id

owner_id <FK>

resource_type_id <FK>

resource_path

resource_area
default_resource

resource_type

id
resource_type_description

1

1

0...m

1

1

1...m

1...m

1
1

1...m

1

1 1...m

1

1...m

(a) Current model
exercise

id

topic_id

level_id
author_id

type

name
default_exercise

answerText

id <PK>

exercise_id <FK>

answer_description
right

resource

id

owner_id <FK>

resource_type_id <FK>

resource_path

resource_area
default_resource

1

multiple_choice_text

id <PK>

stimulus_id <FK>

exercise_id <FK>

question

multiple_choice_image

id <PK>

exercise_id <FK>

stimulus_text
question

exercise_answer_img

id <PK>

resource_id <FK>

exercise_id <FK>

right

0...m
0...m

1 1

0...m

1

1

1

1...m

1

1

1

(b) Proposed model

Figure 4.7: Differences between the current model and the proposed model concerning exercises

Moreover, since the question of a multiple choice is just a string, it is not necessary to have a table
to save it, as there was before. The string could be a field in the multiple choice tables.

Regarding the second problem related to the inability of having more than one right answer, the
solution would be to introduce a new Boolean field. This would take a true value if the answer was
correct, and false otherwise. Also, there would be just one relation between the exercise and Answer

25

entity, one-to-many, as shown in Figure 4.7b.

As for the third problem raised, we need to keep to replicate the predefined levels and topics for
every caregiver solution since some caregivers may decide to delete any predefined topic and/or level
and others may keep them. Therefore, we need to be redundant regarding to predefined levels and
topics.

The full model, comprising the solutions proposed above, can be found in Appendix B.1.

Implementation of the database schema

After the main problems and their solutions were identified, the implementation phase was started.
It started by researching the possible ways of introducing a specialization. Among the valid options for
implementing a specialization such as One table implementation, Two-table implementation and Three-
table implementation, it was opted for single table. Although it was not the most flexible form, given the
various attributes that each exercise can have, it was the only one supported by Ebeans. Nevertheless,
in the class model it was possible to create inheritance, that is, the different types of exercises inherit
from the exercise class, which contain the common attributes. This possibility is important since this way
we can separate the fields by exercise instead having all possible fields in only one class.

Not forgetting that the database is generated at the expense of the class model, what happens in
practice is that this inheritance is mapped into a single table. This mapping generates a type attribute,
which corresponds to each subclass of the exercise. Thus, when database operations (select, delete,
update, insert) are performed on a type of exercise, the system always knows the type of exercise
on which it is operating. For example, when a select query at multiple choice exercises is performed,
respective fields are obtained. Contrary to what happened in the previous implementation, in which
would obtain all the fields, even the fields that were empty. To achieve this mapping, two annotations
were used which are shown in listing 4.2.

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "dtype")

Listing 4.2: Anotations that allow inheritance

In order to allow more than one right answer, we added in the Answer class a boolean attribute
designated by right.

As for the problem of information redundancy, since it is outside of the scope of this project, it has
not been implemented.

4.2.3 Caregiver’s application

As already mentioned, the caregiver’s application was developed in Angular 2. Angular 2 follows
a components-based approach to web development. Components are essentially reusable UI building
blocks that are easy to test and reuse. They correspond a sets of screen elements that Angular can
choose among and modify according our program logic and data. Angular uses also services that are
Typescript classes, usually responsible for fetching data from the server, validating user input and so on.
They can be developed for specific tasks needed in a given component. In the case of this application,
they are mostly used to communicate with the server in order to fetch or send information.

Through the analysis of these concepts and the front-end’s code the following architecture of
VITHEA-kids 2.0 arises.

26

index.html App
Module

App
Component

Caregiver

Children

Exercises

Guard

HTTP

Sequences

Resouces

Pagination

AddChild
Component

AddExercise
Component

AddResource
Component

AddSequence
Component

Caregiver
Component

Exercises
Component

Home
Component

FileUpload
Component

Sequences
Component

Sign up
Component

html

Module

Component

Service

Figure 4.8: Front-end architecture

Since our main goal is to ease the implementation of new types of exercises, the components that
are going to be discussed are related with the exercises (marked with a red border).

The AddExercise component allows the caregiver to create an exercise of the two kinds of multi-
ple choice(one in which the stimulus is image and answers are textual and another in which the stimulus
is text and the answers are images) and, also, to edit an existing one. Through code analysis, it was
possible to point out the following problems:

• The way to distinguish if it will be a creation or and editing of an existent exercise it is through a
variable (a holder of an id). If that variable is null it is a creation, otherwise it is and editing.

• The way to display the correct form for an exercise type, in terms of code, is through conditional
statements, that verify the type of the form element to be created or edited. In this component’s
HTML file, for each form element, there is a conditional statement in order to know which elements
should be displayed as shown in listing 4.3. This assumes that all exercises more or less follow
the same structure, so there is no flexibility to accommodate new types of exercises.

<div class="row">
<div class="form-group">

<label for="stimulus"> {{ ’_Stimulus_’ | translate }} </label>

<div *ngIf="newExercise.type == ’image’">
<input class="form-control" id="stimulusText" maxlength="75" [(ngModel)

]="newExercise.stimulusText" name="stimulusText" #stimulusText="
ngModel">

</div>

<p *ngIf="newExercise.type == ’text’"> {{ ’_SelectImagesStimulus_’ |
translate }}</p>

<div *ngIf="newExercise.type == ’text’" style="max-height: 100px;
overflow-y: auto;">

<em *ngIf="stimulusImgs?.length === 0">{{ ’_NoResources_’ | translate
}}

<image-picker *ngIf=!loading [(ngModel)]="stimulusImgs" name="
stimulusImgs" [selected]="newExercise.stimulus" name="newExercise.
stimulusImgs" [multiSelect]="false"> </image-picker>

</div>
</div>

</div>

27

<div class="row">
<label for="answer"> {{ ’_Answer_’ | translate }} *

</label>

<div *ngIf="newExercise.type == ’text’ ">
<input type="text" class="form-control" id="rightAnswer" maxlength="75" [(

ngModel)]="newExercise.rightAnswer" (ngModelChange)="
validateRightAnswerText()" name="rightAnswer" #rightAnswer="ngModel">

<div *ngIf="rightAnswerTextError" class="alert alert-danger"> {{ ’
RequiredRightAnswer’ | translate }} </div>

</div>
</div>

Listing 4.3: addExecise component

In short, there are several concerns that could be split out into small components to make the code
more readable, less complex and extensible.

The Exercise component is responsible for listing all created exercises and preview them. In
terms of code, to preview each exercise, the component checks if every possible element of an exercise
is not null. If it is not, the component display it. So, to preview another type of exercise, it would be
necessary to add new validations for the new fields. Once again, this would introduce more complexity
and less flexibility, making the code harder to understand and maintain. Therefore, a solution would be
to delegate functionality to smaller components.

Having said this, the following subsections describe how the AddExecise and Exercise compo-
nents were broken into smaller ones. Furthermore, all changes have the goal of creating a different
component for every type of exercise in order to make the new exercises implementation easy , since
this way the developer could only focus on the exercises that he/she intends to implement, without the
need of understanding how other types of exercises are implemented.

4.2.4 AddExercise Component

Since every kind of exercise has its creation form and its logic, a good solution would be to create
one component for each form.

In light of this, we created a AddComponent for each exercise that encapsulates each specific form.
Now the AddComponent is more generic since its main responsibility is to render the proper creation
form according to the type of exercise selected by the caregiver. This is possible thanks to an Angular’s
feature that allows to inject components inside other components by adding a tag (a reference to a
component). For example, in Listing 4.4, we found part of the Exercise component’s HTML file, and the
tags app-add-exercise-mc-image is a reference for the component that implements the creation
form of that type of exercise. With this changes, as it can be seen in Listing 4.4, the AddExercise

Component is much cleaner and extensible.

<div class="row">
<div *ngIf="type == ’text’">

<app-add-exercise-mc-text></app-add-exercise-mc-text>
</div>

<div *ngIf="type == ’image’">

<app-add-exercise-mc-image></app-add-exercise-mc-image>
</div>

<div *ngIf="type == ’imageSelection’">

<app-add-exercise-selectionImage></app-add-exercise-selectionImage>
</div>

28

<div *ngIf="type == ’speech’">

<app-add-exercise-speech></app-add-exercise-speech>
</div>

</div>

Listing 4.4: Current addExercise Component

Also, we created an editExercise component that follows the same logic of AddExercise, which
means there is a different component to edit each exercise.

4.2.5 Exercise Component

We created two new components, one for each type of multiple choice. Each one has only the
code (logic and HTML template) related to the corresponding exercise type. Now, the Exercises

Component just iterates over all exercises and injects a component according to exercise type as shown
in Listing 5.3.

<div class="panel panel-default" *ngFor="let exercise of pagedItems |
exerciseFilter:searchBy | exerciseTypeFilter: imageFilter:textFilter">

<div *ngIf="!loading" class="panel-body">

<div *ngIf="exercise.dtype.toLowerCase() == ’multiplechoice’">

<app-show-exercise-mc-image [exercise]="exercise" x *ngIf="
exercise.type.toLowerCase() == ’image’" ></app-show-exercise-mc-image>

<app-show-exercise-mc-text [exercise]="exercise" *ngIf="
exercise.type.toLowerCase() == ’text’" ></app-show-exercise-mc-text>

</div>
<div *ngIf="exercise.dtype.toLowerCase() == ’speechexercise’">

</div>
</div>

Listing 4.5: Current Exercise Component

4.3 Child’s application

The child’s application consists of an Android application where the child can solve the exercises
previously created by his/her caregiver.

When the child plays VITHEA-kids for the first time, a login screen is displayed, in which the child’s
credentials should be typed. After that, a menu is displayed to select a given class.

So far, each class may be composed of two kinds of multiple choices. In each exercise, the child can
skip to the next exercise or return to the previous exercise, if it exists. Also, a reinforcement screen is
shown between exercises displaying an image whenever the child answers correctly to an exercise.

At the architecture level, all interactions with the application are handled through two Activities
classes. An activity class is usually associated to a screen with a graphical user interface and it dic-
tates the UI and handles the user interaction with the smartphone screen 3. Each activity has a XML
Layout file configured, which contains all the UI elements.
Following the login, the main Activity is created. This activity is associated with all the remaining screens,
such as the exercise screen, menu screen and so on. The layout associated with the main activity is

3 https://developer.android.com/guide/components/activities/intro-activities.html

29

divided in half, in which one of the sides is the container of the unity character and the other is the
container of the following views4:

• List of classes associated with the child;
• Current exercise;
• Reinforcement.

As a consequence of that, all functionalities inherent to these views are concentrated in a single
activity class. This was implemented this way in order to avoid unity’s character loading whenever there
is a screen change. However, this way of implementation leads to many code lines in a single class,
witch turns the code almost unreadable and more bug prone. Also, the time to add any feature is affected
in a negative way. Furthermore, changing a layout is almost impossible since there are big dependence
between views. In other words, one change is some kind of view could involve unintended changes in
other layouts. Keeping this implementation could make these problems worse when adding new kind of
exercises. Therefore, it is not a flexible and scalable solution. So, refactor this activity was necessary
in order to implement exercises in a flexible way. To accomplish this, we followed a fragment-oriented
architecture. A Fragment is a modular section of an Activity, that has its own life-cycle. It might be seen
as a sub-activity since it has its own layout and its own behavior, which enables more modular activity
design5. Moreover, it is possible to combine multiple fragments in a single activity to build a multi-panel
UI. Futhermore, with fragments, adding a new exercise is easier since it is just necessary to create a
fragment and its respective layout. Also, the layouts for the new types of exercises are easier to create,
since each layout is independent of the other layouts. Therefore, the main activity layout is now divided
in four main areas, as we can see in the Figure 4.9:

- Animated character, which occupies half of the screen. As it is supposed to be always present,
independently of the child interaction, it was declared in a static way;

- Toolbar, which provides the application settings;
- Fragment place holder, which defines an empty container layout to be set by the main activity.

The activity replaces the current fragment by another that could be the “list of classes”, “the multiple
choice image”, “the multiple choice text” or “the reinforcement”;

- Navigation view which allows the child navigate between exercises. This view only appears once
a class is selected.

List of sequences

Reinforcement

Reinforcement

Multiple choice
image

Multiple choice text

<<Static Fragment>>

PlaceHolder

Toolbar

NavigationView

<<Dynamic Fragment>>
Unity

Figure 4.9: Android activity layout

Given this division, there is now a fragment for each type of exercise. The reinforcement and list of

4 https://developer.android.com/reference/android/view/View.html.
5 h ttps://developer.android.com/reference/android/app/Fragment.html

30

classes of exercises were also implemented through fragments.
In addition to the use of fragments, it was necessary to refactor the model classes. That should reflect

the model classes of the server, considering the refactorization described in Subsection 4.2.2. Once the
model was changed to support inheritance, the child’s application model should also support to guar-
antee the automated mapping of the data coming from the server. Firstly, inheritance was implemented
using the Exercise class as the basis and having MultipleChoiceExercise as a subclass. Also, at
the exercise class,the annotations presented in the listing 4.6 were added to accomplish the automated
mapping. This annotations allow deserialization. When deserializing, the actual code being executed
will know the expected class, through the property dtype of JavaScript Object Notation) (JSON) that
comes from server.

@JsonTypeInfo(use=JsonTypeInfo.Id.NAME, include=JsonTypeInfo.As.PROPERTY, property="
dtype")

@JsonSubTypes({
@JsonSubTypes.Type(value = MultipleChoice.class, name ="MultipleChoice"),

Listing 4.6: Deserialization anotations

Using fragments leads to a more modular code. To add a new exercise, it is just necessary to create
a fragment and its respective layout. Layouts for the new types of exercises are easier to create, since
each layout is independent of the other layouts.

4.4 New type of exercise

After refactoring, we focused on the last goal of this thesis, which consists in extending the VITHEA-
kids 3.0 with another type of exercise. In the related work, a versatile type of exercise was identified
that can be used by children with dyslexia or with SLI, depending on how the exercise is created by the
caregiver. The identified exercise consists of a question and an image, where it is possible to select an
area of the image. The selected area corresponds to the area where the child should touch to finish the
exercise successfully on the mobile device. The implementation of this exercise was another contribution
to this thesis. In the next chapter, we will use the implementation of this exercise to illustrate how flexible
the code has become after a profound restructuring of all the components that involve the exercise. For
this illustration, we will present the implementation using the two architecture, clarifying the advantages
of this new architecture over the previous one.

4.5 Discussion

In short, the work of this thesis began with the implementation of some functionalities in the child’s
application that were once identified by specialists in the field. In addition, we have solved some prob-
lems that could compromise the child’s motivation when using this application, namely UI problems and
application bugs. After this first iteration of this work, we focused on restructuring the code that involves
the exercise, on the various components existing in VITHEA-kids 2.0 (backend, caregiver’s application,
children’s application) in order to promote a cleaner and extensible code. Regarding the backend, the
strategy and factory design pattern were introduced at the level of the controllers that concern the MVC
pattern. Given the limitations of play framerwork, and since the database was created from the class
model it was not possible to restructure the database tables. This way we just left a proposal for restruc-
turing the database for future work. Despite this difficulty, we managed to improve the ORM, creating
as many specializations in the exercise class as there are types of exercises in VITHEA-kids 2.0. As

31

for Caregiver’s application, taking into account that the framework architecture used (Angular) is based
on components, the solution started to separate the details of each exercise into different components,
and to create a generic component that aggregates all types of exercises. Regarding the application of
the child, since there was only one activity to manage all the functionalities, it was decided to follow a
fragment oriented architecture to promote a greater separation of responsibilities, instead of being all
logic consolidated in just one class. Finally, we focused on one of the main objectives of this thesis: the
implementation of an exercise that could tackle some gaps felt by children with dyslexia or SLI.

32

5
Evaluation

In Chapter 4 we described the refactorization process of each component of VITHEA-kids 2.0, which
had the goal of turning VITHEA-kids 2.0 in a more scalable version, in a way we could enrich it with
new exercises. Therefore, in the present chapter we illustrate the differences between the previous and
the new architecture describing the implementation of a new type exercise, selection image exercise, in
both architectures. For this, we are going to cover the three main components of VITHEA-kids, back-
end, caregiver’s application and child’s application. This way, we are able to compare the scalability of
both architecture. Also, in this section we are going to describe new exercises that are now possible to
create with the new exercise type, which match our main goal of helping children with SLI or dyslexia.
Furthermore, to reinforce the improvement inherent to the new architecture, we give a description of
a new type of exercise implemented by a researcher, as well as her feedback when implementing the
exercise, using the new architecture.

5.1 Selection image exercise

In Chapter 3, a new type of exercise that was not possible to achieve with the current exercises was
identified, which we named as selection image. As it was mentioned in 3, with this type of exercise, it
is possible to create exercises for children with SLI as well as for children with dyslexia. This exercise
should allow the caregiver to define a specific area to be taken as correct, inside an image. At the child’s
application, the child has to touch inside the area previously defined by the caregiver. As we intend to
show how easy it has become to implement new types of exercises we we are going to illustrate the
main differences between the two architecture, using the implementation of this new type of exercise as
example.

5.1.1 Back-end

For the new exercise to be implemented it is necessary to store in database an image, a question,
original width and height of the chosen image and also selection’s coordinates. The selection is a
rectangle performed inside the image. The original width and height have the goal of keeping track the
ratio of selection’s coordinates. In terms of implementation, it requires alterations in the entity classes

33

and in the controllers. Regarding the database, that will not be covered, since it is a reflection of the entity
classes, as mentioned in Section 4.2.2. Following this, we will describe how it would be implemented in
the previous architecture and how is it implemented in the new architecture.

In the previous architecture

Regarding the classes model that generates the database via Ebean Object-relational mapping, as
we said at section 4.2.2, it has the class Exercise with all fields of all exercises. This way, following
this approach, since there is no inheritance of Exercise, the required fields for the new exercise should
be added to this class5.1. In respect to the controller responsible for register, edit and delete exercise,
it would be necessary to add an conditional statement and the logic associated to the new type of
exercises as shown in Listing 5.1 (for reasons of simplification the code for each type of exercise is
omitted). As we observe in figures, this kind of solution is not scalable for new types of exercises.

Exercise

id

name

topic

level

question

rightAnswer

answerlist

author

sequencesExercise

originalWidth

originalHeight

stimulus

selectionAreas

Figure 5.1: Data structure for the new exercise using the previous architecture

public Result registerExercise() {

if(registerExerciseForm.get("type").equals("text")) {

} else if(registerExerciseForm.get("type").equals("image")) {

} else if(registerExerciseForm.get("type").equals("selectionImage")) {

}

}

Listing 5.1: Method to register an exercise.

In the new architecture

As it was already mentioned, Play framework offers a way of inheritance (Single table). With this
feature, we have now the common fields to all exercises in the class Exercise and we created another

34

one, extending from the Exercise with the specific properties of this exercise (image, question, width,
height, selection’s coordinates). In respect to the controller responsible for the exercise’s operations
(create, edit, delete), to implement the operations for the new exercise we need first to add to our factory
the name of the new type in order to instantiate the appropriate object (the one that has the right oper-
ations) as it is shown at Listing 5.2. After that, we implement the class SelectionImageOperations
with the logic associated to the behaviour of each operation, not forgetting that the class should extend
from ExerciseOperations (an interface that defines the behaviour of the exercise controller). This
way of implementation assure us more flexibility and also more independence between different types
of exercises.

public ExerciseOperations selectExerciseOperations(String exerciseType){

if(exerciseType.equals("text") || exerciseType.equals("image")){
return new McOperations();

}

if(exerciseType.equals("selectionImage")){

return new SelectionImageOperations();
}

}

Listing 5.2: Factory to generate the object of concrete class based on the exercise type name.

5.1.2 Caregiver’s application

For the caregiver application, in respect to the exercise, we have three screens, one to create an
exercise, one to edit and another to preview the exercise. Following this, we are going to describe how
these screens would be implemented in the previous architecture and how was implemented after the
refactorization process.

Previous architecture

In respect to creating and editing an exercise, as mentioned at Section 4.2.3, all logic concerning with
the user interface and the respective behaviour are implemented through a single angular component.
The way to differentiate whether it is a creation or an edition of an exercise is through the arguments,
passed in the URL. In the case the argument is an id, the component loads the chosen exercise by the
user that was once created by him, otherwise the component shows only the fields needed to be filled to
create the type of exercise chosen. Furthermore, the two types of multiple choices are also implemented
through a single component, Exercise component. Regarding the HTML file present in the Exercise
component, to allow the creation and edition of a new type exercise, it would be necessary intercalate
the code already existent with the one related with the new exercise, such as the snippet in the Listing
5.3. This means, as the web page structure follows the order that the code was written, it is necessary
to put a conditional statement for every possibility that could be displayed first in the page, accordingly
with the type of exercise.

Also, it would be necessary to add the typescript code that handles the behaviour related to the new
exercise. Yet again, that is not extensible and not flexible, since there is no independence between
exercises.

<div class="row">

35

<label for="answers"> {{ ’_Distractors_’ | translate }}</label>
<div class="form-group" *ngIf="newExercise.type === ’text’ ">
<p>{{ ’_NoDistractors_’ | translate }}</p>
<input type="text" class="form-control" id="distractor1" maxlength="75" [(ngModel)

]="newExercise.distractor1" name="distractor1" #distractor1="ngModel">
<input type="text" class="form-control" id="distractor2" maxlength="75" [(ngModel)

]="newExercise.distractor2" name="distractor2" #distractor2="ngModel">
<input type="text" class="form-control" id="distractor3" maxlength="75" [(ngModel)

]="newExercise.distractor3" name="distractor3" #distractor3="ngModel">
</div>

</div>

<div class="row" *ngIf="newExercise.type === ’selectionImage’ ">

<p> {{ ’_chooseImage__’ | translate }}</p>
<em *ngIf="images?.length === 0">{{ ’_NoResources_’ | translate }}

<div style="max-height: 100px; overflow-y: auto;">
<image-picker *ngIf=loading id="images" [(ngModel)]="images" [multiSelect]="false

" [selected]="images" (onSelected)="this.getImage($event)" name="images"> </
image-picker>

</div>
<div *ngIf="this.imageError" class="alert alert-danger">{{ ’_RequiredImage_’ |

translate }}</div>
<div *ngIf="this.selectionError" class="alert alert-danger">{{ ’_RequiredSelection_

’ | translate }}</div>
</div>

Listing 5.3: Current Exercise Component.

As for the exercise preview, it is necessary to add if statements in the HTML file as well as in the type-
script file, to implement the interface of the new exercise and to load exercise’s data such the question,
the stimulus, the region and so on. Once again there is no independence between the exercises.

New architecture

In the new architecture, we need to create a folder to contain three new angular components.
Those components are add-exercise-selectionImage, edit-exercise-selectionImage

and show-exercise-selectionImage. The add-exercise-selectionImage is a component
that implements all necessary logic to create an exercise that allows us to draw a selection inside an
image. So in this component, we have an HTML file where we implemented the user interface that
allows the caregiver create the exercise and store it in the server, we have a CSS file where we develop
the style for the exercise form and a typescript file where we implement the logic that deals with the
caregiver’s input and send it to the server.

The edit-exercise-selectionImage, as well as the show-exercise-selectionImage fol-
low the same logic, which means every one has three files HTML file, CSS file and typescript file.
However, the edit-exercise-selectionImage was implemented to allow the caregiver edit an ex-
ercise that was once created by him. The show-exercise-selectionImage was implemented to
allow the preview the exercise already created.

After creating these three components it is necessary to edit HTML files of four more general compo-
nents which are add-exercise, edit-exercise, exercise and add-sequence to make possible
that the new components mentioned before could be instantiated when needed. In add-exercise

HTML file we introduce a conditional statement that verifies if the exercise type is a selection image
and inside that statement we reference a component add-exercise-selectionImage as shown in
Listing 5.4. In the edit-exercise we do exactly the same we did in add-exercise.

<div class="row">
<div *ngIf="type == ’text’">

36

<app-add-exercise-mc-text></app-add-exercise-mc-text>
</div>

<div *ngIf="type == ’image’">
<app-add-exercise-mc-image></app-add-exercise-mc-image>

</div>

<div *ngIf="type == ’imageSelection’">
<app-add-exercise-selectionImage></app-add-exercise-selectionImage>

</div>

<div *ngIf="type == ’speech’">
<app-add-exercise-speech></app-add-exercise-speech>

</div>
</div>

Listing 5.4: AddExercise component’s HTML with the tag for selectionImage exercise

The exercise can be previewed when the caregiver lists all exercises or when checking a given class.
Therefore, to make possible show-exercise-selectionImage being created and instantiated it is
necessary to add the exercise name into exercise and add-sequence, in order know which compo-
nent is going to be created. We can do this way, since every exercise corresponds to a component, and
each component knows how should be rendered and which information needs. With this solution we
have more independence between exercises.

5.1.3 Child’s application

For the child’s application we need to make possible the information retrieving about the new exercise
from server and also create an user interface where the child can solve the type of exercise. So, we are
going to describe how it would be made by using the previous architecture and how it is done through
the new architecture.

Previous architecture

In respect to retrieving new exercise’s information from server, the Exercise class in android ap-
plication should reflect the Exercise class, located on the back-end, in order to assure the mapping
between the both classes. This means that we need to add the image, the question, the original width,
the original height and the coordinates of the selection as presented in the Listing 5.5.

@JsonIgnoreProperties(ignoreUnknown = true)
public class Exercise {

@JsonProperty private Long exerciseId;
@JsonProperty private Topic topic;
@JsonProperty private Level level;
@JsonProperty private Question question;
@JsonProperty private Answer rightAnswer;
@JsonProperty private List<Answer> answers;
@JsonProperty private String type;
@JsonProperty private Long originalWidth;
@JsonProperty private Long originalHeight
@JsonProperty private CoodinatesSelection coordinates;

Listing 5.5: Exercise class of the child’s application with the new fields

Regarding the exercise implementation itself, a block code is necessary to be added that contains
all logic behind the possible interactions when solving the exercise into VitheaKidsActivity class

37

(mentioned in Section 4.4). Also, it is necessary to add a XML file to implement the user interface
regarding to new type of exercise. This kind of implementation is not scalable for new exercises since
this way we just increase the complexity of the VitheaKidsActivity class, making it more difficult to
maintain it and extend it.

New architecture

Since so far we have all types of exercises extending from a class Exercise that contains all com-
mon properties, in the back-end, we need to reflect this into child’s application. Therefore, it is necessary
to create a class that extends from Exercise, in the child application, in the same way it was made in
the back-end. Also, in the class Exercise of Child application it is required the line highlighted
in Listing 5.6, in order to make possible the mapping between the JSON that comes from the back-end
and the respective class.

@JsonTypeInfo(use=JsonTypeInfo.Id.NAME, include=JsonTypeInfo.As.PROPERTY, property="
dtype")

@JsonSubTypes({
@JsonSubTypes.Type(value = MultipleChoice.class, name = "MultipleChoice"),

@JsonSubTypes.Type(value = SelectionImageExercise.class, name =

"SelectionImageExercise")})

Listing 5.6: Class Exercise changed to allow mapping.

Regarding the exercise implementation itself, it is necessary to create a Fragment with the logic
associated with selection image exercise. Also, it is necessary to create a XML layout, to implement the
layout of this exercise. This way we assure more independence between different types of exercises and
consequently this solution becomes more scalable, in terms of adding new types of exercises.

Figure 5.2: Form to create selection on an image(left) exercise to be solved by a child (right).

38

5.2 Selection in Image exercise

In the previous sections we focused in describing the main differences when implementing the new
exercise using the previous architecture and the current one, implemented by us in order to show our
contribution in this thesis, regarding the goal of refactoring VITHEA-kids and making the implementation
of new exercises an easier task. After refactoring VITHEA-kids 2.0, a new version of it arises with a new
type of exercise. This way, in the present section, the potential of this new type of exercise will be shown
as well as how we can create exercises identified in Related work chapter that could be user in therapies
for children with dyslexia or SLI.

5.2.1 Exercises for SLI

As mentioned at section 3.1, an expert in the field hypothesized an exercise to be used by children
to train relative clauses, since comprehension and production presents itself as a problem for them. In
short, this exercise consist of a sentence illustrating the idea of that sentence. This exercise leads the
child to do what is in the sentence. For example, in the sentence ”Que cavalo é que o boi mordeu?”
(”What hore did the ox bite?), the child has to touch in the part of the screen that corresponds to the
horse that suffered the action. With the new type of exercise, several similar exercises can be created to
practice and improve relative clauses comprehension, as shown in the Figure 5.2.

5.2.2 Exercises for dyslexia

Regarding dyslexia some exercises of an exercise manual for children with dyslexia can be replicated
with the new type of exercise. For example, the exercises, mention in section 3.2.4, can be replicated in
VITHEA-kids 3.0, as we can observe in the image. This way, we might conclude that with this new type
of exercise we can provide children with dyslexia a list of different exercises to practice skills where they
feel more difficulties, such as the exercise presented in Figure 5.3 .

Figure 5.3: Form filled with information of an exercise for childs with dislexia image(left) exercise to be
solved by a child (right).

5.3 Word Naming exercise

Beside the exercise we had implemented, another researcher from Intelligent Networked Robot Sys-
tems for Symbiotic (INSIDE) have provided VITHEA-kids 3.0 with a new type of exercise, more specif-
ically a word naming exercise. In this exercise the child has to say orally the name that appears in the
screen. Also, this exercise has to be created previously and added to a class by the caregiver. Therefore,
the researcher had to pass for every component of the VITHEA-kids, back-end, caregiver’s application

39

and child’s application. Based on the feedback received and having into account that the researcher
had already knowledge about de the previous architecture, the exercise was simple to implement and
not so confused how it would be in the previous architecture. Also, the implementation was not a very
time-consuming process.

Figure 5.4: Form to create a word naming exercise (left) exercise to be solved by a child (right).

5.4 Discussion

In this chapter, one of the goals consists of demonstrating the improvements made in all components
that make up the Vithea kids (back-end, caregiver’s application and child’s application). Throughout what
has been described in this chapter, a certain pattern is observed in all components of VITHEA-kids 2.0,
namely the lack of independence between exercises. This lack of independence leads to the existence
of classes with many lines of code, and a greater probability of generating application bugs. Thus, the
strategy was to create this independence, in all components taking into account the languages and
frameworks used. This way, the implementation of the new selection image exercise became an easier
task and thus we managed to achieve one of the goals of this thesis: ”Refactor VITHEA-kids 2.0 to
turn this application in a more extensible one, and thus make the implementation of new exercises, with
focus on other learning disabilities, a less complex task”. In addition, in the light of some examples of
exercises shown in the present chapter, we managed to prove the versatility of the new type of exercise
implemented ”Selection Image”, since it allows caregivers to create exercises for children with dyslexia or
SLI. Thus we demonstrate that the goal ”Implement a solution that can be applied to different exercises
used in therapies that could be as useful for dyslexia as for SLI” has been achieved.

40

6
Conclusions and Future Work

6.1 Conclusions

Worldwide, there are children with some learning disability, such dyslexia and SLI. It is not always
possible to provide these children with therapies, many times duo to financial problems. Therefore there
is a need to develop a solution that addresses this problem. Taking advantage of the technology and
the enjoyment felt by the children when playing with mobile devices, to create an application that seems
like a great solution. With this view in mind, we found VITHEA-kids 2.0 a promising platform to achieve
our main goal of using technology to create exercises, to help children with learning disabilities, namely
dyslexia and SLI, that could be solved through a mobile device. VITHEA-kids 2.0 was an application
inspired by the needs of children with ASD, allowing the caregiver create exercises to be solved by their
children in order to fight the difficulties felt by them. Also, this application is free, easy to use and it is
European Portuguese.

However, when exploring this application more closely, we found features incomplete, as well as
bugs in VITHEA-kids 2.0 that had to be addressed. Also, after analysing the components that compose
VITHEA-kids 2.0 we have also realised that a profound reformulation was needed, since there was no
flexibility for the implementation of new types of exercises. Hence, VITHEA-kids 2.0 was submitted to a
process of refactorization in every part of the application (back-end, caregiver’s application and child’s
application). With this refactorization, VITHEA-kids 3.0 is now more extensible to new types of exercises.

In addition to the refactorization, we also developed a new type of exercise that allows caregivers
define an area on a image to be taken as correct. In consideration of what was mention at the related
work, this type of exercise is useful to create exercises with focus on dyslexia as well as on SLI.

Also to reinforce the benefits achieved with the refactorization, we got a very positive feedback by a
researcher of INSIDE about the implementation of a word naming exercise.

6.2 Future work

After searching for therapies and exercises used by specialists to fight difficulties felt by children
with dyslexia, we found out some useful ideas, described with more detail in Section 3.3, that could

41

be implemented in VITHEA-kids. These ideas are based on Orthon-Gillingham approach and were
discussed with a specialized on the field. This ideas implies to implement:

• A Tutor, whose the main goal would be teach the sounds of syllables by providing children with
dyslexia a set of syllables and their respective sounds.

• An exercise where could be possible to join syllables to form the word that matches the image
presented on the display.

Regarding the OG approach, described in subsection 3.2.1, since it is as being explicit, and after having
discussed with a therapist, it has raised the idea of introducing a tutor in VITHEA-kids. The main goal of
this tutor would consists of providing children with dyslexia, a set of syllables and their respective sounds
as in Figure 6.1. However, synthesize the syllables sounds could be a challenge since in Portuguese the
syllables can vary according to the word. For example, the words “cama” (bed) and casa (home) have
the same syllable “ca”, however, the sound in each word is different.

Figure 6.1: Tutor teaching SA syllable

Also, another proposed exercise, by the therapist, following the OG, with special emphasis on multi-
sensory teaching, requires a few senses, such as, vision, audition and touch, all at same time. The main
focus consists of turning children more aware of basic sound units of language. Regarding the details
of the exercise, it consists of joining syllables to form the word that matches the image presented. In
other words, an image is presented, as well as, a set of syllables (syllables that belongs to the word
and others that not, to “distract” the child). To solve the exercise, the child has to drag each syllable
close to the image in order to build the word that match the image. When a syllable is being moved, the
corresponding sound is uttered. So far, this exercise is also not supported by VITHEA-kids

(a) Exercise (b) Exercise Solved

Figure 6.2: Syllable Exercise

42

Bibliography

[1] Alan Beaton. Dyslexia, reading and the brain: A sourcebook of psychological and biological re-
search. Psychology press, 2004.

[2] Virginia W. Berninger, Kathleen H. Nielsen, Robert D. Abbott, Ellen Wijsman, and Wendy Raskind.
Writing problems in developmental dyslexia: Under-recognized and under-treated. Journal of
School Psychology, 46(1):1–21, 2008.

[3] Dorothy V M Bishop. What Causes Specific Language Impairment in Children? Current directions
in psychological science : a journal of the American Psychological Society, 15(5):217–221, 2006.

[4] Dorothy V M Bishop and Leonard Laurence B. Speech and Language Impairments In Children.
Psychology Press, Purdue University, Indiana, USA, 2014.

[5] Alexis Bosseler and Dominic W Massaro. Development and Evaluation of a Computer-Animated
Tutor for Vocabulary and Language Learning in Children with Autism. Journal of Autism and Devel-
opmental Disorders, 33(6):653–672, 2003.

[6] Gama. Erich, Helm Richard, Johnson Ralph, and Vlissides John. Design Patterns: Elements of
Reusable Object-Oriented Softwares. Addison-Wesley Professional, 1994.

[7] Pedro Fialho and Luı́sa Coheur. ChatWoz: Chatting Through a Wizard of Oz. In Proceedings of
the 17th International ACM SIGACCESS Conference on Computers & Accessibility, ASSETS
’15, pages 423–424, New York, NY, USA, 2015. ACM.

[8] Cláudia Patricia Balixa Filipe, Maria Luı́sa Torres Ribeiro Marques da Silva Coheur, and José Al-
berto Rodrigues Pereira Sardinha. An application to help children with communication disorders.
Master’s thesis, Instituto Superior Técnico, 2017.

[9] Naama Friedmann, Adriana Belletti, and Luigi Rizzi. Relativized relatives : Types of intervention in
the acquisition of A-bar dependencies. (2), 1998.

[10] NAAMA FRIEDMANN and RAMA NOVOGRODSKY. The acquisition of relative clause comprehen-
sion in Hebrew: a study of SLI and normal development. Journal of Child Language, 31(3):661–681,
2004.

[11] Javier Gay. The evolution of research on dyslexia History of reading disability. 32(1):3–30, 2001.

[12] Sheryl M Handler. Dyslexia: What you need to know. Contemporary Pediatrics, 33(8):18, 2016.

[13] Christopher B. Hayes. Dyslexia in Children: New research. Nova Science Publishers, 2006.

[14] Gaurang Kanvinde, Luz Rello, and Ricardo Baeza-Yates. IDEAL: a Dyslexic-Friendly eBook
Reader. 14th international ACM SIGACCESS conference, pages 205–206, 2012.

43

[15] Jignesh Khakhar and Sriganesh Madhvanath. JollyMate : Assistive Technology for Young Children
with Dyslexia. pages 576–580, 2010.

[16] D Ritchey Kristen and Jennifer L Goeke. Orton-Gillingham and Orton-Gillingham-Based Reading
Instruction: A Review of the Literature. Journal of Special Education, 40(3):171–183, 2006.

[17] Hagar Levy and Naama Friedmann. Treatment of syntactic movement in syntactic sli: A case study.
First language, 29(1):15–49, 2009.

[18] G Reid Lyon, Sally E Shaywitz, and Bennett A Shaywitz. A definition of dyslexia. Annals of dyslexia,
53(1):1–14, 2003.

[19] Alexandrina Martins. Complexidade sintática em PEL e PEA. PhD thesis, in prep.

[20] Vânia Mendonça, Luı́sa Coheur, and Alberto Farinha. Extending VITHEA in order to improve chil-
dren’s linguistic skills. Master’s thesis, Instituto Superior Técnico, 2015.

[21] Rama Novogrodsky and Naama Friedmann. The production of relative clauses in syntactic SLI: A
window to the nature of the impairment. Advances in Speech Language Pathology, 8(4):364–375,
2006.

[22] Rodrigues Paula and Braz Maria. Intervenção Educativa em alunos com Dislexia na Aprendizagem
das Ciências naturais. Master’s thesis, 2012.

[23] Sérgio Paulo, Luı́s Caldas De Oliveira, Carlos Mendes, Luı́s Figueira, Renato Cassaca, Céu Viana,
and Helena Moniz. DIXI – A Generic Text-to-Speech System for European Portuguese. In PROPOR
2008, pages 91–100, 2008.

[24] Anna Maria Pompili. New features for on-line aphasia therapy. Master’s thesis, 2013.

[25] Luz Rello. Design of word exercises for children with dyslexia. Procedia Computer Science, 27(Dsai
2013):74–83, 2013.

[26] Luz Rello, Clara Bayarri, and Azuki Gòrriz. Dyslexia exercises on my tablet are more fun. Pro-
ceedings of the 10th International Cross-Disciplinary Conference on Web Accessibility - W4A ’13,
page 1, 2013.

[27] Luz Rello, Yolanda Otal, and Martin Pielot. A Method to Improve the Spelling of Children with
Dyslexia. ASSETS 2014, pages 6–13, 2014.

[28] Luz Rello and Martin Pielot. A Computer-Based Method to Improve the Spelling of Children with
Dyslexia. pages 153–160, 2014.

[29] Luz Rello, Sergi Subirats, and Jeffrey P Bigham. An Online Chess Game Designed for People with
Dyslexia. 13th Web for All Conference, pages 1–8, 2016.

[30] Helena Serra and Teresa Oliveira Alves. DISLEXIA Caderno de Reeducação Pedagógica. 2015.

[31] Ana Paula Vale, Ana Sucena, and Fernanda Viana. Prevalência da Dislexia entre Crianças do 1 .
o Ciclo do Ensino Básico falantes do Português Europeu. pages 45–56, 2011.

44

45

A
Current RM model

caregiver_child

caregiver_id <PK>

child_id <PK>

child

id<pk>
childlogin_id <FK>

 reinforcement_id <FK>

sequence_exercises_preferences_id <FK>

 animated_character_id <FK>
prompting_id <FK>

last_name
first_name
birth_date

gender
emotions

Caregiver

id<pk>
caregiver_login_id<FK>

first_name
last_name

e-mail
gender

path_exercises_log

path_sequences_log
path_resources_log

path_topics_log

path_levels_log

path_children_log

Login

id <PK>

username

enabled

password

user_type
created_utc

1

1

1

1

animated_character

id <PK>

name

avatar_id

1

reinforcement

id <PK>

reinforcement_strategy

reinforcement_resource_id <FK>

prompting

id <PK>

prompting_strategy

prompting_color

prompting_size
prompting_scratch

prompting_hide
prompting_read

exercises_preferences

id

sequence_exercises_order

sequence_exercises_capitalization

1

personal_message

id

child_id <FK>

message

message_type

1...m

child_sequence

sequence_id <PK>

child_id <PK>

sequence

id<PK>
author_id<FK>

name

sequence_exercise

exercise_id
sequence_id

exercise_order

exercise

id

topic_id

level_id
author_id

type

name
default_exercise

topic

id

author_id

description

default_topic

level

id

author_id

Text

description

default_level

question

id <PK>

stimulus_id <FK>

exercise_id

question_description
stimulus_text

exercise_answer

exercise_id <PK>
answer_id <PK>

answer

id <PK>

exercise_id <FK>

answer_description
stimulus_id

1

1

resource

id

owner_id <FK>

resource_type_id <FK>

resource_path

resource_area
default_resource

resource_type

id
resource_type_description

session

id

login_id <FK>

auth_token

1 0...m 1...m

1

0...m

1

0...m

1

0...m

1

0..1

1

0...1

0...m

1

1...m1

1

1

0...m

0...m

1

1

0...m

0...m1

1

0...m

1

1

1...m

1...m

1
1

1...m

1

1...m

1

1

0...m

0...m

1

0...m

1

1

path_preferences_log

1

1

1

1 1...m

1

1

Figure A.1: Class diagram of injection procedure in the service provider.

46

47

B
Proposal RM model

caregiver_child

caregiver_id <PK>

child_id <PK>

child

id<pk>
childlogin_id <FK>

 reinforcement_id <FK>

sequence_exercises_preferences_id <FK>

 animated_character_id <FK>
prompting_id <FK>

last_name
first_name
birth_date

gender
emotions

Caregiver

id<pk>
caregiver_login_id<FK>

first_name
last_name

e-mail
gender

path_exercises_log

path_sequences_log
path_resources_log

path_topics_log

path_levels_log

path_children_log

Login

id <PK>

username

enabled

password

user_type
created_utc

1

1

1

1

animated_character

id <PK>

name

avatar_id

1

reinforcement

id <PK>

reinforcement_strategy

reinforcement_resource_id <FK>

prompting

id <PK>

prompting_strategy

prompting_color

prompting_size
prompting_scratch

prompting_hide
prompting_read

exercises_preferences

id

sequence_exercises_order

sequence_exercises_capitalization

1

personal_message

id

child_id <FK>

message

message_type

1...m

child_sequence

sequence_id <PK>

child_id <PK>

sequence

id<PK>
author_id<FK>

name

sequence_exercise

exercise_id
sequence_id

exercise_order

exercise

id

topic_id

level_id
author_id

type

name
default_exercise

topic

id

author_id

description

default_topic

level

id

author_id

Text

description

default_level

answerText

id <PK>

exercise_id <FK>

answer_description
right

resource

id

owner_id <FK>

resource_type_id <FK>

resource_path

resource_area
default_resource

resource_type

id
resource_type_description

session

id

login_id <FK>

auth_token

1 0...m 1...m

1

0...m

1

0...m

1

0...m

1

0..1

1

0...1

0...m

1

1...m1

1

1

0...m

1
0...m

0...m1
1...m

1

1...m

1

1

0...m

0...m

1

0...m

1

1

path_preferences_log

1

1

1

1

1

multiple_choice_text

id <PK>

stimulus_id <FK>

exercise_id <FK>

question

multiple_choice_image

id <PK>

exercise_id <FK>

stimulus_text
question

exercise_answer_img

id <PK>

resource_id <FK>

exercise_id <FK>

right

1

0...m

0...m
0...m

1 1

0...m

1

1

1

1...m

1

1

1...m

Figure B.1: Class diagram of injection procedure in the service provider.

48

C
Register exercise controller

@Inject
FormFactory formFactory;
public Result registerExercise() {

DynamicForm registerExerciseForm = formFactory.form().bindFromRequest();

Timestamp timestamp = new Timestamp(System.currentTimeMillis());

int answers = 0;
boolean stimulus = false;

if (registerExerciseForm.hasErrors()) {
return badRequest(registerExerciseForm.errorsAsJson());

}

Caregiver loggedCaregiver = Caregiver.findByUsername(SecurityController.getUser().
getUsername());

if (loggedCaregiver == null) {
return badRequest(buildJsonResponse("error", "Caregiver does not exist."));

}

Exercise exercise = null;

int topic;
try {

topic = parseInt(registerExerciseForm.get("topic"));
} catch (NumberFormatException e) {

topic = -1;
}

int level;
try {

level = parseInt(registerExerciseForm.get("level"));
} catch (NumberFormatException e) {

level = -1;
}

int stimulusId;
try {

stimulusId = parseInt(registerExerciseForm.get("stimulus"));
stimulus = true;

} catch (NumberFormatException e) {
stimulusId = -1;

49

stimulus = false;
}

String question = registerExerciseForm.get("question");

if(registerExerciseForm.get("type").equals("text")) {

String sresourcesid = "";

String answer = registerExerciseForm.get("rightAnswer");
List<String> distractors = new ArrayList();
answers++;

registerExerciseForm.data().keySet().stream().filter((key) -> (key.startsWith("
answers"))).forEachOrdered((key) -> {
distractors.add(registerExerciseForm.data().get(key));

});
answers += distractors.size();

exercise = new Exercise(loggedCaregiver, topic, level, question, stimulusId,
answer, distractors, false);

exercise.save();

String content = stimulusId + "," + loggedCaregiver.getCaregiverId() + "," +
exercise.getExerciseId() + "," +

timestamp.toLocalDateTime() + "," + "Stimuli" + "," + "addToExercise" + "," + "
false" + "\n";

String pathResources = loggedCaregiver.getPathResourcesLog();
adminLogs.writeToFile(pathResources, content);

} else if(registerExerciseForm.get("type").equals("image")) {
int answerResourceId;
String sresourcesid = "";

try {
answerResourceId = parseInt(registerExerciseForm.get("rightAnswerImg"));
sresourcesid += answerResourceId + " ";
answers++;

} catch (NumberFormatException e) {
answerResourceId = -1;

}

String stimulusText = registerExerciseForm.get("stimulusText");
if(stimulusText != null) stimulus = true;
else stimulus = false;

List<Long> distractorsResourcesIds = new ArrayList<>();
Map<String, String> data = registerExerciseForm.data();
int numberDistractors = data.size();
for(int i = 0; i < numberDistractors; i++){

String key = "answersImg[" + i + "]";
if(data.containsKey(key)){

int answerId;
try {

answerId = parseInt(data.get(key));
sresourcesid += answerId + " ";

} catch (NumberFormatException e) {
answerId = -1;

}
distractorsResourcesIds.add((long)answerId);

}
}
answers += distractorsResourcesIds.size();

exercise = new Exercise(loggedCaregiver, topic, level, question, stimulusText,
answerResourceId, distractorsResourcesIds, false);

exercise.save();

String content = answerResourceId + "," + loggedCaregiver.getCaregiverId() + ",
" + exercise.getExerciseId() + "," +
timestamp.toLocalDateTime() + "," + "Answers" + "," + "addToExercise" + ","

+ "," + "false" + "\n";
String pathResources = loggedCaregiver.getPathResourcesLog();

50

adminLogs.writeToFile(pathResources, content);

Object[] toArray = distractorsResourcesIds.toArray();
for(int i = 0; i < toArray.length; i++){

content = toArray[i] + "," + loggedCaregiver.getCaregiverId() + "," +
exercise.getExerciseId() + "," +

timestamp.toLocalDateTime() + "," + "Answers" + "," + "addToExercise" + ","
+ "," + "false" + "\n";

pathResources = loggedCaregiver.getPathResourcesLog();
adminLogs.writeToFile(pathResources, content);

}
}

exercise.save();

String content = exercise.getExerciseId()+ "," + loggedCaregiver.getCaregiverId() +
"," + timestamp.toLocalDateTime() + "," +

registerExerciseForm.get("type") + "," + "create" + "," + answers + "," +
stimulus + "," + "false" + "\n";

String pathExercise = loggedCaregiver.getPathExercisesLog();
adminLogs.writeToFile(pathExercise, content);

String content2 = level + "," + loggedCaregiver.getCaregiverId() + "," + exercise.
getExerciseId() + "," +

timestamp.toLocalDateTime() + "," + "addToExercise" + "," + "false" + "\n"
;

String pathLevel = loggedCaregiver.getPathLevelsLog();
adminLogs.writeToFile(pathLevel, content2);

String content3 = topic + "," + loggedCaregiver.getCaregiverId() + "," + exercise.
getExerciseId() + "," +

timestamp.toLocalDateTime() + "," + "addToExercise" + "," + "false" + "\n";
String pathTopics = loggedCaregiver.getPathTopicsLog();
adminLogs.writeToFile(pathTopics, content3);

return ok(Json.toJson(exercise));
}

Listing C.1: Register exercise controller

51

	Abstract
	Resumo
	Acknowledgments
	List of Figures
	List of Listings
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Goals/ Contributions
	Document Structure

	Background
	Specific Language Impairment
	Dyslexia
	VITHEA-Kids – Virtual Therapist for Teaching Children
	Discussion

	Related Work
	Exercises to assess relative clauses comprehension in children with SLI
	Dyslexia
	Orthon-Gillingham Approach
	Designing word exercises to children with dyslexia
	Software for children with dyslexia
	Exercises from a book

	Discussion

	VITHEA-kids 3.0
	Implementation of features
	Refactoring VITHEA-kids
	Back-end
	Database Schema
	Caregiver's application
	AddExercise Component
	Exercise Component

	Child's application
	New type of exercise
	Discussion

	Evaluation
	Selection image exercise
	Back-end
	Caregiver's application
	Child's application

	Selection in Image exercise
	Exercises for SLI
	Exercises for dyslexia

	Word Naming exercise
	Discussion

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Appendices
	Appendix Current RM model
	Appendix Proposal RM model
	Appendix Register exercise controller

