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Resumo

Menos de 12 anos após o seu inı́cio, as moedas criptográficas emergiram da obscuridade para em-

polgar empresas e consumidores, bem como os bancos centrais e outras autoridades. Estas em-

presas atraem porque prometem substituir a confiança em instituições de longa data, pela confiança

num sistema novo, totalmente descentralizado, baseado na blockchain e na tecnologia de ledgers dis-

tribuı́dos (DLT). Esta tecnologia apresenta custos de processamento consideráveis, suportáveis para

transacções financeiras de elevado valor, mas desadequada para apoiar numerosas transacções de

baixo valor. Foram propostas novas variantes dos algoritmos utilizados inicialmente para permitir a

implementação de micropagamentos nas transacções Machine-to-Machine (M2M) associadas à Inter-

net das Coisas (IoT), como no caso da IOTA, uma moeda digital que promete ser adequada para

suportar pagamentos associados à IoT, o que evita o peso associado à implementação da blockchain,

mantendo a validação distribuı́da das transacções. Assim, pretendeu-se avaliar a adequação do IOTA

para a implementação de micropagamentos na área do IoT aplicado aos transportes públicos. Como

base, tentámos tirar partido da imutabilidade das fichas emitidas, permitindo o registo das transacções

de forma assı́ncrona, mantendo a validação e contabilização destas transacções de uma forma segura

e distribuı́da. Na solução proposta os vários modelos de implementação do IOTA na sua aplicação aos

transportes públicos foram estudados e aprofundados pelas suas limitações e vantagens. Os resultados

do trabalho demonstraram uma solução com capacidade de processamento adequada apresentando,

no entanto, bastantes limitações para implementação num caso real, no seu estado actual.

Palavras-chave: Blockchain, Bilhete integrado, Internet das Coisas, IOTA, Micropagamen-

tos, Tecnologia de Ledger Distribuı́do
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Abstract

Less than 12 years after their inception, cryptographic coins have emerged from obscurity to excite

businesses and consumers, as well as central banks and other authorities. They attract because they

promise to replace trust in long-standing institutions with trust in a new, fully decentralised system based

on blockchain and distributed ledger technology (DLTs). This technology has considerable process-

ing costs, bearable for high-value financial transactions, but unsuitable to support numerous low-value

transactions. New variants of the algorithms initially used to allow the implementation of micro-payments

in Machine-to-Machine (M2M) transactions associated with the Internet of Things (IoT) have been pro-

posed, as in the case of IOTA, a digital currency that promises to be suitable to support payments

associated with IoT, which avoids the weight associated with implementing the blockchain while main-

taining distributed validation of transactions. The aim was to assess the suitability of the IOTA for the

implementation of micro-payments in the area of IoT applied to public transport. As a basis, we intended

to take advantage of the immutability of the issued tokens, allowing the registration of transactions in an

asynchronous way, keeping the validation and accounting of these transactions in a safe and distributed

manner. In the proposed solution, the various models for implementing IOTA in its application to pub-

lic transport have been studied and deepened due to their limitations and advantages. The results of

the work have demonstrated a solution with adequate processing capacity, but with many limitations for

implementation in a real case scenario, in its current state.

Keywords: Blockchain, Distributed Ledger Technology, Integrated ticketing, Internet of Things,

IOTA, Micropayments
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Chapter 1

Introduction

Blockchain, IOTA and other forms of Distributed Ledger Technologies (DLT) combine recent advances

in data science, cryptography, and novel governance principles - and have been highlighted as one of

the most disruptive sets of technologies since the advent of the internet. The DLT is based on a shared,

encrypted database to store, protect and validate electronic transactions, without the need for a central

validation system. In this way, it presents itself as a decentralised, open and public ”ledger system”, simi-

lar to a database, whose validation is done, according to a specific consensus protocol, by its users. The

great leap in popularity of the DLT took place in 2007 with the creation of Bitcoin Blockchain. However,

when looking at its applicability to the Internet of Things (IoT), issues such as scalability, offline acces-

sibility, transaction fees and quantum security were not resolved. Alternatively, the IOTA Foundation

developed and published the tangle, which it claimed resolved these issues inherent in the Blockchain.

It then intended, with the development of this Tangle technology, to equip IOTA with an appropriate dis-

tributed ledger. A scalable ledger was essential to be able to handle the vast number of transactions

sent by millions of devices, including micro-transactions and zero value transactions, as messages or

sensor data. In other words, if they had to pay fees for every piece of data a device sent to their peers,

these transactions would become very expensive for numerous IoT scenarios. For many, it then became

apparent that Tangle, while presenting very similar characteristics to Blockchain, would allegedly be able

to solve all the problems mentioned above. This growing popularity of DLT in recent years has triggered

a wave of innovations, experiments, analysis and research, which has sparked, among others, the fi-

nancial sector, which has been faced with the emergence of a vast number of explorations made using

this technology for payments and settlements. These experiences with DLT demonstrate their potential

for the next generation of payment systems, improving the integration and reconciliation of settlement

accounts and their ledgers, involving electronic and mobile payment programmes that enable integrated

payments, in real-time, flatter structures, continuous operations and global reach, and end-to-end pay-

ment and settlement transfers. Although this technology is mainly used for monetary transactions, for

the time being, experts have already begun to perceive and study its usefulness in changing the mo-

bility sector. European Commissioner for Transport, Violeta Bulc. recognised that it could help in the

challenge of integrating shared mobility services. Applications in this area allow actors to establish di-
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rect relations between themselves according to a commonly agreed set of rules and a high degree of

trust, without having to go through a central authority. By combining a common language and syntax for

the ”mobility internet” and new means of accounting transactions, these applications can help redefine

the way people and organisations access, pay for, use and/or manage mobility services through a wide

network of unrelated and competing transport service providers and platforms. Much in Mobility as the

Service ecosystem is ”blockchain-able”.

However, Mobility as a Service goes far beyond getting a person from A-to-B; it is about understand-

ing the journey and getting a person from A-to-Z. Moblity as a Service (MaaS) is possible through three

core technologies: mobile, massive data, and the Internet of Things (IoT). More and more people inter-

act with the technological world through the main screen: their smartphone. A mobile device contains

the front-end of the MaaS experience. Still, this high dependency on smartphones would not be possible

without greater connectivity thanks to advances in wireless communications technology. The ubiquity of

this wireless network gives rise to the Internet of Things, a wireless network of physical devices, vehi-

cles and devices with which people interact in real-time, integrated into the fabric of our world. Although

not part of this project, sensors connected to physical objects in the world of mobility influence the way

transport systems, personal vehicles, traffic control and even intelligent car parks work. In the future,

DLT could support this exponentially increasing volume of data and machine learning, and AI would

become necessary to obtain intelligent knowledge that could increase the value of services by providing

a seamless MaaS ecosystem.

This research and experience on the use of DLT for micropayments in a transportation ticketing sys-

tem has provided information on its potential benefits, risks, limitations, and implementation challenges,

considering that, despite its limitations and lack of maturity, this technology presents great potential for

implementation and likely long-term applications and benefits for the development of the micropayment

system in IoT, in future versions.

1.1 Objectives

The main goal of this thesis is to study the applicability of IOTA in the mobility sector by conducting a

series of benchmarks on the technology and developing a Proof of Concept to prove the feasibility of the

designed solution. It aspires to meet the following objectives:

• Understand how well IOTA integrates with existing different operation models

• Develop a seamless proof-of-concept demonstrator for the practical validation of results

• Explore the resources needed for its practical implementation

1.2 Thesis Outline

This dissertation is structured according to the research issues mentioned above. The first chapter after

the introduction covers a literature review on both IoT distributed ledger technology applications as their
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applications in urban mobility, and the fundamentals of the concept ”Mobility as a Service”. It will also

focus on how ticketing and payment transactions, and processing and clearing mechanisms through

distributed ledger technologies can change. Finally, a description of different DLTs and a comparison

in terms of suitability for IoT (and indirectly, MaaS). Section 3 will detail the operation of the chosen

technology, IOTA, to be addressed in this dissertation. Section 4 will present the implemented solution

and proposed architecture decisions for an IOTA-based ticketing system. Section 5 then details the

implementation details for the previously presented solution. Section 6 demonstrates test results for the

IOTA technology and the proposed solution and will explain how to assess its benefits and limitations.

Finally, section 7 expresses some personal conclusions on this project.
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Chapter 2

Background and Related Work

2.1 Internet of Things

The continuous search for solutions that result in increased well-being and quality of life for the popula-

tion, the sustainability of organisations, families, and the environment, has led, among other things, to

the search for and implementation of solutions based on connecting devices to the Internet.

The Internet of Things (IoT) emerges, then, as a ”system that interconnects computing devices, be

they computers, machines, people, animals, or objects, and within which they can communicate and

transfer data without any human intervention” [1]. In other words, it is a system formed by networks,

containing countless quantities of connected devices and, since most of these devices interact through

a central entity, IoT presents a centralised structure. IoT enables objectives to be monitored and trig-

gered/concreted remotely from the network, allowing full integration between computer systems and the

physical world. In recent years, we have witnessed a revolution of IoT, with the connection of all kinds of

objects in the network and the exponential growth of the number of devices connected.

However, this tremendous growth in a combined centralised system raises new challenges such as

security and privacy [2], scalability and data processing performance for IoT System Architecture, which

means that an effective solution has to be designed, namely a direct peer-2-peer (P2P) interaction,

without always using a central entity, can be important for the continued growth of IoT. [3]

2.2 Micropayments

Micropayments are a type of device-device interaction, defined as a ”payment of a small amount” [4],

e.g., a fraction of a cent . They are often issued as successive partial payments while using a service

or product (i.e., pay-per-use). Micropayments are an alternative to traditional charging models as they

allow these payments to be made more dynamically using mobile media or native internet environments.

”However, issuing autonomous P2P micropayments has its challenges, one of them being that it would

require a technology that is both secure and scalable” [5]. Therefore, since there is still no standardised

payment solution for making micropayments between Internet of Things (IoT) devices, it is essential to

5



Figure 2.1: Evolution of devices connected to the Internet in [1]

continue the search for a sustainable solution, driving the emergence of pay-per-use business models.

2.3 Distributed Ledger Technology

Distributed Ledger Technology (DLT) is defined by Prableen Bajpai [6] as ”... the technological infras-

tructure and protocol that allow simultaneous access, validation and record updating in an immutable

manner across a network spread across multiple entities or locations”. The DLT has attracted the at-

tention of industry and academia, as its characteristics of decentralisation, immutability, and scalability

have given it the potential to manage and register secure micropayments, constituting a possibility to

overcome problems in IOT systems [3]. According to different data structures for the ledger, there are

fundamentally two main types of DLT, blockchain based on blocks or like a directed acyclic graph (DAG)

where there are no blocks (for example, IOTA Tangle [7]).

Blockchain is a distributed ledger for storing and sharing data across all nodes in a network [3].

This ledger is considered tamper-proof, making it exceptionally suitable for its main area of application

- cryptocurrencies, for example, Bitcoin, which, however, has posed problems of scalability, as it is slow

and expensive to perform transactions in the Bitcoin blockchain, due to the single chain of blocks being

linear, and the blocks cannot be created simultaneously. These limitations have led to the development

of specialised adaptations and changes to the original Bitcoin blockchain, as well as the development of

alternative DLTs [5].

2.4 Distributed Ledger Technology in Cryptocurrencies

Cryptocurrencies decentralised record-keeping system is known as a distributed ledger. An up-to-date

copy of the entire ledger is stored by each participant or node in the network. With a distributed ledger,

peer-to-peer exchange of digital money is feasible: each participant can directly verify in their accessible

copy of the ledger whether a transfer took place or not and if there was no attempt to double-spend (Any

digital form of money is easily replicable and can thus be fraudulently spent more than once) [8]. The

blockchain is a distributed ledger that is updated in groups of transactions called blocks. Blocks are then

chained sequentially via the use of cryptographic hashes to form the blockchain. This concept has been

adapted to numerous other cryptocurrencies. Nonetheless, these share many core features. The case

of blockchain helps illustrate how these distributed ledgers function. Blockchains have seven principal
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Figure 2.2: Valid transactions in a permissionless cryptocurrency [8]

characteristics:

• Distributed databases and ledgers;

• Irreversibility of records;

• Transparent identity management with pseudonymity;

• Robust validation and consensus;

• Peer-to-peer transmission;

• Computational logic.

Blockchain-based permissionless cryptocurrencies have two groups of participants: “miners” who act

as bookkeepers and “users” who want to transact in the cryptocurrency. At face value, the idea underly-

ing these cryptocurrencies is simple: the ledger is updated by a miner, and the update is subsequently

stored by all users and miners. [9]

Underlying this setup, the key feature of these cryptocurrencies is the implementation of a set of

rules (the protocol) that aim to align the incentives of all participants to create a reliable decentralised

payment technology. The protocol determines the supply of the asset to counter debasement – for

example, in the case of Bitcoin, it states that no more than 21 million bitcoins can exist. In addition, the

protocol is designed to ensure that all participants follow the rules out of self-interest, i.e. that they yield

a self-sustaining equilibrium. Three key aspects are the following. [8]

First, the rules entail a cost to updating the ledger. In most cases, this cost comes about because

updating requires a “proof-of-work”. This is mathematical evidence that a certain amount of computa-

tional work has been done, in turn calling for costly equipment and electricity use often referred to as

mining. In return for their efforts, miners receive fees from the users – and, if specified by the protocol,

newly minted cryptocurrency.
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Second, all miners and users of a cryptocurrency verify all ledger updates, which induces miners

to include only valid transactions. Valid transactions need to be initiated by the owners of funds and

must not attempt to double-spend. If a ledger update includes an invalid transaction, it is rejected by the

network, and the miner’s rewards are voided. The verification of all new ledger updates by the network

of miners and users is thus essential to incentivise miners to add only valid transactions.

Third, the protocol specifies rules to achieve a consensus on the order of updates to the ledger.

This is generally done by creating incentives for individual miners to follow the computing majority of all

other miners when they implement updates. Such coordination is needed, for example, to resolve cases

where communication lags lead to different miners adding conflicting updates – i.e. updates that include

different sets of transactions. The way DLTs are set up replaces trust between different parties or trust

in some form of an oversight committee with cryptographic proof of validity or “consensus”. It proposes

that any transaction could be authenticated, and any transmitted piece of information maintained by an

emergent process of consensus among a globally distributed network of peers that follow a precise,

incorruptible method to check any change in the system. The cryptographic identity of each new block

in a blockchain must be validated (recognized as authentic, in conformity with the cumulative blockchain

and linked to a unique identity) before it can be included in the latest iteration of the ledger that is

propagated to, and recognized by, all nodes. These “consensus” protocols and algorithms are linked to

the nature of the blockchain in question.

Finally, once a transaction has entered in the database and the accounts are updated, the records

cannot be altered, because they’re linked to every transaction record that came before them (hence the

term “chain”). The recording of the blockchain database at any given time is permanent, chronologically

ordered, and available to all others on the network. This immutability is at the heart of the “trustfulness”

of the blockchain.

What makes this technology so appealing and game changing is the absence of third parties [10],

such as payment processors, during the exchanges. This means that for a transaction to be made, it

has to be validated by the community (peer-to-peer).

2.5 Decentralized applications

Decentralised applications running in peer-to-peer networks built on distributed ledger, blockchain and

other novel data protocols are starting to profoundly disrupt established economic sectors (e.g. finance

– Securrency, Circle; healthcare – MedicalChain, MedRec; insurance – Accenture; commerce – Origin-

Trail, De Beers) [11]. These applications allow agents to enter into direct relationships with each other

according to a commonly agreed set of rules and a high degree of trust. These applications, combined

with a common language and syntax for the “Internet of mobility” and new means of deriving insight from

previously siloed data, may help redefine how people access, pay for and use transport in their everyday

lives.

Today, choices available to citizens are expanding and changing rapidly in an ever more dynamic

urban mobility ecosystem. Traditional stakeholders are facing increasing pressure to innovate, to attract
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Figure 2.3: Mobility as a Service Leverages digitalization for customer-centric transport services [11]

and retain users and, to do so, must alternatively compete and co-operate with each other and new

market entrants proposing novel business models [11]. Against this backdrop is the consumer who just

wants to get from point A to point B in the most demand responsive, flexible, pain-free, reliable and

affordable way. As in other areas of their lives, they want trip experiences that place them in control, and

which leverage the most convenient options available irrespective of who offers them.

Car-use has generally responded well to peoples desire for seamless, convenient and comfortable

travel across a broad range of distances and in many urban contexts. Further, the affordability of car

use has grown alongside growth in incomes and lower relative travel costs. But this growth has come

at a cost to cities, people and society (e.g. congestion, unreliability of travel time, air pollution, crashes,

car-dependency, inequitable access) that have eroded the benefits cars provide.

This growing tension between cars and mobility in cities has led cities, citizens and companies to

explore ways in which the benefits of car-like mobility can better be delivered across a wide range of

mobility options by leveraging digital assets and data science. At the heart of these efforts are the many

ways in which private and public actors are seeking to offer a seamless and rich Mobility as a Service

(MaaS) offer that could compete effectively with – or integrate – private car-based mobility [11].

2.6 Mobility as a Service

2.6.1 Overview

Mobility as a Service (MaaS) [12] is a term used interchangeably to describe packages of bundled

transport services or, more generally, as a broad concept describing new, customer-centric ways of

seamlessly accessing a range of different transport services – many of them shared. MaaS represents

a break with the past in that mobility services have historically been provided by siloed operators, man-

ufacturers and public authorities with little practical cross-mode coordination.

At its core, the concept of MaaS supports the digital joining-up of different transport, information and

payment services into a smooth and reliable customer-facing experience (Figure 2). These services

may be those provided by a single operator in cases where extensive integration exists or may involve a

MaaS provider bringing together services offered by third parties into a coherent framework [11].

MaaS requires a set of transparent, vetted and trusted commercial agreements that encompass
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commercial operators, public services and third-party aggregators of services (where applicable) and

should cover payment and revenue allocation amongst all parties. These agreements should enable

viable services to be developed by all parties.

2.6.2 Everything-to-everything Interoperability

Delivering on the promise of MaaS in a meshed world of customers, transport operators, data providers,

infrastructure and asset owners, and public authorities will require a significant shift away from the status

quo covering existing protocols and business logic. Ensuring this shift enables “everything-to-everything”

interoperability in the context of MaaS will involve action in the following three areas [11]:

• Distributed Ledger Technology (DLT): A move away from platform based MaaS frameworks. Cen-

tral to these frameworks is the way in which distributed and non-centralised trust, robust identifica-

tion, authentication functions and payment transactions and clearing are carried out. Using DLTs,

urban mobility could then be made possible without the need for an intermediary (e.g, clearing

house). In this scenario, clients would pay to have digital currency/tokens, and every utilization of

the transport would be handled as a transaction to a specific service provider, which had no need

to be validated by a third party since DLTs already provide the ensurance that the transaction was

correct and real. Such a ticketing and transactional mechanism would help reduce fees, while also

providing a concrete seamless solution. Therefore, DTLs definitely are MaaS enablers;

• Data syntax for MaaS. A common data syntax for encoding the various components of MaaS

would facilitate the uptake of these services. Such a shared data syntax would be used as a

basis for encoding transport services in a blockchain/distributed ledger environment and would

thus represent the building blocks for seamless MaaS;

• Open Algorithms and other alternatives to data-sharing. Alternatives to data sharing that enable

stakeholders to access vetted, trusted and actionable insight from proprietary data may remove

many roadblocks to broad MaaS partnerships.

2.6.3 Revenue allocation

In a Mobility as a Service environment, new revenue allocation mechanisms must address how service

providers/operators are to be compensated for their fractional contribution to a total trip chain. These

mechanisms should allow all parties to achieve consensus on what resources were used to fulfil a trip

and how payments for these were allocated across all actors.

Pay as you go

The Pay-as-you-go format becomes then possible, overcoming the shortcomings of current payment

methods enabling users to spend for their commute on-demand and when they need too, without any

worries of prepaid balance limitations or losing the balance in case of expiry. The tariff should not
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be linked to a mode of transport, neither to a technology, but to the concept of an Origin-Destination

displacement from the perspective of the passenger, involving multiple transports. The accounting on

the other hand, is calculated by the intensity of use and not just by the simple sum of the uses.

2.6.4 Benefits

In this section, the retailers are considered the entity that provides Mobility as a Service. As such, we

present some of its benefits:

• The retailer cannot be held accountable for creating tickets incorrectly because the data syntax is

the same between operators (i.e., all operators share the same data syntax, therefore if a ticket

does not follow its syntax, it is the operator’s fault);

• The barrier for entry to market is much lower as operators do not need to understand the details of

every ticket format and there is much less need for an accreditation process and financial bonds

(i.e., the trust is placed on the system designed to enable MaaS);

• Providing access to more operators from different regions or modes of transport gives the retailer

access to markets they could not enter before;

• The retailer is now focused on defining the rules of the network rather than enforcing them. The

cost of operating the IT infrastructure is shared between all the network participants (retailer and

operators);

• Operators get instant access to ticket revenue and a more accurate settlement process. They’re

no longer suffering penalty for mistakes made by retailers during the ticket creation or settlement

process, if the underlying system behaves correctly;

• Passengers can purchase tickets to travel across multiple transport operators in a single transac-

tion, from a single operator.

• Having a portable ticket wallet that can store tickets for travel across multiple operators greatly

simplifies the practicalities of traveling across a multi-operator network. All tickets can be accessed

via a single app and be collected using the networks existing infrastructure.

2.7 Distributed Ledger Technology in Mobility as a Service

Default limitations of blockchain implementations for internet of things (IoT) tasks like MaaS are illus-

trative of some of the pitfalls that are related to early implementations of any DLT, such as latency

in transaction confirmation, scalability concerning blockchain size and network expansion, lack of IoT-

centric transaction validation rules, the absence of IoT-focused consensus protocols and insecure device

integration are required to be addressed before it can be used securely and efficiently in an IoT envi-

ronment. No doubt there has been a surge in the development of new blockchain platforms including
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Ethereum, Hyperledger, Multichain, NEO, and IOTA. However, current blockchain platforms have some

distinct weaknesses that forbid an impromptu implementation of the blockchain in an IoT environment

[13]. There are a number of blockchain’s critical challenges inherent in the IoT, such as:

• Enormous number of nodes and big IoT data;

• Computation: The blockchain activity is unaffordable for the lightweight IoT devices. Some ad-

vanced cryptography algorithms used in the privacy-preserving blockchains are too heavy and

energy-draining for IoT devices;

• Storage: A massive storage required by Blockchain can be prohibitive for IoT devices;

• Decentralization: Decentralization and heterogeneity are the two major characteristics of IoT [14];

• Unstable and unpredictable connections;

• Latency and capacity: High latency of blockchain is used to ensure consistency in the decentralized

blockchain networks.

The blockchain technologies which can potentially address the critical challenges arising from the

IoT and hence suit the IoT applications are identified with potential adaptations and enhancements

elaborated on the blockchain consensus protocols and data structures. Based on access controls of

the blockchain networks, the state-of-the-art blockchains can be categorized into public permissionless,

public permissioned, consortium and private permissioned blockchain. [15] (Table in A.1)

2.7.1 Enterprise requirements

Legal requirements that a DLT need to fulfil to be used in the area off payments, clearing and settlement

[16]:

• Performance: System needs to be capable of having a high throughput in terms of number of

transactions per second (tps) compared to Bitcoin, which currently can only process approximately

7 tps at most;

• Speed. Transactions need to be confirmed and validated in a short time window (preferably mil-

liseconds), compared to Bitcoin and Ethereum, where transactions can take on average 10 minutes

and 12 seconds, respectively, to confirm and eventually settle;

• Scalability. System needs to be able to scale immediately as more nodes join the network (la-

tency issues), more transactions are performed (increasing processing power and memory usage

required), and the transaction history grows (increasing storage requirements);

• Settlement finality. Legal concept that is mandatory for enterprise applications – once confirmed,

transactions cannot be reversed (at least from a legal perspective). This does not apply to public

DLTs where settlement finality is only probabilistic: an alternative, longer chain could replace the

current chain and reverse all transactions that were previously confirmed.
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• Governance. Need for a pre-defined, codified decision-making process involving known, vetted

participants, as compared to public blockchains where a social contract exists, and rule changes

are achieved through consensus between sometimes anonymous users;

• Privacy/Confidentiality. Transactions or transaction data need to have a certain level of privacy; in

public blockchains, all transactions need to be visible to every participant by design.

• Compliance. Participants need to comply with applicable regulatory requirements and the legal

framework that they are subject to. This also applies to the network itself and the transactions that

take place in the system.

• Safeguard. Need to manually intervene in case an unexpected issue happens (e.g., critical bug).

Moreover, anonymous actors with sufficient financial power could initiate a 51% attack against a

public blockchain network and reverse transaction history

From this list of requirements, it is clear that it is not possible to legally implement a public blockchain.

However, permissioned DLTs in a private network could be able to fulfil these requirements if the network

ought to be managed by a trusted entity and every action taken upon the network required permissions.

This type of DLT could ensure settlement finality, governance, privacy/confidentiality, compliance and

safeguard properties [17]. Regarding performance, speed and scalability, there are also many DLTs

which can achieve the required transactional speeds and scalability.

2.7.2 Consensus

Consensus protocols define the law of block generations and/or block selections [15]. They are respon-

sible for the integrity of the information contained in blockchain, and therefore are an essential part of

blockchain technology.

There is a spectrum of consensus protocols behind blockchain systems, starting from purely com-

putation bound like PoW to purely communication bound like the Practical Byzantine Fault Tolerance

(PBFT), and applied to different Data Models. Depending on the access control policy of the blockchain,

the operating environment can be more or less trusted. As such permissioned blockchains usually

rely on message-based consensus schema, rather than on hashing procedures like permissionless

blockchains. The consensus protocols are the core functions which decide the performance of blockchain-

based IoT applications, such as block rates, consistency, scalability and security.

Consensus protocols

• Proof of Work (PoW). A computationally intensive hashing-based mathematical challenge provides

a practical means to achieve consensus among the chains of blocks generated in a distributed

fashion, while preventing untrustworthy participants from tampering or corrupting the chains. PoW

enjoys strong integrity guarantees and tolerates a sheer number of attacks, but this comes at a

huge cost: lack of performance [18].
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• Proof of X. Participating peers can also be validated via other proofs, instead of finding the nonce,

i.e., Proof of Stake (PoS), Proof of Burn (PoB), Proof of Importance (PoI), Proof of Activity (PoA),

Proof of Elapsed Time (PoET). The most popular alternative approach to consensus in blockchain

is the Proof of Stake (PoS). [19]

• Proof of Stake (PoS). Similar to PoW, it attempts to provide consensus. In the PoS the originator

of next block is chosen based on the various randomized combination of minors cryptocurrencies

resources and the duration that they hold their resources. Contrary to PoW miners that may not

have cryptocurrency and only attempt to maximize profits by increasing computational power, PoS

miners defend Blockchain network to protect their wealth and profits. As long as the stake is higher

than the transaction fees, participants can trust them to do their job correctly [20]. [21]

• PBFT. Byzantine Fault Tolerance (BFT) [22] is typically used in private blockchain to formulate con-

sensus protocols and guarantees consistency by exploiting the solutions to the Byzantine Gener-

als’ Problems [22] – agreement problems. Particularly, the PBFT algorithm [23] has been exten-

sively used to eliminate the Byzantine failures. As a leader-based BFT algorithm, PBFT has one

primary and (n-1) backups in an n-node network, where the primary and the backups can be

corrupted. The primary is responsible for receiving the requests from clients and initializing the

algorithm.

• Tangle. Participants in this network that want to send a transaction, are first required to do a small

proof of work, and a weight is assigned to the transaction proportionally to the difficulty of the

puzzle that the node has solved for producing it. After which they need to choose and verify two

transactions that occurred before. The node is supposed to choose the two transactions to confirm

following a weighted random walk, from all transactions it is aware of, and to validate them and all

their transitive predecessor transactions. How strongly a new transaction approves its predecessor

transactions depends on the weight, i.e., the computational work, that went into producing it. The

stability of the system rests on two alternatives: (1) There is a Coordinator that sends trusted

transactions to the network and confirms the all transactions in the path selected by the weighted

random walk or (2) There is no Coordinator and the majority of the computing power among the

nodes behaves correctly. Furthermore, the tangle may contain conflicting transactions since the

nodes do not have to achieve consensus on which valid transactions have the right to be in the

ledger, meaning all of them can be in the tangle. However, in the case where there are conflicting

transactions, there are conflicting parts of the graph, and, therefore, either the transaction sent

by the Coordinator will make them invalid or each node will decide on its own which side to trust.

This is done through a probabilistic sampling algorithm and deciding according to a statistical

test [24]. Currently, since IOTA is a public DLT, to protect the Tangle network against double-

spending attacks, the Coordinator is used to confirm transactions. It was IOTA’s organization

intent to shut down the coordinator or replace it by a set of distributed trusted nodes as the network

reached a certain number of confirmed transactions per second [7], however, very recently they

have proposed a new consensus algorithm, which will not be addressed in this work. (see Table in
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B.1) Further descriptions on the Tangle can be found in Chapter 3.

2.7.3 Data Models

The data model specifies how unit data is stored and how to decide the main ledger. It refers to the case

that more than one ledger exists at the same time in a distributed network. If the different ledgers are all

accepted, the blockchain network gains more capacity but also the risks to double spending. Some of

the most common data models are:

• Chained Blocks. In a blockchain with chained-data structure, such as Bitcoin, only a single chain

can be eventually accepted across the system, and the chain is named as the main chain [25].

Each block contains a cryptographic hash of the previous block header, using the SHA-256 hash al-

gorithm, which links the current block to the previous block. This prevents tampering the blockchain

[15].

• DAG. The consensus protocol in IOTA, named Tangle [7], uses a Directed Acyclic Graph (DAG)

[26] to organize blocks, instead of a chain. In Tangle, a transaction must approve (point to) two

previous transactions. Finally, one of the conflicting records can win the approval competition

and be accepted. Unlike the single-copy in the chain structure, Tangle does not drop conflicting

transactions and keeps them in different branches of DAG. The DAG structure can achieve better

capacity [15]. Theoretically, the speed of DAG in IOTA is not limited. Unlike traditional approaches,

the more users connect to the network, the faster it works. (see Table in D.1). Further descriptions

on the DAG as implemented in Tangle can be found in Chapter 3.

2.7.4 Cryptographic primitives

Virtually all PoW cryptocurrencies are based on hashing algorithms [27], however the choice of hash-

ing algorithm is important, because it determines how the cryptocurrency is mined (what hardware is

efficient).

Besides the hash function, the digital signature is another inevitable cryptographic primitive in blockchains.

As a basic primitive of cryptography, digital signature is used for ensuring the source authentication [28],

source non-repudiation and integrity.

The compatibility of lightweight cryptographic algorithms in blockchains: This is essential for bridging

the technologies of the Internet of Things (IoT) and blockchains. According to Wang et al. [29], no

existing cryptocurrencies are based on lightweight cryptographic algorithms, except IOTA. (see Table in

F.1)

2.7.5 Performance and Scalability

The results show that current blockchain’s performance is limited, far below what a state-of-the-art

database system can offer [30]. However, some DLTs can still achieve very high throughputs, with

negligible differences.
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Currently used Proof of Work mechanism is not sustainable in the area of IoT. (see Tables in D.1)

Despite of this fact, all the major currencies like Bitcoin and Ethereum and also other blockchain tech-

nologies are using this approach. Generally, the PoX consensuses are computationally expensive. Ac-

cording to the latest Bitcoin Energy Consumption Index, Bitcoin miners from all over the world consume

over 68TWh of electricity every year to do the proof of work and over 600kWh to complete a single trans-

action [31]. This is obviously not suitable for IoT scenarios with limited and light-weighted computation.

On the other hand, the processed transactions per second (TPS) of the mainstream BC platforms like

Bitcoin and Ethereum are very limited, because the single chain of blocks is linear and blocks cannot

be created simultaneously. For example, one Bitcoin block takes 10 minutes to be created and added

to the main chain, which is very inefficient and fails to meet the requirement of instant transaction in IoT.

[32]

BFT-based consensus protocols, such as in Hyperledger, address this performance issues with

greater reliability (see Table in C.1) but have poor scalability, as the transaction throughput decreases

badly with an increase in the number of validator nodes. The results so far indicate that scaling both

the number of clients and number of servers in Hyperledger degrades its performance and even causes

Hyperledger to fail. For Hyperledger, having more servers means more messages being exchanged and

higher overheads [30].

Another vital consideration is that IoT systems especially the sensors operating in a smart city

environment would be generating millions of transactions per day. Therefore, an ideal IoT-oriented

Blockchain platform should not have a transaction fee or gas requirement, such as we in do in Ethereum,

but not in IOTA or Hyperledger [33].

Regarding IOTA, for the largest TPS, an IOTA stress test held in April 2017 showed that the network

had transaction processing capabilities of 112 Confirmed Transactions per Second (CTPS) and 895 TPS

within a small test network consisting of 250 nodes [34]. K. Yeow et al. [35] conducted a comprehensive

review on decentralized consensus systems for IoT in terms of the data structure, consensus mecha-

nism, and transaction models. From their proposed thematic taxonomy, a synthesized comparison be-

tween blockchain-based systems (e.g. Bitcoin and Ethereum) and DAG-based distributed ledgers (e.g.

IOTA and Byteball) was conducted. By analyzing and summarizing the pros and cons, the authors found

that the DAG outperformed on scalability, transaction confirmation speed and decentralization. They

concluded that DAG might be an answer to overcome the challenges of the fast scaling IoT with the

need for low latency micro-payments in the M2M P2P decentralized infrastructure [35]. As an example,

a new DLT-based charging and billing IoT architecture for electric autonomous vehicles was proposed

in [36]. The authors leveraged IOTA based payment system through M2M communication to carry out

micro-transactions for charging and billing in electric autonomous vehicles. In another research project,

the authors utilized IOTA Tangle to present a streaming data payment protocol which was an application-

layer protocol for enabling micropayments among IoT transactions [37]. Another comprehensive study

[32] analyzed the IOTA throughput, scalability and decentralization as fundamental metrics for its imple-

mentation in IoT like an inter-house energy transaction in a local community. The main findings stated

that, in terms of throughput, the nodes scale of network as almost no influence on the transaction speed,
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in terms of scalability, the number of transactions sent per second and the number of confirmed transac-

tions per second increase almost linearly with the number of senders, and, in terms of decentralization,

a permissioned network would allow a guarantee that no one could have above 34% of the network

computational power, thus avoiding 34% attacks in case of a coordinator failure and could also avoid

parasite chain and large weight attacks when using an intermediary to access the network, taking into

account that, in terms of security, the IOTA consensus protocol provides the protection for double spend-

ing attacks. However, this study did not assess the computational effort necessary to send a transaction

to the Tangle. On the other hand, an evaluation of this operation was conducted on another work [38]

which demonstrated that the attachment of transactions to the tangle can be realized with a relatively

low delay when compared to blockchains, but that the transactions some transactions took a long time

to get confirmed by the Coordinator. None of these works, however, demonstrated results for differ-

ent hardware types, especially IoT devices, except [39] which have shown not only that the Rasperry

Pi’s have approximately 20 times less the computational power of an Intel i7 processor when sending

a transaction to the tangle for the standard effort defined in the public IOTA network but also that the

current battery-powered IoT devices are not suitable for IOTA operations with this defined effort.

2.7.6 IOTA for Mobility as a Service

The most appropriate DLT for MaaS is IOTA. IOTA has been developed specifically for IoT applications

involving large, heterogeneous, networks of transacting entities (e.g. sensors or vehicles).

The IOTA Tangle protocol allows for rapid transaction confirmation and, unlike blockchain protocols,

validation speeds scale with the size and complexity of the tangle. Another feature of IOTA’s Tangle

DLT is that the model calls for fee-less transaction recording. Whereas blockchains like Bitcoin must

incentivise “miners” to carry out resource-heavy POW-based block validation (and thus transactions

incur a fee), IOTA’s Tangle model requires no mining, no incentivising of miners and no fees. IOTA’s

feeless model is especially interesting in IoT deployments like MaaS where micro-transactions between

connected objects, vehicles and parties would be the norm. In a blockchain model, fees may outweigh

the value of microtransactions and that could limit the scope of potential MaaS transactions.

Speed, scalability and suitability to micro-transactions all make the IOTA DLT model an interesting

one for MaaS. But just as with everything else with DLTs, while the proof of concept may be enticing,

the ultimate applicability of DAGs like IOTA to real-world applications is uncertain and evolving and will

depend on more than the theoretical applicability of the technology to a concrete application. [11].
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Chapter 3

IOTA

IOTA is a cryptographic currency, an example of a DLT, that does not use a chain of blocks as the under-

lying data structure, implementing a structure of a DAG, which calls it Tangle. In the Tangle, each new

transaction must validate two previous transactions before can be included in the data structure itself.

The nodes select the two previous transactions, which are yet unvalidated and called tips, according to a

Markov chain Monte Carlo random algorithm. During the validation, care is taken to ensure that transac-

tion signatures are correct, and that the two validated transactions do not add contradictory information

to the tangle. The more new transactions have validated a transaction, directly or indirectly, i.e. through

another transaction in the middle, more confident may be the person who added the transaction to the

network, that the transaction is valid and will in fact remain in the final tangle. Thus, once a transac-

tion has been directly validated or indirectly by all the tips of the tangle, is considered validated but not

confirmed.

IOTA should be particularly scalable compared to chains and would therefore be particularly suitable

for Internet applications of the Things, since micropayments can also be implemented in a way sensible

because of the non-existent transaction costs. This is particularly relevant for machine-to-machine trans-

actions. Another advantage of the tangle is that the speed with which new transactions are validated

increases with the number of transactions added. Currently, however, the network is still in a transitional

phase in which, a coordinator, is responsible for confirming transactions. In the next section, we describe

IOTA from several technical perspectives.

3.1 Overview

The Tangle runs an asynchronous protocol in a peer-to-peer network to facilitate transaction processing

on an immutable, distributed, decentralized ledger secured by cryptographic measures. The Tangle

is comprised of transactions, or sites, and edges, which connect sites and form a DAG. The network

consists of nodes and each node stores its version of the Tangle. An edge indicates that one site

directly approves another. A path symbolizes indirect approval. When a new transaction is issued, it

approves two other transactions, which are previous transactions that have never been approved by
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other transactions. The protocol validates if two approved transactions conflict by examining the Tangle

history, and if it discovers a conflict between them, it will not approve those transactions, otherwise a

node will store the transaction in its ledger and broadcast it to its neighbors. Each transaction’s weight

determines its importance in the Tangle. The Tangle defines a transaction’s cumulative weight as the

sum of the weights of other nodes that directly or indirectly approve the transaction, including itself. In

practice, every node’s weight is 1. Therefore, the number of nodes that directly or indirectly approve the

node represents the cumulative weight. The transactions that are chosen to be approved, are done so

using a random walk tip selection algorithm. Currently, the algorithm that biases the random walk is the

Markov Chain Monte Carlo (MCMC). In a Markov chain each step does not depend on the previous one,

but follows from a rule that is decided in advance, taking into consideration the cumulative weight of the

transactions. One of the main concerns of blockchain security is the malicious node issue. Without the

use of a tip selection algorithm, like MCMC random walk, nodes can become lazy and allow lazy tips,

which are tip transactions that point to older transactions, to be confirmed. Confirming old transaction

is unwanted since it increases the branching factor of the graph and thus, it increases the number of

tips. Furthermore, lazy nodes do not help the network to grow since no new unapproved transactions

get confirmed and can easily allow the occurrence of double-spending attacks on the network, such as

the parasite-chain. Despite this, this type of attacks can still occur when using the tip selection algorithm

if an attacker can generate enough cumulative weight on his transactions to surpass the cumulative

weight of the Tangle (further discussed in Section 3.5). To avoid this, the current IOTA system’s stability

relies also on a particular type of node, called the coordinator node. The coordinator issues signed zero-

valued transactions at a certain rate, which are called milestones, and confirms every transaction in the

path of the selected transactions to approve to the latest milestone (at least). The above mentioned tip

selection algorithm starts the random walk from a milestone at a certain depth. That said, the nodes

validate transactions upon its receipt and during the tip selection. The coordinator confirms transactions

by issuing milestones. A transaction is only considered for confirmation if the node has its transaction

history path until a milestone and if the node is synchronized with the network i.e. possesses a ledger

equal to the other nodes and the latest milestone index.

3.2 Data Models

3.2.1 Ternary

IOTA uses a balanced ternary numeral system. IOTA claims to uses this system because, compared

to binary, ternary computing is considered to be more efficient as it can represent data in three states

rather then just two. This system is used all through the protocol, from seed and address generation

to transaction generation, content and validation. The balance ternary system consists in trits, which

represent values of 1, 0, or -1. As such, a tryte, or 3 trits, provide 33 = 27 possible data values.
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3.2.2 Genesis, Seed and Address

The entire supply of tokens gets generated in the genesis transaction. This leads to a fixed supply of

IOTA-tokens of exactly 2,779,530,283,277,761 [40]. It was chosen for hardware efficiency using the

ternary numerical system and in order to be a sufficiently high number to support micropayments in

Internet of Things scenarios. The genesis transaction is the only transaction allowed to send tokens

from an address with 0 tokens to another address and approve no other transaction. No tokens are

created afterwards. As a consequence, the currency is deflationary, because tokens can get lost, e.g.

if a user loses their access-key, called ”seed”. The current implementation uses 81-character seeds

composed only of the characters A-Z and the number 9, so 27 possible characters. A transaction is the

transfer of tokens from address A to address B, where the number of tokens can be 0, which then the

transaction is also called message. An address is like an account that belongs to a seed and that has

a 0 or greater balance of tokens. Addresses can be seen as the public half of a public/private key pair,

except they are not generated using a public/private key pair algorithm. Addresses are generated using

the Kerl [41] hash function, which is based on SHA-3 [42], that starts by generating a private key from

a seed, an index, and a security level. The seed and index are added to create a sub seed which is

then absorbed and squeezed in a sponge function [43] 27 times for each security level. The result of

the sponge function is a private key whose length varies, depending on the security level. To generate

an address, the private key is split into 81-tryte segments. Then, each segment is hashed 26 times. A

group of 27 hashed segments is called a key fragment, and a private key has one key fragment for each

security level. Each key fragment is then hashed once to generate one key digest for each security level.

Then, the key digests are combined and hashed once to generate an 81-tryte address. Therefore, the

higher the security level defined, the higher the latency to generate a transaction since the security level

of an address affects how long the private key is, how secure a spent address is against brute-force

attacks, and how many transactions are needed to contain the signature. To transfer IOTA tokens from

one address to another, each transaction is signed with the private key to prove to nodes that you own

it. As such, addresses can be shared as long as the private key remains in concealment.

3.2.3 Transaction

A transaction is a single transfer instruction that can either withdraw IOTA tokens from an address,

deposit them into an address, or have zero-value (contain data, a message, or a signature). There are

two basic types of transactions: Input transaction and Output transaction. Input transaction withdraws

IOTA tokens from an address of the sender and contains the signature that signs transactions to prove

their ownership [44]. In the case of high security level with a very large signature, it is fragmented

over zero-value output transactions in the bundle. Output transaction is in charge of depositing IOTA

tokens into a recipient’s address [44]. If the input absolute value is bigger than output, there will be

an extra transaction which will add the remainder to the new addresses of the sender. A valid input

transaction must always contain the following: (1) A negative value in the value field, (2) An address that

contains at least the amount in the value field, (3) At least the first fragment of a valid signature is in the
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signatureMessageFragment field and (4) A valid nonce. A valid output transaction must always contain

the following: (1) A positive value in the value field, (2) A valid address and (3) A valid nonce. The nonce

field corresponds to the output of the proof-of-work operation. All transactions must have a transaction

hash in the hash field, a bundle hash in the bundle field, the specified input or output address in the

address and a trunk transaction and branch transaction field. The trunk transaction is a transaction

hash of either an existing transaction in the Tangle or of the transaction with the next index in the bundle.

The branch transaction is a transaction hash of an existing transaction in the Tangle.

3.2.4 Bundle

A bundle is a group of one or multiple related transactions, that rely on each other’s validity. It acts

as a transactions container to transfer data or tokens. It is always an atomic operation, i.e., either all

transactions are successful or none. The structure of a bundle consists of output, input, and remainder

transactions, which are called head, body, and tail, respectively. Typically, the tail has index 0, and

the head is the last transaction in the bundle. All transactions, starting from the tail, are connected by

reference to the one with the next index. These connections allow nodes to reconstruct bundles and

validate their contents. In order to attach transactions to the ledger, the head transaction needs to be

connected to one tip and the other transactions in the bundle to another tip, as seen in Figure 3.1.

3.3 Network

According to the access and permission control, networks can be divided into private and public net-

works. The public IOTA network is usually considered as the Mainnet responsible for processing all

IOTA cryptocurrency transactions. There are no access controls for participants to join the network so

that anyone can run a node to read from and write into the public ledger. The private network generally

requires a permission management mechanism, which the IOTA does not offer (e.g., membership ser-

vice provider in HyperLedger Fabric network [45]) leaving its management entirely to whoever decides

to implement it.

3.3.1 Node

Nodes are the core of an IOTA network. They run the node software that gives them read and write

access to the Tangle. Like any distributed system, nodes are connected to others called neighbors to

form an IOTA network. Nodes are responsible for the following key functions: (1) Keeping a record of the

addresses with a balance greater than 0, (2) Validating transactions and (3) Attaching valid transactions

to the Tangle. When one node receives new transactions, it will try to validate them in the Tangle to

make sure that their histories do not conflict and that counterfeit transactions are never confirmed, and

if validated, forwards the transactions to all its neighbors. This way, all nodes eventually validate all

transactions and store them in their local copy of the Tangle called a ledger. A node is synchronized

when it has solidified all milestones up to the latest one. Solidification is the process in which a node asks

21



Figure 3.1: Bundle structure

its neighbors for the history of all milestones in the Tangle, starting from an entry point milestone and

ending at the latest one. New transactions can only be considered confirmed when solid and directly

or indirectly referenced by a transaction that is signed by the Coordinator, therefore a node must be

synchronized.

3.3.2 Coordinator

The coordinator is an application that is run by the IOTA foundation in the Mainnet and whose purpose is

protect the Tangle from attacks such as parasite chains. Nodes use the coordinator to reach a consensus

on which transactions are confirmed. Every node in the same IOTA network is hard-coded with the

address of a coordinator. So, whenever nodes see a milestone, they make sure it’s valid by doing

a number of checks, including: (1) The milestone came from the coordinator’s address and (2) The

milestone doesn’t reference any invalid transactions. The coordinator’s address is derived from a Merkle

tree [46], where the address is the root, and the private keys are the leaves. The private keys are used

to sign milestones before sending. As a result, if the coordinator were to ever send an invalid milestone

such as one that references counterfeit transactions, the rest of nodes would not accept it. When a

transaction in a valid milestone references an existing transaction in the Tangle, nodes mark the state of

that existing transaction and its entire history as confirmed.

3.4 Operations

3.4.1 Tip Selection

In IOTA Tangle, the number of tips increases as new transactions keep adding to the ledger. It becomes

crucial how to wisely select two tips from all the valid tips so that the whole Tangle can grow in an

”healthy” way.
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EntryPoint

There must be a starting position for any walk to start the random walking. It is easy to think of taking the

genesis node as the entry point. However, this will bring obvious efficiency decrease while traversing

a long path when the graph grows large. Currently, a walker starts at a specified n depth number of

milestones in the past. The DAG starting from this old Milestone is called subgraph. Moreover, this old

milestone located at n depth is the entry point. Based on the experimental results [47], it was concluded

that any starting position placed further than 10λ − 20λ, being λ the transaction arrival rate, provide

the same growth of number of tips, meaning that the starting position does not affect the selection

mechanism. It was also desmonstrated that the average number of tips seem to grow linearly with λ

(transaction arrival rate), meaning it is scalable.

Cumulative Weight

For each transaction in the subgraph, there is a property called cumulative weight, defined as the sum-

mation of its weight and the sum of weights of all transactions that directly or indirectly refer to this

transaction. The weight of a transaction reflects the computation resource that the sending node puts

into this transaction. As a new transaction comes to the tangle, all previous transactions connected

to it in the subgraph updates by adding the new weight. For example, in the lower part of Figure 3.2,

every transaction connected to X increases its weight by 3 after X is attached. However, updating the

cumulative weight too frequently will decrease the efficiency.

MCMC Weighted Random Walk

Having the entry point and current Tangle state of cumulative weights for all transactions, the walker

walks through the subgraph twice, for each time from the entry point to reach a tip, to get two se-

lected tips. For example, the selected tips in Figure 3.2 are v9 and v8, with the random walk paths

(v1, v3, v6, v7, v9) and (v1, v2, v4, v5, v8), respectively. Specifically, the walk chooses next approver

transaction in a probability determined by the cumulative weights and a randomness parameter, called

α. The tip selection algorithm never ends inside a bundle even in the case that the rest of the bundle

has not yet arrived at that node. If the selected tip is not a tail in a bundle, the MCMC will “walk back” to

the previously visited tail transaction.

On a side note, the bundled transactions might by chance not be approved by other transactions on

the Tangle. In this case the node has two options: Either it reattaches the transaction or it promotes

it. Reattaching/ Replaying means issuing the same transaction again with a different hash, because

different trunk and branch-transactions are selected, meaning to redo the PoW for newly selected tips.

This might be necessary if the issued transaction does not get approved by enough transactions to get

confirmed, so the user attaches it to the Tangle in another spot. The previously attached transaction is

left behind and gets orphaned.
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Figure 3.2: MCMC weighted random walk

3.4.2 Proof-of-work

A proof of work (PoW) is a piece of data that is calculated using trial and error to meet certain require-

ments. As a spam prevention measure such as Hashcash [48], each transaction must include a PoW to

be valid. This PoW can be difficult to do, depending on the chosen difficulty level in the network, but is

always easy for nodes to validate. To calculate the PoW for a transaction, the values of all the transaction

fields are converted to trits and hashed, using the Curl hash function. This process continues until the

transaction hash ends in the same number of 0 trits as the minimum weight magnitude. Whenever the

transaction hash does not end in the correct number of 0 trits, the value of the transaction’s nonce field

is incremented and the transaction hash is hashed again. It is possible to compute the PoW locally or to

outsource its computation.
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3.4.3 Validation

Transaction Validation

Transaction validation is accomplished in two separated steps: (1) When a node performs tip selec-

tion (weighted random walk) for a requested transaction (Bundle validator and Ledger validator) and

(2) When a node receives a transaction (Transaction validator). The transaction validator checks the

following: (a) Proof of work is done according to the minimum weight magnitude, (b) The value of any

transaction in the bundle does not exceed the total global supply of tokens, (c) All IOTA tokens that are

withdrawn in a bundle are deposited in remainder addresses and (d) Any signatures in value transac-

tions are valid. The bundle and ledger validators check the following, during the weighted random walk:

(a) The value of any transaction in the bundle does not exceed the total global supply of tokens, (b) All

IOTA tokens that are withdrawn in a bundle are deposited in remainder addresses, (c) Any signatures

in value transactions are valid and (d) Each bundle does not lead to a double-spend by checking the

values of all addresses in a bundle. If a double spend is found, the weighted random walk steps back

one transaction and finds another route to a tip transaction.

Transaction Confirmation

After a transaction is sent to the Tangle, its cumulative weight will increase as time goes by according

to the MCMC. Thus, more and more new transactions will tend to validate it directly or indirectly. In

the mean time, the coordinator allows transactions to go from validated to confirmed, thus making the

associated addresses with the correct balance. It does so by regularly sending bundles (milestones) that

reference and approve two transactions selected by the MCMC. Therefore, the higher the cumulative

weight of transaction, the higher its probability of getting confirmed.

3.4.4 Transaction Processing

The process flow to complete a transaction is described below:

1. Generate Bundle Hash: During preparation of transactions, Kerl hash function with sponge con-

structor absorbs all transactions objects necessary for validation (address, value, obsolete tag,

timestamp, current index, and last index) and squeezes the hash.

2. Sign Input Transactions: All hashing in this step uses the Kerl hash function. There are two main

sub-steps to transaction signing: (1) Generating the private key and (2) Signing the transaction.

First, a subseed is generated from the user’s seed by taking the Kerl function to ensure it is inde-

pendent enough from the original seed. Then, the private key can be obtained from a key generator

by successively hashing this subseed 27 times per security level. Second, one can use signature

fragment generator with a private key and the above-mentioned bundle hash to get the transaction

signature. There are two notes to take into account: (1) Input transactions should not reuse the

same private key since it would disclosure part of it and (2) There are in total 81 trytes in a bundle

hash. Depending on the predefined security level value (S = 1, 2 or 3), the client will take the first
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S x 27 (i.e., 27, 54, or 81) trytes, respectively, of the bundle hash, combined with the private key

to generate a transaction signature for each transaction. Since the signature is hashed 27 times

per security level, it results in a key length of S x 27 x 81 trytes, i.e., 2187, 4374, or 6561 trytes,

respectively. Each 81-tryte hash generated constitutes a key fragment in a transaction. After this

step, all signatures are filled in the corresponding transactions.

3. Tip Selection: MCMC is used to randomly select two unvalidated transactions. When the client

is requesting transactions to approve, he can specify how many milestones in the past the node

starts the tip selection algorithm. The greater the depth, the farther back in the Tangle the IOTA

node starts. A greater depth increases the time that nodes take to complete tip selection, making

them use more computational power.

4. Proof of Work: For each transaction included in the bundle, the issuing node must do PoW, in order

to have the proposed transactions accepted by the network, according to the pre-set PoW difficulty

level called minimum weight magnitude. This difficulty level is defined on the nodes network con-

figuration and is recommended to be the same for all the network.

5. Validation: Transaction validation and confirmation is required.

3.5 Security Analysis

For the designers of a cryptographic system it is crucial to understand all possible attack vectors and the

ways to deflect them. The double-spending attacks described in the following give only a short insight

into possible scenarios. A double-spending attack is an attack in which a malicious user attempts to

spend the same digital currency multiple times. This is a problem that also affects Bitcoin and other

cryptocurrencies. It is of paramount importance that the probability of a successful double spend in a

cryptocurrency is almost zero. Otherwise the validity of transactions cannot be guaranteed, which will

make the cryptocurrency worthless. There are multiple ways to attempt a double-spending attack in

IOTA. A few of them are described in the white paper [7]. These are the large weight / outpace attack [7]

[49], the splitting attack [7] and the parasite chain attack [7] [50]. The following does not attempt to be

a comprehensive list. There are other possible attacks, e.g., replay attacks [51], 34% attack [52], Sybil

Attack [7].

3.5.1 Large Weight / Outpace Attack

The attacker tries to issue a double-spend transaction while forking off the originally accepted transac-

tion. Two goals have to be attained: First, the merchant must accept the original transaction and deliver

the purchased goods, and second, the network must be convinced to build upon the attacker’s sub-

tangle. The way to achieve these goals is to wait long enough for the merchant to accept the payment.

During this time, the attacker can build his sub-Tangle offline. Furthermore, the attacker must outpace
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the growth of cumulative weight in the main-Tangle by doing excessive PoW on the sub-Tangle. Outpac-

ing the main-Tangle would be easier if the attacker could issue just one transaction of large weight. [7]

That is why the own weight of a transaction is limited. Consequently, the attacker must issue numerous

transactions on the sub-Tangle which reference only transactions in the sub-tangle, but not in the main-

tangle. Eventually, for the attacker it boils down to having more than a third, i.e. 34%, of the total hashing

power to force the enough walkers from the MCMC algorithm into walking along his Tangle. Described

with the Byzantine Generals Problem [22] this means that more than a third of the generals are traitors,

which results in a faulty. system.

3.5.2 Splitting Attack

The Splitting Attack is very similar to a large weight attack, except that the attacker does not need to

run a race against the computing power of the entire network all by himself. Instead, he tries to balance

the weights of the two emerging sub-Tangles, so that half of the network grows one sub-Tangle, and

the other half the other. The attacker issues two or more non-conformant transactions, thus splitting the

network. Without these conflicting transactions some node would eventually approve one transaction of

either sub-tangle and therefore merge them together. The more balanced the two sub-tangles grow by

themselves, the less work the attacker has to do, because the network works on the two sub-tangles

equally. This lets them grow long enough that a merchant would accept the attacker’s payment. His

benefit is that he can spend his funds on both sub-tangles, resulting in a double-spend.

To prevent this attack from being successful, the honest nodes have to make it too difficult for an

attacker to balance the two sub-tangles. To achieve this, the MCMC is designed in a certain way. First of

all, the entry point of the random walk must start deep enough in the Tangle to make sure it starts before

the split. Otherwise, the walkers would not be able to make a decision between the two sub-Tangles. And

secondly, the algorithm must decide sharply, i.e. rather deterministically, for the sub- Tangle with greater

total weight. This second point can be achieved by making the transition probability more dependent on

α. [7] A high α value is needed for weighted random walk tips selection. So that it will be very hard for

an attacker to keep the balance between two branches. However, the higher α is, more tips could be left

behind.

A factor making it even harder for the attacker to accurately balance the sub-Tangles is network

latency. Transactions take time to propagate through the mesh network all the way to servers owned by

the attacker and vice-versa. This forbids any node to be omni-present so that an attacker could not react

on changes of the two sub-tangles quickly enough.

3.5.3 Parasite Chain Attack

The parasite chain attack equals an extended large weight attack. The attacker tries to build a side-

tangle quickly to issue a double-spend transaction. At first, by issuing a legitimate transaction on the

main Tangle, he pays a merchant and receives the corresponding asset. Afterwards, he is then able to

make the previous transaction obsolete by constructing a side- Tangle which must eventually become
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the main tangle. The difference here is that the side-Tangle builds upon the main Tangle by occasionally

referencing it. This allows it to reach even higher score and height. Therefore, it is called a parasite.

This attack can be prevented when nodes use some type of MCMC tip selection strategy if we

assume that the main Tangle has more hashing power than the attacker. Consequently, the main-tangle

receives more cumulative weight than the side-tangle, which makes walkers of the MCMC more likely

to walk through the main- tangle. After the legitimate transaction on the main-tangle, no transactions

approve tips from both Tangles at once, because the legitimate transaction conflicts with the double-

spend transaction on the side-tangle. From this point on, it is the same as a simple large weight attack,

except that the side-tangle has a slightly higher probability in the MCMC. [7]
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Chapter 4

Solution

Following the descriptions and analysis conducted in Chapter 2 and Chapter 3, IOTA 1.0 still incurs

several limitations in terms of security and availability, and its performance, throughput and scalability

results are inconclusive for designing a feasible solution in transport mobility. Despite all its limitations,

IOTA is still the most promising. The main goal of this solution is to create an immutable ticketing system

as a proof of concept using IOTA, and allow further benchmarks. This system will allow users to buy

and use transport tickets for many service providers (e.g., Metro, Taxi, and Bus) while not requiring an

entity to validate and distribute the revenue of each of these utilizations. The main focus is on creating

and implementing models that will support the use of IOTA technology for many different use cases,

depending on the transport operator, and not so much on the purchase of tickets or audit operations.

This Chapter provides a conceptual, high-level overview of the system developed in this dissertation’s

work. In the next section 4.1, the main components of the solution and how they relate with each other

are introduced. The solution’s architecture is described in more detail in section 4.2 along with the

introduction of the different transport models and a description of the IOTA network. Then, we present

the core of the solution (Wallet Manager API) in Section 4.2.3, from its importance to its usage. In

Section 4.2.4, we describe two multiplatform frontend applications for the interaction with the system.

In Section 4.3, the trust and threat models that were considered are defined. Later, an overlayer of the

main solution is presented in Section 4.4, to solve some of the problems identified previously. Finally,

the use cases chosen to implement, including their main features and how they possibilitate the use of

IOTA in the public transport scenario in section 4.5.

4.1 Overview

The solution is divided into three parts: Frontend (client and service provider applications), Wallet Man-

ager API, and IOTA, as shown in Figure 4.1.

The system’s frontend is a multiplatform application for the client and service provider, which is

responsible for interfacing requests to the wallet manager or the IOTA network. A client represents

the end-user of the ticketing system, while a service provider represents a transport operator. On the
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Figure 4.1: Solution’s High-Level Architecture

client application, each client is able to buy IOTA tokens and request tickets or a balance update. On

the service provider application, each provider can update its price, receiving address or balance, and

receive tickets from clients and forward them to the IOTA network. The wallet manager is the backend

of the system. It is in charge of receiving requests from the frontend and performing the requested

operations while handling requests to the IOTA network when necessary. The latter part runs the IOTA

Tangle protocol and is responsible for processing all the incoming requests from the wallet manager or

the frontend.

Besides choosing IOTA as the core DLT for this project, the primary design decision was made to

consider its flaws and benefits. We will consider, in the course of this work, as possible double-spending,

the scenario where a client issues a fake ticket and is able to use a transport, even though the ticket

contained in the transaction later becomes detected as a double-spend in the Tangle. Mainly, the solution

could fall into two categories: (1) A permissionless solution where each client would possess a virtual

wallet able to generate transactions directly to the IOTA network and (2) A permissioned solution with

an intermediary component able to generate transactions on behalf of the client, directly to the IOTA

network. The first solution’s main benefit is distributing the computation per client. In opposition, the

latter required the computation to fall into IOTA nodes, which ought to be managed by a single entity,

making it a more centralized solution. In terms of computational resources required, the results from

studies in chapter 2 are inconclusive for IOTA nodes, as further benchmarks with more parameters

changes were required, however, it is clear that mobile devices may not be powerful enough to complete

operations such as proof of-work in satisfactory amount of time. Regarding security, (1) would permit

anyone to interact and tamper with the network and there was no double-spending control and with (2)

only registered users could interact with the network through an intermediary (wallet manager or service

provider endpoint) and an anti-tampering and anti-double-spending mechanism could exist ensuring that

1) transactions were generated by a trustful entity, 2) transactions generated would not be tampered with

and 3) transactions could not be sent twice. The security mechanism was thought but not implemented,

as first it was required to ensure IOTA nodes could handle the necessary number of transactions of
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a state-of-art public transport ticketing system, and for this the requirements were more focused to

traditional use cases. The next sections will describe, in further detail, each mentioned component

above as well as the detailed architecture proposed based on some of the results obtained in chapter 6.

4.2 Architecture

This section presents a more detailed solution’s architecture, illustrated in Figure 4.2 and description

of the solution, explaining in detail how each component works. First, in Section 4.2.1, an application

of common transportation models using IOTA is described. Then, in 4.2.2, we will detail how the IOTA

network was designed. Later, in Section 4.2.3, the thought process behind Wallet Manager API is

described and, finally, in Section 4.2.4 both the Client Application and Service Provider Application are

detailed.

To better understand this architecture, the process where a client requests and uses a ticket is

simplified and illustrated in Figure 4.3. According to the functionalities and use-cases were defined

specific requirements. For this scenario, the client is already registered in the wallet manager and has

enough tokens to buy tickets for a generic transport option. After being authenticated in the application,

the client can start the process of getting a ticket and using it. To do so, he has to request it to the wallet

manager, which will generate a request of a bundle to an IOTA node on behalf of the client and containing

the price for the trip. The node will process the request and respond with the non finalized bundle. The

bundle is then sent to the client with some more parameters which will guarantee the authenticity of

the bundle, forming a ticket. Then, the client sends the ticket to the service provider endpoint that

validates the authenticity of the ticket and sends the bundle to the proxy. This service provider endpoint is

implemented in the service provider application in order to easily simulate a transport gateway/terminal.

The proxy is then responsible for computing the proof of work, finalizing the bundle and sending it to the

node, when available. Finally, the node will receive the ticket, validate the bundle, store it and broadcast

it to its neighbors. In the meantime, the coordinator is generating and issuing milestones to every other

node, confirming transactions.

4.2.1 Transportation Models

In the most common transportation models there is a ticket validation component at the entrance of

the service provider gateway/terminal/vehicle. This component’s behavior is defined by the service

provider endpoint. To do this, it is necessary for the client application to be able to interact with the

service provider endpoint and the latter with a node or proxy in the network. Since it is through the client

application that the tickets are sent, it requires knowledge of the recipient and the value to be transferred.

These parameters will be communicated by the wallet manager in the form of a ticket. Therefore, each

service provider must be registered in the wallet manager and have a price/rate set. The next sub

sections will describe state of the art transportation models using IOTA technology.
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Figure 4.2: Solution’s detailed Architecture

Figure 4.3: High-level process description of a client’s ticket request and utilization
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Figure 4.4: Traditional model diagram

Traditional

In the traditional model (e.g., Metro and Bus) there is a ticket validation component at the entrance of the

service provider transportation method composed of multiple gateways/terminals. This model requires

a ticket to be sent by the client in order to become available to use. The ticket price is fixed and is set

using the service provider application. An high-level usability scheme can be observed in Figure 4.4.

Taxi

The taxi model (e.g., Taxi and Uber) specified the necessity of providing a ticket cost based on the

distance to travel and service provider price rate. It is similar to the traditional model, with the exception

that the ticket cost isn’t fixed and the service provider endpoint represents the driver’s application or a

single gateway/terminal installed on the transportation vehicle. An high-level usability scheme of this

can be observed in Figure 4.5.

Wallet Consumption

The wallet consumption model (e.g., electrical scooters and bicycles) is based on the client’s usage

time of the service, thus requiring check-in and check-out transactions. This usage time is registered

on the service provider endpoint, which is, in this case, the transportation vehicle software being used.

A check-in transaction represents a zero-valued transaction to symbolize that that specific user has

started to used the vehicle. In order to stop using it, the client has to request a check-out, which in turn

will cause the endpoint to send a transaction to a proxy/node with the value of the trip. The value of

the trip is calculated based on the difference of the trip end time and start time, taking into a account a

certain rate per unit of time. An high-level usability scheme of this can be observed in Figure 4.6.
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Figure 4.5: Taxi model diagram

Figure 4.6: Wallet Consumption model diagram
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4.2.2 IOTA

Assumptions and Limitations

The design of the IOTA network for this system had to take into account some assumptions and some

limitations. As assumptions, first, that the whole network would be managed by a trusted party and

thus avoiding 34% attacks on the network even on the absence of the coordinator, and possibly parasite

chain and large weight attacks, and second, that whatever IOTA component (proxy or node) handling the

connections from the service provider transport gateway/terminal had to eventually be able to connect

to the main network and broadcast transactions. As limitations, first, the coordinator is a single point of

failure of the main network and without it no transaction gets confirmed and second, the performance of

a node and proxy when handling client requests was inconclusive due to a lack of metrics gathered in

previous studies, which had to be further analysed in Chapter 6. In the next sub sections, a description

of each network component and a justification for the chosen design can be found.

Components Description

IOTA is a DLT that allows participants in the network to transfer immutable data and value (tokens)

among each other, called transactions. Before sending a transaction, one is required to do a small proof

of work, and a weight is assigned to the transaction proportionally to the difficulty of the puzzle that the

node has solved for producing it. There are three ways to compute the proof of work: (1) Locally on

the machine that is generating the transaction, (2) Remotely on an IOTA node or (3) Outsource to an

IOTA proxy. The first one is out of the scope of this project as seen previously due to performance and

security implications.

An IOTA coordinator is one of the core components of the network whose purpose is protect the

Tangle from attacks such as parasite chains. Nodes use the Coordinator to reach a consensus on which

transactions are confirmed. It’s the coordinator that allows your transactions to go from validated to con-

firmed, thus making the associated addresses with the correct balance. It does so by regularly sending

bundles (milestones) that reference and approve two new random transactions in the ledger, which later

on will be validated by the nodes. Nodes have to make sure that: (1) The milestone came from the

Coordinator’s address and (2) The milestone doesn’t reference any invalid transactions. The coordina-

tor’s address is derived from a Merkle tree, where the address is the root, and the private keys are the

leaves, which is a way to prove to nodes that it owns an address without signing transactions with the

same private key every time. Every node in the same IOTA network is hard-coded with the address of

a coordinator. This way, to create a network with more than one coordinator: (1) All coordinators had

to share the same merkle tree or all nodes should be allowed to support more than one coordinator ad-

dress, implying that every coordinator would have a different address, (2) Nodes should support trusted

and dynamic coordinator’s, so that coordinators could be added and removed from the network when

needed and (3) A mechanism to reach consensus for multiple coordinators or a cluster of multiple coor-

dinators should exist. It was IOTA’s organization intent to replace the coordinator for another consensus

mechanism, however this was not achieved during the lifespan of this project, leaving no other option
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as to use a single point of failure coordinator. It is, however, discussed in Section 4.4.1 an alternative to

one single coordinator consisting in clustered coordinators, removing the single point of failure from the

system and reducing the risk of centralization.

An IOTA node is the other core component of the network. Nodes are connected to others called

neighbors to form the network. When one node, receives a transaction, it will try to validate it and for-

ward it to all its neighbors. This way, all nodes eventually validate all transactions and store them in their

local copy of the Tangle. Nodes are responsible for the following key functions: (1) Keeping a record of

the addresses with a balance greater than 0, (2) Validating transactions, (3) Attaching valid transactions

to the Tangle, (4) Synchronizing with other nodes and (5) Performing requested operations through the

API. The process of validating a transaction is to make sure that their histories do not conflict and that

counterfeit transactions are never confirmed. Transaction validation is accomplished in two separated

steps: (1) When a node performs tip selection (weighted random walk) for a requested transaction (Bun-

dle validator and Ledger validator) and (2) When a node receives a transaction (Transaction validator).

The transaction validator checks the following: (a) Proof of work is done according to the minimum

weight magnitude, (b) The value of any transaction in the bundle does not exceed the total global supply

of tokens, (c) All IOTA tokens that are withdrawn in a bundle are deposited in remainder addresses and

(d) Any signatures in value transactions are valid. The bundle and ledger validators check the following,

during the weighted random walk: (a) The value of any transaction in the bundle does not exceed the

total global supply of tokens, (b) All IOTA tokens that are withdrawn in a bundle are deposited in remain-

der addresses, (c) Any signatures in value transactions are valid and (d) Each bundle does not lead to

a double-spend by checking the values of all addresses in a bundle. If a double spend is found, the

weighted random walk steps back one transaction and finds another route to a tip transaction.

An IOTA proxy is solely dedicated to performing proof of work and proxying the other client’s requests

to the node.

Network

Considering the functioning and importance of the node and the proxy, it is theoretically possible to

assume that the node has a greater impact on the system’s network and that a machine would have less

free computational resources running the node software when compared to a proxy. As such, a proxy

would apparently be more suited for outsourced proof of work computations. This was further proved in

the benchmarks presented in the Chapter 6. As such, an IOTA proxy reveals easy to manage, repair and

scale, and better performing when handling client requests making it suited to handle communications

from transport gateways/terminals. This way, proxies handle this requests and compute the proof of

work for the to be sent transactions while nodes have more computational resources to perform other

tasks. It results in a need for more proxies rather than nodes, as the proof of work operation is the most

intensive task to be performed in IOTA software, as show in Chapter 2 and 6. With this results in mind,

the design of the network consists in a coordinator, a node per service provider and a proxy per service

provider transport gateway/terminal, which could be increased as further needed.
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4.2.3 Wallet Manager API

The wallet manager serves the client and service provider applications. This component acts an inter-

mediary between the users and IOTA network, responsible for keeping client seeds, service provider

seeds, addresses and prices, and performing operations such as balance updates, token transfers and

ticket generation. Besides providing an API for both the client and service provider application, it uses

the IOTA IRI API which is the node’s API to interact with the network. The implementation details as

well as the operations descriptions will be detailed in section 5.3.2. In terms of design, it was never

considered to be a fully scalable and fault tolerant component but more of a proof of concept that could

process asynchronous requests for a small group size of users, with the objective of proving it is possible

to create a ticketing system using IOTA technology.

4.2.4 Frontend

The frontend consists in a single multi-platform application whose intent is to provide an interface to

use the Wallet Manager API (in most cases) and it has different functionalities for both the client and

service provider. To better crease its differences, it is abstractively split into client application and service

provider application.

Client Application

The client application should be used by the clients of the system (i.e., a person who wants to buy

and/or use tickets to ride a form of public transport). Its main functionalities consist in: (1) Balance and

transaction history update, (2) Token acquisition and (3) Different ticket generation alternatives. The

implementation details as well as the operations descriptions will be explained in section 5.4.

Service Provider Application

The service provider application should be used by the service providers of the system (i.e., Taxi, Metro,

Bus). Its main functionalities consist in: (1) Balance and transaction history update, (2) Address update

and (3) Price update. It is important to note that the service provider endpoint, shown in the Figure 4.2,

was implemented in the service provider application in order to execute a more agile proof of concept.

Service provider’s endpoint is able to: (1) Receive tickets and (2) Send transactions. The implementation

details as well as the operations descriptions will be explained in section 5.4.

4.3 Models

This section describes the models considered during the design of the solution. A definition of the

solution’s trust model can be found in Section 4.3.1, where the considered assumptions are stated.

Then, possible threats are listed in Section 4.3.2.
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4.3.1 Trust Model

Each component described in the system’s architecture runs in distinct environments: the client appli-

cation executes in the user’s mobile, the service provider application executes in a service provider’s

device, the wallet manager and IOTA network run in the main entity’s network and finally the IOTA proxy

and service provider endpoint are located in each service provider’s network, as depicted in Figure

4.7. To better understand these different environments and how these components should work, it is

necessary to establish a satisfactory trust model. The trust model helps us recognize the special char-

acteristics of the system and how the various entities are expected to behave. The following analyzes

the assumptions taken into account to define the trust model of the proposed solution:

• the wallet manager is trustworthy: the software and hardware which forms the wallet manager is

reliable and not compromised, usernames and seeds are unique and securely stored, no data is

tampered with;

• the IOTA network is trustworthy: the software and hardware which runs the coordinator and nodes

is reliable and not compromised, the coordinator will send valid milestones and the nodes will not

tamper with the received data. The used cryptographic algorithms are considered secure and not

broken; Therefore, the managing entity and its network is trustworthy.

• the service provider endpoint is trustworthy: ticket’s data is properly validated and real transactions

are sent to the proxy. Its software and hardware are reliable and not compromised;

• the proxy is trustworthy: it does not tamper with the requests sent by the endpoints and always

proxies them, and computes valid proof of works. Its software and hardware are reliable and not

compromised; Therefore, every service provider’s network is trustworthy.

• the service provider’s application is trustworthy: service providers software and hardware are reli-

able and not compromised;

• the client’s application can act maliciously: clients can try to get access to other client’s accounts,

send fake tickets or reuse tickets (double-spending);

4.3.2 Threat Model

A threat model identifies potential threats and vulnerabilities of the system. Its analysis provides a way to

design better defenses against attackers and possible countermeasures, increasing the security of the

system. From the previous section, only the client’s application is considered as not trustworthy, leaving

room for the following (as STRIDE):

• Spoofing:

– User may attempt to crack or steal another user’s password

– User may attempt to request ticket on behalf of another user
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Figure 4.7: Execution environment of components of the system
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• Tampering:

– User may attempt to change ticket data before sending to a service provider endpoint

• Repudiation:

– User can claim he did not sent a ticket

• Information disclosure:

– User may gather information in the tickets regarding IOTA transactions and addresses

• Denial of service:

– User can spam requests to flood and degrade the systems

• Elevation of privilege:

– User may gain access to a service provider account and change the price of the tickets

4.4 Overlayer

This section provides some design decisions that could have been integrated into the implementation of

the solution in order to prevent some of the threats and flaws in the IOTA protocol, components or the

solution in general.

4.4.1 Security

In this section, a security model which overlays the presented solution is described in order to mitigate

some of the threats considered in Section 4.3.2. The threats defined in the categories Spoofing, Denial

of service and Elevation of priviledge will not be considered taking into account the trust model defined in

Section 4.3.1 - wallet manager and service provider application are trustworthy and secure. The threat

Information disclosure will also not be considered since the attacker has no direct access to the network.

All considered threats (Tampering and Repudiation) are found in a scenario where a client receives a

ticket from the wallet manager and has to broadcast it to the service provider endpoint. To solve them,

it is necessary to guarantee authenticity, integrity and non-repudiation of the ticket. These requirements

are fulfilled using digital signatures. In order to do so, the wallet manager needs to generate a public-

private key pair for each new registered service provider and the public key must be known by all service

provider endpoints. After that, the user can then request a ticket for that service provider. The ticket

is generated and the aggregation of the ticket with the ticket time of expiration is signed. Both the

signature and the ticket are sent to the client. The client then sends this data to the service provider

endpoint which will verify the signature and if the ticket did not expire yet. If everything is validated, the

transactions is sent to the node and the transaction ID contained in the ticket is broadcasted to all other

endpoints in the network. The expiration date together with this broadcast, provide an early attempt to

stop double-spending. This process can be also observed in Figure 4.8.
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Figure 4.8: Security mechanism diagram

4.4.2 Availability

In terms of availability, the coordinator could run in a cluster with other coordinators. To keep it simple,

only one coordinator could be running but they all had a shared database which kept the state of the

coordinator (which is by default stored in a local file). Therefore, if the coordinator crashes, others can

continue to take the responsibility and create milestones to confirm the transactions. This decentralized

design not only removes the single point of failure from the system, but also reduce the risk of centraliza-

tion.. The wallet manager could also be connected to a load balancer which would distribute its requests

through the nodes, making sure that the wallet manager would never be disconnected from the nodes

and that no node could be overloaded. This solution can be also observed in Figure 4.9.

4.5 Use Cases

To validate the architecture of this system, four specific use cases were designed to exemplify the main

functionalities of the project’s features. The check balance and charge wallet use cases are applicable

to all transportation models. The use transport use case is applicable in the traditional and taxi mod-

els. Finally, the use transport (wallet consumption) use case is applicable to the wallet consumption

transportation model. As such, it is possible to cover the usability of the client application in different

transportation alternatives in this use cases.
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Figure 4.9: Availability mechanism diagram

4.5.1 Check Balance

This operation allows a client or service provider to check its account balance and transaction history.

In this use case the client starts by requesting an update of his account status to the wallet manager,

which will request that data to a node in the IOTA network. The node responds with the contabilistic

balance (obtained from tip transactions - unconfirmed), the confirmed balance (obtained from confirmed

transactions), the history of transactions from/to the client and its addresses which contain balance, as

depicted in Figure 4.10.

4.5.2 Charge Wallet

This operation transfers balance to the client. In this use case the client starts by requesting a debit to his

account to the wallet manager, which will generate a transaction from his address to the client’s address.

When this process has completed, the wallet manager will confirm the debit to the client, as depicted in

Figure 4.11 and Figure 4.11. The necessary steps to generate an IOTA transaction are represented in

order to provide a better understanding on further chapters.

4.5.3 Use Transport

This operation allows a client to use a transportation method, transfering value from his account to

the service provider. In this use case the client starts by requesting the price of the chosen transport.

Then, he requests a ticket to the wallet manager which will generate an unfinalized bundle with more

parameters, called a ticket, and send it to the client. The client can then use this ticket by sending it to
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Figure 4.10: Check balance use case diagram

Figure 4.11: Charge wallet use case diagram
Figure 4.12: Charge wallet se-
quence diagram
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the service provider endpoint. The latter will validate the parameters added by the wallet manager and

allow or deny the use of the transport. At the same time, or when available, the proxy will compute the

proof of work and broadcast the bundle to a node in the IOTA network, at the service provider endpoint’s

request. This process is depicted in Figure 4.13 and Figure 4.13. The necessary steps to generate an

IOTA transaction are represented in order to provide a better understanding on further chapters.

4.5.4 Use Transport (Wallet Consumption)

This operation allows a client to use a transportation method by doing a check-in and to stop using by

doing a check-out. In this use case the client starts by requesting a check-in ticket to the wallet manager

which will generate an unfinalized bundle with more parameters and a transactional value of 0, called a

check-in ticket, and send it to the client. The client can then use this ticket by sending it to the service

provider endpoint. The latter will validate the parameters added by the wallet manager and allow or

deny the use of the transport. At the same time, or when available, the proxy will compute the proof of

work and broadcast the bundle to a node in the IOTA network, at the service provider endpoint’s request.

After some time, the client does a check-out, requesting it to the service provider endpoint. The endpoint

then calculates the cost of the trip and request a check-out transaction to the wallet manager which will

generate an unfinalized bundle with more parameters and a transactional value of the difference between

the time of check-out and time of check-in times the service provider rate, called a check-out ticket, and

send it to the service provider endpoint. Then the proxy will compute the proof of work and broadcast

the bundle to a node in the IOTA network, at the service provider endpoint’s request. In the end, the

service provider endpoint informs the client of the paid price of the trip. This process is depicted in

Figure 4.15 and Figure 4.15. The necessary steps to generate an IOTA transaction are represented in

order to provide a better understanding on further chapters.

44



Figure 4.13: Use transport use case diagram

Figure 4.14: Use transport sequence diagram

45



Figure 4.15: Use transport (Wallet Consumption) use case di-
agram

Figure 4.16: Use transport (Wallet Consumption)
sequence diagram
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Chapter 5

Implementation

This chapter addresses the implementation details of the developed solution. Section 5.1 presents an

overview of all the components of the solution. In the remaining sections each component and operation

procedures will be explained in greater detail. The code is also available on Github 1.

5.1 Overview

This section presents an overview of all the components that were implemented, as seen in Figure 5.1.

The first implementation step is the creation and configuration of the IOTA network. Once the network is

created, it is necessary to launch a program which allows interacting with the network. This program is

called wallet manager. Since it is designed to provide operations over the network in a more simplified

and permissioned manner to service clients and providers, it was necessary to create an application

interface for both. The solution was designed so that applications were to be the only possible triggers

of changes in the network.

5.2 IOTA

As presented in Section 4.2.2, the IOTA network can be comprised with many IOTA nodes and an IOTA

coordinator. The minimum weight magnitude chosen was 9, as it requires less computing power than 14

(the standard for IOTA as a public network) and is still high enough to demand a high computing power

device if the objective is to process a lot of transactions. In combination with the fact that the transactions

need to be pre-validated before entering the Tangle, being a permissioned solution, there is no reason to

use a proof-of-work effort as high as the IOTA main network. For the sake of simplicity, as many nodes

would not provide any advantage or disadvantage compared to a single node in this proof of concept,

only one node was implemented. The Figure 5.2 demonstrates the network component’s software and

communication channels. As opposed to the previously shown diagrams, IOTA proxy is represented in

an IOTA network due to it being an IOTA component.

1https://github.com/pedro95gomes/79121 dissertation-implementation.git
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Figure 5.1: Solution’s High-Level Implementation Architecture

5.2.1 Node

The node consists in a Ubuntu Server 18.04 with 4GB of RAM and a 64 bit processor, as a minimum re-

quirement recommended by the IOTA organization, and runs the IRI software in a Docker [53] container.

IRI [54] is open-source Java software for the IOTA protocol. It connects to a local RocksDB [55] to store

ledger data, such as transactions, transaction-metadata, milestones, addresses, snapshots, and others.

Each node has its own copy of the ledger and in order to be synchronized with the network, nodes use a

gossip protocol to communicate with their neighbors. This communication is done via socket port 15600

using TCP as the transport layer protocol. On the other hand, the IRI API is available on the socket

port port 14265 using TCP as the transport layer protocol. As such, both ports need to be open. All

this communications are wrapped using HTTPS as the application layer protocol. The host needs to be

labeled with either a static IP address or connected to a dynamic DNS service.

5.2.2 Proxy

The proxy has no recommended hardware prerequisites. As such, it also consists in a Ubuntu Server

18.04 with 4GB of RAM and a 64 bit processor and runs an implementation of Caddy [56] that uses IOTA

middleware. This middleware allows the server to intercept attachToTangle calls to a node’s endpoint

and do the proof-of-work. All other requests are forwarded to the IOTA node. It does not need a database

since it does not store any data. The communication with the node is done via port 14265 using TCP as

the transport layer protocol and HTTPS as the application layer protocol. The host needs to be labeled

with either a static IP address or connected to a dynamic DNS service. All connections are made to the

proxy through the port 15265.
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Figure 5.2: IOTA Network Detailed Architecture

5.2.3 Coordinator

The coordinator also consists in a Ubuntu Server 18.04 with 4GB of RAM and a 64 bit processor,

as a minimum requirement recommended by the IOTA organization, and runs both the Compass and

IRI software in a Docker container. Compass [57] is an open-source Java implementation of an IOTA

Network coordinator. The compass software issues milestones, which are transactions signed by the

coordinator, to the local IRI. Since milestones behave like transactions, the behavior and configuration

of a coordinator is very similar to the node. It connects to a local RocksDB to store ledger data, such as

transactions, transaction-metadata, milestones, snapshots, addresses, and others. The coordinator has

its own copy of the ledger and in order to be synchronized with the network, it uses a gossip protocol

to communicate with their neighbors. This communication is done via socket port 15600 using TCP as

the transport layer protocol. On the other hand, the IRI API is available on the socket port port 14265

using TCP as the transport layer protocol. As such, both ports need to be open. All this communications

are wrapped using HTTPS as the application layer protocol. The host needs to be labeled with either a

static IP address or connected to a dynamic DNS service.

5.2.4 Setup

To use the a private IOTA network, a coordinator, a proxy and a node were created. These were setup in

a virtualized environment (VMware [58]). The most relevant configuration parameters for the IRI, Caddy

and Compass software can be found in Tables 5.1, 5.2 and 5.3 respectively. After configuring each

component, the first node on the network must be launched from a snapshot containing the genesis

transaction of the network, that is, the starting state of the network. In the initial state of this solution’s
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Parameter Value Note
Minimum weight magnitude 9 Minimum accepted proof-of-work effort

Neighbors protocol://ip-address:15600 List of node neighbors
Testnet True Run node on a network other than the Mainnet

Testnet Coordinator coordinator-address 81-trytes address of the testnet Coordinator

Table 5.1: IRI configuration parameters

Parameter Value Note
Maximum weight magnitude 9 Maximum accepted proof-of-work effort

Node protocol://ip-address:14265 Node to which the proxy is connected to
Maximum transactions per call 10000

Table 5.2: Caddy configuration parameters

network, all available IOTA tokens are associated to a wallet manager’s address. Therefore, it is neces-

sary to create a seed and generate an address for the entity that manages this solution beforehand. All

the IOTA tokens in circulation on the network will be distributed by this seed. After every component is

running, the network is ready.

5.3 Wallet Manager API

The wallet manager is a REST API developed using the Spring Boot [59] for Java. This component can

be seen as both a server and a client. A server that receives requests to its API and a client that sends

requests to nodes using the IOTA IRI API. A simple database was created in order to store the clients

and service providers seeds, ticket costs and rates, service provider’s addresses and login information.

This database was implemented in SQLite [60] as it simple to use and fulfilled the demands of this

proof-of-concept.

5.3.1 Server (Spring REST API)

In order to differentiate the APIs for the different types of functionalities, two controllers were created.

One controller is the ClientController, which purpose is to serve the client requests. Its operations are

described in Table 5.4 and documented in Figure 5.3. The second is the ServiceProviderController and

it serves the service provider requests. Its operations are described in Table 5.5 and documented in

Figure 5.3. This documentation was produced using Spring’s MockMvc [61] with JUnit [62] tests. The

Parameter Value Note
Minimum weight magnitude 9 Minimum accepted proof-of-work effort

Security Level 1 Security level of Compass’ private key/address pairs
Tick 60 Number of milliseconds Compass waits after creating a milestone
Host localhost URL of the IOTA node to which Compass sends milestones

Depth 14 Depth of the merkle tree

Table 5.3: Compass configuration parameters

50



Operation Action
Create User Registers user login information in database
Login Login client
Check Balance Get user’s balance, transaction history and addresses with tokens
Charge Wallet Transfers tokens to a client address
Transport Price Get requested service provider’s transport price
Taxi Price Get requested service provider’s transport price based on distance
Ticket Generates a ticket for the selected service provider transportation option
Check-in ticket Generates a check-in ticket for the selected service provider transport
Check-out ticket Generates a check-out ticket for the check-in ticket previously generated

Table 5.4: ClientController description of operations

Operation Action
Create Service Provider Registers service provider login information in database
Login Login service provider
Check Balance Get providers’s balance, transaction history and addresses with tokens
Updated Price Change service provider transport price
Update Address Generate a new receiver address for the service provider

Table 5.5: ServiceProviderController description of operations

response body of some operations had to be trimmed due to its size.

5.3.2 Client (IOTA IRI API)

The client was developed using Jota (Official IOTA client library for Java) [63] which implements the IOTA

IRI API. All API calls are made synchronously since the library is in beta and does not support asyn-

chronous requests yet. This does not affect the solution as a proof-of-concept, however it is essential

for a large scale deployment. The core operations performed when sending a transaction are prepare-

Transfers, validateTransferAddresses, attachToTangle, storeTransactions and broadcastTransactions, as

refered in previously shown diagrams. All used Jota operations are described in Table 5.6

5.4 Frontend

The frontend consists in a single multi-platform application whose intent is to provide an interface to use

the Wallet Manager API. It was developed using the Ionic framework. Ionic [64] is an open-source SDK

that provides tools and services for developing hybrid mobile, desktop, and web applications using web

technologies such as Angular [65], React [66] or Vue.js [67]. In order to use the application, both the

client and the service provider need be registered and logged in. When logged in, the wallet manager

provides the user’s ID which will be the identifier for conducting all operations and these will be redirected

to the client application or service provider applications respectively. The client application operations

are described in Table 5.7 and the service provider application operations in Table 5.8.

The service provider endpoint simulates a transport gateway/terminal/device behavior and was also

implemented in the service provider application. The other option was to implement it on a RaspberryPi

[68], however there were no advantages in doing it besides being more truthful to real scenarios, like the
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ClientController

Create User

URL /create/[name]&[email]&[password]

Method POST

Response Body

Login

URL /login/[email]&[password]

Method POST

Response Body

Check Balance

URL /balance/[id]

Method GET

Response
Body

Charge Wallet

URL /buy/[id]&[paymentInfo]&[value]

Method POST

Response
Body

Transport Price

URL /price/[id]

Method GET

Response Body

Taxi Price

URL /priceuber/[id]&[source]&[destination]

Method GET

Response Body

Ticket

URL /transaction/[id]&[destType]&[dest]

Method GET

Response
Body

Check-in Ticket

URL /checkintransaction/[id]&[destType]&[dest]

Method GET

Response
Body

Check-out Ticket

URL /checkouttransaction/[id]&[destType]&[dest]

Method GET

Response
Body

{"id":"MTRVSANKCKKVBSMFLJLUKEETTKJUGRKK"}

{"id":"MTRVSANKCKKVBSMFLJLUKEETTKJUGRKK"}

{"id":"CXPMBRSAWKRTMUNDLLZGKJTEJMXJV9KX","addresses":["QUSOMDUGTSPUKPBCPVTRRDENOFFFOWESTSSD9EIDOFSOALX9ZTKOPTUVWYOCDKRRAD9ZVZNAQEMDLSWGB

{"id":"CXPMBRSAWKRTMUNDLLZGKJTEJMXJV9KX","content":"org.iota.jota.dto.response.SendTransferResponse@7ff19c33[\r\n  successfully={true,tr

{"price":{"mockservice":"1","Service Name":"1"}}

{"price":{}}

{"id":"CXPMBRSAWKRTMUNDLLZGKJTEJMXJV9KX","bundleId":"57206","bundle":[["9999999999999999999999999999999999999999999999999999999999999999

{"id":"CXPMBRSAWKRTMUNDLLZGKJTEJMXJV9KX","bundleId":"933186","bundle":[["TESTMESSAGE9999999999999999999999999999999999999999999999999999

{"id":"CXPMBRSAWKRTMUNDLLZGKJTEJMXJV9KX","bundleId":"566114","bundle":[["999999999999999999999999999999999999999999999999999999999999999

Figure 5.3: ClientController endpoint operations
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ServiceProviderController

Create Service Provider

URL /service/register[shortName]&[name]&[type]&[password]

Method POST

Response Body

Login

URL /login/[shortName]&[password]

Method POST

Response Body

Check Balance

URL /service/balance/[id]

Method GET

Response
Body

Update Price

URL /service/updateprice/[id]&[price]

Method PUT

Response Body

Update Address

URL /service/updateaddress/[id]

Method PUT

Response
Body

{"id":"TCFZBGRTDA9XSFCDUYKBRX9GDJNJYMLS"}

{"id":"MTRVSANKCKKVBSMFLJLUKEETTKJUGRKK"}

{"id":"D9CRLNEDAWSRXXKVSEEYJRDLKDWTPU9C","addresses":["ECTDNKRFTWJKPEZZABGWOWWZPJOFPDZRYLYUMVPDFDKZTP9MUGSMEYWBWVPCYCGXFOCIEEWBPXAY9HVVB

{"id":"D9CRLNEDAWSRXXKVSEEYJRDLKDWTPU9C"}

{"id":"D9CRLNEDAWSRXXKVSEEYJRDLKDWTPU9C","address":"SRASXBYXIJUJLAQDTBTGJRWDCJNRJGFWGKNSUQIDOJBUUGHKGJJMEAALSHZJR9NINTFLHMSYEYXZTBZKXSTJ

Figure 5.4: ServiceProviderController endpoint operations
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Operation Action
attachToTangle Does proof of work for the given transaction
broadcastTransactions Sends transaction trytes to a node
checkConsistency Checks the consistency of transactions
findTransactions Finds transactions that contain the given values in their fields
generateNewAddresses Checks if a set of transactions is confirmed
getAccountData Returns addresses balance, transaction history and associated tokens
getBalances Calculates the confirmed and unconfirmed balance of addresses
getInclusionStates Checks if a set of transactions is confirmed
getInputs Gets the input addresses of a seed
getTransactionsToApprove Gets two consistent tip transaction hashes to use as tips
getTransfers Finds all the bundles for all the addresses based on the seed
getTrytes Gets a transaction’s contents in trytes
prepareTransfers Prepares transfer by generating bundle, finding and signing inputs
sendTransfer Runs prepareTransfers, attachToTangle and then storeAndBroadcast
storeAndBroadcast Runs storeTransactions and broadcastTransactions
storeTransactions Stores transactions in a node’s view of the Tangle
validateTransfersAddresses Validates the supplied transactions for correct input/output and key reuse
wereAddressSpentFrom Check if a list of addresses was ever spent from

Table 5.6: Jota library used operations

Operation Wallet Manager API endpoints Action
Update Balance GET /balance Balance and Transaction His-

tory Update
Buy Tokens POST /buy Token acquisition
Tickets [GET /price or GET /uberprice

and
GET /transaction]
or
GET /checkintransaction

Ticket generation

Table 5.7: Client application operations

Metro or Bus, and it would complicate the simulation. As such, whenever a client has generated a ticket,

he will submit it on the service provider application. After that, the endpoint will validate its parameters,

retrieve the bundle in the ticket, ask a node/proxy to compute the proof-of-work for all transactions in the

bundle and then send it. The service provider endpoint operations can be found in Table 5.9.

The web interface of the client application can be seen in Figure 5.5 and the service provider appli-

cation in Figure 5.6.

Operation Wallet Manager API endpoints Action
Update Balance GET /service/balance Balance and Transaction His-

tory Update
Update Price PUT /service/updateprice Update service provider’s

transport price
Update Address PUT /service/updateaddress Generate new receiver ad-

dress

Table 5.8: Service provider application operations
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Operation Wallet Manager API endpoints Action
Receive Ticket None Receive ticket from client and

send to node
Checkout Ticket GET

/checkouttransaction
Request check-out ticket and
then send it to node

Table 5.9: Service provider endpoint operations

Figure 5.5: Client application interface - After buying tokens which were not yet confirmed

Figure 5.6: Service provider application interface - After receiving multiple zero-valued transactions
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Chapter 6

Results

This chapter presents the experimental evaluation of IOTA network, in Section 6.1, with the objective of

extending previous benchmarks performed on IOTA with more metrics, which were vital to designing the

solution. Functional tests were also performed on the designed solution, as seen in Section 6.2. Finally,

a discussion of the obtained results is presented in Section 6.3.

6.1 Performance Tests

The state-of-the-art documents regarding IOTA performance and throughput provide some sound con-

clusions that help designing an IOTA network for a practical application, however they are not enough.

Some of these results state that: (1) Currently battery-powered IoT devices are not suitable for IOTA

operations, (2) Transaction speed has a good linear scalability against the number of senders, (3) Con-

firmed transactions per second grow almost linearly with Transaction arrival rate and (4) Proof-of-work

(attachToTangle) and tip selection (getTransactionsToApprove) are the operations that contribute more

over-all transaction insertion delay of each transaction. The design of the network was the base for all

the other solution design choices and, for this, it was required to answer some questions: (1) Which type

of device will compute the proof-of-work, (2) How does different proof-of-work efforts affect its perfor-

mance, (3) What are this device’s hardware requirements, (4) How many nodes/proxies will the network

require and (5) Can the network withstand a large amount of transactions / How does it react when

overcharged. The next sections will try to answer this questions.

6.1.1 Platform and Evaluation Metrics

The benchmark consists in generating and sending multiple transactions at the same time to a node

or/and a proxy. The process of generating and sending a single transaction is represented in Figure

6.1 for a node and in Figure 6.2 for a proxy. IOTA nodes and proxies will be evaluated on two differ-

ent scenarios via the following metrics: (1) Tip selection (getTips) and proof-of-work (attachToTangle)

computation times, (2) Transactions completed per second (Throughput), (3) Time to generate/complete

transaction (Latency), (4) Time to confirm transactions (Confirm Latency), (5) CPU and Memory usage.
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Figure 6.1: Generating and sending a transaction to a node

On both scenarios there were also some network variants such as: (1) Type of machine (node or proxy),

(2) Number of virtual CPU’s/logical cores in the machine (ranging from 1, 2 or 4), (3) Proof-of-work

effort (Minimum weight magnitude of 3, 6, 9, 11 or 13) and (4) Different workloads (Number of sent

transactions). To achieve this, a self-made benchmark tool was created using Python as the coding

language and Pyota [69] as the official Python client library for IOTA since it was the only library that

supported asynchronous requests to the nodes. Python, however, does not provide the functionality of

”true” threads due to GIL. GIL (Python Global Interpreter Lock) [70] is a mutex (or a lock) that allows

only one thread to hold the control of the Python interpreter. This means that only one thread can be in

a state of execution at any point in time. Despite this, since most of the tasks were network I/O bound

achieving concurrency with asynchronous IO was enough for the task. It was implemented using the

asyncio library [71]. Then, after verifying that the tool was not using all the available computing power of

the machine that ran the benchmarking tool, the multiprocessing library [72] was used in order to take full

advantage of every logical core. On the other hand, the IOTA node was configured to be the publisher

of ZeroMQ [73] events, regarding transactions that the IRI node has recently appended to the ledger

and transactions that had recently been confirmed, and the tool acted as subscriber. The computational

resources of the hosts were logged using the top [74] tool in Linux at a rate of one measure per second.

All this data was then compiled to a database and analyzed using Power BI [75]. The environment in

which the benchmark was performed consists in two physical machines connected in a LAN. One ran

a node and a proxy in a virtualized environment with 4GB of RAM dedicated to each and the number

of logical processors of the virtual machines varied between 1, 2 and 4. This physical machine has the

following hardware specifications: an AMD Ryzen 7 3700x 8-Core 3.6Ghz with 16 logical processors

and 32GB of RAM. The other machine ran the developed benchmark tool once per core variation, that is

three runs for the node and three runs for the proxy, making a total of 6 runs. Its hardware specifications

are: an Intel I5-8300H 4-Core 2.3Ghz with 8 logical processors and 16GB of RAM. The next sections

will describe the gathered results obtained from this tool in different scenarios.

6.1.2 Experiment Results

Scenario I

In Scenario I, all previously described network variants were used. Analysing the previously defined

metrics, the following observations were produced:
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Figure 6.2: Generating and sending a transaction to a proxy

1. Proof-of-work (attachToTangle) and Tip selection (getTransactionsToApprove) computation times:

From the data gathered, in Figure 6.3, it is possible to observe how the computation times of the

attachToTangle operation change for different minimum weight magnitude values and number of

logical cores in different machines (the node and proxy). This data was an averaged for different

numbers of sent transactions. What is important to note here is how the computation times of this

operation remain virtually the same until a certain threshold weight for all machines and number

logical cores associated. This threshold weight can be seen at around the minimum weight mag-

nitude of 9. Of course the number of sent transactions also plays a critical role in increasing or

decreasing the computations times, as more sent transactions will require the same computational

resources to process more transactions, thus distributing the computer power between more op-

erations. On low numbers of sent transactions, some of the computational times are equivalent

regarding the minimum weight magnitude, like the minimum weight magnitude of 11 on a node,

or of 13 on a proxy. Despite all this, it is clear how both the node and proxy require more logical

cores on high demanding tasks to be able to compute attachToTangle in reasonable times. It is

also clear that the proxy is able to handle high demanding tasks better than the node, computing

the attachToTangle operation in less time than the node with half the cores. To resume, all of these

variables seem to affect the performance of the machines when computing the attachToTangle

operation. From the data gathered, in Figure 6.4, it is possible to observe how the computation

times of the getTransactionToApprove operation change for different number of sent transactions

and number of logical cores in different machines (the node and proxy). It is important to reinforce,

at this stage, that this operation is not actually executed in the proxy but in the node, so when

referring to the proxy it’s implicit that is actually the performance of a node with a proxy relaying

the requests for this operations. As such, it is possible to compare the performance of a node in a

scenario where it is also computing the proof-of-work to a scenario where it does not and therefore

has more computational resources. In both Figure 6.4 and 6.4, the computational times increase

as more transactions are sent (for all logical cores). However, it seems to reach an upper bound

limit between 30 and 40 seconds after a certain number of sent transactions. It’s also visible that

increasing the number of cores have little to no effect on the performance of this operation. There

is, however, another parameter that influences its performance: the milestone depth. The depth

defines how many milestones in the past the node starts the tip selection algorithm. The greater

the depth, the farther back in the Tangle the IOTA node starts. A greater depth increases the time
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(a) Node

(b) Proxy

Figure 6.3: Scenario I - (1) attachToTangle computation times

that nodes take to complete tip selection, making them use more computational power. This be-

havior can be observed in Figure 6.4. Here, 800 and 1600 transactions were sent with a milestone

depth of either 3 or 9 to a node and a proxy. In the previous benchmarks the milestone depth was

of 3. Analysing the data, an increase in milestone depth seems to affect more the node in higher

sent transactions whereas the proxy is more affected with less sent transactions. Nevertheless,

the proxy outperforms the node overall.

2. Transactions completed per second (Throughput): From the data gathered, in Figure 6.5, it is pos-

sible to observe that the throughput of the node and the proxy increase as the minimum weight

magnitude of the network decreases for machines with four logical cores and a total of 1280 sent

transactions. The average time to complete a transaction (Latency) follows the inverse path, it

decreases when increasing the minimum weight magnitude. It is also possible to observe that the

proxy can achieve higher throughput and lower latency. The highest throughput achieved was of
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(a) Node

(b) Proxy

(c) Node and Proxy for different Milestone depths

Figure 6.4: Scenario I - (1) getTransactionsToApprove computation times
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7.92 completed transactions per second, on a proxy of 4 logical cores, 3 as the minimum weight

magnitude and 1280 total sent transactions. The lowest throughput achieved was of 0.16 com-

pleted transactions per second, on a node of 2 logical cores, 13 as the minimum weight magnitude

and 320 total sent transactions. From this results, we can conclude that the minimum weight mag-

nitude greatly influences the throughput and latency and that the proxy performs generally better

than a node when receiving a high number of transactions. What about for a different number of

logical cores?

3. Time to generate/complete transaction (Latency): From the data gathered, in Figure 6.6, we ob-

serve the variation in latency and time to send all the transactions for a different number of logical

cores in both the node and the proxy. It is clear that the higher the number of cores, the lower the

latency, for different numbers of sent transactions. The node with one logical processor has rela-

tively the same performance as one node with two logical processors since parallelism can only be

achieved starting from four logical processors. From Figure 6.6 (b), it is possible to observe how

greatly the proxy performs when compared to a node with the same minimum weight magnitude

and number of cores. But, what about for a different number of sent transactions? In Figure 6.7,

it is possible to observe that the latency increases almost linearly with the number of sent trans-

actions for each minimum weight magnitude and number of logical cores in general. However, a

curious behavior can be found when analyzing this data in detail. From 10 to 80 sent transactions,

the latency has a linear relationship, for both the node and the proxy and all minimum weight mag-

nitudes, with the number of sent transactions, that is, if we multiply the number of sent transactions

by 2, the latency will multiply by approximately 2. From 320 to 1280 sent transactions, the latency

factor of growth will decrease or stay the same depending on the computational capacity of the

machine or the minimum weight magnitude, that is, the trend is to have a factor growth rate of ap-

proximately 2 but this factor can decrease if the host is a proxy (which as shown to perform better

than nodes) or the minimum weight magnitude is small enough or the number of logical cores is

high enough. After this decrease, however, the growth factor can resume to the trend. To have a

better perspective over this observations, the CPU and Memory usage will be analysed in 5.

4. Time to confirm transactions (Confirm Latency): From the data gathered, in Figure 6.8, we ob-

serve an histogram of the time to get a transaction approved by the coordinator with a rate of one

milestone issued per minute (default of the IOTA network). It is clearly visible to what an extent a

transaction can go to get approved by the coordinator. For the global values registered (for different

logical cores, sent transactions and minimum weight magnitudes), the minimum value was of 0.5

seconds to approve, the maximum of 7482 seconds and it averaged around 654 seconds. It was

also observed that the higher the number of transactions received by the coordinator, the higher

the time to approve and standard deviation. During the tests, the coordinator software, compass,

also faulted/crashed when the node was being overloaded with transactions. This could indicate

that the coordinator is not sufficiently robust to perform under low computational resources or high

network I/O. This caused some of the transactions to get even more delays to get approved.
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(a) Relationship between the Throughput and Latency of a Node for different Minimum Weight
Magnitudes and the highest number of sent transactions and cores

(b) Relationship between the Throughput and Latency of a Proxy for different Minimum Weight
Magnitudes and the highest number of sent transactions and cores

Figure 6.5: Scenario I - (2) Throughput
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(a) Variation of latency and total time to send all transaction between Node and Proxy, and Number of
Cores

(b) Variation of latency and total time to send all transaction between Node and Proxy, Number of
Cores and Minimum Weight Magnitude

Figure 6.6: Scenario I - (3) Latency
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(a) Node

(b) Proxy

Figure 6.7: Scenario I - (3) Latency
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(a) Histogram of time to approve a transaction

(b) Confirmed transactions per second on different
logical cores

Figure 6.8: Scenario I - (4) Confirm Latency (in seconds)
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5. CPU and Memory usage: From the data gathered, in Figure 6.9, the variation in CPU and Memory

utilization of the node and the proxy for all different minimum weight magnitudes and transactions

sent is observable. It presents an average result of all logical cores, to provide a general insight

regardless of machine specifications. So, the first thing to notice is that, since the proxy only

proxies the requests to a node and computes the proof-of-work, its memory utilization is very

low, allowing us to know that the proof-of-work computation involves no memory utilization at all.

The second thing to notice, is that the CPU utilization of the proxy almost never reaches 100%

while receiving requests, meaning that it probably never got bottlenecked. The same behavior is

not verified on the node, since it reaches 100% CPU utilization on considerably low numbers of

sent transactions and minimum weight magnitudes. There is, however, nothing uncanny about

this behavior, since it is known that the node is executing the IOTA protocol by running the IRI and

Compass software giving it a disadvantage compared to a fully dedicated machine for computation.

If we observe some of the latency results, for example for a minimum weight magnitude of 3 and

6 with 80 sent transactions, on both hosts prior to reaching a maximum registered value of 100%

CPU utilization, we can see that the latency values and increase rate are similar. Observing them

after hitting the max CPU utilization at a given time, the latency starts to increase by a lot. For

example, for a minimum weight magnitude of 11 with 320, 640 and 1280 sent transactions, the

node latency starts to increase at a different rate when compared to the proxy. In terms of memory

usage on the node, it increases as more transactions are received. It, however, seems to reach an

upper bound usage threshold at around 60% which was not possible to justify in the scope of this

project.

Scenario II

The Scenario II consist is one node and one proxies, both with 4 logical cores each, only a proof-of-

work effort (Minimum weight magnitude) of 9 is studied and the network has an even higher workload

(Higher number of sent transactions) when compared to Scenario I. This time, the tool sent a total of

1200, 1600, 1840, 2000, 2400, 3200 or 4000 transactions in total and the Throughput was limited by the

number of transactions requested per second by the tool. The objective of this scenario was to extend

the previous benchmarks presented in the Subsection 6.1.2 and understand how the node and the proxy

would withstand an higher workload at a constant Throughput. Analysing the previously defined metrics,

the following observations were produced:

1. Transactions completed per second (Throughput): From the data gathered, in Figure 6.10, it is

possible to observe that the throughput remains relatively constant at around 5.5 to 6 transactions

completed per second on the node and proxy, as expected. However, in the node, at around 2000

sent transactions a sudden drop in the throughput is visible. This was due to the fact that, at

this point, the node started to not accept or drop transactions. This benchmark was repeated

but it resulted in the same behavior. Now, was it caused by computational resources overload or

network IO limitation? The discussion of this subject will continue in the next topic.
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(a) Node

(b) Proxy

Figure 6.9: Scenario I - (5) CPU and Memory Usage
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2. Node and Proxy comparison of CPU and Memory usage, Throughput and Time to generate/complete

transaction (Latency): From the data gathered, in Figure 6.10, it is possible to observe the compiled

data from the previously discussed metrics for both the node and proxy. In terms of computational

resources, the average CPU utilization on both machines keeps relatively the same with some

small variations, which makes sense since the throughput also is quite constant. The memory

utilization, however, keeps increasing as more transactions are sent to the node. This probably

means that at the time the node is receiving transactions from a benchmark, it still has not yet

been able to process all transactions from the previous benchmark or was just not able to free its

memory as the node might still be inserting transactions and other data in the database or trying

to broadcast them to its neighbors. Resuming the subject discussed on the item 1, when the node

faults at a total of 2000 sent transactions, the maximum and average registered CPU usage as

well as the maximum and average Memory utilization are within reasonable values, nothing that

could justify an overload of the system. Looking at the proxy, which is an identical machine, both

in terms of resources and configurations, where the only difference is the running software that

receives and processes the requests, it remains stable and within the expected results. This be-

havior is curious and uncanny because the proxy has to be always connected to a node in order

to proxy all end user’s requests except the proof-of-work computation. That said, the proxy was

found to be more reliable and faster than a node when receiving requests from the end user’s.

3. Time to confirm transactions (Confirm Latency): From the data gathered, in Figure 6.12, an his-

togram of the time to get a transaction approved by the coordinator with a rate of one milestone

issued per minute (default of the IOTA network) is observable. For the global values registered

(for different numbers of sent transactions), the minimum value was of 1.13 seconds to approve,

the maximum of 6569 seconds and it averaged around 3491 seconds. It was also observed that

the higher the number of transactions received by the coordinator, the higher the time to approve

and standard deviation. Compared to the data obtained in the Scenario I, the histogram in the

Scenario II is much more flat with transactions taking longer to get approved. During the tests, the

coordinator software, compass, also faulted/crashed when the node was being overloaded with

transactions. This behavior was also observed in the previous scenario. In conclusion, in the pre-

vious scenario it was seen that the coordinator took longer to approve transactions for an higher

number of sent transactions, which by itself increased the throughput. Because the scenario con-

sisted in testing a different number benchmarks for different minimum weight magnitudes, the node

where the coordinator was running had more computational resources available between heavier

benchmarks. In this scenario, the coordinator was running on almost the same resources thor-

ough the benchmarks at an high throughput which might have lead to higher confirm latency. So,

the confirm latency is, most likely, directly related to the throughput and computational resources

usage over time.
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(a) Node

(b) Proxy

Figure 6.10: Scenario II - (1) Throughput
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Figure 6.11: Scenario II - (2): Node and Proxy comparison of CPU and Memory usage, Throughput and
Latency

Figure 6.12: Scenario II - (3) Confirm Latency (in seconds)
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6.2 Functional Tests

The validate the designed solution, the use cases defined in Section 4.5 were simulated. There were

two types of operations to measure: (1) the Wallet Manager API operations and (2) the service provider

endpoint operations. The first was tested using JUnit and filters over HTTP(s) requests that provided the

execution times for each endpoint. The tests ran 50 times to get an average result and a more accurate

representation. The error was gathered from the minimum and maximum execution times in the test.

The second was tested automatically in the application with a simple loop function. It also gathered

the results of 50 executions and averaged them, and the error was also measured in the same way.

Therefore, since some of the created use cases use wallet manager API and service provider endpoint’s

operations, the results were then summed to create an approximation of the execution times in a real

life scenario with only one client. The operations required for each use case can be found in Subsection

6.2.1 and the results in Subsection 6.2.2.

6.2.1 Use cases

The following list details the necessary operations required to execute in each use case:

US1 - Check Balance

1. Client selects Update Balance operation on the client application

US2 - Charge Wallet

1. Client selects Buy Tokens operation on the client application

US3 - Use Transport

1. Client selects Tickets operation on the client application

(a) Client selects transport option ’Bus’ on service provider ’MetroLx’

(b) Client requests and receives ticket for ’Bus’ on Service Provider ’MetroLx’

2. Client delivers the ticket to the service provider endpoint (metro gateway) and is ready to use the

metro

3. Service provider endpoint (metro gateway) executes operation Receive Ticket

US4 - Use Transport (Wallet Consumption

1. Client selects Tickets operation on the client application

(a) Client selects transport option ’Electrical Scooter’ on service provider ’ScooterLx’

(b) Client requests and receives check-in ticket for ’Electrical Scooter’ on service provider ’ScooterLx’
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Operation Wallet Manager API endpoints Average time to finish (ms)
Update Balance GET /balance 13017.7
Buy Tokens POST /buy 4486.55
Get price GET /price 31
Get price based on distance GET /uberprice 32.3
Generate Transaction GET /transaction 1383.7
Generate Check-in transaction GET /checkintransaction 1420.2
Generate Check-out transac-
tion

GET /checkouttransaction 1585.1

Update Service Provider’s Bal-
ance

GET /service/balance 15112.3

Update Service Provider’s
Price

PUT /service/updateprice 34.4

Update Service Provider’s Ad-
dress

PUT /service/updateaddress 278.2

Table 6.1: Wallet Manager endpoint’s execution times

Operation Average time to finish (ms)
Receive ticket 1721.2
Checkout ticket 3190.1

Table 6.2: Service endpoint operations execution times

2. Client delivers the check-in ticket to the service provider endpoint (scooter endpoint) and is ready

to use the scooter

3. Service provider endpoint (scooter endpoint) executes operation Receive Ticket

4. Client uses the transport for 10 minutes

5. Client requests the check-out to the service endpoint (scooter endpoint)

6. Service provider endpoint (scooter endpoint) executes operation Checkout ticket

6.2.2 Experiment Results

The results obtained for the wallet manager API operations can be found in Table 6.1 and for the service

provider endpoint in Table 6.2. The overall execution times for the use cases are shown in Figure 6.13.

This results fit to the gathered results for the IOTA network in the Section 6.1 on a low number of total

sent transactions. As a possible improvement, would be to replace the the Update Balance operation,

on the wallet manager API, that requests the balance, transaction history and address information at the

same time to multiple fined grained operations that not only allowed more control but also less execution

times, as this operations was by far the longest to run.

6.3 Discussion

This sections justifies some of the design decisions made for this work by analysing three scenarios.

We will consider, in the course of this section, as possible double-spending the scenario where a client
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Figure 6.13: Average time to execute each Use Case

issues a fake ticket and is able to use a transport, even though the ticket contained in the transaction

later becomes detected as a double-spend in the Tangle

1. Proof-of-work is computed at the transport gateways: In this scenario, the minimum weight magni-

tude can be a lower value than the standard IOTA network because the transactions can be gen-

erated by the gates instead of a client, which are less trusted – this results in a more centralized

architecture which requires more computational resources. This architecture is not as centralized

as the dedicated nodes alternative but it is not so feasible since the transportation gates are usually

low-performance devices, resulting in a very high delay to compute proof-of-work (results can be

found in Chapter 2 for a minimum weight magnitude of 14), thus making this scenario unfeasible.

2. Proof-of-work is computed at the client’s smartphone: In this scenario, the minimum weight magni-

tude needs to be similar to the standard IOTA network because the transactions are generated by

the client and it is used to prevent spamming of the network – this results in a more decentralized

architecture making it possible to save network resources. However, because smartphones do

not have the same computing power as a dedicated machine and the minimum weight magnitude

needs to be high, this results in a high delay to compute proof-of-work (results can be found in

Chapter 2 for a minimum weight magnitude of 14). The processing power of the device would

also change the experience a lot from client to client and affect its battery. What also makes this

scenario unfeasible is the possibility of double-spending. In this scenario the client would need

to have in his possession all the necessary information to compute and generate a transaction

and due to the time it could take to approve a transaction, the IOTA network would only detect a

double-spend much time after the user had delivered the transaction.

3. Dedicated nodes or proxies to compute proof-of-work: In this scenario, the minimum weight mag-

nitude can be a lower value than the standard IOTA network because the transactions can be

generated by a dedicated trusted server instead of a client – this results in a more centralized

and secure architecture which requires more computational resources but also makes it possible
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to achieve better proof-of-work performance since the hosts can be high performance machines.

It would also allow to implement a solution for the double-spending problem, by making sure that

tickets were authentic and not allowing repeated tickets to enter the system. It was, as such, the

most fit scenario to implement in a public transport ticketing system.

The previously obtained results, in Section 6.1, were conducted to evaluate the chosen scenario and

to provide better insights when designing the solution. The main takeaways were:

1. Proof-of-work computation times highly depend on the chosen minimum weight magnitude

2. Tip selection computation times highly depend on number of transactions received by the host in

a period of time, stabilizing after a certain threshold

3. Not enough computational resources on the proof-of-work computing host will cause a great delay

in this operation

4. Node’s seem to constantly grow its memory usage with time as more are sent transactions at a

fixed throughput

5. A proxy is more reliable and better performing on high demanding environments (e.g., higher

minimum weight magnitudes and/or higher number of requests)

6. Coordinator nodes constant high computational resources (CPU and/or Network IO) usage will

cause a great delay in transaction confirmation speeds or even failure/crash

Gathering all this data and studying it for the chosen scenario, we could theoretically apply it to a

real-life scenario. Using a proxy connected to a node, both with 4 logical processors (2 CPU’s) and 4GB

of RAM, to receive the requests from transport gateway/terminal at the same fixed rate as the previ-

ously executed benchmarks on a host with the equivalent specifications, a Throughput of 6 transactions

completed per second would be accomplished. This means that a single proxy connected to a node

would be able to send around 500.000 transactions to the Tangle per day. If we were to double its com-

putational power to 8 logical cores (4 CPU’s), we could also double its Throughput to 12 transactions

completed per second and it would be possible to send around 1 million transactions to the Tangle. All

this, while most likely not having more than 90% CPU usage at a given point in time. These results make

the primary solution previously presented in Chapter 4 viable in terms of performance/cost relationship.
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Chapter 7

Conclusions

In this chapter, it is described the main findings from this dissertation, as well as the existing limitations,

and introduces some future work ideas.

7.1 Limitations

Despite all the advantages of using a DLT, such as IOTA, to implement a ticketing system in the mobility

sector, there are still some limitations in this technology that were not addressed by its creators in the

course of this work. The most important limitations of IOTA in this context were: (1) The high demanding

computational effort required when computing the proof-of-work, for an effort level considered as the

standard for a public network. This makes it difficult to integrate IOTA into low-performance or battery-

dependent devices, (2) The coordinator as a single point of failure. This fact makes the confirmation

of transactions reliant on a single node. If this node fails, the whole network is vulnerable to double-

spending attacks and (3) The lack of performance and scalability benchmarks of its components and

operations. This makes it difficult to design a network able to handle thousands of requests. As such, it

was necessary to study or overcome these limitations.

7.2 Achievements

Given the defined requirement for processing micropayments in little time without much computational

effort, IOTA promised to be the most interesting DLT to study. It was, at the start of the project, a relatively

unknown and unstudied DLT. As such, in the Related Work chapter, IOTA was studied to deepen the

technical knowledge and its applications in the IoT environment. Also, different DLTs were compared,

aggregating the most positive and negative aspects of each solution. Some limitations found in the IOTA

had to be addressed and to do so, some benchmarks were created and a solution was designed to

mitigate some of the limitations in light of the requirements present in a ticketing system for the mobility

sector. It was achieved by: (1) Reducing the proof-of-work effort, (2) Designing an overlayer which

not only transformed IOTA into a permissioned network, preventing a client from travelling a number
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of times before its detected in the IOTA network as a double-spend, but also increased the resiliency

of the coordinator and the scalability of the network and (3) Developing a series of benchmarks on

IOTA’s main components, the node and the proxy, in order to design a well-scaled network to support

the developed solution and future works. With these problems addressed and understood, it was then

possible to develop a solution as proof-of-concept of a ticketing system for multiple transport modalities

and different usability schemes using IOTA. However, this design of the solution brought some other

limitations which were not addressed in this work. In conclusion, despite having addressed some of the

issues and having designed a workable proof-of-concept, we found IOTA 1.0 to be an going evolution

not yet mature enough to be implemented in a large scale real life scenario.

7.3 Future Work

Benchmarks

To further improve the benchmarks executed on the IOTA components, we could distribute the client

that is performing the requests so that more requests could be sent per second by not being limited

to the computational resources of one machine. On the other hand, we could also increase the num-

ber of nodes in the IOTA network to study its scalability. Benchmarks could be also executed on low-

performance devices, fit for IoT, on lower proof-of-work efforts.

Solution

To further improve the solution, the wallet manager component needed to be benchmarked and audited

in order to transform it into a secure and highly available component, since without it would be impossible

to use the network. An other component could also be added to the solution to provide better auditing

capabilities. As a proof-of-concept, we could distribute the designed components into different networks

and implemented the service provider endpoint in a low-performance device (e.g., Raspberry Pi), which

would allow a more seamless and real-life experience.

IOTA

To further improve IOTA 1.0, the IOTA foundation has proposed in January 2020 a series of improve-

ments to what they called Coordicide [76], which would finally bring IOTA to a place closer to its objec-

tives. Some of this new changes are now available to study and test since they are implemented in new

components, but were not, however, until very recently, not making it in time for this project. We believe

that with this change, IOTA could be the many steps closer to the DLT that was initially promised for

processing micropayments in little time without much computational effort in IoT devices. When all of

this new changes get implemented, IOTA will release its version 2.0. Some of the new changes include:

• Node accountability: the concept of global node IDs and a novel Sybil protection mechanism

that does not require node owners to risk or disclose their funds. Identifying the issuing node
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of a message is fundamental to enforce a specific network topology (through autopeering) or to

penalize bad behaviours (through rate control).

• Autopeering and node discovery: An automated process to discover and reliably connect to neigh-

bors is needed in every distributed system.

• Rate control: To ensure the network does not exceed its capacity, a mechanism to control the

rate of transactions that are propagated through the network. This method selectively filters some

transactions out according to the statistics of the issuing node.

• Consensus and Voting: The previous building blocks lead to an extended consensus framework.

The new protocol does not use the tip selection algorithm as a tool for consensus, although it

is still has its importance. Instead, it proactively resolves conflicts through voting. Two voting

mechanisms were proposed where nodes query other nodes to find out their current opinion on

the network status.

• Tip Selection: With the decoupling from the consensus mechanism, the tip selection algorithm has

more freedom to achieve a better performance in its other tasks, as keeping the good structure

of the network, demotivating lazy behavior and quickly approve new honest transactions. More

details were proposed for a new tip selection. algorithm.
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Appendix A

Main types of blockchain systems

Read Write Commit
Public permissionless Open to anyone Anyone Anyone
Public permissioned Open to anyone Authorized partici-

pants
All or subset of autho-
rized participants

Consortium Restricted to an au-
thorized set of partici-
pants

Authorized partici-
pants

All or subset of autho-
rized participants

Private permissioned Fully private or re-
stricted to a limited set
of authorized nodes

Network operator only Network operator only

Table A.1: Main types of blockchain systems
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Appendix B

Comparison of Consensus Protocols

89



Consensus Protocol Network Settings Description
PBFT-based Private Hyperledger uses the original PBFT. Tender-

mint enhances it by assigning unequal weights
to votes. Other variants include Scalable BFT,
Parallel BFT, Optimistic BFT, etc.

Stellar Federated Stellar Network proposes its own consensus
protocol where the nodes form intersecting
groups (federates). Consensus is agreed in
each group, then propagated to the rest of the
net-work.

Ripple Federated Ripple payment system proposes a variant of
PBFT where the nodes belong to intersecting
groups, and in each group, there is a large
major-ity of non-Byzantine nodes.

Proof-of-Work (PoW) Public Bitcoin uses pure proof-of-work, which leads to
scalability issues. Bitcoin-NG, Byzcoin sepa-
rate leader election from transaction validation
in PoW, thus increase the overall performance.

Proof-of-Stake (PoS) Public Tendermint uses PoS, in which a node’s ability
to create net block is determined by its stake in
the blockchain, e.g. the amount of currencies it
owns. A set of high-stake owners uses another
consensus mechanism, which is usually faster
than PoW, to reach agreement on a new block.

Proof-of-Authority
(PoA)

Private Parity uses PoA, in which some predefined
nodes are considered trusted authorities and
they can propose the next blocks. It then uses
round-robin scheduling to assign every author-
ity node a time window during which it can pro-
pose blocks.

Proof-of-Elapsed Time
(PoET)

Private Sawtooth uses PoET, in which each node runs
a trusted hardware, for example Intel SGX, that
generates random timers. The first node whose
timer has expired can propose the next block.

Proof-of-Burn (PoB) Public Slimcoin uses PoB, in which a node destroys
some base currencies it owns in another block-
chan in order to get a chance of proposing a
new block. Slimcoin supports PoB based on
Peercoin.

Proof-of-Elapsed Time
(PoET)

Private Sawtooth uses PoET, in which each node runs
a trusted hardware, for example Intel SGX, that
generates random timers. The first node whose
timer has expired can propose the next block.

Others Public Other protocols based on PoW are of the
form proof-of-X, for examples: Proof-of-Activity,
Proof-of-Space, Proof-of-Luck, etc. Other non-
PoW based consensus protocols include the
Tangle, used in IOTA.

Table B.1: Comparison of Consensus Protocols
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Appendix C

Performance Comparison of

Blockchain in IoT application

Figure C.1: Performance Comparison of Blockchain in IoT application
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Appendix D

Comparison of Consensus Protocols

Figure D.1: Comparison of Consensus Protocols
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Appendix E

Transactions per Second for Selected

Cryptocurrencies

Figure E.1: Transactions per Second for Selected Cryptocurrencies
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Appendix F

Cryptographic primitives in

blockchains

Figure F.1: Cryptographic primitives in blockchains
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