
IntelliComment

An IDE Plugin to Improve Java Source Code Using
Comments

Francisco Machado Duarte
francisco.duarte1995@gmail.com

Instituto Superior Técnico

Abstract. Code comments are an underrated source of information
about the source code. Because they are written in natural language,
their analysis is a non-trivial task. To make use of this hidden informa-
tion we propose a tool in the form of a plugin for a widely used Java
IDE, IntelliJ Idea. The plugin has core features such as a scope finder
that returns the scope of a comment. These features can be used to create
personalized analysis that take into consideration the comment content.

Keywords: Code Comments, Java, IntelliJ Plugin, Comment Scope,
Analysis



2 Francisco Machado Duarte francisco.duarte1995@gmail.com

1 Introduction

1.1 Motivation

Comments are the second most used artifact for code understanding, behind
only the code itself [de Souza et al., 2005]. They facilitate code comprehension
[Tenny, 1988,Woodfield et al., 1981] and the lack of comments leads to misunder-
standings and low maintainability of software [Hartzman and Austin, 1993,Lientz, 1983].
As programmers, we write a great amount of comments in our code, informing
whoever reads the code (ourselves included) about a diverse range of information
about our code.

But these comments are only ever used by humans and are discarded as soon
as compilation occurs. What if we could utilize all the information contained in
natural language comments for something more?

The bigger challenge to using the comments in an automatic way is their very
nature: comments are written in Natural Language. This means that a regular
comment does not follow any specific structure. It is very hard to automatically
determine what part of the code the comment is referring to. It is also difficult
to extract meaning from the contents of a comment.

Finding a way to not only extract information from a comment but also
to use it for comparison with the code it refers to could lead to finding an
inconsistency. This inconsistency could mean either something wrong with the
comment (in which case we correct it to get better documentation) or something
wrong with the code (in which case we found a bug). In either case, finding this
inconsistencies would always lead to the betterment of our final product.

1.2 Objectives

As we will see in the next chapter, much work as already been done in under-
standing both the meaning of a comment as well as its scope (the section of the
code it refers too).

Our main objective is to put this knowledge to practical work. To create an
extensible tool, an IDE plugin, that provides an easy way for the programmer
to create its own analysis to code-comment relations.

With comments being written in natural language, there is a high amount of
possibilities for code-comment inconsistencies. We cannot possibly create anal-
ysis for each one, so the next best thing is a tool that allows the definition of
more analysis to suit the programmers’ needs.

1.3 Structure

In this section I will describe how this document is structured. In Chapter 2 we
will review a series of works that are related to our project as well as some of
the possible tools available. We will explore work already done in both the area
of understanding and classifying code comments as well as the area of defining
the scope of a comment.



IntelliComment 3

Chapter 3 will be dedicated to Functional Design. We will discuss all that
the plugin must be able to do and it should be organized without restricting it
to a single language or IDE.

In Chapter 4 we will discuss our implementation. Although the concepts
described in Chapter 3 are applicable to multiple combinations of languages and
IDE’s, in this chapter we will discuss our decisions in the making of a functioning
IDE for the IDE IntelliJ, for Java.

Chapter 5 we will make an evaluation of our implementation, verifying how
easily a new Analysis can actually be implemented.

Chapter 6 is reserved for our conclusions and reflections on possible future
work.

2 Background and Related Work

As background for this work, the main focus are studies made around code
comments. As examples, we have quality analysis of a source code comment
[Steidl et al., 2013], classification of comments in Java OpenSource Software
[Pascarella and Bacchelli, 2017] or classification with multiple categories instead
of one [Haouari et al., 2011,?]. All of these works are important to understand
comments, their role in the comment and possible uses in the future.

As for Related Work, multiple recent papers have been made recently explor-
ing these areas, such as:

– Large-scale empirical study made on code-comment inconsistencies[Wen et al., 2019].
– How to generate and propagate code automatically [Zhai et al., 2019].
– Automatically detect the scope of source code comments [Chen et al., 2019].
– A machine learning model capable of suggesting comment locations[Louis et al., 2020].

These works give support to the claim that our work is relevant in today’s
programming world and the next step into transitioning these concepts into
application.

3 Functional Design

There is a set of requirements that must be met in order to create a plugin that
extracts and uses comment information. We should be able to implement the
plugin in any OOP language and any IDE that supports the requirements.

3.1 Requirements

3.1.1 Process Language Elements The plugin needs to be able to access
and process language elements, like comments or method declarations or cycles.

3.1.2 Process Text from Comments Some kind of Natural Language pro-
cessing tool needs to be used here.



4 Francisco Machado Duarte francisco.duarte1995@gmail.com

3.1.3 Find Comment Scope In order to compare comment with code, we
need to be able to associate the comment to the specific code. The lose structure
of comments with the fact that they are written in natural language makes this
task very difficult to accomplish.

3.1.4 Create New Analysis The amount of possibilities for analyses is enor-
mous. The thing about the plugin is that it should be able to be easily extendable
with new personalized analysis that a user might need.

3.1.5 Modify Language Elements In addition to accessing language ele-
ments, the plugin need to be able to actually create, delete and modify elements,
so that when an incoherence is detected the plugin can fix it.

3.1.6 User Communication Communication with the user is key. The user
needs to be in control if changes will happen or not and the plugin should be
able to communicate all the possibilities.

3.2 Architecture

Considering all these aspects we can now create an architecture for our Plugin.
The design we achieved was as represented on 1.

Fig. 1. Plugin Architecture

4 Technical Design

The language chosen for this implementation was Java and the IDE IntelliJ.
However, any other combination could be used as long as it met the requirements.



IntelliComment 5

4.1 PSI

First of all, the PSI. It stands for Program Structure Interface and is the layer of
IntelliJ responsible for parsing files and creating the syntactic and semantic code
model used by many of it’s other features. This is the mechanism that allows
the access and modification of the actual code written by the user and as such,
of extreme importance for our work.

4.2 Implementation of the Requirements

– Process Language Elements - Psi and Visitors

– Process Text from Comments - CoreNLP

– Find Comment Scope - ScopeFinder

– Ease of New Analysis Creation - New Analysis Procedure

– Modify Language Elements - “Fix” Classes

– User Communication - JPanel and Multiple ”Fix” Classes

5 Evaluation

The objective of this project was an extensible plugin where the user could
use some provided functionalities like the ScopeFinder to create personalized
Analysis. How do we evaluate this then? The natural answer would be: in the
end, how capable where we of creating a new Analysis?

For this we will follow the creation of a new Analysis. First, we will consider
this example:

public void calc(double[][] A) {

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {V[i][j]= A[i][j];}

}

tred2(); // Tridiagonalize.

tq12(); // Diagonalize.

...

}

This example was taken from a real project [Pascarella and Bacchelli, 2017]
and we can see what could be changed: ”tridiagonalize” is a better, more legible
name for tred2().

So our objective is an Analysis that searches and fixes this kind of problems.

5.1 plugin.xml

First, we need to edit the plugin.xml in order to add the new analysis.



6 Francisco Machado Duarte francisco.duarte1995@gmail.com

5.2 Inspection class

Then comes the creation of an Inspection class, that extends LocalInspectionTool
and has a very rigid form. Part of this class will be the JPanel and visitors for
the elements we are interested in.

5.3 Extra Logic

Here comes the logic behind this specific Inspection. It is an auxiliary class that
will process each comment and check whether or not it is a one English verb
comment and that what it references is a method call or declaration.

5.4 The Possible ”Fix” Classes

In this cases, the plugin provides two options for the user when a code comment
pair is flagged. Either it is ignore, or the switch from the original id of the method
to the comment happens.

5.5 The Fix

If the user does chose to make the switch, the plugin will search all the references
to the considered method and change them all plus the declaration to the new
identifier. The comment is then deleted.



IntelliComment 7

5.6 Conclusion

Work had already been done in the field of comment understanding, both in
the comments meaning as well as in what it refers to. However, the knowledge
obtained from this work was not yet put to practical use. This was our objective
for this project.

We wanted to create an extensible IDE plugin that provides an easy way for
the programmer to create its own analysis to code-comment relations.

The final result was an IntelliJ plugin for Java. As part of this plugin we
have some core features such as: the framework and one implementation for the
scope finder (to return what part of the code a specific comment is referring),
a way to do some natural language analysis with CoreNLP and two functional
analysis. From these two analysis, one is simpler with the objective to serve as a
model for the programmer to create new ones, highlighting the various aspects
of the plugin. The other one is the implementation of a suggestion for this type
of analysis made in a related work that tries to improve code understanding by
searching for possible poorly named methods and suggesting a correction based
on the comment that accompanies it.

In addition to our concrete implementation, we also set a number of require-
ments that such type of tool must follow. By adhering to these, it is possible to
create the same functional tool for other languages and IDE’s besides Java with
IntelliJ.

To utilize our tool it is possible to just utilize the analysis already imple-
mented. It is also possible to create new analysis as needed. To help create new
ones we provided a step by step guide on the important components that make
an analysis.

5.7 Future work

We identify two main areas worthy of future investment.

5.7.1 Scope Finder Our current implementation of the scope finder is a
simple one. It can be improved with more comment scope knowledge, which is
already being worked on as we saw in the related work section. A better scope
finder means better results form the plugin as it will be better at finding correct
comment code pairs.

New Analyses
The ground work is all done, but the plugin now needs more functionality,

and that means more Analyses. Imagination and need are the limit here. For
example, an analysis that uses comment information to determine the range
of a variable and then checked the following code to see if this range is being
respected. Or an example from one of the papers mentioned in the related code,
to find how where in the code there is a need for a comment to help the user not
forget and make comments in appropriate places. It could something that helps
the user avoid certain types of not so useful comments, or that tracks nonsensical
comments such as commented code for the user to delete.



8 Francisco Machado Duarte francisco.duarte1995@gmail.com

Bottom line is that the plugin exists as a tool for the programmer to make
personalized use based on their needs.

References

[Chen et al., 2019] Chen, H., Huang, Y., Liu, Z., Chen, X., Zhou, F., and Luo, X.
(2019). Automatically detecting the scopes of source code comments. Journal of
Systems and Software, 153:45–63.

[de Souza et al., 2005] de Souza, S. C. B., Anquetil, N., and de Oliveira, K. M. (2005).
A study of the documentation essential to software maintenance. In Proceedings of
the 23rd annual international conference on Design of communication: documenting
& designing for pervasive information, pages 68–75. ACM.

[Haouari et al., 2011] Haouari, D., Sahraoui, H., and Langlais, P. (2011). How good
is your comment? a study of comments in java programs. In 2011 International
Symposium on Empirical Software Engineering and Measurement, pages 137–146.
IEEE.

[Hartzman and Austin, 1993] Hartzman, C. S. and Austin, C. F. (1993). Maintenance
productivity: Observations based on an experience in a large system environment. In
Proceedings of the 1993 conference of the Centre for Advanced Studies on Collabora-
tive research: software engineering-Volume 1, pages 138–170. IBM Press.

[Lientz, 1983] Lientz, B. P. (1983). Issues in software maintenance. Technical re-
port, CALIFORNIA UNIV LOS ANGELES GRADUATE SCHOOL OF MANAGE-
MENT.

[Louis et al., 2020] Louis, A., Dash, S. K., Barr, E. T., Ernst, M. D., and Sutton, C.
(2020). Where should i comment my code? a dataset and model for predicting loca-
tions that need comments. In Proceedings of the 42nd International Conference on
Software Engineering (New Ideas and Emerging Results)(ICSE NIER 2020). Associ-
ation for Computing Machinery (ACM).

[Pascarella and Bacchelli, 2017] Pascarella, L. and Bacchelli, A. (2017). Classifying
code comments in java open-source software systems. In Proceedings of the 14th In-
ternational Conference on Mining Software Repositories, pages 227–237. IEEE Press.

[Steidl et al., 2013] Steidl, D., Hummel, B., and Juergens, E. (2013). Quality anal-
ysis of source code comments. In 2013 21st International Conference on Program
Comprehension (ICPC), pages 83–92. Ieee.

[Tenny, 1988] Tenny, T. (1988). Program readability: Procedures versus comments.
IEEE Transactions on Software Engineering, 14(9):1271–1279.

[Wen et al., 2019] Wen, F., Nagy, C., Bavota, G., and Lanza, M. (2019). A large-
scale empirical study on code-comment inconsistencies. In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC), pages 53–64. IEEE.

[Woodfield et al., 1981] Woodfield, S. N., Dunsmore, H. E., and Shen, V. Y. (1981).
The effect of modularization and comments on program comprehension. In Pro-
ceedings of the 5th international conference on Software engineering, pages 215–223.
IEEE Press.

[Zhai et al., 2019] Zhai, J., Xu, X., Shi, Y., Pan, M., Ma, S., Xu, L., Zhang, W., Tan,
L., and Zhang, X. (2019). Cpc: Automatically classifying and propagating natural
language comments via program analysis.


