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Resumo

Esta tese apresenta a influência da corrente geostrófica e da batimetria para duas localizações no Norte

e no Sul de Portugal.

Usando uma extensão do modelo de Ekman feita por Estrade et al. (2008), obteve-se uma função de

corrente que depende, entre outras variáveis, da tensão de corte, da corrente geostrófica zonal e também

da batimetria da latitude a estudar. A escassez de dados, usual junto à costa, obrigou a uma interpolação

de vários parâmetros.

Para calcular os ı́ndices de afloramento de acordo com a formulação de Marchesiello and Estrade (2010),

foram calculadas velocidades verticais. Estas são obtidas por diferenciação da função de corrente em

ordem a x, a coordenada que define a direcção zonal.

Juntamente com o tradicional ı́ndice de upwelling de Bakun e um ı́ndice baseado na temperatura do mar,

verificou-se que a batimetria, embora mude a intensidade das velocidades verticais, não teve grande

impacto na estrutura do afloramento costeiro entre o Norte e o Sul. A corrente geostrófica para a costa,

por outro lado, impediu as normais condições de afloramento no Sul em alguns meses da análise. No

Norte o efeito foi o oposto, havendo uma intensificação do afloramento.

Palavras-chave: afloramento costeiro, oceano pouco profundo, plataforma interior, geostrofia,

batimetria
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Abstract

The present study evaluates the influence of geostrophic flow and bathymetry for two locations in the

North and South of Portugal.

Using an extension of Ekman’s theory done by Estrade et al. (2008), a stream function is computed. Due

to the scarcity of shear stress and geostrophic surface current data in the nearshore region, interpolation

had to be performed.

Vertical velocities were obtained by differentiating the stream function in order to the offshore distance x.

These are used to calculate a dynamical index using Marchesiello and Estrade (2010) formulation.

Together with a traditional Bakun and SST upwelling indices, it was found that even though bathymetry

influences the intensity of vertical velocities, its impact on upwelling structure is not large. Geostrophic

onshore flow, on the other hand, was found to hinder upwelling conditions in the South, whilst enhancing

them in the North.

Keywords: coastal upwelling, inner shelf, shallow sea, geostrophy, bathymetry
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Chapter 1

Introduction

1.1 Context

Coastal upwelling has long been known as the main reason why the Portuguese coast is so rich in fish.

The ascent of cold and nutrient-packed waters from great depths allows phytoplankton — the main pillar

of the food chain — to thrive. Fish, of course, are an important link of the chain and remain one of the

most crucial elements of the Portuguese diet. Actually, Portugal is the most relevant country in the EU

in terms of per capita fish consumption, according to the 2019 EUMOFA report. From an economical

perspective, a weak upwelling season can be a struggle for the fishing industry, as Portugal is not only a

great consumer, but a great exporter of quality fish: fresh and canned.

Over the years, upwelling has caught the interest of many researchers due to its mathematical chal-

lenges, but also due to its practical applications. The present thesis sways towards the theoretical and

mathematical aspects of upwelling.

Bathymetry, particularly, is an important facet to take into consideration when characterizing a coastal

region. Broad continental shelves, unlike the narrow ones, allow upwelling separation from the coast,

thereby providing a larvae retention mechanism which, in addition to coastal upwelling, is paramount for

their survival and successful reproduction of fish.

1.2 Objectives

• Using an analytical model, find eventual differences in the upwelling structure due to bathymetry

between the North and South of Portugal;

• Assess the importance of bathymetry and zonal geostrophic flow in the upwelling indices for both

locations.

1



1.3 Thesis Outline

Chapter 1 defines the thesis’ objectives and introduces the upwelling topic.

Chapter 2 presents the state of the art. Classical aspects of the Ekman upwelling, specific atmospheric

and oceanic topics phenomena known to the IP and the main theme, upwelling in shallow waters, are

addressed.

In Chapter 3, results from other papers are reproduced for the study location. Differences in u, v, and w

velocities using the analytical model for both locations are presented. Upwelling index calculation is done

for both bathymetries.

In Chapter 4 the results are discussed and possible error sources are evaluated.

Chapter 5 addresses the major achievements of this study and ideas for future work.
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Chapter 2

Literature Review

2.1 Study location

Two latitudes will be studied in this thesis: 37.75° N and 40.50° N. They’re both located inside the WIUE

(37◦N–44◦N), which is a sub-region of the larger CIUE. In the offshore region of the former ecosystem,

various currents of different dimensions, transport, and localization are important. Specifically, the PoC,

the IPC and the IPSU.

According to Mason et al. (2006) report, the PoC is a broad current (10◦W–24◦W) which flows predomi-

nantly southward, allowing communication of two important currents, the NAC and the AC . The IPC and

IPSU are both counter-currents which develop along the shelf slope and can be detected year-round,

however, in the winter, the IPC reaches its maximum intensity whilst the IPSU reaches its lowest. Forcing

mechanisms for these currents are still debated. Teles-Machado et al. (2016a) say that during June, July

and August, besides other effects like wind slope induced torque, JEBAR remains dominant. Regarding

their vertical location, it is known that the IPC is contained within the surface and z ≈ 350m, whereas the

IPSU sits between z ≈ 600m and z ≈ 1200m.

2.2 General concepts

In the NH, coastal upwelling is the rise of deep waters in response to an equatorward/southward wind. To

understand how this happens one must study the work of Ekman (1905). His study relies on a series

of assumptions: steady state; infinite ocean; uniform horizontal distribution of wind; constant density;

constant Coriolis parameter; horizontal free surface (for a given depth the horizontal pressure gradient

is nil); constant vertical turbulent viscosity; non-existing horizontal turbulence viscosity and, finally, the

ocean is modelled as a series of horizontal and sequential layers.

The main conclusion of the article is the following: the combined effect of friction and Coriolis forces

generates a surface current that is deflected 45◦ cum sole relatively to the wind’s original direction. With

increasing depth, the viscosity starts acting and the absolute value of the velocity vector diminishes at

3



the same time it rotates clockwise (for the NH). Graphically, these two effects lead to the famous Ekman

spiral. The depth at which the velocity vector in the ocean makes 180◦ with the wind velocity vector at the

surface is called the DFI. The array of depths between the surface and the DFI is called the Ekman layer.

The average movement of the Ekman layer is the Ekman transport. All these results are represented in

Figure 2.1.

45º
surface current

wind

Ekman transport

Ekman spiral projected

 in the ocean's bottom

z

Figure 2.1: Ekman spiral in the NH – after Trujillo and Thurman (2017)

The mass balance tells us that the westward flow has to be compensated by an onshore flow at depth

coupled with rise of water. Hence, the connexion is done: an equator-ward wind generates upwelling.

Coastal upwelling situations can be checked with SST satellite images. Usually, with the rise of deep

waters (which have lower temperatures than those at the surface) a tongue of “cold” water is observed

near the coast. This temperature decrease can sometimes be enhanced at capes and promontories,

as Peliz et al. (2002) say. It is important to notice that there is a lag between the effect of an upwelling

favourable wind regime and the rise of “cold” waters.

Upwelling has a crucial role redistributing heat and salt along-slope, yet aside from that, it is also

responsible for the transport of nutrients, larvae and other biological material, as stated in the report by

Mason et al. (2006).

In his paper, Ekman considered an ocean with an horizontal free surface, but in reality that is not the case,

so other dynamics should arise when said hypothesis is discarded. As a matter of fact, when superficial

waters flow offshore, the free surface of the ocean rises offshore as well, sloping downwards towards the

coast. In other words, a zonal pressure gradient appears. In Oceanography, it is standard to take an x

axis that is positive towards East and an y axis that is positive towards North. Hence, as x increases,

pressure decreases (∂p/∂x < 0). Using the x-direction momentum equations for geostrophic flow:

− 1

ρ0

∂p

∂x
+ fvg = 0⇔ vg =

1

ρ0f

∂p

∂x
(2.1)
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A slope of the free surface ultimately creates an equator-ward current. For this reason, using the

parallelogram law for vector addition, the resultant surface current has increased intensity, but makes a

smaller angle with the wind vector, as seen in Figure 2.2.
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Figure 2.2: Ideal coastal upwelling situation in the NH, adapted from The Open University et al. (1989)

Actually, despite having a positive slope, the isobars tend to go horizontal as one gets deeper down the

ocean. Past the level of no current, where the slope of the isobars is nil and there is no zonal movement

of water, the slope gets negative and by Equation 2.1 a poleward flow appears.

Until now, only one upwelling contribution has been mentioned — the Ekman transport — but in reality,

as said in Capet et al. (2004), coastal upwelling has two contributions: Ekman transport and Ekman

pumping (or suction). Ekman pumping happens if the shear stress considered in the Ekman transport

calculation varies with position. To find a relationship between the Ekman pumping velocity and the shear

stress at the surface, it is usual to start by integrating the continuity equation. Rearranging the Leibniz

integral rule:

∫ b

a

∂f (x, z)

∂z
=

∂

∂z

∫ b

a

f(x, z)dx− f (x, b) ∂b
∂z

+ f (x, a)
∂a

∂z
(2.2)

Using Equation 2.2 to integrate the continuity equation (for incompressible flows) from the Ekman depth

z = DFI = DE to the free surface z = η:

∫ z=η

z=−DE

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz =

∫ z=η

z=−DE

∂u

∂x
dz +

∫ z=η

z=−DE

∂v

∂y
dz +

∫ z=η

z=−DE

∂w

∂z
dz =

=
∂

∂x

∫ z=η

z=−DE
udz − (u)z=η

∂η

∂x
+ (u)z=−DE

∂ (−DE)

∂x

+
∂

∂y

∫ z=η

z=−DE
vdz − (v)z=η

∂η

∂y
+ (v)z=−DE

∂ (−DE)

∂y

+ (w)z=η − (w)z=−DE = 0

(2.3)
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Boundary conditions:

(w)z=η = dη
dt = ∂η

∂t + (u)z=η
∂η
∂x + (v)z=η

∂η
∂y

(w)z=−DE = d(−DE)
dt = ∂(−DE)

∂t + (u)z=−DE
∂(−DE)
∂x + (v)z=−DE

∂(−DE)
∂y

The kinematic conditions refer to the vertical velocity at the surface (which has to be null, otherwise the

surface would go up into the air) and the total vertical velocity at the lower boundary of the top Ekman

layer. By definition, Ekman velocities are zero at the bottom of the top Ekman layer (also known as mixing

layer). Furthermore, while the divergence is not compensated by a convergence, ∂DE∂t ≈ 0. Applying

these simplifications, various terms cancel out and one arrives to:

(wE)0 =
∂η

∂t
= − ∂

∂x

∫ z=η

z=−DE
udz − ∂

∂y

∫ z=η

z=−DE
vdz = −∂Sx

∂x
− ∂Sy

∂y
= −5h ·

#»

S (2.4)

Where
#»

S is a common notation for the surface Ekman transport vector. Let us now consider the

momentum equations for a steady and barotropic flow with low Rossby number.

−fv = − 1

ρ0

∂p

∂x
+

1

ρ0

∂τzx
∂z

, fu = − 1

ρ0

∂p

∂y
+

1

ρ0

∂τzy
∂z

(2.5)

Knowing Ekman’s assumptions, the previous equations reduce to:

1

ρ0

∂τzx
∂z

= −fvE ,
1

ρ0

∂τzy
∂z

= fuE (2.6)

Integrating them in the vertical direction, one has:

1

ρ0

∫ z=η

z=−DE

∂τzy
∂z

dz = f

∫ z=η

z=−DE
uEdz ⇔

1

ρ0
τszy = −fSx ⇔ Sx =

τszy
ρ0f

(2.7a)

1

ρ0

∫ z=η

z=−DE

∂τzx
∂z

dz = −f
∫ z=η

z=−DE
vEdz ⇔

1

ρ0
τszx = −fSy ⇔ Sy = − τ

s
zx

ρ0f
(2.7b)

In the above equations, τszy and τszx denote the meridional and zonal components of the wind shear stress

at the surface of the ocean. Plugging this into (2.4):

−5h ·
(
τszy
ρ0f

,− τ
s
zx

ρ0f

)
= −

(
∂

∂x
,
∂

∂y

)
·
(
τszy
ρ0f

,− τ
s
zx

ρ0f

)

= −
[
∂

∂x

(
τszy
ρ0f

)
− ∂

∂y

(
τszx
ρ0f

)]
= −

[
5×

(
#»τ s

ρ0f

)]
z

(2.8)

The beta (β = ∂f/∂y) effect contribution βτzx
ρ0f2 is zero if f = const, which is assumed to be the case.

(wE)0 = − 1

ρ0f
(5× #»τ s)z (2.9)
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As stated in the book by Stewart (2012), this is the vertical Ekman velocity at the top of the layer. But,

since the total vertical velocity must be zero at the surface, a balancing current has to appear:

(wg)0 = − (wE)0 ⇒ (wg)0 = 5h ·
#»

S =
1

ρ0f
(5× #»τ s)z (2.10)

Conclusion: Ekman transport divergence is balanced by a convergence of the deep geostrophic flow.

For the Portuguese coast, zonal shear stress is of negligible contribution, whilst the meridional wind

velocity distribution presents high zonal variability. Considering that it is usual for the shear stress

(assuming it is more or less co-linear with the velocity distribution) to decrease towards the coast, looking

at Figure 2.3, positive curl is generated (i.e. Ekman pumping). According to Capet et al. (2004), a strong

wind drop-off near the coast promotes horizontally-distributed Ekman pumping. Conversely, if the wind is

substantial nearshore, strong and localized coastal upwelling occurs. This last wind distribution is best at

bringing deep parcels to the surface. The physics of the drop-off can be explained with boundary layer

dynamics and friction forces at the sea-land surface.

NEGATIVE vorticity (CLOCKWISE) POSITIVE vorticity (ANTICLOCKWISE)
- +

Figure 2.3: Different velocity distributions generate negative and positive vorticities, adapted from The
Open University et al. (1989)

Having seen how the wind influences upwelling dynamics, it also of interest to examine the establishment

of the wind regime itself. For the WIUE, the spatial arrangement of the Azores High and the Icelandic

Low is of the utmost importance. This duo is, for the most part, responsible for the strong northerly

winds that affect the coastal areas during Summer. As stated in Fiuza et al. (1982) paper, considering

a climatological time-scale, the AH has a bigger influence on the wind profiles than the IL. Relvas et al.

(2007) mention that during the summertime, the characteristic season for upwelling, the AH happens

to be reinforced and slightly shifted towards the northern parts of the Portuguese territory, while the IL

weakens at the same time. This configuration originates a strong northerly wind.
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2.3 Mesoscale structures

The number of mesoscale structures is extensive. Filaments, eddies, jets, fronts, and internal waves are

examples of these influential phenomena. Shallow waters present various types of fronts: shelf break

fronts (coastal vs. open ocean waters), shallow sea fronts (tidal currents vs. stratification), and finally the

upwelling front.

Upwelling fronts are formed when the thermocline reaches the ocean’s surface as a result of the ascent

of deep waters. The weakening and strengthening of the Ekman layer horizontal movement defines most

of the front’s position. The study of Shanks et al. (2000) shows how the surface convergence within the

frontal region can conduce to a retention of larvae. Figure 2.4 illustrates how the front appears in the

ocean.

Internal waves are generated when the interface between layers of different densities is disturbed. Said

waves, just like surface ones, ultimately brake. The breaking of internal waves promotes the mixing of

waters with different densities, inducing turbulence in the ocean.

2.3.1 Filaments

Filaments have a major role in the exchange of coastal and offshore water masses. Relvas et al. (2007)

conclude that their development can not be attributed to a single mechanism. Haynes et al. (1993)

presents 3 of them: topographic forcing, baroclinic instabilities and geostrophical turbulence. A year

before, Batteen et al. (1992) studied the influence of the wind stress curl in their formation. More recently,

Peliz et al. (2002) proposed that flow interaction can be an essential part of their genesis. Be that as it

may, it is incontestable that in the WIUE filaments are almost always anchored to some kind of cape or

promontory. A great example of an SST satellite image that shows a distinct filament was presented in

Peliz et al. (2002). The figure is reproduced in Figure 2.6.

Following Haynes et al. (1993) article, the development of filaments offshore of the IP starts with the

typical cold water band aligned with the coastline. After sometime of its appearance, the band starts to

become fringed, indicating the beginning of filament formation. Major filaments start to form in late July,

being usual for them to reach maximum length in the end of September. After that, it is thought that with

an unfavourable wind regime, the filaments stop generating.

2.3.2 Eddies

Eddies, as stated in Mason et al. (2006), have different dimensions (10 km to 100 km) and can be

generated wherever there is a tendency for the flow to bend, for example at a cape. As shown in Figure

2.5, they can also be formed at the boundaries of coastal currents by baroclinic instabilities. For the

WIUE, two particular types of eddies have been studied and named: MEDDIES and SWODDIES.

According to Richardson et al. (2000), MEDDIES are generated when salty and warm water from the

Mediterranean Current separates at the important bathymetric regions like canyons. Richardson et al.
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mention an average span of 0.7 years and a mean diameter of 100 km. MEDDIES present a lens-like

structure, rotating clockwise and drifting predominantly southward from the point of their formation, as

noted by Mason et al. (2006).

SWODDIES exhibit anticyclonic or cyclonic rotation and originate from a separation of the IPC at northern

Iberian capes. They often display a dipole arrangement, where an anticyclone is coupled with a cyclone.

These eddies carry the current’s warm and salty waters offshore. Near Iberia, they were first detected at

the Bay of Biscay by Pingree and Le Cann (1992). More recently, there is evidence of their detachment in

the Portuguese coast, as say Teles-Machado et al. (2016b). There is no evidence of SWODDY formation

in summer as of now. According to Mason et al. (2006), SWODDIES may have life spans of up to 1 year

and depths of 1000m.

lower density water

propagating front

upwelled waters

upwelling front

Figure 2.4: Scheme of an upwelling front propagating shoreward, after Shanks et al. (2000)

cool col
d

wa
rm

25 km

Figure 2.5: Scheme of shelf break front with associated eddies, after Simpson et al. (1981)

Figure 2.6: Brightness sea temperatures for 24/08/98, after Peliz et al. (2002)
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2.4 Upwelling interaction with other ocean phenomena

The article by Peliz et al. (2002) introduces the concept of WIBP. Briefly, this water plume of low salinity

(S < 35.8 psu) originates from the various rivers that flow into the Atlantic Ocean at the northern part of

the IP (Galician Rias, Lima, Minho, Douro, Mondego). It is present year-round, though it shrinks in the

summer, when the river outflow decreases due to scarce precipitation.

As noted by Mason et al. (2006), this water lens accentuates stratification over the shelf which reduces the

Ekman depth and therefore the Ekman transport. It is easy to understand why: since the stratification is

stable (density decreases upwards), the buoyancy term of the TKE equation acts as a sink. The missing

link is given by the mid 40s Prandtl’s assumption that eddy viscosity depends on a velocity scale built with

the square root of the TKE. The Ekman depth is related to eddy viscosity by:

DFI ≡ DE = π

√
2KV

|f |
(2.11)

Reducing vertical eddy viscosity KV (a function of the flow) leads to a smaller Ekman depth, reducing the

Ekman transport.

As for the relation of WIBP with upwelling, Peliz et al. (2002) hypothesize that the water that feeds

filaments can have its origin in the low salinity waters of the WIBP.

2.5 Atmosphere-Ocean Interaction

2.5.1 Iberian Thermal Low

During summertime, there is one influential atmospheric phenomenon in the IP that cannot be left

unmentioned: the IBL. Briefly, this low pressure system develops over the central Iberian plateau and

creates a anti-clockwise (convergent) movement at the surface which strengthens the already powerful

northerly wind that prevails in Portugal’s West Coast.

The study by Gaertner et al. (1993) describes this phenomenon in detail: the solar radiation heats the

plateau; transferred heat is then convected back to the atmosphere by turbulence inducing a warming of

its lower levels. Due to the temperature rise, there is a thermal expansion (molecules move faster and

take up more space) and isobars shift upwards. A high pressure system (which is divergent and rotates

clockwise) is created aloft. The divergence on the top is balanced by a convergence on the surface that

originates a clockwise rotation, reinforcing the already strong northerly wind.

Figure 2.7 is a scheme of two ideal columns with the same amount of air molecules, therefore exerting

the exact same pressure at the surface. It takes a shorter column of higher density to exert the same

pressure as a taller, lower density one. Consequently, at an arbitrary reference level above the surface,

the taller column will always exert a higher pressure than the shorter one. As a result, a pressure force

develops above the surface.
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same surface pressure same surface pressure

«warm» column«cold» column

higher density lower density

reference line

Figure 2.7: Pressure force generated at the top of the thermally expanded column

Looking at Figure 2.8, as the number of molecules above the isobar needs to be constant, it becomes

clear why isobars need to move upwards when one moves closer to the thermally expanded column.

same surface pressure same surface pressure

«warm» column«cold» column

higher density lower density

isobar

Figure 2.8: Shift of the isobars towards the expanded column of air
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2.5.2 Expansion fans and compression bulges

Another important occurrence in the IP are expansion fans and compression bulges. They were first

studied — in the context of Geophysics — by Winant et al. (1988). Expansion fans are regions in the

MABL where a supercritical flow expands as a series of waves in response to a topographical feature,

like a cape. Expansion fans happen downstream of capes, whereas compression bulges occur upstream.

As explained in Monteiro et al. (2016), compression bulges are associated with a thickness increase and

mean velocity decrease in the MABL. This implies that capes not only are important generating eddies

and ocean flow perturbations, but also modifiers of the wind distribution, which is the main driving force of

coastal upwelling.

2.5.3 SST-wind interaction, global warming impact on upwelling and atmospheric

modes

In the article by Jin et al. (2009), the influence of SST in the wind distribution is studied. When SST

variations induce temperature gradients (thus, density gradients) in the lower layers of the atmosphere, a

vertical momentum gradient appears. The latter gradient implies a change in superficial wind shear. As

previously stated, wind (or wind shear) distribution is the essential forcing mechanism of coastal upwelling.

The conclusion is that SST variations change the MABL dynamics, which then affect the ocean in a

feedback manner.

The similarity between the California upwelling system and the WIUE is long known. For instance, both

systems share a thermal low that greatly affects the wind regime in coastal areas. Bakun (1990) studies

a possible outcome of the intensification of the Californian thermal low due to global warming. The author

says that an increase in the alongshore geostrophic wind can presumably lead to an increase in Ekman

transport. However, only two years later, Bakun et al. (1992) verifies that an error in the measurements

due to the tool that was used to capture the maritime wind can introduce wrong trends in the calculations.

One cannot, therefore, state an upwelling increase due to global warming. This being said, it is true that

alongshore geostrophic wind increases. More recently, Miranda et al. (2013), in a paper that tries to link

climate change to upwelling, reinforce the idea of Bakun’s 1990 article.

Another way to study the atmosphere’s influence in the ocean is through teleconnection indices. A study

by DeCastro et al. (2008) presents the importance of atmospheric indices in the WIUE. It was concluded

that the UIA — defined as the deviation of the UI to its spatial and temporal average — can be explained

with the East Atlantic pattern. The NAO was the second large scale mode with significant implications.
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2.6 Shallow sea upwelling

fully developed
surface and bottom

Ekman transport

upwelling

Ekman transport divergence
induces upwelling

(turbulent transition region)

alongshore wind driven frictional dynamics
induces zero Ekman transport

due to the overlap of the
surface and bottom Ekman layers

constant
wind

surface Ekman layer

inviscid
geostrophic
criculation

bottom Ekman layer

Figure 2.9: Conceptual scheme of the mechanism of upwelling separation from the coast – adapted from
Estrade et al. (2008)

The study of upwelling in shallow seas initiates with the article of Welander (1957). A shallow sea is

defined by DFI ≡ D ≈ h, where h is the ocean’s floor depth. In the said article, the unidimensional theory

of Ekman is generalized into two dimensions. Welander begins with the steady state equations that

describe the equilibrium between friction, Coriolis and pressure forces. After some algebraic manipulation,

he arrives to a complex velocity and integrates it. From this last operation, horizontally-varying structure

functions appear, see Appendix A. These functions are useful as they only depend on the ratio h
D and

ease interpretation of upcoming results.

2.6.1 Analytical model and conclusions of Estrade et al. (2008)

Using Welander’s results, Estrade et al. (2008) explained why the upwelling cell centre separates from

the coast. The authors studied the case of a semi-infinite ocean: finite in the zonal direction x and infinite

in the meridional direction y.

The analytical model showed that, for alongshore winds, a critical isobath hc ≈ 0.4D divides two flow

regimes. One where friction forces dominate (bottom and top Ekman layers overlap; flow is parallel to the

coastline) and the other, where Ekman transport diverges. As represented in Figure 2.9, until the critical

isobath, there is no Ekman transport and thus, this region acts as a kinematic barrier to cross-shelf flow.

Apart from an upwelling favourable wind, it is also noted that a broad shelf is a necessary condition for

upwelling separation.
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Here are some of the most relevant conclusions:

• analytical expression, adaptable to any bathymetry, for a stream function that allows representation

of the upwelling cell using h
D to describe the horizontal direction

• 90% of the Ekman transport occurs for 0.50 < h
D < 1.25;

• an abrupt continental shelf favours an intense and narrow cell, whilst a broad shelf favours the

contrary;

• the upwelling structure in the broad shelf is more sensitive to changes in Ekman depth;

• if the slope S is constant (linear bathymetry), then the zonal width of the upwelling cell is 0.75DS ,

see Figure 2.10.

cross-shore width of upwelling (CSW)

Figure 2.10: Linear bathymetry: the zonal width of the upwelling cell is 0.75D/S

Despite the paper’s focus on bathymetry, Estrade et al. also studied the influence of the cross-shore wind

component, friction and stratification.

The cross-shore wind can be an input to the analytical model through τx. The authors found that with an

offshore (onshore) wind, the Ekman transport is more (less) concentrated at the surface. Besides that,

the upwelling separation is favoured by onshore winds and weakened by offshore ones.

Regarding friction, the authors concluded that, near the coast, despite an increase of the alongshore

flow, the cross-shore flow remained almost zero. That means the upwelling cell more or less maintains

its location and intensity, validating the constant viscosity hypothesis. It is worth mentioning that a

depth-changing viscosity implies a variable Ekman depth. Thus, the analytical solution for the differential

equation that governs the model has to be derived again.

Stratification was found to have an influence on the upwelling cell location: the cell oscillated between a

nearshore and offshore position. Two phases are comprised in one oscillation: the outcropping phase

and the layers splitting phase.
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Outcropping phase: dense waters move shoreward; a density front forms and separates the inner stable

shelf from the outer one; kinematic barrier and cell move offshore.

Layers splitting phase: isopycnal dome is generated and advected shoreward; bottom and top mixing

layers separate; cell migrates shoreward

Even though the kinematic barrier (and upwelling cell) oscillate across the slope, the structure of the cell

remains roughly unaltered.

The article also mentions that the analytical model was tested for a zonally-varying wind profile ∂τsy/∂x 6= 0.

It was determined that the separation mechanism weakened as a result of the lower friction nearshore.

The kinematic barrier is a region where bottom shear stress balances wind friction. Since the boundary of

the kinematic barrier moves shoreward when wind friction diminishes, it can be inferred that wind intensity

nearshore is related with the width of the kinematic barrier.

2.6.2 Marchesiello and Estrade (2010) extension of the analytical model to cases

with geostrophic onshore flow

Alongside the Estrade et al. (2008) article, Marchesiello and Estrade (2010) is another relevant study

of the upwelling phenomena in the inner shelf. This time, the researchers found that the addition of a

geostrophic onshore flow greatly affects the upwelling structure. Moreover, after analysing the stream

function sensitivity to the zonal geostrophic flow ug, an attractive result came up: since the expression

∂ψ/∂ug is independent of viscosity, wind, latitude, or slope, it is possible that the effect of ug in the

upwelling process is similar in other coastal upwelling regions of the World.

A new index which incorporates the influence of bathymetry and geostrophic currents is also presented.

The new index (CUI) actually unfolds into two separate indices: CUI and CUI–LE . These are distinct

because they use different definitions of upwelling cross-shore width. One of them accounts for the

type of bathymetry profile (CUI) and the other (CUI–LE) does not. The cross-shore width is selected

according to:

LU = max

[
0.75

D

S
, LE = π

√
2KH

|f |

]
(2.12)

Four indices were studied: CUI, CUI–LE , SST–I and ECUI. The authors defined the indices as follows:

CUI =
∣∣∣∣ τA
ρ0fLU

∣∣∣∣+ 1

LU

∫ xn=LU

xn=0

[∫ z=0

z=z0

(
∂ug
∂x

+
∂vg
∂y

)
dz

]
dxn (2.13a)

CUI–LE =

∣∣∣∣ τA
ρ0fLE

∣∣∣∣+ 1

LE

∫ xn=LE

xn=0

[∫ z=0

z=z0

(
∂ug
∂x

+
∂vg
∂y

)
dz

]
dxn (2.13b)

SST–I =
T − TO
T − TB

4z
γ

(2.13c)

ECUI =
∣∣∣∣ τA
ρ0fLU

∣∣∣∣ (2.13d)
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Marchesiello and Estrade also present a simpler version of Equation 2.13a, which can be obtained

if ∂ug/∂x = const and ∂vg/∂y = 0. Specifically, if ∂ug/∂x = const = −ug/LU , the second parcel of

Equation 2.13a becomes:

1

LU

∫ xn=LU

xn=0

[∫ z=0

z=z0

(
∂ug
∂x

+
∂vg
∂y

)
dz

]
dxn =

1

LU

[
− ug
LU

(0− z0)
]
LU =

ug
LU

z0 (2.14)

It will be seen further on that z0 = −D/2 is good approximation, hence, CUI can also be given by:

CUI ≈
∣∣∣∣ τA
ρfLU

∣∣∣∣− uGD

2LU
(2.15)

The indices in this thesis were calculated directly from the stream function, as it will be seen afterwards,

thus avoiding the extra constraint of ∂ug/∂x = const.

The UI based on SST is usually dimensionless, but Marchesiello and Estrade used a unit scaling

parameter4z/γ. This parameter has dimensions of velocity and comes from the 1-D heat balance where

the vertical convection is balanced by the horizontal diffusion:

w
∂T

∂z
= αH

∂2T

∂x2
(2.16)

If αH ∂2T
∂x2 ≈ αH T−TO

4x2 , then the last equation becomes:

αH
∂2T

∂x2
≈ T − T0
4x2/αH

=
T − T0
γ

(2.17)

Furthermore, if ∂T∂z ≈
T−TB
4z :

w
∂T

∂z
= αH

∂2T

∂x2
⇔ w

T − TB
4z

=
T − TO

γ
⇒ w = SST–I =

T − TO
T − TB

4z
γ

(2.18)

The authors pointed out that CUI and SST–I present the highest level of correlation, while ECUI and

SST–I show the lowest. Apart from this, the differences between ECUI and CUI were attributed to the

geostrophic influence, not the bathymetry.

The difference between CUI and CUI–LE gives an importance of the bathymetry: for a broad shelf case,

they have distinct values, whilst for a narrow one, they coincide. The explanation is simple: since the

slope S is larger on a narrow shelf, D/S is small and Equation 2.12 gives LU = LE , which means

CUI = CUI–LE . This is more or less true if D does not change too much. Marchesiello and Estrade state

the Peru region as an exception: it is a broad shelf with a small value of D/S since D is unusually low.

Even in the absence of stratification and variable Ekman depth, interesting results were obtained. The

paper contributes to a more complete UI definition, which accounts for the importance of bathymetry and

onshore geostrophic flows (alongshore pressure gradients).
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Chapter 3

Analytical model and results

3.1 Analytical model

To understand the following sections, the main equations of the model are presented. A careful derivation

is done in Appendix A. The results below keep a parameter that varies with the Hemisphere, λ = f/|f |.

Assumptions: steady state (∂/∂t = 0); Ro� 1 (negligible advection); H/L� 1 (typical ocean basin);

barotropic ocean; KV = const; 2D ocean (∂/∂y = 0); (KH)x � KV or (EkH)x � EkV

Equations of momentum

− 1

ρ0

∂p

∂x
+ fv +KV

∂2u

∂z2
= 0 (3.1a)

− 1

ρ0

∂p

∂y
− fu+KV

∂2v

∂z2
= 0 (3.1b)

Ekman’s drift current problem

∂2ũE
∂z2

− c2ũE = 0 (3.2)

Complex notation momentum equation

KV
∂2ũ

∂z2
− if ũ =

1

ρ0

∂p̃

∂n
(3.3)

Boundary conditions

KV

(
∂ũ

∂z

)
z=0

=
1

ρ0
τ̃s ⇒

∂ug/∂z=0
KV

(
∂ũE
∂z

)
z=0

=
1

ρ0
τ̃s (3.4a)

(ũ)z=−h = 0⇔ (ũE + ũg)z=−h = 0 (3.4b)
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Total horizontal flow field

ũ = ũ0
sinh[c(z + h)]

cosh[ch]
+ ũg

(
1− cosh[cz]

cosh[ch]

)
(3.5)

Ekman component of the flow

ũE = ũ0
sinh[c(z + h)]

cosh[ch]
− ũg

cosh[cz]

cosh[ch]
(3.6)

Horizontally-varying structure functions

α =
(
cosh

[ π
D
h
]
cos
[ π
D
h
])2

+
(
sinh

[ π
D
h
]
sin
[ π
D
h
])2

(3.7a)

S1 = cosh
[ π
D
h
]
cos
[ π
D
h
]
α−1 (3.7b)

S2 = sinh
[ π
D
h
]
sin

[
λπ

D
h

]
α−1 (3.7c)

T1 = cosh
[ π
D
h
]
sinh

[ π
D
h
]
α−1 (3.7d)

T2 = cos
[ π
D
h
]
sin

[
λπ

D
h

]
α−1 (3.7e)

Total Ekman transport

UE = (1− S1)
τy
ρ0f

+ S2
τx
ρ0f
− D

2π
[(λT1 − T2) vg + (T1 + λT2)ug] (3.8a)

UE = −ugh (3.8b)

Meridional geostrophic velocity

vg =
2π

ρ0fD

[
1− S1

λT1 − T2
τy +

S2

λT1 − T2
τx

]
− ug

T1 + λT2 − 2πh/D

λT1 − T2
(3.9)

Stream function

w =
∂ψ

∂x
(3.10a)

u = −∂ψ
∂z

(3.10b)

ψ(x, z) = Re

{
1

c

[
ũ0

(
1− cosh[c(z + h)]

cosh[ch]

)
+ ũg

sinh[cz]

sinh[ch]

]}
− ugz (3.10c)
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3.2 Linear bathymetry

In Figure 3.1, the two columns show the influence of onshore geostrophic flow for three parameters:

upwelling intensity ψ/|UE |, total along shore flow velocity v, and alongshore geostrophic flow component

vg.

For the upwelling intensity contours of Figure 3.1, Equation A.50 derived in Appendix A was applied.

Using a linear h(x) = −x/1000 profile and typical values of wind stress for an upwelling situation

(τy ≈ −0.1Pa) results in a clearly distinguishable kinematic barrier and theoretical upwelling cross width.

As expected, the addition of ug brings great modifications to the stream function’s structure: a new cell

with positive values appears at greater depths, while the surface one loses about 50% of its intensity, just

as reported by Marchesiello and Estrade (2010).

The middle row shows the upwelling jet, which the analytical model does not represent quite correctly,

since it extends too far offshore, according to Marchesiello and Estrade (2010). Onshore geostrophic

flow generates a poleward current (v > 0) for h/D > 1.5, which is approximately the inner shelf limit. The

explanation for the poleward current is quite straightforward: the onshore geostrophic current gives rise to

an offshore bottom Ekman flow, because part of it is deviated downwards. Due to the Ekman spiral, this

implies a poleward current.

The last row shows how Equation A.45 changes with x. Or h/D, for that matter, since h = h(x). Looking

at Equation A.45, vg 6= 0 even if ug = 0. This said, it is important to show why the v contours and the vg

evolution in Figure 6 of Marchesiello and Estrade (2010) are symmetrical to the correspondent graphs of

Figure 3.1.

The first thing to note is that the sign of τy for favourable upwelling conditions changes with the hemisphere:

it is τy > 0 in the SH and τy < 0 in the NH. For the two hemispheres at an offshore distance h/D ≈ 2,

and using ug = 0 = τy, Equations 3.11a (NH) and 3.11b (SH) show how the sign of vg changes. To

calculate vg, Equation A.45 was applied.

(vg)h/D≈2 =
2π

ρ0fD︸ ︷︷ ︸
>0

[
1− S1

T1 − T2

]
︸ ︷︷ ︸
=1 at h/D≈2

<0︷︸︸︷
τy < 0 (3.11a)

(vg)h/D≈2 =
2π

ρ0fD︸ ︷︷ ︸
<0

[
1− S1

−T1 − T2

]
︸ ︷︷ ︸
=−1 at h/D≈2

>0︷︸︸︷
τy > 0 (3.11b)
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Figure 3.1: From top to bottom: upwelling intensity ψ/|UE |, total along shore velocity v, and geostrophic
flow. Left column: ug = 0ms−1; Right column: ug = 0.02m s−1
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3.3 Real bathymetry

As the stream function can be applied to any kind of bathymetry, two latitudes were chosen for comparison.

Figure 3.2 shows how the Ekman depth influences the kinematic barrier and cell location, replicating

results from Estrade et al. (2008) for the current thesis selected locations. The results are similar: the

Ekman depth increase in the broad shelf originates a stronger displacement of the kinematic barrier,

when compared to the narrow shelf. Despite some small variation, the upwelling cell in the South location

is confined to the nearshore region.

Again, agreeing with Estrade’s results, since the North location bathymetry does not rise monotonically, a

two-cell structure can be seen for D = 60m and D = 90m.

Additionally, Figures 3.3 and 3.4 present the results with addition of an onshore and offshore geostrophic

flow, respectively. The onshore flow agrees with the linear case quite nicely: the structure of the cell

changes considerably for both locations and all D values.

The offshore geostrophic flow was not discussed in neither of Estrade or Marchesiello’s papers. It is

understandable that the offshore geostrophic flow case is not of great interest, after all it does not trigger

such a different cell structure, yet its influence on the upwelling intensity values is of great importance.

Actually, as it will be discussed in a further section, the nearshore monthly values of ug for the North

location are almost always negative.
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Figure 3.2: Upwelling intensity ψ/ |UE | plotted over North and South locations with ug = 0ms−1
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Figure 3.3: Upwelling intensity ψ/ |UE | plotted over North and South locations with ug = 0.01m s−1
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Figure 3.4: Upwelling intensity ψ/ |UE | plotted over North and South locations with ug = −0.01m s−1

Figure 3.5 shows the normalized cross-shore velocity and normalized stream function profiles with and

without the influence of onshore geostrophic flow. The results do not depend on bathymetry, since they

are taken for a specific offshore distance h/D ≈ 3.3. At this location, the top and bottom Ekman layers

are distinct and separated by a layer of inviscid geostrophic flow (recall Figure 2.9).

It is important to point out that in Figure 8 by Marchesiello and Estrade (2010), it is not the cross-shore

Ekman velocity uE that is shown, but rather the full component u.
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With Equations A.18 and A.29, it can be shown that (for z/D = 0, τx = 0):

uE
u0

=
Re{ũE}
Re{ũ0}

= T1 − T2 − u−10 (ugS1 − vgS2) (3.12)

For h/D ≈ 3.3, location where the graph is plotted, T1 − T2 = 1 and S1 = 0 = S2. Consequently,

using Equation 3.12, for both graphs, the line of uE/u0 should start at −100, which does not happen,

meaning that this is not the quantity being plotted. Furthermore, the absolute value of u0 is needed in the

denominator.

As referred by Marchesiello and Estrade (2010), the absolute value of the surface offshore transport is

very close to the one of Ekman transport at z = −D/2.
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Figure 3.5: Cross-shore total velocity normalized by |u0| and stream function normalized by the Ekman
transport UE for ug = 0ms−1 and ug = 0.01m s−1

3.3.1 Velocity contours for North and South Locations

Figures 3.6 and 3.7 show the three velocities (u, v, and w) plotted over the smoothed North and South

location bathymetries for two values of ug and a constant shear stress τy = −0.01Pa. Note that the

bathymetry was smoothed so it increases monotonically for both locations.

The results confirm that the upwelling separation is larger at 40.50° N than at 37.75° N. At 40.50° N, the

boundary of the kinematic barrier appears at x ≈ −5 km for both values of ug. For 37.75° N, the boundary

of the kinematic barrier appears at x ≈ −2.5 km. The difference is not as staggering as the results from

Estrade et al. (2008): the inner shelves of South Morocco (even broader) and Oregon (even narrower)

explicit a larger difference for the same D. It can also be seen that, as a consequence of the steep slope,

the vertical velocities are always higher at 37.75° N.
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Figure 3.6: Velocities for ug = 0ms−1: North and South locations are in the left and right column, respectively.
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Figure 3.7: Velocities for ug = 0.01m s−1: North and South locations are in the left and right column, respectively.
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3.3.2 Upwelling indices

In this thesis, the study of the indices was performed for two fixed latitudes and a time span of eight years.

More specifically, the indices were calculated for three months (June, July, and August) between 2000

and 2008. Marchesiello and Estrade (2010) performed a similar analysis, using an array of latitudes from

various upwelling systems.

CUI and CUI–LE

Almost all parameters used in the stream function computation are not available with detail in the

nearshore region. Thus, interpolation of data had to be performed in order to obtain continuous data in

the first kilometres (which are crucial to the analysis). A small summary of the datasets that were used is

presented below.

ug: Obtained from the Copernicus ECMWF dataset (https://tinyurl.com/copernicusdataset) which

uses sea level anomaly to compute the geostrophic surface currents. The sea level anomaly is measured

with respect to a twenty-year reference mean surface (1993–2012). The dataset has a 0.25° × 0.25°

resolution.

τx and τy: Obtained from the QuikSCAT dataset with 0.125° (https://tinyurl.com/quikscatdataset).

After extracting the netcdf files of the above stated variables for the two specified latitudes, interpolation

followed. Regarding the geostrophic velocities dataset, fortunately, there was a point near the coast that

saved the trouble of attributing an approximate value of the velocity at x = 0. Since the dataset only

has daily values, a monthly mean had to be obtained. As it can be seen on Figure 3.8, for both North

and South locations, upon plotting discrete values it was found that a simple second degree polynomial

gave the best results. The average correlation coefficient was r2 = 0.9656 for the South location and

r2 = 0.9509 for the North one. Is worth mentioning that ug values for the South are almost always positive

(onshore flow) and negative for the North locations (offshore flow). This means that large-scale offshore

geostrophic flow favours upwelling in the North, whereas onshore geostrophic flow reduces upwelling in

the South.

Figure 3.8: Example of the ug interpolation for both locations
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The article of Capet et al. (2004) shows that the profile of wind stress follows an exponential behaviour

near the coast, giving rise to a strong wind drop-off, as shown in Figure 3.9. In view of this evidence,

an attempt to fit a Gaussian curve to τy was made. However, the fit never seemed to work properly.

Nevertheless, the results of the paper were used to have an estimate of τy at x = 0, which was set to be

(τy)x=0 = −0.03Pa. The chosen fit was again a quadratic one, as illustrated in Figure 3.10. The average

correlation coefficients for the South and North locations were r2 = 0.8846 and r2 = 0.8017, respectively.
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Figure 3.9: Meridional shear stress profile for a 3 km high-resolution model (COAMPS: Coupled
Ocean/Atmosphere Mesoscale Prediction Systems) – adapted from Capet et al. (2004)

Figure 3.10: Example of the τy interpolation for both locations

When it comes to the cross-shore component of the wind shear stress, a cubic polynomial was fit to

the data. The average correlation coefficients for the South and North locations were r2 = 0.8846 and

r2 = 0.8017, respectively.

All variables that change with x, except h, have an analytical expression. The stream function and its x

derivative (i.e. w) were calculated analytically using Wolfram Mathematica. Besides ρ0, f , D, x, z, and h,

the expression for w is a function of the fitting coefficients of all the interpolated variables and dh/dx, the

slope. In fact, it is directly proportional to the slope. Since h does not have a simple analytical expression,

numerical differentiation was used to calculate the slope.
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Figure 3.11: Example of the τx interpolation for both locations

This time in a MATLAB script, the vector that contains the bathymetry was differentiated according to:

(
∂h

∂x

)
cd
≈ hi+1 − hi−1
xi+1 − xi−1

(3.13)

(
∂h

∂x

)
fd
≈ hi+1 − hi
xi+1 − xi

(3.14)

(
∂h

∂x

)
bd
≈ hi − hi−1
xi − xi−1

(3.15)

Equation 3.13 was used for all the middle nodes, Equation 3.14 was used for the first node and

Equation 3.15 for the last one.

For each month, the script searches for the maximum w velocity over each of the bathymetries. Knowing

its location (x, z) = (x0, z0), the full array of w at depth z0 is obtained. Integration is performed from

x = −LU to x = 0 using a 1/3 Simpson’s rule and only retaining the points that are in the ocean, as it can

be seen in Figure 3.12. The same is performed for CUI–LE with the appropriate modifications.

values taken into account

Figure 3.12: Scheme showing the w values taken into account in the CUI computation
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Back in Section 2.6.2, CUI was defined with Equation 2.13a. Despite this correct theoretical definition,

an equation that shows how CUI can be determined directly from the stream function is missing. The

equation is simply:

CUI =
1

LU

∫ xn=LU

xn=0

w(z0) dxn =
1

LU

∫ xn=LU

xn=0

[(
∂ψ

∂x

)
z=z0

]
dxn (3.16)

CUI is essentially a mean value of w(z0) over the region bounded by LU . It should be mentioned that

x-depending parameters such as τy(x) and ug(x) can still be included in the analytical model without

losing the solution’s validity.

SST–I

The temperatures required for this index have different time-scales, so it is important to detail each of the

used datasets. The index is not only making use of a horizontal temperature difference at the surface, but

also of a vertical temperature difference.

T : Obtained from the SST Pathfinder monthly composite (v5.2, L3C: https://tinyurl.com/Tdataset)

which has a 0.0417° resolution.

T0 and TB: Obtained from the World Ocean Atlas 2018 (WOA18) dataset (https://tinyurl.com/

woa18dataset). The decadal period from 1981–2010 with 1° resolution was selected.

As for the location where they must be evaluated, the paper of Marchesiello and Estrade (2010) is not

completely clear. These were the definitions used for this thesis:

T : taken at (x, z) = (x0, 0) km

TO: taken at (x, z) = (−250, 0) km

TB : taken at (x, z) = (−250,−0.250) km

Figure 3.13 presents these locations merely as a scheme, no scaling was done. Again, x0 is the x

location of the point that has w = wmax between x = −LU and x = 0. T is the only temperature that

changes position from month to month. For this reason, a script was written to check for the closest data

point to x0. The high-resolution of the SST Pathfinder dataset allowed for a near match most of the times.

In Section 3.3.2, it was written that the period of the analysis done in Marchesiello and Estrade (2010)

was unknown. Despite this, it can be inferred that the study is indeed done for a climatological time window.

Looking at p. 57, the authors write “Finally, a non-dynamical index SST–I derived from satellite-based,

AVHRR Pathfinder 9km SST climatology (...) ”. Since TO and TB are supposedly acquired from the WOA,

this means that the remaining temperature T is taken from the AVHRR Pathfinder 9 km SST climatology

dataset. It is thereby deduced that all three temperatures share a common climatological time-scale.

Thus, for the sake of a meaningful comparison, all the other dynamical indices must have a climatological

time-scale as well.
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TTO

TB

vertical where

Figure 3.13: Scheme showing the location where the temperatures that make up SST–I are taken

Now, two issues must be highlighted: (a) the actual definition of SST–I and (b) the parameter 4z/γ.

(a) In this thesis, T is a SST chosen for the same vertical where wmax occurs, hence, it will naturally be

a low temperature due to the ascent of cold waters. For ordinary upwelling circumstances, since

TO is a climatological mean temperature taken at a far offshore distance, it is foreseeable to obtain

T < TO. This implies that the index defined by Marchesiello and Estrade is positive in a downwelling

situation and negative in an upwelling one. For this thesis, the absolute value of the index was taken

in order to correct this.

(b) Marchesiello and Estrade took a fixed value of this parameter (4z/γ = 50md−1). For example, if

T ≈ 16 ◦C, TO ≈ 18 ◦C, and TB ≈ 12 ◦C, the ratio (T − TO)/(T − TB) is −0.5. Taking the absolute

value of this result and multiplying it by 50md−1 gives SST–I = 25md−1. This value is extremely

high for the region in study.

In fact, Marchesiello and Estrade never obtained an SST–I as high as this one. There are various

possible reasons for this:

(i) Acquiring T at x0 is incorrect (there is no way to know if it is, since the authors did not specify their

location) or perhaps the chosen dataset has inaccurate values nearshore.

(ii) For this thesis, TO and TB were obtained from the WOA18 objectively analysed climatologies

(optimal interpolation). Another option were the statistical means. The chosen decadal period can

be wrong, as the one used by Marchesiello and Estrade (2010) is unknown.

(iii) Marchesiello and Estrade smoothed all the indices with a 200 km low-pass cosine filter. This might

have removed peaks from this particular index.

(iv) In the present study, T is a monthly average, while the other temperatures are climatological means.

This can have an impact on the temporal consistency of the index, given that the authors used

a climatological mean for all temperatures. The initial premise of this study’s analysis was to

show, for a span of 10 years, how the indices would change, therefore, it would not make sense to
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change T into a climatological mean. The offshore temperature TO can be easily obtained for a

non-climatological monthly period, but the same cannot be said for TB. A dataset that provides a

monthly averaged subsurface temperature for every June, July, and August from 1999–2009 could

not be found. This is why there was no other option and SST–I had to be evaluated using different

time-scales for different temperatures.

In view of the above-mentioned reasons, the parameter 4z/γ was changed in order to obtain significant

values of SST–I. To lower this parameter, one must either decrease the subsurface depth (which then

affects the location where TB is taken), or increase the restoring time-scale γ. No other values of upwelling

restoration time-scale could be found, so, despite the physical repercussions that might arise, γ was

changed in order get plausible values of SST–I.

When showing the results, in order to avoid confusion, CUI–LE will be omitted. For the South latitude

CUI and CUI–LE coincide. For the North latitude their evolution is identical, but CUI–LE will always be

higher in value due to the smaller region of integration.
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Figure 3.14: North location CUI and ECUI
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Figure 3.15: South location CUI and ECUI
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Figure 3.16: North location CUI and SST–I
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Figure 3.17: South location CUI and SST–I

32



Chapter 4

Discussion

4.1 Upwelling separation and kinematic barrier

The differences in the width of the kinematic barrier are not extremely large between the two study

locations. In real life, for the broad shelf, the changes in D, which is a function of the flow, might end up

dictating a lot of the upwelling separation. Assuming a constant, and in fact equal KH , for both locations

is, undoubtedly, a great simplification.

4.2 Indices

At this point it is important to say that the selection of datasets for this study was, above all, conditioned

by the wind stress. After all, this is the main driving force of upwelling in the inner shelf. Between the

old QuikSCAT and the more recent ASCAT dataset, the former was chosen due to its higher resolution

near shore. Hence, all the other datasets were restricted to the time period of available QuikSCAT data

(1999–2009).

Upon calculating SST–I, anomalous peaks in its intensity were found for two months. Since a higher-

resolution dataset was also available at the time they took place, a comparison was made to find what

was happening. Results from the Multi-scale Ultra-high Resolution (MUR) SST Monthly Analysis (2002-

present, fv04.1, Global, 0.01°) are presented in Figure 4.1, which shows the evolution of SST with

longitude for August of 2007, one of the anomalous months. Upon comparison with the data from the SST

Pathfinder, shown in Figure 4.2, at least one clear outlier can be seen. The closest temperature to x0,

which coincides with the right-most temperature recorded by the dataset, is exceptionally low, T ≈ 14 ◦C.

As a consequence, instead of using the SST Pathfinder dataset, from 2002 onwards, values of T are

obtained with the MUR dataset.

Before comparing the indices for both locations, the importance of the bathymetry and geostrophy roles

must be shown.
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Figure 4.1: SST data from https://tinyurl.com/MURdataset for 40.50°N
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Figure 4.2: SST data from https://tinyurl.com/Tdataset for 40.50°N
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Regarding bathymetry, CUI was calculated for the North location using the locations’ inputs (ug, τy, τx,

h(x), f , and D). The next step was to freeze all the inputs except for f and h(x), which are taken to be of

the South location. As it can be seen in Figure 4.3, recalculating the index shows how the steeper shelf

of the South location increases CUI.

As for the geostrophy, two simulations of CUI for the North latitude were done: one with the influence of

geostrophic flow (which is almost always offshore) and the other with a non-existing geostrophic flow.

Looking at Figure 4.4, it is clear that the offshore geostrophic flow in the North location favours upwelling.
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Figure 4.3: Comparison between CUI evaluated with different bathymetries — a steeper shelf favours
upwelling
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4.2.1 South location

Figure 3.15 reveals two unexpected downwelling situations in August of both 2003 and 2008. Regardless

of their low index value, they are quite an unusual sight. The first step was to plot the vertical velocity w

for the referred periods plus an additional month, June of 2003. The latter serves as a means to ascertain

results, given its standard upwelling index value.

Figures 4.5 and 4.6 reveal a small upwelling region present in the first few kilometres, but the majority of

vertical velocities until the x = −5 km mark are mostly negative. It should be remembered that CUI is a

mean of w(z0) over the region that extends from the coast to x = −LU (excluding land points). Thus, if

inside the aforementioned limits, w is mainly negative, the index will be negative as well. As for Figure

4.7, a positive vertical velocity follows the shelf slope, representing the usual situation. These contours

can be compared to Figure 3.6, which shows the same equation plotted for constant ug and τy. To figure

out the reason (or reasons) for such pronounced negative vertical velocities in Figures 4.5 and 4.6, a

quick inspection to τy(x) and ug(x) plots was conducted.

Figures 4.8, 4.9, and 4.10 show how the geostrophic onshore flow has a remarkable impact in the flow

structure. Taking a look at the bottom right corner of Figure 3.7, which was plotted for approximately half

of the value of ug, it is almost as if the the negative (blue) contours spread over the shelf and “push” the

upwelling cell against the shore.

The values of τy for August 2008 are higher than those of 2003, which explains why the magnitude of the

vertical velocities is higher in the former year.

Looking at Figure 3.15, from August 2003 onwards the black line (CUI) is always under the green one

(ECUI) except for some months. This means that from that date onwards, the onshore geostrophic flow

is lowering the vertical velocities that make up CUI. As for Figure 3.17, the indices’ tendencies do not

agree with each other for the most part.

The article of Marchesiello and Estrade (2010) presented a new index, CUI, as a better alternative to

the traditional Bakun index (ECUI). Unfortunately, with this thesis’ approach one cannot prove that. In

the years like 2000, where ECUI and CUI have opposite tendencies, one would need a reliable index to

decide which one is closer to representing the reality. It is true that SST–I (blue line) could be a way to

untie between the black line and the green line, but since the index itself was so hard to evaluate, its role

as the closest index to reality is highly questionable.
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Figure 4.5: Vertical velocity w plotted for 08/2003 at 37.75°N

Figure 4.6: Vertical velocity w plotted for 08/2008 at 37.75°N

Figure 4.7: Vertical velocity w plotted for 06/2003 at 37.75°N
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Figure 4.8: Zonal geostrophic flow ug plotted for 08/2003 at 37.75°N
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Figure 4.9: Zonal geostrophic flow ug plotted for 08/2008 at 37.75°N
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Figure 4.10: Zonal geostrophic flow ug plotted for 06/2003 at 37.75°N
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Figure 4.11: Meridional wind stress τy plotted for 08/2003 at 37.75°N

Figure 4.12: Meridional wind stress τy plotted for 08/2008 at 37.75°N

Figure 4.13: Meridional wind stress τy plotted for 06/2003 at 37.75°N
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4.2.2 North location

Looking at Figure 3.14, the black line (CUI) is always above the green one (ECUI). This means that thee

offshore geostrophic flow is increasing the vertical velocities that make up CUI. In other words, geostrophy

is favouring upwelling.

Regarding Figure 3.16, for the period of 2004–2006 the correlation is quite bad: the tendencies are

opposite of one another. In 2008, there is an agreement between the indices. During 2003, both indices

do not change much.

4.3 Possible error sources

In this study, the major source of errors is likely related to the near shore interpolation. For instance,

attributing a value to the wind stress at x = 0 is obviously a bold assumption, although a much-needed

one. Marchesiello and Estrade (2010), in all likelihood, used a higher quality interpolation method. Despite

this, cubic splines, or some other potentially more powerful methods seemed unsuitable. Mostly because

in order to maintain an analytical representation of the stream function (using interpolation coefficients),

the fit’s analytical expression has to be easily obtained. Choosing a quadratic polynomial has advantages

when computing the stream function, but features like the wind drop-off near the coast are lost.

Another important point stated by Marchesiello and Estrade is the geostrophic flow calculation. In this

thesis, the ug surface current was obtained directly from a dataset, whereas Marchesiello and Estrade

did their calculation using density profiles and sea-surface elevation data. The authors reckon that this

aspect remains a source of uncertainty in their computation.

The analysis done in Marchesiello and Estrade (2010) freezes the time variable in order to study a span

of latitudes, whilst in this thesis the space dimension is restricted to two latitudes and the time variable

is free. Nevertheless, it is interesting to look at the results obtained by the authors for the CIUE. The

results are on page 58, top right corner. The values are much lower than those obtained in this study,

most probably due to the large climatological time window. Naturally, their study ends up taking into

consideration many years and all the other months besides June, July and August, where the upwelling

phenomenon is uncommon in the Portuguese coast. The filter applied by the authors is also different

than the one used in this work.

Bathymetry is also a sensitive topic. Without smoothing, the stream function contours will become quite

jagged. Of course, smoothing the bathymetry will also change dh/dx, which is directly proportional to

vertical velocities that make up the CUI and CUI–LE .

The same can be said for the integration method. It is relevant to point out that, before the 1/3 Simpson

rule, a simpler trapezoidal rule was tested. The results were different enough to show a slight deviation of

the CUI and CUI–LE lines in the South location, where they theoretically coincide.
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4.4 Comparison of indices between the North and the South

Figure 4.14 shows how the Bakun (ECUI) indices for both locations tend to agree on their evolution. The

sea surface temperature based index (SST–I), on the contrary, does not agree so nicely from North to

South, but it is interesting to notice that 2002 and 2007 are both years where the index has a peak in

intensity.
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Figure 4.14: Index comparison between the two studied locations
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Chapter 5

Conclusions

5.1 Achievements

Unveiling the potentially dictating role of geostrophic flow on upwelling during the summertime, especially

in the South study location, was the major achievement of this thesis.

The studied North location has a predominantly offshore geostrophic current which favours upwelling,

while the exact opposite happens on the South location. As a consequence, ECUI and SST–I curves are

similar in both coasts, whilst CUI and CUI–LE vary greatly.

5.2 Future Work

Good results will always rely on good data in the nearshore region, specifically shear stress. High-quality

datasets together with a more robust interpolation could be a way to improve results.

Checking the influence of stratification and friction is a task yet to be tackled. Using a numerical model,

like MOHID for instance, can be an important step to verify the influence of the stated mechanisms in the

analytical model, just as done in Marchesiello and Estrade (2010).

Studying other locations is a possibility, but the Portuguese coast can be tricky. The analytical model,

which requires a steady-state and a two-dimensional approach, will not produce good results close to

great bathymetric accidents, like the Nazaré or Aveiro canyons. Nonetheless, should other locations be

object of study, the dynamical indices will, presumably, present a higher correlation where the geostrophic

onshore flow effect is not taken into account.

The hindering of upwelling situations observed in the south-western Portuguese coast could potentially

be verified for a smaller time scale (daily, instead of monthly) using SST imagery or even checking for

blooms in phytoplankton. A more in-depth study of how geostrophic flow behaves in the offshore regions

of the IP could also be of interest.

All things considered, the dynamical upwelling indices depend mostly upon three parameters: bathymetry,

zonal geostrophic flow, and meridional shear stress.

43



Bathymetry, in the case of this study, does not affect the structure of upwelling significantly. Despite this,

if all the other parameters are constant, it should be said that in the South coast, the vertical velocities

are higher due to the steeper slope.

As for the wind stress, the monthly values are always negative (for June, July, and August) in the studied

locations. The values obtained with interpolation are always higher in the South coast.

On a final note, the restraining effects of onshore geostrophic flow in the south-western Portuguese coast

remains, by far, the most intriguing result to be confirmed with potential subsequent studies.
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Appendix A

Derivation of the analytical model

main equations

A.1 Horizontal flow field

To understand how the solution is derived, it is useful to start with the full equations of momentum:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
+ fv +

1

ρ0

(
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

)
(A.1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ0

∂p

∂y
− fu+

1

ρ0

(
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

)
(A.1b)

The simplifying assumptions for Equations A.1a and A.1b are not the same as Ekman’s, as the first

derivation in his paper only deals with the drift current (balance between Coriolis and friction forces).

Because the stream function that will be derived accounts for the geostrophic flow as well, pressure must

remain in the force balance. The wind shear stress is not involved in the balance because it only acts on

the boundary, whether Coriolis forces, friction and pressure act upon all particles. Therefore, wind shear

stress enters only as a boundary condition.

Assumptions:

(i) steady state (∂/∂t = 0)

(ii) Ro� 1 (negligible advection)

(iii) H/L� 1 (typical ocean basin)

(iv) barotropic ocean

(v) KV = const

(vi) 2D ocean (∂/∂y = 0)

(vii) (KH)x � KV or (EkH)x � EkV
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Under the second assumption, τxx, τxy, τyy, τyx � τzx, τzy. The argument H/L� 1 can be used again

together with the continuity equation for incompressible flow to further simplify the relevant shear stresses:

O
(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
=
U

L
+
U

L
+
W

H
∼ 0⇔W ∼ UH

L
(A.2a)
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+
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)
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UH
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(A.2b)

τzx = µ

(
∂u

∂z
+
∂w

∂x

)
≈ µ∂u

∂z
(A.2c)

τzy = µ

(
∂v

∂z
+
∂w

∂y

)
≈ µ∂v

∂z
(A.2d)

Rewriting Equations A.1a and A.1b, a molecular viscosity ν = µ/ρ0 should appear, but since the

turbulent exchange of momentum dominates over it, the eddy viscosity coefficient K comes up instead:

− 1

ρ0

∂p

∂x
+ fv +KV

∂2u

∂z2
= 0 (A.3a)

− 1

ρ0

∂p

∂y
− fu+KV

∂2v

∂z2
= 0 (A.3b)

Equations A.3 can be merged into a single differential equation using complex notation.
ũ = u+ iv

∂p̃
∂n = ∂p
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τ̃s = τsx + iτsy

(A.4)

Multiplying Equation A.3b by the imaginary unit i and adding it to Equation A.3a gives: − 1
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(A.5)

Finally, the complete second order differential equation is:

KV
∂2ũ

∂z2
− if ũ =

1

ρ0

∂p̃

∂n
(A.6)

Boundary conditions:

No-slip condition at the bottom: (ũ)z=−h = 0

At the surface: KV

(
∂ũ
∂z

)
z=0

= 1
ρ0
τ̃s
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Equation A.6 is a non-homogenous, second order differential equation with constant coefficients. The

total solution will be the sum of the homogenous with the particular solution: sT (z) = sH(z) + sP (z).

The first step is to derive the homogenous part of the solution sH(z).

as
′′

H(z) + bs
′

H(z) + csH(z) = 0 where a = KV , b = 0 and c = −if (A.7)

Writing the characteristic equation and solving the second degree equation provides two roots:

m1 =
−b+

√
b2 − 4ac

2a
=

√
−4KV (−if)

2KV
=

√
if

KV
(A.8a)

m2 =
−b−

√
b2 − 4ac

2a
=
−
√
−4KV (−if)
2KV

= −
√

if

KV
(A.8b)

With two distinct roots, even if they are complex, the general form of the solution is:

sH(z) = C1e
m1z + C2e

m2z ⇔ sH(z) = C1e

√
if
KV

z
+ C2e

−
√

if
KV

z (A.9)

The particular solution is a constant A, since the forcing function of the differential equation is a constant

too:

sP (z) = A⇒ s
′

P (z) = 0⇒ s
′′

P (z) = 0 (A.10)

Plugging Equation A.10 into Equation A.6:

KV × 0− ifA =
1

ρ0

∂p̃

∂n
⇒ A = − 1

iρ0f

∂p̃

∂n
⇒ A =

i

ρ0f

∂p̃

∂n
(A.11)

Without applying boundary conditions, the general solution sT (z) ≡ ũ (z):

ũ (z) = C1e

√
if
KV

z
+ C2e

−
√

if
KV

z
+

i

ρ0f

∂p̃

∂n
(A.12)

Applying the no-slip boundary condition:

C1e
−
√

if
KV

h
+ C2e

√
if
KV

h
+

i

ρ0f

∂p̃

∂n
= 0 (A.13)

Differentiation of the general solution is needed before applying the surface boundary condition:

∂ũ

∂z
=

∂

∂z

(
C1e

√
if
KV

z
+ C2e

−
√

if
KV

z
+

i

ρ0f

∂p̃

∂n

)
= C1

∂

∂z

(
e

√
if
KV

z
)
+ C2

∂

∂z

(
e
−
√

if
KV

z
)

=

= C1

√
if

KV
e

√
if
KV

z
+ C2

(
−
√

if

KV

)
e
−
√

if
KV

z
=

= C1

√
if

KV
e

√
if
KV

z − C2

√
if

KV
e
−
√

if
KV

z

(A.14)
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Using this result:

KV

(
∂ũ

∂z

)
z=0

=
1

ρ0
τ̃s ⇔ KV

(
C1

√
if

KV
− C2

√
if

KV

)
=
τ̃s

ρ0
⇔
√

if

KV
(C1 − C2) =

τ̃s

ρ0KV

⇔ C1 − C2 =
τ̃s

ρ0KV

√
if
KV

=
τ̃s

ρ0
√
ifKV

(A.15)

At this point, it is convenient to introduce the Ekman depth:

D = π

√
2KV

|f |
⇔
√
KV =

D
√
|f |

π
√
2

(A.16)

Equation A.15 can be rewritten as:

C1 − C2 =
τ̃s

ρ0
√
ifKV

=
τ̃s

ρ0
√
i
√
f
√
KV

=
τ̃s

ρ0
√
2
2 (1 + i)

D
√
|f |

π
√
2

√
f

=
τ̃s

ρ0
(
1
2 + 1

2 i
) D√|f |

π

√
f
= (1− i) πτ̃s

ρ0
√
f |f |D

= (1− i) πτ̃s

ρ0

√
f2

λ D

= (1− i) πτ̃s

ρ0
√
f2
√

1
λD

=
(1− i)√

1
λ

πτ̃s

ρ0|f |D
=
√
λ (1− i) πτ̃s

ρ0|f |D

Noting that
√
λ (1− i) = 1− λi when λ 6= 0, the last equation becomes:

C1 − C2 = (1− λi) πτ̃s

ρ0|f |D
(A.17)

In the Estrade et al. (2008) article, the right hand side of the last equation is denoted as ũ0, which is the

surface Ekman velocity in the deep ocean limit.

ũ0 = (1− λi) πτ̃s

ρ0|f |D
(A.18)

Expressing C1 as a function of C2 using Equation A.17 and substituting this result in Equation A.13:

(C2 − ũ0) e
−
√

if
KV

h
+ C2e

√
if
KV

h
+

i

ρ0f

∂p̃

∂n
= 0⇔ C2e

−
√

if
KV

h
+ ũ0e

−
√

if
KV

h
+ C2e

√
if
KV

h
+

i

ρ0f

∂p̃

∂n
= 0

C2

(
e
−
√

if
KV

h
+ e

√
if
KV

h︸ ︷︷ ︸
remembering that cosh x= ex+e−x

2

)
+ ũ0e

−
√

if
KV

h
+

i

ρ0f

∂p̃

∂n
= 0

C2 = −
ũ0e
−
√

if
KV h+ i

ρ0f
∂p̃
∂n

2 cosh
(√

if
KV

h
) (A.19)
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Going back to Equation A.17:

C1 +
ũ0e
−
√

if
KV h+ i

ρ0f
∂p̃
∂n

2 cosh
(√

if
KV

h
) = ũ0 ⇔ C1 =

2ũ0 cosh
(√

if
KV

)
2 cosh

(√
if
KV

h
) − ũ0e

−
√

if
KV

h
+ i

ρ0f
∂p̃
∂n

2 cosh
(√

if
KV

h
)

C1 =

ũ0

(
e
−
√

if
KV

h
+ e

√
if
KV

h
)
− ũ0e

−
√

if
KV

h − i
ρ0f

∂p̃
∂n

2 cosh
(√

if
KV

h
)

C1 =
ũ0e

√
if
KV

h − i
ρ0f

∂p̃
∂n

2 cosh
(√

if
KV

h
) (A.20)

Plugging the constants into Equation A.12:

ũ =

 ũ0e
√

if
KV

h − i
ρ0f

∂p̃
∂n

2 cosh
(√

if
KV

h
)
 e

√
if
KV

z
+

− ũ0e−
√

if
KV

h
+ i

ρ0f
∂p̃
∂n

2 cosh
(√

if
KV

h
)

 e
−
√

if
KV

z
+

i

ρ0f

∂p̃

∂n

ũ =

ũ0e

√
if
KV

h
e

√
if
KV

z − i
ρ0f

∂p̃
∂ne

√
if
KV

z − ũ0e
−
√

if
KV

h
e
−
√

if
KV

z − i
ρ0f

∂p̃
∂ne
−
√

if
KV

z
+

(
e
−
√

if
KV

h
+ e

√
if
KV

h
)

i
ρ0f

∂p̃
∂n

2 cosh
(√

if
KV

h
)

ũ =

ũ0e

√
if
KV

(z+h) − ũ0e
−
√

if
KV

(z+h)
+ i

ρ0f
∂p̃
∂n

(
−e

√
if
KV

z − e−
√

if
KV

z
+ e
−
√

if
KV

h
+ e

√
if
KV

h
)

2 cosh
(√

if
KV

h
)

ũ =

2ũ0 sinh
[√

if
KV

(z + h)
]
− i

ρ0f
∂p̃
∂n

(
e

√
if
KV

z
+ e
−
√

if
KV

z
)
+ i

ρ0f
∂p̃
∂n

(
e

√
if
KV

h
+ e
−
√

if
KV

h
)

2 cosh
(√

if
KV

h
)

ũ = ũ0
sinh

[√
if
KV

(z + h)
]

cosh
[√

if
KV

h
] +

− 2i
ρ0f

∂p̃
∂n cosh

[√
if
KV

z
]
+ 2i

ρ0f
∂p̃
∂n cosh

[√
if
KV

h
]

2 cosh
[√

if
KV

h
]

ũ = ũ0
sinh

[√
if
KV

(z + h)
]

cosh
[√

if
KV

h
] − i

ρ0f

∂p̃

∂n

 cosh
[√

if
KV

z
]

cosh
[√

if
KV

h
] − 1

 (A.21)

The complex pressure gradient can be transformed into a complex geostrophic velocity:

i

ρ0f

∂p̃

∂n
=

i

ρ0f

(
∂p

∂x
+ i

∂p

∂y

)
=

i

ρ0f

∂p

∂x
+

i2

ρ0f

∂p

∂y
= − 1

ρ0f

∂p

∂y︸ ︷︷ ︸
=ug

+i
1

ρ0f

∂p

∂x︸ ︷︷ ︸
=vg

= ug + ivg = ũg (A.22)

While
√

if
KV

can be simplified as follows:

√
if

KV
=
√
i

√
f√
KV

= ±
√
2

2
(1 + i)

√
f√
|f |D
π
√
2

= ±
√
λ (1 + i)

π

D
(A.23)
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Noting that λ = ±1 and

√
±1 =

1 + i

2
± 1− i

2
(A.24)

leads to:

√
±1(1 + i) =

(
1 + i

2
± 1− i

2

)
(1 + i) = i± 1 = ±1

(
i

±1
+ 1

)
= λ(1 + iλ) (A.25)

Above, the particularity 1/λ = λ was used. Going back to Equation A.23, knowing that λ2 = 1, and

naming the expression as c gives:

c = (±1)λ(1 + iλ)
π

D
= λ2(1 + iλ)

π

D
= (1 + iλ)

π

D
⇒ c = (1 + iλ)

π

D
(A.26)

Taking all these simplifications into account:

ũ = ũ0
sinh[c(z + h)]

cosh[ch]
+ ũg

(
1− cosh[cz]

cosh[ch]

)
(A.27)

Dividing the flow into Ekman and geostrophic components:

ũ = u+ iv = (uE + ug) + i (vE + vg) = (uE + ivE) + (ug + ivg) = ũE + ũg (A.28)

The Ekman component of the flow is:

ũ = ũ0
sinh[c(z + h)]

cosh[ch]
− ũg

cosh[cz]

cosh[ch]︸ ︷︷ ︸
=ũE

+ũg ⇒ ũE = ũ0
sinh[c(z + h)]

cosh[ch]
− ũg

cosh[cz]

cosh[ch]
(A.29)
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A.2 Horizontally-varying structure functions, Ekman transport and

meridional geostrophic velocity

The full Ekman transport accounts for both bottom and top layers, hence it is integrated for the whole

water column:

ŨE =

∫ z=0

z=−h
ũE dz = ũ0

∫ z=0

z=−h

sinh[c(z + h)]

cosh[ch]
dz −

∫ z=0

z=−h
ũg

cosh[cz]

cosh[ch]
dz (A.30)

Solving the first integral using t = c (z + h)⇒ dt
dz = c⇒ dz = 1

cdt as a substitution:

∫
sinh[c(z + h)]

cosh[ch]
dz =

1

c cosh[ch]

∫
sinh t dt =

1

c cosh[ch]
(cosh t+A1) =

cosh[c (z + h)]

c cosh[ch]
+A2 (A.31)

Evaluating the result at the integral’s limits:

(
cosh[c (z + h)]

c cosh[ch]
+A2

)
z=0

−
(
cosh[c (z + h)]

c cosh[ch]
+A2

)
z=−h

=
cosh[ch]− 1

c cosh[ch]
(A.32)

Solving the second integral using s = cz ⇒ ds
dz = c⇒ dz = 1

cds as a substitution:

∫
cosh[cz]

cosh[ch]
dz =

1

c cosh[ch]

∫
cosh s ds =

1

c cosh[ch]
(sinh t+A3) =

sinh[cz]

c cosh[ch]
+A4 (A.33)

Evaluating the result at the integral’s limits:

(
sinh[cz]

c cosh[ch]
+A4

)
z=0

−
(

sinh[cz]

c cosh[ch]
+A4

)
z=−h

=
sinh[ch]

c cosh[ch]
(A.34)

Going back to Equation A.30:

ŨE =
ũ0
c

(
cosh[ch]− 1

cosh[ch]

)
− ũg

(
sinh[ch]

c cosh[ch]

)
=

(1− λi) πτ̃s

ρ0|f |D

(1 + λi) πD

(
cosh[ch]− 1

cosh[ch]

)
− (ug + ivg)

(1 + λi) πD

(
sinh[ch]

cosh[ch]

)

= (−iλ)τx + iτy
ρ0 |f |︸︷︷︸

=λf

(
cosh

[
(1 + λi) πDh

]
− 1

cosh
[
(1 + λi) πDh

] )
− D

π

[(
1

2
− 1

2
iλ

)
(ug + ivg)

](
sinh

[
π
Dh+ λi πDh

]
cosh

[
π
Dh+ λi πDh

])

=
τy − iτx
ρ0f

(
cosh

[
(1 + λi) πDh

]
− 1

cosh
[
(1 + λi) πDh

] )
− D

2π
[(ug + λvg) + i (vg − λug)]

(
sinh

[
π
Dh+ λi πDh

]
cosh

[
π
Dh+ λi πDh

]) (A.35)

At this point it is nice to remember that:

sinh(x+ iy) = sinh(x) cos(y) + i cosh(x) sin(y) (A.36a)

cosh(x+ iy) = cosh(x) cos(y) + i sinh(x) sin(y) (A.36b)
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Using Equation A.35:

ŨE =
τy − iτx
ρ0f

(
cosh

[
π
Dh
]
cos
[
λ πDh

]
+ i sinh

[
π
Dh
]
sin
[
λ πDh

]
− 1

cosh
[
π
Dh
]
cos
[
λ πDh

]
+ i sinh

[
π
Dh
]
sin
[
λ πDh

] )

− D

2π

[(
ug + λvg︸ ︷︷ ︸

=t1

)
+ i
(
vg − λug︸ ︷︷ ︸

=t2

)]( sinh
[
π
Dh
]
cos
[
λ πDh

]
+ i cosh

[
π
Dh
]
sin
[
λ πDh

]
cosh

[
π
Dh
]
cos
[
λ πDh

]
+ i sinh

[
π
Dh
]
sin
[
λ πDh

])

Since λ = ±1, then cos(λx) = cosx and sin2(λx) = sinx, which means that some simplifications can be

made:

1
ρ0f

τy cosh[ πDh] cos[
π
Dh]−τy+τx sinh[ πDh] sin[λ

π
Dh]+i(τy sinh[ πDh] sin[λ

π
Dh]−τx cosh[ πDh] cos[

π
Dh]+τx)

cosh[ πDh] cos[
π
Dh]+i sinh[

π
Dh] sin[λ

π
Dh]

− D
2π

t1 sinh[ πDh] cos[
π
Dh]−t2 cosh[ πDh] sin[λ

π
Dh]+i(t1 cosh[ πDh] sin[λ

π
Dh]+t2 sinh[ πDh] cos[

π
Dh])

cosh[ πDh] cos[
π
Dh]+i sinh[

π
Dh] sin[λ

π
Dh]

(A.37)

Let

j = τy cosh
[ π
D
h
]
cos
[ π
D
h
]
− τy + τx sinh

[ π
D
h
]
sin
[
λ
π

D
h
]

(A.38a)

k = τy sinh
[ π
D
h
]
sin
[
λ
π

D
h
]
− τx cosh

[ π
D
h
]
cos
[ π
D
h
]
+ τx (A.38b)

l = cosh
[ π
D
h
]
cos
[ π
D
h
]

(A.38c)

m = sinh
[ π
D
h
]
sin
[
λ
π

D
h
]

(A.38d)

n = t1 sinh
[ π
D
h
]
cos
[ π
D
h
]
− t2 cosh

[ π
D
h
]
sin
[
λ
π

D
h
]

(A.38e)

o = t1 cosh
[ π
D
h
]
sin
[
λ
π

D
h
]
+ t2 sinh

[ π
D
h
]
cos
[ π
D
h
]

(A.38f)

p = l = cosh
[ π
D
h
]
cos
[ π
D
h
]

(A.38g)

q = m = sinh
[ π
D
h
]
sin
[
λ
π

D
h
]

(A.38h)

Rewriting everything:

ŨE =
1

ρ0f

[
j + ik

l + im

]
− D

2π

[
n+ io

p+ iq

]
=

1

ρ0f

[
jl + km

l2 +m2
+ i

kl − jm
l2 +m2

]
− D

2π

[
np+ oq

p2 + q2
+ i

op− nq
p2 + q2

]
(A.39)

Since only the zonal component of the Ekman transport is important:

Re
{
ŨE

}
= UE =

1

ρ0f

[
jl + km

l2 +m2

]
− D

2π

[
np+ oq

p2 + q2

]
(A.40)
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After some algebra work:

UE = 1
ρ0f

[
τy(sinh[ πDh] sin[λ

π
Dh])

2
+τy(cosh[ πDh] cos[

π
Dh])

2−τy cosh[ πDh] cos[
π
Dh]+τx sinh[ πDh] sin[λ

π
Dh]

(cosh[ πDh] cos[
π
Dh])

2
+(sinh[ πDh] sin[λ

π
Dh])

2

]

− D
2π

[
t1 sinh[ πDh] cosh[

π
Dh] cos

2[ πDh]−t2 sin[λ πDh] cos[
π
Dh] cosh

2[ πDh]+t1 cosh[ πDh] sinh[
π
Dh] sin

2[ πDh]+t2 sin[λ πDh] cos[
π
Dh] sinh

2[ πDh]
(cosh[ πDh] cos[

π
Dh])

2
+(sinh[ πDh] sin[λ

π
Dh])

2

]

Defining the horizontally-varying structure functions as:

α =
(
cosh

[ π
D
h
]
cos
[ π
D
h
])2

+
(
sinh

[ π
D
h
]
sin
[ π
D
h
])2

(A.41a)

S1 = cosh
[ π
D
h
]
cos
[ π
D
h
]
α−1 (A.41b)

S2 = sinh
[ π
D
h
]
sin
[
λ
π

D
h
]
α−1 (A.41c)

T1 = cosh
[ π
D
h
]
sinh

[ π
D
h
]
α−1 (A.41d)

T2 = cos
[ π
D
h
]
sin
[
λ
π

D
h
]
α−1 (A.41e)

The expression for the total (zonal) Ekman transport becomes:

1

ρ0f

(τyα
α
− τyS1 + τxS2

)
− D

2π

(
t1T1 cos

2
[ π
D
h
]
− t2T2 cosh2

[ π
D
h
]
+ t1T1 sin

2
[
λ
π

D
h
]
+ t2T2 sinh

2
[ π
D
h
])

=

= (1− S1)
τy
ρ0f

+ S2
τx
ρ0f
− D

2π

t1T1
(
cos2

[ π
D
h
]
+ sin2

[ π
D
h
])

︸ ︷︷ ︸
=1

+t2T2

(
− cosh2

[ π
D
h
]
+ sinh2

[ π
D
h
])

︸ ︷︷ ︸
=−1


= (1− S1)

τy
ρ0f

+ S2
τx
ρ0f
− D

2π
[t1T1 − t2T2] = (1− S1)

τy
ρ0f

+ S2
τx
ρ0f
− D

2π
[(ug + λvg)T1 − (vg − λug)T2]

Finally,

UE = (1− S1)
τy
ρ0f

+ S2
τx
ρ0f
− D

2π
[(λT1 − T2) vg + (T1 + λT2)ug] (A.43)

Since the total cross-shore transport must be zero everywhere, another relation can be obtained. Assum-

ing geostrophic barotropic flow (ug is independent of depth):

UT = 0⇔
∫ z=0

z=−h
(uE + ug) dz = 0⇔

∫ z=0

z=−h
uE dz + ug

∫ z=0

z=−h
dz = 0

⇔ UE + ug [0− (−h)] = 0⇒ UE = −ugh (A.44)
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Combining Equations A.43 and A.44 to eliminate UE and solving for vg gives:

vg =
2π

ρ0fD

[
1− S1

λT1 − T2
τy +

S2

λT1 − T2
τx

]
− ug

T1 + λT2 − 2πh/D

λT1 − T2
(A.45)

A.3 Stream function

Using the formal definition for a stream function:
w = ∂ψ

∂x

u = −∂ψ∂z
(A.46)

Integrating in the z direction and substituting the total velocity for the Ekman and geostrophic components

gives:

−
∫ ψ(x,0)

ψ(x,z)

dψ =

∫ 0

z

udz =

∫ 0

z

(uE + ug) dz ⇒ ψ(x, z)− ψ(x, 0) =
∫ 0

z

uE dz +

∫ 0

z

ug dz (A.47)

Assuming ψ(x, 0) = 0 and knowing that the surface Ekman transport is given by ŨsE =
∫ 0

z
ũEdz with

ũE = uE + ivE gives:

ψ(x, z) = Re
{
ŨsE

}
− ugz (A.48)

In Equation A.30 the integration was done for the whole water column. If the integral’s limits where

changed to z and 0, the surface Ekman transport ŨsE would have been obtained. The result is:

ŨsE =
1

c

[
ũ0

(
1− cosh[c(z + h)]

cosh[ch]

)
+ ũg

sinh[cz]

sinh[ch]

]
(A.49)

Alternatively:

ψ(x, z) = Re

{
1

c

[
ũ0

(
1− cosh[c(z + h)]

cosh[ch]

)
+ ũg

sinh[cz]

sinh[ch]

]}
− ugz (A.50)
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Appendix B

Parameter calculation

SOUTH LOCATION NORTH LOCATION

KV = 0.01m s−2

f = 0.890× 10−4 s−1

D = π
√
2KV /|f | = 47.01m

KH = 100m s−2

LE = π
√
2KH/|f | = 4701.5m

S = 300/22000 = 0.0136

0.75D/S = 2592.5m

LU = max [2592.5 ; 4705.5] = 4701.5m

KV = 0.01m s−2

f = 0.945× 10−4 s−1

D = π
√
2KV /|f | = 45.60m

KH = 100m s−2

LE = π
√
2KH/|f | = 4565.5m

S = 125/55000 = 0.00227

0.75D/S = 15 066m

LU = max [4565.5 ; 15066] = 15 066m

Calculating the slope S is simple as it only requires inspection of the bathymetry profile. For the South

location, the depth goes from 0 to 300m in 22 km, while for the North location it goes from 0 to 125m in

55 km. Regarding the Ekman depth, since it is practically the same for both locations, a single value of

D = 46m will be used.
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